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As a  first  step  toward  the parallel execution 
analysis  of  FORTRAN  programs,  a  tool  called 
the  Parallel  Execution  Profiler  has  been 
designed  and  implemented for the  graphical 
postexecution  analysis  of  parallel  programs 
using  the  Parallel  FORTRAN  environment as  a 
vehicle  for  both  implementing  parallel  programs 
and  tracing  parallel  events.  The  dynamic 
behavior  of parallel  execution  is  observed 
interactively  in color  graphs,  which  can be 
displayed  concurrently  with  the  source  code, 
and  in  statistical  summaries.  This  paper 
describes  the  implementation of our  tool  for 
parallel  performance  analysis  with  the  aid  of  a 
parallelired application  program  from  plasma 
physics. 

Introduction 
Complete  performance  analysis  of  parallel  programs 
requires the analysis of both static and dynamic behavior, 
While static analysis  can  be done with optimizing 
compilers and code-restructuring  tools that rely on 
estimated  execution  statistics to obtain well-optimized 
codes, dynamic execution  analysis  usually  requires 
human comprehension and interaction. Static program 
analysis  consists  basically of dependency  tests  for 
parallelization [ 11 and estimates of program  behavior 

(e.g., the number of iterations of a DO-loop). 
Unfortunately, the dynamic behavior of  parallel 
programs is  very complex, and inefficiencies and errors in 
these  programs  are difficult to detect. Starting from an 
optimized  serial  code, the goals  of  parallelization  are to 
maximize  parallelism  inside the program, to minimize 
the overhead  required by multitasking  primitives, and to 
balance computational load among the parallel 
processors.  Only  well-balanced  programs  can  provide 
optimal parallel  execution. To achieve  these  goals, the 
capacity for fine tuning and debugging during parallel 
execution  is  desirable but difficult to implement.  Parallel 
programming  analysis  presumes either that the parallel 
code can be simulated or that the parallel  execution  can 
be monitored. The overhead  required by a monitor to 
produce  execution  traces  generally  results in some 
execution distortions (e.g., a  different  sequence of events), 
but monitoring does indicate the elements of program 
performance that should be analyzed more thoroughly by 
graphical  analysis. 

As a  first step toward  parallel  execution  analysis,  a 
Parallel  Execution  Profiler  (PEP) has been  designed and 
implemented at the IBM European Center for  Scientific 
and Engineering Computing (ECSEC),  Rome,  for the 
high-level postexecution  analysis  of  parallel  programs. 
This analysis  is  accomplished by examining  performance 
data gathered during execution.  Such  performance- 
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history data might  be  recorded by tracing with  a  software 
or hardware monitor. Tracing requires  cost-intensive 
monitoring of the parallel  program, thus introducing 
execution distortions due to event recording, but with the 
advantage of portability. The monitoring data are 
collected in a  trace file  by storing the event type (e.g., 
“forking”  a  parallel  work item to a  processor),  processor 
identification, timestamp, and certain additional 
information which must be  filtered  for important and 
significant data for the analysis. This situation leads to a 
complex  task  because of the increasing amount of 
information available  from multiple processors and the 
multiplicity of  possible combinations of events. As an 
alternative, techniques for  parallel  debugging of  single 
processors under the control of a master [2]  help in 
analyzing  overall  behavior, but monitoring seems more 
precise and efficient  because  of its simpler design. To 
interpret these  parallel execution data, PEP visualizes the 
concurrent computation by referring to  the source 
program and to previously  recorded  variable  values.  IBM 
Parallel FORTRAN [3]  has  been  used as a  vehicle both 
for implementing parallel programs and for tracking all 
events of a  parallel  program that are stored in the PEP 
database. The contents of the database can be  visualized 
by color  graphics and statistical charts using the 
Graphical Data Display  Manager (GDDM) [4] on  an 
IBM 3270 or 5080  color  display. As a  test and 
demonstration case, we have  analyzed performance data 
obtained by dedicated runs of a magnetohydrodynamic 
parallel  code on an IBM 3090‘ processor  with  Vector 
Facility  (VF) and six  processors. 

