
Visualizing
parallel execution
of FORTRAN
programs

by F. Szelenyi
V. Zecca

As a first step toward the parallel execution
analysis of FORTRAN programs, a tool called
the Parallel Execution Profiler has been
designed and implemented for the graphical
postexecution analysis of parallel programs
using the Parallel FORTRAN environment as a
vehicle for both implementing parallel programs
and tracing parallel events. The dynamic
behavior of parallel execution is observed
interactively in color graphs, which can be
displayed concurrently with the source code,
and in statistical summaries. This paper
describes the implementation of our tool for
parallel performance analysis with the aid of a
parallelired application program from plasma
physics.

Introduction
Complete performance analysis of parallel programs
requires the analysis of both static and dynamic behavior,
While static analysis can be done with optimizing
compilers and code-restructuring tools that rely on
estimated execution statistics to obtain well-optimized
codes, dynamic execution analysis usually requires
human comprehension and interaction. Static program
analysis consists basically of dependency tests for
parallelization [11 and estimates of program behavior

(e.g., the number of iterations of a DO-loop).
Unfortunately, the dynamic behavior of parallel
programs is very complex, and inefficiencies and errors in
these programs are difficult to detect. Starting from an
optimized serial code, the goals of parallelization are to
maximize parallelism inside the program, to minimize
the overhead required by multitasking primitives, and to
balance computational load among the parallel
processors. Only well-balanced programs can provide
optimal parallel execution. To achieve these goals, the
capacity for fine tuning and debugging during parallel
execution is desirable but difficult to implement. Parallel
programming analysis presumes either that the parallel
code can be simulated or that the parallel execution can
be monitored. The overhead required by a monitor to
produce execution traces generally results in some
execution distortions (e.g., a different sequence of events),
but monitoring does indicate the elements of program
performance that should be analyzed more thoroughly by
graphical analysis.

As a first step toward parallel execution analysis, a
Parallel Execution Profiler (PEP) has been designed and
implemented at the IBM European Center for Scientific
and Engineering Computing (ECSEC), Rome, for the
high-level postexecution analysis of parallel programs.
This analysis is accomplished by examining performance
data gathered during execution. Such performance-

"CoPYright 1 9 9 1 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of
this Paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems, Permission to republish any other

270 portion of this paper must be obtained from the Editor.

F. SZELENYI AND V. ZECCA IBM J. RES. DEVELOP. VOL. 35 NO. 112 JANUARYMARCH 1 9 9 1

history data might be recorded by tracing with a software
or hardware monitor. Tracing requires cost-intensive
monitoring of the parallel program, thus introducing
execution distortions due to event recording, but with the
advantage of portability. The monitoring data are
collected in a trace file by storing the event type (e.g.,
“forking” a parallel work item to a processor), processor
identification, timestamp, and certain additional
information which must be filtered for important and
significant data for the analysis. This situation leads to a
complex task because of the increasing amount of
information available from multiple processors and the
multiplicity of possible combinations of events. As an
alternative, techniques for parallel debugging of single
processors under the control of a master [2] help in
analyzing overall behavior, but monitoring seems more
precise and efficient because of its simpler design. To
interpret these parallel execution data, PEP visualizes the
concurrent computation by referring to the source
program and to previously recorded variable values. IBM
Parallel FORTRAN [3] has been used as a vehicle both
for implementing parallel programs and for tracking all
events of a parallel program that are stored in the PEP
database. The contents of the database can be visualized
by color graphics and statistical charts using the
Graphical Data Display Manager (GDDM) [4] on an
IBM 3270 or 5080 color display. As a test and
demonstration case, we have analyzed performance data
obtained by dedicated runs of a magnetohydrodynamic
parallel code on an IBM 3090‘ processor with Vector
Facility (VF) and six processors.

state diagrams, which show all the states of virtual
processors. Virtual processors have been introduced
because modem parallelizing tools such as Parallel
FORTRAN rely on this concept, but it is also possible to
show the status of the real (i.e., physical) processors.
Several possible methods for storing parallel execution
information have been found in the literature: The
relational approach [5] or state charts [6] are thought to
be more efficient because traditional queueing models [7]
fail. State diagrams seem to be the most successful model
because they lead to a clear and terse description of
processor activity. State diagrams are simple directed
graphs, with nodes denoting states and arrows (labeled
with events and guarding conditions) denoting transitions
between, for example, idle and active states. However, a
more sophisticated technique is required to describe the
more complex systems, because a complex system
description will otherwise result in a chaotic state
diagram. Therefore, a hierarchy was introduced into the
PEP processor model to describe the dependency among

The processor model of the PEP database is based on

’ 3090 is a trademark of International Business Machines Corporation.

