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Three-
dimensional
visualization

of many-body
system dynamics

by M. Bernaschi
E. Marinari
S. Patarnello
S. Succi

This paper describes a graphic rendering
system for use in visualizing the behavior of
three-dimensional physical systems. The tool is
general and allows the user to characterize a
great variety of phenomena. The only
requirement is that the physical system be
represented by variables defined on quantifiable
positions (sites) within a three-dimensional grid.
The variables may be discrete (e.g., binary),
real, or even complex numbers. The first part of
the paper gives a technical description of the
graphic program, which is based on a graPHlG-S1
interface; two versions of the code (in the C and
FORTRAN languages) are available. The
hardware platform consists of an IBM 5080
graphic workstation with a 5081 high-resolution
monitor which can be driven either by a machine
employing IBM System/370’ architecture with
VM/XA' (in our case a 3090" processor running
under VM/XA) or by a RISC System/6000"
workstation [we have used both an IBM RT>

! graPHIGS, System/370, VM/XA, 3090, and RISC System/6000 ar¢ trademarks of
International Business Machines Corporation.

2RT and AIX are registered trademarks of International Business Machines
Corporation.

System and (recently) an IBM RISC System/6000
processor] running under AIX.? The second part
of the paper describes three different examples
of the application of this tool: discrete spin
models, quantum chromodynamics (QCD), and
three-dimensional turbulence. For spin systems
and QCD, the physical problem consists in
understanding the nature of the phase transition
from disordered to ordered states of the system.
In both cases a direct (i.e., through visualization)
investigation of the system configurations
reveals valuable information about properties
such as the order of the transition, the behavior
of the correlation length, and phase
coexistence. We note, however, that the
meaning of the site variables is very different in
the two cases. In particular, for QCD the site
variables are complex numbers, which we code
by using a color table to represent the phase of
the number and pixel size to represent a value
proportional to the modulus. This kind of coding
is also used for three-dimensional turbulence.
Here the analysis can show where dissipation
phenomena take place in the fluid and
characterize the geometrical nature of the set of
dissipative structures.
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Introduction

Computer simulations are adding a new dimension to the
world of scientific investigation, and computational
physics has emerged as an invaluable third alternative to
the two traditional avenues of analytic theory and direct
physical experimentation. The impressive growth of
computing power made possible by technological
advances permits today’s scientists to attack complex
problems whose solution would have been inconceivable
only a few years ago. This increased power has begun to
satisfy an increasingly compelling need not only to
“crunch numbers” and solve equations, but also to
display and manage the voluminous data produced by
numerical simulation. A clear and global visual
representation improves enormously the quality of
numerical approaches to the comprehension of physical
problems. In this respect, a key role is played by
computer graphics, which has in itself gained the rank of
a software engineering discipline.

In this paper we present a new graphic tool, which we
have used to analyze the behavior of a variety of complex
systems arising in different domains of theoretical
physics. The underlying physical problems are quite
diverse, but our technique can be applied to all of them,
the only requirement being that they can be formulated
in terms of local variables defined in a discrete three-
dimensional space. The test problems discussed in this
paper include the study of phase transitions in magnetic
systems, the origin of quark confinement in hadronic
matter, and the nature of three-dimensional fluid
turbulence.

The paper is organized as follows: In Section 1 we
briefly describe the main technical features of the code
and the computing environment in which the code runs.
In Section 2, applications to many-body systems at
equilibrium are reported, with particular attention to
statistical physics and quantum chromodynamics (the
theory which describes interactions among quarks).
Section 3 is devoted to the use of this tool in the context
of three-dimensional fluid flows (that is, of chaotic
systems that are not in equilibrium), Finally, Section 4
outlines ongoing and future developments for this
project.