state diagrams,  which  show  all the states of virtual 
processors. Virtual processors  have  been introduced 
because modem parallelizing tools such as Parallel 
FORTRAN rely on this concept, but  it is also possible to 
show the status of the real  (i.e.,  physical)  processors. 
Several  possible methods for storing parallel  execution 
information have  been found in the literature: The 
relational approach [5] or state charts [6] are thought to 
be more efficient  because traditional queueing models [7] 
fail. State diagrams seem to be the most  successful  model 
because  they  lead to a  clear and terse description of 
processor  activity. State diagrams are simple directed 
graphs,  with  nodes denoting states and arrows (labeled 
with events and guarding conditions) denoting transitions 
between,  for  example,  idle and active  states.  However,  a 
more sophisticated technique is required to describe the 
more  complex  systems,  because  a  complex  system 
description will otherwise  result in a chaotic state 
diagram.  Therefore,  a  hierarchy was introduced into the 
PEP processor model to describe the dependency among 

The processor  model of the PEP database is  based on 

’ 3090 is a  trademark of International Business Machines Corporation. 

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARYlMARCH 1991 

the several  processors during parallel execution (e.g., 
processor one must wait  for the lock obtained by 
processor two) on a time- and statement-level  basis. 

The logical connections among different  processor * 

states are visualized  with dependency graphs by 
displaying  possible dynamic dependencies  such as waiting 
for  a  lock or for the termination of a  task.  Parallel 
execution  is  shown (Figure 1) in a  two-dimensional 
plane; the horizontal (x) axis  shows the processors in 
numerical sequence from left to right and the vertical ( y )  
axis  shows time increasing from top  to bottom. Blue  lines 
indicate dependencies between  processors. The time 
windows  of  parallel  execution can be  selected and 
customized by zooming, cutting, paging, or direct time 
and scaling input. Overall  program efficiency can be 
summarized in charts by taking into account parallel 
inefficiencies  such as waiting  for  locks,  events, and tasks. 
These performance graphs can be  saved as print files for 
page printers. A view  of the source  code for high-level 
analysis is provided by means of display  windows.  Source 
code statements can be  displayed  with  respect to selected 
time and processor  values (in a manner similar to the VS 
FORTRAN interactive debugger [SI) within the analysis 
graph, and conversely,  a  graphical  display of the dynamic 
behavior of the parallel execution can be  generated  from 
the source  code by pointing to statements in the code. 
Furthermore, the values of selected  variables can be 
displayed as a  first step toward  a  parallel  debugger. A 
parallel  debugger  helps the programmer to write  good 
parallel  code by generating  code  for  tracing,  changing the 
priority  of  processes,  suspending the execution of 
processes, simulating events and processes,  forcing 
nondeterministic constructs, querying the program state, 
and eventually  checking  assertions [9]. 

Parallel performance analysis  is completed by using 
execution statistics to summarize the use  of  parallel 
primitives  with  related  overheads, the parallel loop 
analysis (e.g., chunk size, number of iterations assigned 
to a  processor, and total number of iterations), the 
overhead due  to inefficient  parallel programming (e.g., 
waiting for events), the use  of subroutines in parallel, and 
the efficiency  of subroutines. These  statistics can be 
displayed in simple tabular form or in colored  charts. 

as MTDUMP  on Cray  multiprocessors, can generate an 
execution  graph in a  postprocessing  analysis step but do 
not allow  a  flexible on-line study. For the VM/EPEX 
environment, a speedup analyzer [ 101 has  been 
implemented to examine algorithmic performance, 
parallel  processing  overhead, and  the distribution of 
parallel  work items by first monitoring the parallel 
program.  Executing this program on a  uniprocessor and 
then on a  multiprocessor model allows the study of 

Simple  postprocessing tools for  parallel  programs,  such 
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Profile graph for the MHD master/slave implementation, showing the source text window indicating in yellow the current statement spotted 
by the green mark in the time lines. The help window contains the color line explanations. The chart focuses on the high  task dependencies 
caused by event and locking synchronization in the lower part. 

parallel  performance  as  a  second  step.  Similar  tools  have 
been  developed  for the analysis  of  workstation  displays 
and message-passing multiprocessors [ 1 11, as well as for 
shared-memory  multiprocessors  (i.e.,  processors  with the 
SCHEDULE  package [ 12]), all based on the execution 
analysis  of  a monitored parallel  program. Static analysis, 
merged  with  performance estimations through the use  of 
a  graphical editor [ 131, helps in the parallelization and 

fine-tuning of  programs.  Another approach for the 
dynamic analysis  on VLIW machines  is  a  trace- 
scheduling  compiler [ 141, which  permits  program flow 
study  with  interactive debugging. 