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARYlMARCH 1991

the several processors during parallel execution (e.g.,
processor one must wait for the lock obtained by
processor two) on a time- and statement-level basis.

The logical connections among different processor *

states are visualized with dependency graphs by
displaying possible dynamic dependencies such as waiting
for a lock or for the termination of a task. Parallel
execution is shown (Figure 1) in a two-dimensional
plane; the horizontal (x) axis shows the processors in
numerical sequence from left to right and the vertical (y)
axis shows time increasing from top to bottom. Blue lines
indicate dependencies between processors. The time
windows of parallel execution can be selected and
customized by zooming, cutting, paging, or direct time
and scaling input. Overall program efficiency can be
summarized in charts by taking into account parallel
inefficiencies such as waiting for locks, events, and tasks.
These performance graphs can be saved as print files for
page printers. A view of the source code for high-level
analysis is provided by means of display windows. Source
code statements can be displayed with respect to selected
time and processor values (in a manner similar to the VS
FORTRAN interactive debugger [SI) within the analysis
graph, and conversely, a graphical display of the dynamic
behavior of the parallel execution can be generated from
the source code by pointing to statements in the code.
Furthermore, the values of selected variables can be
displayed as a first step toward a parallel debugger. A
parallel debugger helps the programmer to write good
parallel code by generating code for tracing, changing the
priority of processes, suspending the execution of
processes, simulating events and processes, forcing
nondeterministic constructs, querying the program state,
and eventually checking assertions [9].

Parallel performance analysis is completed by using
execution statistics to summarize the use of parallel
primitives with related overheads, the parallel loop
analysis (e.g., chunk size, number of iterations assigned
to a processor, and total number of iterations), the
overhead due to inefficient parallel programming (e.g.,
waiting for events), the use of subroutines in parallel, and
the efficiency of subroutines. These statistics can be
displayed in simple tabular form or in colored charts.

as MTDUMP on Cray multiprocessors, can generate an
execution graph in a postprocessing analysis step but do
not allow a flexible on-line study. For the VM/EPEX
environment, a speedup analyzer [101 has been
implemented to examine algorithmic performance,
parallel processing overhead, and the distribution of
parallel work items by first monitoring the parallel
program. Executing this program on a uniprocessor and
then on a multiprocessor model allows the study of

Simple postprocessing tools for parallel programs, such

F. SZELENYI AND V. ZECCA

27 1

272

Profile graph for the MHD master/slave implementation, showing the source text window indicating in yellow the current statement spotted
by the green mark in the time lines. The help window contains the color line explanations. The chart focuses on the high task dependencies
caused by event and locking synchronization in the lower part.

parallel performance as a second step. Similar tools have
been developed for the analysis of workstation displays
and message-passing multiprocessors [1 11, as well as for
shared-memory multiprocessors (i.e., processors with the
SCHEDULE package [12]), all based on the execution
analysis of a monitored parallel program. Static analysis,
merged with performance estimations through the use of
a graphical editor [131, helps in the parallelization and

fine-tuning of programs. Another approach for the
dynamic analysis on VLIW machines is a trace-
scheduling compiler [141, which permits program flow
study with interactive debugging.

Parallel FORTRAN (PF) provides an environment for
the execution of parallel programs consisting of parallel
constructs that allow a set of FORTRANprocessors (FP)
to be associated with a single FORTRAN program.

F. SZELENYI AND V. ZECCA IBM 3. RES. DEVELOP. VOL. 35 NO. 112 JANUARYIMARCH 1991

Parallel FORTRAN has recently been merged into the
IBM VS FORTRAN Version 2.5 environment. Parallel
execution is achieved by having multiple FPs associated
with the program, and a root FP controls the parallel
execution of all program-defined FPs. The programmer
defines the work to be done by the FPs and declares at
execution time the number of FORTRAN processors
which are controlled by the PF library. Parallel
FORTRAN provides a trace facility for recording all of
the significant events of parallel program flow. This trace
is used by the Parallel Execution Profiler as a monitoring
tool. As with any trace facility, it is difficult to improve
the parallel application without a deep and thorough
knowledge of the PF trace output. The Parallel
FORTRAN trace facility can be enabled or disabled at
run time. The following events, which are significant for
the Parallel Execution Profiler, are recorded:

0 Start and end of program execution.
Origination, assignment, completion, and termination

0 Task access to shared or copied memory.
0 Locking and event-handling management.
0 Parallelized DO-loops and parallel sections.
0 Waiting for events, locks, tasks, loop chunks, and

parallel sections.
0 User-defined events.