1. Graphic tool

The tool we have developed is primarily oriented toward
the visualization of data obtained from simulations of
physical systems defined on a lattice. Redefining on a
lattice a theoretical model that was originally formulated
as a continuum is often a prerequisite for numerical
simulation. It is also necessary, of course, to extrapolate
back to the continuum case the results obtained on the
lattice, and our tool can be very effective for that purpose
as well,

IBM J. RES. DEVELOP. VOL.35 NO. 12 JANUARY/MARCH 1991

Two directives have been always followed during the
design and implementation of the tool: simplicity of use
(we need something that simplifies our work, not a
further complication) and enough flexibility and
generality that the tool can be applied with minor effort
to the visualization of data obtained from simulations of
many different physical systems. We chose as display
station for the tool an IBM 5080 graphics workstation
with a 5081 high-resolution (1024 X 1024) monitor. The
choice was justified by the powerful capabilities of the
5080 monitor; zooming, 3D rotations, clipping, and
perspective view can all be effectively executed in an
interactive way. On the other hand, the 5080 is not a
standalone workstation; it must be guided by a host
machine, either a System/370" architecture with VM/XA'
or a powerful workstation such as the RT’ System or
RISC System/6000' processor. Our goal was to be able to
use the tool on both hardware platforms, which requires
a high degree of code portability. In order to achieve this
goal, we wrote both a FORTRAN and a C version of the
tool, always using graPHIGS' as the graphics interface.
However, we actually did most of the work on the RT
because we consider the AIX” environment to be more
suitable for application development. Moreover, AIX
offers much more support for interprocess
communications, and we were interested in this aspect
for reasons to be explained later.

The structure of the tool can be rapidly summarized as
follows (the description is more faithful to the RT
version): As a general rule we tried to split the code into
several “atomic” parts (subroutines in FORTRAN or
functions in C) so that changes and updates could be
easily located. The first part of the code reads the data to
be displayed. We always used unformatted data to speed
up the reading and reduce disk space occupancy. When
data are moved from System/370 machines (where they
are often produced) to RTs, a set of routines makes
conversions between the respective internal formats. The
next step is the initialization of the graPHIGS
environment, which involves the specification of things
such as the display station and the color table that will be
used. The most interesting parts of the code are those
used to define the graPHIGS structures and manipulate
the structures themselves. We manipulate the data to
extract all possible information; part of the information is
displayed in graphic form and another part is shown in
text form on the screen. Three different output primitive
elements are employed: blocks of pixels, polymarkers,
and polylines. For instance, when we show results from a
simulation of a system of spins that can take complex
values, we represent every spin as a pixel block, the size
of the block being proportional to the modulus and the
calor indicating the phase of the complex number
according to a scale shown in a legend on the screen.
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Finally, we report the “global magnetization” of the
system as a text string on the higher part of the screen
(Figures 1-4, shown later). The construction of
graPHIGS structures is the CPU-bound part of this
visualization code. For the more complex cases (e.g.,
when we deal with large lattices or with complex-valued
spins), the RT could not offer enough computing power.
(In the last section we briefly present possible solutions to
this problem.) In general, the rendered graPHIGS
structures represent 3D lattices; parameters (such as
visualization angles) defining their representation have
values at this stage that are read from an input file. As we
define this “default” representation form for the
structures, we also initialize and set all the 5080 devices
(dials, mouse, tablet, etc.) that will be used later. When
this operation is completed, the graphic structures are
sent to the 5080 to be displayed; the features of the 5080
can then be exploited for interactive manipulation of the
displayed lattice.

As an aid to better understanding of the usefulness of
the tool, we provide some examples of typical
applications. In Section 2 we find that one of the most
interesting observable attributes of a spin system is the
correlation length. With our graphic representation, the
order of magnitude of the correlation length can be
extrapolated from the size of those spin blocks (spins
which in turn are represented by pixel blocks) that are
distinguished by the same color. The view we have at the
beginning of the display phase is global (Figures 1-6,
shown later); at this level, for instance, one can check by
zooming whether a certain area of the lattice is coherent,
or whether there are impurities indicated by spins of a
different color. Then, by clipping and realigning the
lattice, we can isolate one or more planes so that it is
possible to distinguish among 1D, 2D, and 3D coherence
zones. Finally, 3D rotations allow us to look at the entire
lattice regardless of its initial position, without having to
restart the program from the beginning.