Parallel FORTRAN (PF) provides an environment for 
the execution of parallel  programs  consisting of parallel 
constructs that allow  a set of FORTRANprocessors (FP) 
to be  associated  with  a  single FORTRAN program. 
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Parallel FORTRAN has  recently  been  merged into the 
IBM  VS FORTRAN Version 2.5 environment. Parallel 
execution  is  achieved by having multiple FPs associated 
with the program, and a root FP controls the parallel 
execution of all  program-defined FPs. The programmer 
defines the work to be done by the FPs and declares at 
execution time the number of FORTRAN processors 
which are controlled by the PF library. Parallel 
FORTRAN provides a trace  facility for recording  all  of 
the significant events of parallel  program flow. This trace 
is  used by the Parallel  Execution  Profiler as a monitoring 
tool. As with any trace facility, it is difficult to improve 
the parallel application without a deep and thorough 
knowledge  of the PF trace output. The Parallel 
FORTRAN trace  facility can be  enabled or disabled at 
run time. The following  events,  which are significant for 
the Parallel  Execution  Profiler, are recorded: 

0 Start and end of  program execution. 
Origination, assignment, completion, and termination 

0 Task  access to shared or copied memory. 
0 Locking and event-handling management. 
0 Parallelized  DO-loops and parallel  sections. 
0 Waiting  for  events,  locks,  tasks, loop chunks, and 

parallel  sections. 
0 User-defined  events. 

A series of trace  records are produced, each  showing a 
time stamp, a FORTRAN processor number, a real 
processor number, the originating task, the trace event 
name, and additional information. The format of the 
time stamp can be  selected  by the user (for example, 
microseconds or seconds can be  specified).  Additional 
information (e.g., the chunk size  of a parallel  DO-loop or 
even  user-written information) completes the PF trace 
output. The overhead  for tracing parallel execution varies 
between 3% and 250% for a set  of  parallel  test  programs 
[ 151, depending on the number of parallel  events:  Many 
tasks  all  accessing the same  shared  variable in a critical 
section  require an extensive trace recording. The higher 
overhead  figure  occurs  for  heavy tracing activity  when 
intensive and prolonged input/output is  performed on 
the trace file. These  overheads  have  been  measured for 
several  programs  using  different PF parallelization 
strategies  executing  with six processors on a dedicated 
IBM 3090 System  Model 600E under the MVS/XA2 
operating system. 

Visualizing  parallel  execution 
The Parallel  Execution  Profiler uses the Parallel 
FORTRAN trace as input  to generate the database 

of PF tasks. 

* MVS/XA is a trademark of International Business Machines Corporation. 
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State diagram of a processor, showing the five different states for 1 a processor using Parallel FORTRAN primitives. The arrows rep- 
> resent the PF statements for the transit from one state to another 
j state. 

storing processor state diagrams: A processor can have 
five different  states: idle, active, wait for a task, wait for 
an event, and wait for a lock. Figure 2 shows  how the 
state of a processor  changes  with the execution of PF 
primitives. (For example, a processor state changes from 
idle to active in computing a chunk of a DO-loop,  while 
a processor enters the idle state when the work item has 
been terminated and no new  work item has  been 
assigned.) The inefficient states should be minimized to 
obtain good  parallel  performance. The second input for 
PEP  consists of the Parallel FORTRAN compiler output 
listing for the connection between the parallel  execution 
graphs and the source  program. 

dimensional plane, with the x-axis  representing the 
processor  scale and the y-axis  representing the time scale. 
Time lines  representing the actual state of a processor 
develop from top  to bottom, showing  dependencies 
between  processors  with horizontal lines which indicate 
the type of dependency. The time scale can be adjusted 
by defining the start time of the actual window, adjusting 
the time increment, paging up  and down,  zooming, and 
moving the time axis. The user can focus on important 
parts of the parallel  execution  with  these PEP functions. 

Visualization of parallel  execution starts in a two- 
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Schematic profiling: Processors specifies the FORTRAN proces- 
sors from the root task to the number of processors defined, time 
scale the actual increment in the time axis, and time  start the ac- 
tual starting time (these two parameters can be modified interac- 
tively by the user); PEP  analysis represents the graphical display 
of the parallel program execution. 