A series of trace records are produced, each showing a
time stamp, a FORTRAN processor number, a real
processor number, the originating task, the trace event
name, and additional information. The format of the
time stamp can be selected by the user (for example,
microseconds or seconds can be specified). Additional
information (e.g., the chunk size of a parallel DO-loop or
even user-written information) completes the PF trace
output. The overhead for tracing parallel execution varies
between 3% and 250% for a set of parallel test programs
[151, depending on the number of parallel events: Many
tasks all accessing the same shared variable in a critical
section require an extensive trace recording. The higher
overhead figure occurs for heavy tracing activity when
intensive and prolonged input/output is performed on
the trace file. These overheads have been measured for
several programs using different PF parallelization
strategies executing with six processors on a dedicated
IBM 3090 System Model 600E under the MVS/XA2
operating system.

Visualizing parallel execution
The Parallel Execution Profiler uses the Parallel
FORTRAN trace as input to generate the database

of PF tasks.

* MVS/XA is a trademark of International Business Machines Corporation.

IBM I. RES, DEVELOP. VOL. 35 NO. 112 JANUARYIMARCH 1991

n n

State diagram of a processor, showing the five different states for 1 a processor using Parallel FORTRAN primitives. The arrows rep-
> resent the PF statements for the transit from one state to another
j state.

storing processor state diagrams: A processor can have
five different states: idle, active, wait for a task, wait for
an event, and wait for a lock. Figure 2 shows how the
state of a processor changes with the execution of PF
primitives. (For example, a processor state changes from
idle to active in computing a chunk of a DO-loop, while
a processor enters the idle state when the work item has
been terminated and no new work item has been
assigned.) The inefficient states should be minimized to
obtain good parallel performance. The second input for
PEP consists of the Parallel FORTRAN compiler output
listing for the connection between the parallel execution
graphs and the source program.

dimensional plane, with the x-axis representing the
processor scale and the y-axis representing the time scale.
Time lines representing the actual state of a processor
develop from top to bottom, showing dependencies
between processors with horizontal lines which indicate
the type of dependency. The time scale can be adjusted
by defining the start time of the actual window, adjusting
the time increment, paging up and down, zooming, and
moving the time axis. The user can focus on important
parts of the parallel execution with these PEP functions.

Visualization of parallel execution starts in a two-

F. SZELENYI AND V. ZECCA

273

Schematic profiling: Processors specifies the FORTRAN proces-
sors from the root task to the number of processors defined, time
scale the actual increment in the time axis, and time start the ac-
tual starting time (these two parameters can be modified interac-
tively by the user); PEP analysis represents the graphical display
of the parallel program execution.

The connection to the source program can be done by
opening the source program window at the current time,
or by pointing to an event specified by the processor
number and time stamp. The program window can show
parts of the source program in a manner similar to the
VS FORTRAN interactive debugger, or it can show the
source statement with the subroutine name. The window
is updated with respect to the current time stamp. The
user can jump to the next executed event at the displayed
statement, for either the same processor or another
processor. Furthermore, the values of predefined
variables can be displayed for each processor and time.
These variables are recorded in the PF trace through an
interface program provided by PEP, which is described
later.

The efficiency of a piece of code can be computed by
pointing in the graph to the extremes of the selected
piece. The actual real (physical) processor state can be
determined by pointing within the graph, with PEP
showing the number of FORTRAN processors associated
with each of the real processors (eventually in an
interleaved mode). Print files for page printers are saved
by PEP for printing and documenting purposes. All PEP
functions are assisted by help text windows, which
explain the PEP messages and function keys. Error
messages can be explained in more detail by pressing the
help key that gives the user suggestions for solving the
problem.

Parallel execution statistics can be shown in simple
tables or in more complex color charts, which can be
saved for printing purposes. The statistical analysis can
be guided through the windows interface, and the

274 following information can be obtained

F . SZL I L N Y I ANI) V. ZF,CCA

A summary of parallel statements in absolpte numbers

A parallel loop analysis: chunk size, number of
and elapsed times.

iterations, and number of processors with minimum,
maximum, and average values. Furthermore, the
number of parallel loop executions is summarized, for
hot-spot detection.

FORTRAN processors.
Overhead caused by inefficient states for the

A summary of subroutine usage.
Calculations of subroutine efficiency.

Examples of parallel execution statistics are shown in
Figure 1 and in Figures 4-7, and are described later.

PEP performance data
An on-line analysis of parallel program execution is
divided into two parts, performance profiling, as shown
schematically in Figure 3, and execution statistics on
charts. All Parallel Execution Profiler features are
invoked by function keys. Figure 3 depicts a two-
dimensional plane with a processor x-axis starting from
the root processor and a time y-axis starting from the
beginning of execution. The x-axis shows all processors
defined in the parallel program, while the time scale is
determined by the screen size. The unit of time
corresponds to the setting in the Parallel FORTRAN
trace time scale. The starting time and incrementing time
can be set by the user at any time. The PEP analysis
window shows the time lines with dependencies among
the processes. This section gives an overview of the
information provided and the use of the analysis tool; a
complete description can be found in [161.

Performance profiling is assisted by interactive help
functions to explain the meaning of symbols and lines
shown in the profiling chart. Explicative messages for
each function are shown in the beginner mode, which
can be disabled for faster analysis. Error messages are
displayed in special windows, and PEP-proposed
corrective actions should allow a fast user response
without losing previous analysis work. Parallel analysis of
the evolution of the FORTRAN processor states is done
in the time direction by paging or by direct setting of the
actual screen starting time and time increment. The
program flow with branching dependencies due to
parallel actions (e.g., a processor has forked to a new
processor because of a SCHEDULE statement) can be
observed in the time direction. This profiling chart can be
saved for plotting and documentation purposes by
pressing a function key. Zooming and cutting functions
allow the detailed study of critical program parts:
Zooming focuses on these parts by readjusting the screen
starting time and increment, while the cutting function
excludes certain events, with notification to the user.

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARYIMARCH 1 9 9 1

Branches from a processor are specified in detail by
indicating the Parallel FORTRAN statements that caused
each branch. This function can be enabled and disabled
by the user at any time with any degree of detail on the
Parallel FORTRAN statements.

specified time interval can be done by simply pointing to
the area of interest on the screen, and these
measurements allow the programmer to improve the
efficiency of program fragments. Parallel efficiency is
calculated as the sum of the times when the processors
are in the active state, divided by the elapsed time
interval of the fragment multiplied by the number of
processors. The state of the real (physical) processors can
be obtained for a selected time: PEP indicates with
different colors the FORTRAN processors that are
executed on a real processor. The parallel FORTRAN
trace contains its own time-stamp units, which must be
converted to elapsed time. The time pointed to in the
window can be further detailed by altering the time-
stamp unit setting (i.e., the unit of incrementing or the
relative starting time).

A set of interface routines callable from a Parallel
FORTRAN program has been developed to put the
values of selected variables in the trace output. These
variables can be displayed in the PEP analysis
display. The user must add the interface call in the
application before the compiling step, and the recorded
values are stored in the trace generated by Parallel
FORTRAN. For example, to display the double-
precision variable “VARIAB” the following call must be
included

CALL PEP$R8 (‘VARIAB’, VARIAB)

These values can be displayed by pointing to the
processor and time event in the profile chart. If a value
close to this point has been recorded, the value and
variable name with the issuing internal statement number
are shown in an extra window. This is a first step toward
parallel debugging and gives a fuller response to the
program state query.

The connection between the graphical analysis display
and the source program code is obtained either by
displaying the current source statements in a window or
by pointing the cursor to the time and processor point
(similar to displaying a preselected variable value), thus
displaying the actual program or subprogram name with
the internal statement number and the statement text.
Conversely, a specific parallel statement can be selected
by designating its internal statement number and
(sub)program name to show the first occurrence of this
parallel statement. The next or previous Occurrences of
this statement on the same or another processor can be
pointed out.

Measurements of parallel efficiency in the user-

IBM J . RES. DEVELOP. VOL. 35 NO. 1/2 JANUARYIMARCH 1991

A more advanced source text connection is provided
by opening a new, movable window containing the
program text, the program name, and the internal
statement numbers, and pointing to the actual statement
as the VS FORTRAN interactive debugger would do.
When the window is opened, the actual statements are
displayed, but, as shown in the previous paragraph, the
window can be visualized by pointing into the parallel
program flow graph. The same functions are provided for
moving to the next or previous occurrences in the time
and processor axes.