The connection to the source  program can be done by 
opening the source  program  window at the current time, 
or by pointing to  an event  specified by the processor 
number and time stamp. The program  window can show 
parts of the source  program in a manner similar to  the 
VS FORTRAN interactive debugger, or it can show the 
source statement with the subroutine name. The window 
is updated with  respect to the current time stamp. The 
user can jump  to the next  executed event at  the displayed 
statement, for either the same processor or another 
processor. Furthermore, the values of predefined 
variables can be  displayed  for each processor and time. 
These  variables are recorded in the PF trace through an 
interface  program  provided by PEP,  which  is  described 
later. 

The efficiency  of a  piece  of code can be computed by 
pointing in the graph to  the extremes of the selected 
piece. The actual real  (physical)  processor state can be 
determined by pointing within the graph, with PEP 
showing the number of FORTRAN processors  associated 
with  each  of the real  processors  (eventually in  an 
interleaved  mode). Print files for page printers are saved 
by PEP for printing and documenting purposes. All PEP 
functions are assisted by help text windows,  which 
explain the PEP messages and function keys. Error 
messages can be  explained in more detail by pressing the 
help key that gives the user  suggestions for solving the 
problem. 

Parallel execution statistics can be  shown in simple 
tables or in more complex color charts, which can be 
saved  for printing purposes. The statistical analysis can 
be guided through the windows  interface, and the 

274 following information can be obtained 
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A summary of  parallel statements in absolpte numbers 

A  parallel loop analysis: chunk size, number of 
and elapsed  times. 

iterations, and number of  processors  with minimum, 
maximum, and average  values. Furthermore, the 
number of parallel loop executions is summarized, for 
hot-spot detection. 

FORTRAN processors. 
Overhead  caused by  inefficient states for the 

A summary of subroutine usage. 
Calculations of subroutine efficiency. 

Examples  of  parallel execution statistics are shown in 
Figure 1 and  in Figures 4-7, and are described later. 

PEP performance  data 
An on-line analysis of parallel  program execution is 
divided into two  parts,  performance  profiling, as shown 
schematically in Figure 3, and execution  statistics on 
charts. All Parallel  Execution  Profiler  features are 
invoked by function keys. Figure 3 depicts  a two- 
dimensional plane with  a  processor  x-axis starting from 
the root processor and a time y-axis starting from the 
beginning of execution. The x-axis  shows all processors 
defined in the parallel  program,  while the time scale is 
determined by the screen  size. The unit of time 
corresponds to the setting in the Parallel FORTRAN 
trace time scale. The starting time and incrementing time 
can be  set by the user at any time. The PEP analysis 
window  shows the time lines with  dependencies among 
the processes. This section gives an overview  of the 
information provided and the use  of the analysis  tool;  a 
complete description can be found in [ 161. 

Performance profiling  is  assisted  by interactive help 
functions to explain the meaning of  symbols and lines 
shown in the profiling chart. Explicative messages for 
each function are shown in the beginner mode, which 
can be  disabled for faster  analysis. Error messages are 
displayed in special  windows, and PEP-proposed 
corrective actions should allow  a  fast  user  response 
without losing  previous  analysis  work.  Parallel  analysis of 
the evolution of the FORTRAN processor states is done 
in the time direction by  paging or by direct setting  of the 
actual screen starting time and time increment. The 
program flow  with branching dependencies due  to 
parallel actions (e.g., a  processor has forked to a new 
processor  because  of  a  SCHEDULE statement) can be 
observed in the time direction. This profiling chart can be 
saved for plotting and documentation purposes by 
pressing  a function key. Zooming and cutting functions 
allow the detailed study of critical program  parts: 
Zooming focuses on these parts by readjusting the screen 
starting time and increment, while the cutting function 
excludes certain events,  with  notification to the user. 
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Branches  from  a  processor are specified in  detail by 
indicating the Parallel FORTRAN statements that caused 
each  branch. This function can be enabled and disabled 
by the user at any time with any degree  of  detail on the 
Parallel  FORTRAN  statements. 

specified time interval  can be done by simply  pointing to 
the area of interest on the  screen, and these 
measurements  allow  the  programmer to improve the 
efficiency  of program  fragments.  Parallel  efficiency  is 
calculated as the sum of the times when the processors 
are in the active state, divided by the elapsed time 
interval of the fragment  multiplied by the number of 
processors. The state of the real  (physical)  processors can 
be obtained  for  a  selected  time:  PEP  indicates  with 
different  colors the FORTRAN  processors that are 
executed  on  a  real  processor. The parallel  FORTRAN 
trace contains its  own  time-stamp  units,  which  must be 
converted to elapsed  time. The time pointed to in the 
window  can  be further detailed by altering the time- 
stamp unit setting  (i.e., the unit of incrementing or the 
relative  starting  time). 