After termination of the on-line parallel program
analysis, statistics in the form of charts or tables help the
programmer to estimate overall performance and find
bottlenecks. The summary of the parallel statements
counts the number of executed parallel statements (e.g.,
generating a task, loop chunk) and computes the elapsed
time required for these parallel statements (for an
example, see Figure 4). The overheads are calculated
from the Parallel FORTRAN overhead measurements for
all parallel primitives [171, giving the programmer an
estimate of the overhead introduced with parallelism.
Unavoidable statements (e.g., originating a task) can be
excluded for a better overview. In Figure 5, parallel loop
execution is summarized by giving the minimum,
maximum, and average values for the number of
processors used, the number of iterations, the chunk size
per processor, and the number of times the parallel loop
has been executed. In general, Parallel FORTRAN is able
to balance the parallel execution of a loop so that, as in
this case, the minimum and maximum chunk sizes and
processor numbers are the same. These data can be
displayed for a specific parallel loop or for a single
specific performance characteristic (e.g., chunk size) with
bar charts. In Figure 6, program inefficiencies such as
waiting for the termination of tasks, for events, and for
locks, are summarized for the individual processors with
percentages and elapsed times. In Figure 7, the active
times, the time spent in parallel loops, and the overhead
due to waiting for events, locks, and tasks are
summarized for each subroutine with elapsed times.
These data are required for the calculation of the overall
parallel efficiency e of a subroutine s with the following
formula:

nP(Tt - ‘d)
e, = w

2 T:
3

i= I

where np is the number of processors, Td and T, are the
clock time when the task containing the subroutine s was
dispatched and terminated, respectively, and Tl is the
time required on processor i for the execution of
subroutine s.

F. SZELENYI AND V. ZECCA

275

Overhead of the MHD implementation. The overhead summary of the Parallel FORTRAN language elements i s shown by displaying the
absolute number of executed Parallel FORTRAN statements and the corresponding elapsed times spent in performing these calls. The
elapsed times are calculated as previously measured for the current Parallel FORTRAN implementation [17]. Statements whose overhead is
already known or unavoidable (e.g. , originute u tusk) can be excluded for a better overview.

A magnetohydrodynamic parallel code components of the magnetic field. The MHD equations
The magnetohydrodynamic (MHD) system of partial are approximated in the points of a grid by discrete
differential equations [151 describes the motion of a difference equations, resulting in a large system of
plasma influenced by a magnetic field, as in a fusion algebraic equations to be solved. The numerical method
reactor. The main physical variables in two dimensions used in the MHD system leads to explicit finite-difference

276 are the pressure and velocity of the plasma and the equations, in which only the values at time step n - 1 are

F. SZELENYI AND v. ZECCA IBM I. RES. DEVELOP. VOL. 35 NO. 112 JANUARYIMARCH 1991

Statistics of a parallel loop. These charts show the number of executions, the minimum, maximum, and average value for the number of
iterations, the number of FORTRAN processors used, and the number of chunks per processor for the parallel loop from the program
PLASM at internal statement number 28.

required to update the physical variables at the new time 1. Definition of the variables and calculation of the
step n. Therefore, all values of the previous state are initial state of the plasma and magnetic field.
known, and no data dependencies between variables of 2. Time-stepping from n = 1 to NT of the physical
the current and the previous state arise. These numerical variables computed in all the inner grid points.
methods are easily parallelizable. The calculations for a 3. Terminating the program when the steady state is
given number of time steps or to reach the steady state reached and the convergence condition for all grid
comprise the following steps: points is fulfilled.

IBM J . RES. DEVELOP. VOL. 35 NO. 112 JANUARYIMARCH 1991 F. SZELENYI AND V. ZECCA

277

Statistics for the overheads of the root task. These charts show the overheads due to wait for tasks, events, and locks for the FORTRAN
root task on FORTRAN processor 0. All FORTRAN processors are selectable, and the total overhead summary can be analyzed as well.
The overheads are listed in percentage of the total time and in elapsed times.

278

The MHD system has been implemented in four
different parallel versions: Fine-grain parallelism has
been exploited by using 1) Parallel FORTRAN automatic
parallelization and 2) Parallel FORTRAN language
primitives for in-line parallelism. 3) Macrotasked and
4) event-synchronized versions exploit PF coarse-grain
parallelism. The version with automatic parallelization
has been prepared by compiling the vectorized sequential

code without any changes. Using the Parallel FORTRAN
language statements PARALLEL CASES and
PARALLEL LOOP exploits in-line parallelism, and
a few optimizations with compiler directives characterize
the second fine-grain implementation. The slightly
unsatisfactory performance results can be explained
partly by the reduced vector length due to
parallelization.

F. SZELENYI AND v. ZECCA IBM J. RES. DEVELOP. VOL. 35 NO. 112 JANUARYMARCH 1991

Subroutine usage of the master and the slave task, showing the times spent in waiting for thc completion of tasks. of events. and acquisition
of locks. The master task in subroutine PLASM I waits for a remarkable time for completion of the slave tasks, whereas the bottleneck in the
slave tasks within subroutine PLASM2 occurs becausc of the update of global variables within critical sections. The active time is excluded
from the charts to provide a better overview.

Examination of the data structures within the most unchanged. The pure macrotasked version assigns a strip
time-consuming parts of the program shows that within to each task and then waits for the termination of all
any single time step there are no data dependencies on . tasks. Successively, the convergence is tested in the main
neighbors of the physical values. Therefore, the program. The remaining potential parallelism is exploited
computational domain can be divided for coarse-grain by using the automatic parallelizing capabilities of
parallelism into equally spaced strips in such a way that Parallel FORTRAN. Synchronization using events is
the vector length in the innermost iteration loops remains more efficient: The work is assigned initially to one

IBM 3. RES, DEVELOP. VOL. 35 NO, 1/2 JANUARYlMARCH 1991 F. SZELENYI AND V. ZECCA

279

Table 1 Parallel performance improvement for “I: Times
were measured on an IBM 3090 System Model 600E with Vector
Facility under the MVS/XA operating system using Parallel
FORTRAN.

Method of parallelization Speedup with six
processors

~

Automatic parallelization 1.85
PF language additions 1.85
Macrotasked 3.91
Event synchronization 4.08

master task and np - 1 “slave” tasks (np is the number of
processors) in the main program, and the root task waits
for the termination of all other tasks after dispatching.
Updating of global variables is performed in a critical
section by using Parallel FORTRAN locks, while
synchronization and convergence are controlled by the
master task through the use of Parallel FORTRAN
events. The parallel performance improvements of all
versions are summarized in Table 1. We want to point
out that the fastest execution speed is obtained for the
versions using event synchronization and macrotasking
combined with automatic parallelization.

a test case for the Parallel Execution Profiler by running
them with the Parallel FORTRAN trace facility.

These four parallel implementations have been used as

Experimenting with PEP
The four parallel implementations of the
magnetohydrodynamic parallel code (as described in the
previous section) were executed on a dedicated IBM 3090
System Model 600E with Vector Facility using all six of
its processors. The Parallel FORTRAN trace facilities
were able to request all of the information available to
monitor parallel execution. The execution time for the
parallel runs with trace enabled was greater by a factor of
2.5 than that of the same run with trace disabled on all
six processors. The trace data occupied between 15 and
70 MB of disk space. A large quantity of data for the
parallel execution trace was generated for the
macrotasked version with additional automatic
parallelism because of the many synchronization points
for nested parallelism that occur in the run. This trace is
three times larger than the version using pure automatic
parallelism. Another 70 MB of monitored data were
generated for the event-synchronized version because in
this case a huge number of parallel events occurred.

The data generated by the Parallel FORTRAN trace
facility from the parallel execution of the MHD programs
were stored in a database for use in the graphical analysis.
Although the analysis tool was designed to hold all data
in memory, significant amounts of data were stored on

280 disks to provide portability. This could be avoided by

F. SZELENYI AND v. ZECCA

using IBM System/3703 Extended Architecture (XA),
which can place up to 2 GB of data in virtual storage
using the VS FORTRAN dynamic COMMONS feature.

The first goal of our study was to understand the
unsatisfactory performance results of the fine-grain
parallelized implementations. The profiling graph showed
high intertask communication activity for the parallel
loops within the automatic parallelized version.
Measuring the efficiency of one series of parallel loops
revealed that the loops were too fine-grained (i.e., the
chunk size was too small). This fact was confirmed by
inspecting the statistics of parallel loop performance and
overhead estimations. For example, the parallel execution
of the parallel loops (see Figure 5) shows very fine-grain
execution, because the chunk size was always one and
only 2 1 iterations were performed.

Parallel FORTRAN language elements showed similar
behavior in the profiling chart, but examination of the
overhead required for parallel primitives showed that
parallel sections implemented with the PARALLEL
CASES statement were too expensive with respect to the
computational work performed (see Figure 4).
Furthermore, a significant amount of time was required
to update the global variables within critical sections
using the Parallel FORTRAN locks.

Further improvement of the MHD macrotasked
version can be achieved by removing the additional
overhead of the automatic paralleliied loops. The
execution statistics show that the loops increase parallel
overhead by a factor of five. (Because of overhead for
nested parallelism, the execution of parallel loops was not
balanced, and the loop chunks were consequently
assigned to three, four, or six processors.) Furthermore,
the computational grain was too small for additional
nested parallelism overhead.

the event-synchronized version. The source program
window is shown at the upper right. The current
statement is identified by the yellow highlight
corresponding to the green spot at the upper left. At the
lower left, the help window contains explanations for the
colors used in this profiling chart. The master/slave
coarse-grain implementation can be followed First, the
tasks for the parallel processors are originated by the root
task. Work is assigned to the master task residing on
subroutine PLASM 1 and to the slave tasks on subroutine
PLASM2. Then the root task enters an idle state, while
computations are performed by the FORTRAN processors
numbered one to six. By zooming in to the profile graph,
the dependencies among the tasks can be recognized
as arising from event synchronization and locking.