A set  of interface routines callable  from  a  Parallel 
FORTRAN  program  has  been  developed to put the 
values  of  selected  variables  in the trace output. These 
variables  can  be  displayed in the PEP  analysis 
display. The user  must  add the interface  call in the 
application  before the compiling  step, and the recorded 
values  are  stored  in the trace  generated by Parallel 
FORTRAN. For example, to display the double- 
precision  variable  “VARIAB” the following  call  must  be 
included 

CALL  PEP$R8 ( ‘VARIAB’, VARIAB) 

These  values  can  be  displayed by pointing to the 
processor and time event in the profile chart. If a  value 
close to this point has been recorded, the value and 
variable  name  with the issuing internal statement number 
are  shown  in an extra window. This is  a  first step toward 
parallel  debugging and gives a  fuller  response to the 
program  state  query. 

The connection  between the graphical  analysis  display 
and the source  program  code is obtained either by 
displaying the current source statements in a  window or 
by pointing the cursor to the time and processor point 
(similar to displaying  a  preselected  variable  value), thus 
displaying the actual program or subprogram name with 
the internal statement number and the statement text. 
Conversely,  a  specific  parallel statement can be  selected 
by designating its internal statement number and 
(sub)program name to show the first  occurrence  of this 
parallel  statement. The next or previous Occurrences  of 
this statement on the same or another processor can be 
pointed  out. 

Measurements of parallel efficiency in the user- 
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A more  advanced  source  text connection is  provided 
by opening  a new, movable  window containing the 
program  text, the program name, and the internal 
statement numbers, and pointing to the actual statement 
as the VS FORTRAN interactive  debugger would do. 
When the window  is  opened, the actual statements are 
displayed, but, as shown in the previous  paragraph, the 
window  can  be  visualized by pointing into the parallel 
program  flow  graph. The same functions are provided  for 
moving to the next or previous  occurrences  in the time 
and processor  axes. 

After termination of the on-line  parallel  program 
analysis,  statistics in the form  of charts or tables  help the 
programmer to estimate  overall  performance and find 
bottlenecks. The summary of the parallel statements 
counts the number of executed  parallel statements (e.g., 
generating  a  task, loop chunk) and computes the elapsed 
time required  for  these  parallel statements (for an 
example, see Figure 4). The overheads are calculated 
from the Parallel FORTRAN overhead  measurements  for 
all  parallel  primitives [ 171, giving the programmer an 
estimate  of the overhead introduced with  parallelism. 
Unavoidable statements (e.g.,  originating  a  task) can be 
excluded  for  a better overview. In Figure 5, parallel loop 
execution  is  summarized by  giving the minimum, 
maximum, and average  values  for the number of 
processors  used, the number of  iterations, the chunk size 
per  processor, and the number of times the parallel  loop 
has  been  executed. In general,  Parallel  FORTRAN  is  able 
to balance the parallel  execution of a loop so that, as in 
this  case, the minimum and maximum chunk sizes and 
processor numbers are the same.  These data can be 
displayed  for  a  specific  parallel loop or for  a  single 
specific performance  characteristic (e.g., chunk size)  with 
bar  charts. In Figure 6,  program  inefficiencies  such as 
waiting  for the termination of  tasks,  for  events, and for 
locks, are summarized  for the individual  processors  with 
percentages and elapsed  times. In Figure 7, the active 
times, the time spent in  parallel  loops, and the overhead 
due to waiting  for  events,  locks, and tasks are 
summarized  for  each subroutine with  elapsed  times. 
These data are required  for the calculation of the overall 
parallel  efficiency e of a subroutine s with the following 
formula: 