The second fine-grain implementation of MHD using

Figure 1 shows the first part of the profiling graph for

System/370 is a trademark of International Business Machines Corporation.

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARYlMARCH 1991

Toward better parallel programming
The Parallel Execution Profiler helps to improve the
parallel performance by visualizing the dependencies
among the parallel work items. These dependencies are
related to scheduling of subroutines and waiting for their
termination, waiting for the completion of all parallel
loop chunk computations, synchronization of events, and
critical sections implemented with locks. A good profile is
achieved for a moderate number of processors and
parallel events. Indication of the type of parallel event
helps to improve parallel performance by allowing the
programmer to reduce substantially the number of
unnecessary forkljoin primitives. A high number of
synchronization points makes the profiling graphs
difficult to analyze. In this case, zooming can help the
programmer to focus on important parts of the program
flow.

The connection of the graphic profile to the parallel
source code permits better understanding of the parallel
programs. Reviewing the parallel execution of time-
consuming program sections can improve performance
substantially. The best solution is to display the source
code with the context in a special window. The
displaying of preselected variable values is useful for
removing errors introduced with parallelism, but the user
must first identify the program section where the error
occurs. It turns out that computing the efficiency of
program fragments in the time scale helps in estimating
the quality of the parallelization.

The parallel statement statistics show all important
parallelism overheads associated with parallel loops
(either automatically parallelized or explicitly coded).
The statistics for parallel loop analysis were very useful
during the fine tuning of the parallel loops. It was found
that fine-grain parallelism also improved performance on
nondedicated executions. The subroutine statistics
immediately revealed bottlenecks for both coarse- and
fine-grain parallel execution by indicating the overhead
due to inefficient programming.

Future developments must be focused on a parallel
debugger, where general breakpoint setting and task
manipulation for parallel program flow will help in
debugging and improving parallel algorithms. A direct
interface to Parallel FORTRAN such as the trace facility
can help to debug a parallel program by using different
windows for program flow display, parallel execution
manipulation, and statistics.

Conclusions
The Parallel Execution Profiler (PEP) helps in analyzing
the execution of parallel programs by visualizing data
and program dependencies among processors due to
parallelism in profiling graphs and statistic charts. The
IBM Parallel FORTRAN environment can be used for

IBM J. RES. DEVELOP. VOL. 35 NO. 112 JANUARYIMARCH 1991

parallel programming and monitoring purposes, resulting
in a compiler output indicating the parallelized program
parts and a trace output from parallel program execution.
Both outputs are the basis for the PEP visualization
analysis. The Parallel FORTRAN trace does not require
expensive monitoring of the source code, but monitoring
the parallel execution results in the potential problem of
distorting real execution due to the overhead of trace
recording. An alternative would be a hardware monitor,
but that would inhibit portability.

Data Display Manager (GDDM), PEP, our interactive
performance analysis profiler, is an easy-to-use tool for
visualizing parallel program execution. All functions are
assisted by help text within windows. The analysis tool
gives an overview of parallel execution by showing
program flow structure with line charts evidencing the
task dependencies. The connection to the source code
allows an easy performance improvement by identifying
critical program parts. Furthermore, display of
preselected data values is a first step toward debugging
the parallel program by examining the program state
during the parallel execution.

The statistics generated by our analysis tool help to
reduce the parallel overheads and point out the efficiency
of single program parts. Statistics improve the code
tuning of Parallel FORTRAN, especially for parallel
loops, by identifying critical overhead due to parallelism.

Based on color graphics implemented by the Graphical

References
1. F. Allen, M. Burke, P. Charles, R. Cytron, and J. Ferrante, “An

Overview of the PTRAN Analysis System for Multiprocessing,”
Research Report RC-13115, IBM Thomas J. Watson Research
Center, Yorktown Heights, NY, 1987.

2. H. Garcia-Molina, F. Germano, and W. Kohler, “Debugging a
Distributed Computing System,” IEEE Trans. Software Eng.

3. L. Toomey, E. Plachy, R. Scarborough, R. Sahulka, J. Shaw,
SE-10,210-219 (1984).

and A. Shannon, “IBM Parallel FORTRAN,” IBM Syst. J. 27,

4. Graphical Data Display Manager Base: Programming Reference,
Order No. SC33-0101, available through IBM branch offices.