nP(Tt - ‘d) 
e, = w 

2 T: 
3 

i= I 

where np is the number of  processors, Td and T, are the 
clock time when the task containing the subroutine s was 
dispatched and terminated, respectively, and Tl is the 
time required on processor i for the execution of 
subroutine s. 
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Overhead of the MHD implementation. The overhead summary of the Parallel FORTRAN language elements i s  shown by displaying the 
absolute  number of executed Parallel FORTRAN statements and the corresponding  elapsed times spent in performing these calls.  The 
elapsed times are calculated as previously measured for the current Parallel FORTRAN implementation [17]. Statements whose overhead is 
already known or unavoidable (e.g. ,  originute u tusk) can be excluded for a better overview. 

A magnetohydrodynamic parallel  code components of the magnetic  field. The  MHD equations 
The magnetohydrodynamic (MHD) system  of partial are approximated in the points of a grid by discrete 
differential equations [ 151 describes the motion of a difference equations, resulting in a large  system  of 
plasma  influenced by a magnetic field, as  in a fusion algebraic equations to be solved. The numerical method 
reactor. The main physical  variables in two dimensions used in the MHD system  leads to explicit  finite-difference 

276 are the pressure and velocity of the plasma and the equations, in which only the values at time step n - 1 are 
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Statistics of a parallel loop. These charts show the number of executions, the minimum, maximum, and average value for the number of 
iterations, the number of FORTRAN processors used, and the  number of chunks per processor for the parallel loop from the program 
PLASM at internal statement number 28. 

required to update the physical  variables at  the new time 1. Definition of the variables and calculation of the 
step n. Therefore,  all  values of the previous state are initial state of the plasma and magnetic  field. 
known, and no  data dependencies  between  variables of 2. Time-stepping  from n = 1 to NT of the physical 
the current and the previous state arise. These numerical variables computed in all the inner grid  points. 
methods are easily  parallelizable. The calculations for a 3. Terminating the program  when the steady state is 
given number of time steps or  to reach the steady state reached and the convergence condition for all  grid 
comprise the following  steps: points is fulfilled. 
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Statistics for the overheads of the root task. These  charts show the overheads due to wait for  tasks,  events, and locks for the FORTRAN 
root task on FORTRAN processor 0. All FORTRAN processors are selectable, and the total overhead summary can be analyzed as well. 
The overheads are listed in percentage of the total time and in elapsed times. 
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The  MHD system has been implemented in four 
different  parallel  versions: Fine-grain  parallelism has 
been  exploited by using 1) Parallel FORTRAN automatic 
parallelization and 2) Parallel FORTRAN language 
primitives  for in-line parallelism. 3) Macrotasked and 
4) event-synchronized  versions  exploit PF coarse-grain 
parallelism. The version  with automatic parallelization 
has  been  prepared  by  compiling the vectorized sequential 

code without any changes.  Using the Parallel FORTRAN 
language statements PARALLEL  CASES and 
PARALLEL LOOP exploits  in-line  parallelism, and 
a few optimizations with compiler directives  characterize 
the second  fine-grain implementation. The slightly 
unsatisfactory performance results can be  explained 
partly by the reduced  vector  length due  to 
parallelization. 
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Subroutine usage of the master and the slave task, showing the times spent in waiting for thc completion of  tasks. of events. and acquisition 
of locks. The master task in subroutine PLASM I waits for a remarkable time for completion of the slave tasks, whereas the bottleneck in the 
slave tasks within subroutine PLASM2 occurs becausc of the update of global variables within critical sections. The active time is excluded 
from the charts  to provide a better overview. 

Examination of the data structures within the most unchanged. The pure macrotasked  version assigns a strip 
time-consuming parts of the program  shows that within to each task and then waits  for the termination of all 
any  single time step there  are no data dependencies  on . tasks.  Successively, the convergence  is  tested  in the main 
neighbors  of the physical  values.  Therefore, the program. The remaining  potential  parallelism is exploited 
computational domain can be divided  for  coarse-grain by using the automatic parallelizing  capabilities of 
parallelism into equally  spaced  strips in such a way that Parallel FORTRAN. Synchronization  using  events is 
the vector  length in the innermost iteration loops  remains more efficient: The work is assigned initially to one 
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Table 1 Parallel  performance  improvement for “I: Times 
were  measured on an  IBM 3090 System  Model 600E with  Vector 
Facility  under  the  MVS/XA  operating  system  using  Parallel 
FORTRAN. 

Method of parallelization Speedup with six 
processors 

~ 

Automatic  parallelization  1.85 
PF  language  additions  1.85 
Macrotasked 3.91 
Event  synchronization 4.08 

master  task and np - 1 “slave”  tasks (np is the number of 
processors) in the main program, and the root task  waits 
for the termination of all other tasks after dispatching. 
Updating of global  variables is performed in a critical 
section by using  Parallel FORTRAN locks,  while 
synchronization and convergence are controlled by the 
master  task through the use  of  Parallel FORTRAN 
events. The parallel performance improvements of all 
versions are summarized in Table 1. We want to point 
out that the fastest  execution  speed  is obtained for the 
versions  using event synchronization and macrotasking 
combined  with automatic parallelization. 

a  test case for the Parallel  Execution  Profiler by running 
them with the Parallel FORTRAN trace facility. 

These four parallel implementations have  been  used as 

Experimenting  with PEP 
The four parallel implementations of the 
magnetohydrodynamic  parallel  code (as described in the 
previous section) were executed on a dedicated IBM 3090 
System  Model  600E  with  Vector  Facility  using  all  six  of 
its processors. The Parallel FORTRAN trace facilities 
were  able to request  all  of the information available to 
monitor parallel  execution. The execution time for the 
parallel runs with  trace  enabled was greater by a factor of 
2.5 than that of the same run with trace disabled on all 
six  processors. The trace data occupied  between 15 and 
70  MB of disk  space.  A  large quantity of data for the 
parallel  execution trace was generated for the 
macrotasked  version  with additional automatic 
parallelism  because  of the many synchronization points 
for  nested  parallelism that occur in the run. This trace is 
three times larger than  the version  using pure automatic 
parallelism. Another 70  MB  of monitored data were 
generated for the event-synchronized  version  because in 
this case  a  huge number of  parallel events occurred. 

The data generated by the Parallel FORTRAN trace 
facility  from the parallel  execution of the MHD programs 
were stored in a database for use in the graphical  analysis. 
Although the analysis tool was  designed to hold  all data 
in memory,  significant amounts of data were stored on 
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using  IBM  System/3703  Extended  Architecture (XA), 
which can place up to 2 GB of data  in virtual storage 
using the VS FORTRAN dynamic COMMONS  feature. 

The first  goal  of our study was to understand the 
unsatisfactory  performance  results of the fine-grain 
parallelized implementations. The profiling  graph  showed 
high intertask communication activity for the parallel 
loops within the automatic parallelized  version. 
Measuring the efficiency  of one series  of  parallel  loops 
revealed that the loops were too fine-grained  (i.e., the 
chunk size  was too small). This fact  was  confirmed by 
inspecting the statistics of parallel loop performance and 
overhead estimations. For example, the parallel  execution 
of the parallel  loops  (see  Figure 5 )  shows  very  fine-grain 
execution, because the chunk size  was  always one and 
only  2 1 iterations were  performed. 

Parallel FORTRAN language elements showed similar 
behavior in the profiling chart, but examination of the 
overhead required for  parallel  primitives  showed that 
parallel  sections implemented with the PARALLEL 
CASES statement were too expensive  with  respect to the 
computational work  performed (see Figure 4). 
Furthermore, a  significant amount of time was required 
to update the global  variables  within critical sections 
using the Parallel FORTRAN locks. 

Further improvement of the  MHD macrotasked 
version can be  achieved by removing the additional 
overhead of the automatic paralleliied loops. The 
execution  statistics  show that the loops  increase  parallel 
overhead by a  factor of  five.  (Because  of  overhead  for 
nested  parallelism, the execution of parallel  loops was not 
balanced, and  the loop chunks were  consequently 
assigned to three, four, or six  processors.) Furthermore, 
the computational grain was too small  for additional 
nested  parallelism  overhead. 

the event-synchronized  version. The source  program 
window  is  shown at the upper right. The current 
statement is identified by the yellow  highlight 
corresponding to the green spot at  the upper left.  At the 
lower  left, the help  window contains explanations for the 
colors  used in this profiling chart. The master/slave 
coarse-grain implementation can be followed First, the 
tasks for the parallel  processors are originated by the root 
task.  Work  is  assigned to the master  task  residing on 
subroutine PLASM 1 and  to the slave  tasks on subroutine 
PLASM2. Then the root task enters an idle state, while 
computations are performed by the FORTRAN processors 
numbered one to six.  By zooming in to the profile graph, 
the dependencies among the tasks can be  recognized 
as  arising  from  event synchronization and locking. 