5 . K. Schwan and J. Matthews, “Graphical Views of Parallel
Programs,” ACM SIGSOFT Software Engineering Notes 11, 5 1-
64 (1 986).

6. D. Harel, “Statecharts: A Visual Formalism for Complex
Systems,” Sci. Computer Program. 8,23 1-274 (1987).

7. H. Kobayashi, Modeling and Analysis: An Introduction to
System Perjbrmance Evaluation Methodology, Addison-Wesley
Publishing Co., Reading, MA, 1978.

Reference, Order No. SC26-4223, available through IBM branch
offices.

Language Debugging for Concurrent Programs,” Research
Report RC-14341, IBM Thomas J. Watson Research Center,
Yorktown Heights, N Y , 1989.

Speedup Analyzer for Parallel Programs,” Research Report RC-
12546, IBM Thomas J. Watson Research Center, Yorktown
Heights, N Y , 1987.

416-435 (1988).

8 . VS FORTRAN Version 2 Interactive Debug Guide and

9. G. S. Goldszmith, S. Katz, and S. Yemini, “High Level

10. K. So, A. Bolmareich, F. Darema-Rogers, and V. Nortran, “A

F. SZELENYI AND v. ZECCA

281

1 I . A. D. Malony and D. A. Reed, “Visualizing Parallel Computer
Performance,’’ CSRD Report 812, Center for Supercomputing
Research and Development, University of Illinois, Urbana,
1988.

12. M. Seager, S . Campbell, S. Sikora, R. Strout, and M. Zosel,
“Graphical Multiprocessing Analysis Tool (GMAT)” Report No.
ISCR-87-2, Lawrence Livermore National Laboratory,
Livermore, CA, 1987.

13. D. Gannon, D. Atapattu, M. Lee, B. Shei, A. Saini, and J. Lee,
“The Sigma System: A Tool for Parallel Program Design,”
Proceedings of the Third International Conference on
Supercomputing (ICS’88), May 15-20, 1988, International
Supercomputing Institute, St. Petersburg, FL, Vol. 3, pp. 157-
163.

14. R. Gupta, “Debugging Code Reorganized by a Trace Scheduling
Compiler,” ICs88 Proc. 3,422-430 (1988).

15. W. Gentzsch, F. Szeltnyi, and V. Zecca, “Use of Parallel
FORTRAN for Some Engineering Problems on the IBM 3090
VF Multiprocessor,” Parallel Comput. 9, 107- 1 15 (1988).

16. F. SzelCnyi, “Analyzing Parallel FORTRAN Programs with an
Execution Profiler,” ECSEC Report No. ICE-VSO6, IBM
European Center for Scientific and Engineering Computing,
Rome, Italy, 1990.

17. W. Nagel and F. SzelCnyi, “A Comparison of Parallel Processing
on CRAY X-MP and IBM 3090 VF Multiprocessors,” Proc.
ICs89 4,271-282 (1989).

Received November 18, 1989; accepted for publication
November 27, 1990

Ferenc Szelenyi IBM Germany, AN Supercomputing, P.O. Box
800880, 7000 Stuttgart 80, Germany. Mr. Szeltnyi obtained his
degree in computer science from Linz University, Austria, in 1987,
with an emphasis on parallelizing compilers. From 1987 to 1989 he
worked on his Ph.D. thesis on parallel programming at the IBM
European Center for Scientific and Engineering Computing (ECSEC)
in Rome, Italy. His current interest is in tools for technical
computing, particularly parallel processing. In 1990 Mr. Szel6nyi
joined IBM Germany in the Scientific and Technical Computing
Department.

Vittorio Zecca IBM Italy, European Center for Scientific and
Engineering Computing (ECSEC), Via Giorgione 159, 00147 Rome.
Italy. Dr. Zecca obtained his degree in electronic engineering from
Rome University in 1980. From 1982 to 1985 he worked in the
aerospace field, with responsibility for data management for the San
Marco project. In 1985 he joined the IBM Rome Scientific Center
and was one of the initiators of the European Center for Scientific
and Engineering Computing (ECSEC). For his contributions to the
area of parallel processing, he has received an IBM Outstanding
Technical Achievement Award. His current interest is in exploiting
the features of supercomputers for scientific and industrial
applications, particularly vectorization, parallel processing, and data
in memory.

282

F. SZELENYI P IND V. ZECCA IBM J . RES. DEVELOP. VOL. 35 NO. 1 12 JANUARYIMARCH 1991