The second  fine-grain implementation of MHD using 

Figure  1  shows the first part of the profiling  graph  for 

System/370  is  a trademark of International  Business  Machines  Corporation. 
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Toward better  parallel  programming 
The Parallel  Execution  Profiler  helps to improve the 
parallel  performance by visualizing the dependencies 
among the parallel work items.  These  dependencies are 
related to scheduling of subroutines and waiting for their 
termination, waiting  for the completion of  all  parallel 
loop chunk computations, synchronization of  events, and 
critical  sections implemented with  locks. A good  profile  is 
achieved  for a moderate number of processors and 
parallel  events. Indication of the type  of  parallel  event 
helps to improve parallel performance by allowing the 
programmer to reduce  substantially the number of 
unnecessary forkljoin primitives. A high number of 
synchronization points makes the profiling graphs 
difficult  to  analyze.  In  this  case, zooming can help the 
programmer to focus on important parts of the program 
flow. 

The connection of the graphic  profile to the parallel 
source  code permits better understanding of the parallel 
programs.  Reviewing the parallel execution of time- 
consuming program  sections can improve performance 
substantially. The best solution is to display the source 
code with the context in a special  window. The 
displaying of  preselected  variable  values is useful  for 
removing errors introduced with  parallelism, but the user 
must  first identify the program  section  where the error 
occurs.  It turns  out that computing the efficiency  of 
program  fragments in the time scale  helps in estimating 
the quality of the parallelization. 

The parallel statement statistics  show  all important 
parallelism  overheads  associated  with  parallel loops 
(either automatically parallelized or explicitly  coded). 
The statistics  for  parallel loop analysis were  very  useful 
during the fine tuning of the parallel  loops. It was found 
that fine-grain  parallelism  also improved performance on 
nondedicated  executions. The subroutine statistics 
immediately  revealed  bottlenecks for both coarse- and 
fine-grain  parallel  execution by indicating the overhead 
due to inefficient  programming. 

Future developments must be focused on a parallel 
debugger,  where  general breakpoint setting and task 
manipulation for  parallel  program flow  will help in 
debugging and improving  parallel  algorithms. A direct 
interface to Parallel FORTRAN such as the trace facility 
can  help to debug a parallel  program by using  different 
windows  for  program  flow  display,  parallel  execution 
manipulation, and statistics. 

Conclusions 
The Parallel  Execution  Profiler (PEP) helps in analyzing 
the execution of parallel programs by visualizing data 
and program  dependencies among processors due  to 
parallelism in profiling graphs and statistic charts. The 
IBM Parallel FORTRAN environment can be  used  for 
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parallel programming and monitoring purposes,  resulting 
in a compiler output indicating the parallelized  program 
parts and a trace output from parallel  program execution. 
Both outputs are the basis for the PEP visualization 
analysis. The Parallel FORTRAN trace does not require 
expensive monitoring of the source  code, but monitoring 
the parallel execution results in the potential problem  of 
distorting real execution due to the overhead of trace 
recording. An alternative would  be a hardware monitor, 
but that would inhibit portability. 

Data Display  Manager (GDDM), PEP, our interactive 
performance  analysis  profiler,  is an easy-to-use tool for 
visualizing  parallel  program  execution.  All functions are 
assisted  by help text  within  windows. The analysis tool 
gives an overview  of  parallel  execution  by  showing 
program flow structure with line charts evidencing the 
task  dependencies. The connection to the source code 
allows an easy performance improvement by identifying 
critical  program parts. Furthermore, display of 
preselected data values  is a first step toward  debugging 
the parallel  program by examining the program state 
during the parallel  execution. 

The statistics  generated by our analysis tool help to 
reduce the parallel  overheads and point out the efficiency 
of  single  program  parts.  Statistics improve the code 
tuning of  Parallel FORTRAN, especially for parallel 
loops, by identifying  critical  overhead due to parallelism. 

Based on color  graphics implemented by the Graphical 
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