Another interesting and useful feature of the tool is the
ability to elaborate and manipulate more than one
configuration at a time. This means that we can read a
certain number of different configurations of the same
physical system (e.g., configurations related to different
temperatures), manipulate these configurations, and then
by changing in rapid sequence the configuration that is
displayed, observe the evolution of the system. It is
possible to gain an immediate comprehension of the
simulation dynamics with this kind of visualization. The
sequence structure in the “fast visualization” is circular
so that, at the end, the sequence restarts itself from the
first displayed configuration; moreover, changes such as
zooming or 3D rotations, made interactively during the
visualization, can be preserved during the rest of the
sequence. The transition from one configuration to
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another can be made simply by pressing one of the
buttons on the 5080 mouse, and we stress that the
updating of the image is immediate, since the definition
of the image structures is made only once, at the
beginning. The number of configurations that we can see
in sequence is limited only by the size of the 5085
memory buffer. Because the memory used by a given
configuration depends on both the lattice size and the
complexity of the physical system, we typically have from
4 to 16 different configurations.

A few comments on limitations related to the choice of
chromatic scale are in order. Quantitative judgments
based on particle color can be biased by the different
chromatic significance of the three (red, green, and blue)
base colors, as well as by the fact that in the absence of
depth-cueing, some pixels at the “back” of the image may
be hidden by those at the “front.” Improvements planned
or in development are described in the last section.

Real physical problems studied with the aid of the tool
are introduced and discussed in Sections 2 and 3.

2. Phase transitions and critical phenomena

o Discrete spin models

Equilibrium statistical mechanics is one of the tools used
by physicists to describe many-body systems. In dealing
with a system with many elementary components, one
must distinguish between the microscopic state of the
system and its macroscopic description. A microscopic
state is defined in terms of the specific values of the
coordinates which describe the motion of each
elementary component. For a gas of N atoms this would
correspond to providing the 3N values of the position
and the 3N values of the velocity for each of the atoms.
In practice, one cannot track the microscopic description
of the system in real time. However, there is another
approach which is successful: Assuming that the
evolution of the system over time (which is a trajectory in
the 6 V-fold space of the system coordinates) can be
reproduced by a statistical distribution, one can
determine the probability that a given microscopic state
will occur. Pursuit of this strategy reveals that the
probability distribution for a microscopic state is a simple
function of a single, macroscopic quantity, the energy E
of the system. Let S be a microscopic state with energy
E; the probability that state S will occur during the
evolution of the system is

_E/ksT
= 1
o(S) 7 (1)
where Z is the partition function of the system,
Z=3 ", @
S
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which normalizes the probability p(S) so that ¥ p(S) = 1.
In this formula, the temperature T of the system appears,
multiplied by a dimensional factor, the Boltzmann
constant k,, whose numerical value depends on the
system of units chosen. Since one can choose a system
where k, = 1, we omit the Boltzmann constant hereafter
in our notation. The probability p(.S) is often referred to,
however, as the “Boltzmann weight” of the microscopic
state.

The solution provided in this framework consists in
labeling a microscopic state in terms of a single,
macroscopic variable (its energy) and expressing the
probability for that state in terms of that variable. From
this basic relation one is able in principle to compute all
macroscopic quantities as average values. Given the
dependence of the Boltzmann weight on T, it is quite
evident that when temperature is large compared with the
typical energy scales for the system, the probability is the
same for any given microscopic state. When T decreases,
however, the role of energy E becomes important, and as
T tends to 0, the states most likely to be entered by the
system are those of lowest energy.

Statistical physics applied to many-body systems has
been found very useful in the study of phase transitions.
A phase transition is characterized, roughly speaking, by
the transition from one state having a certain degree of
order to another state of greater or lesser order under the
influence of a control parameter, which in most
situations is the temperature 7. An example is the phase
transition which characterizes a material: A liquid that
becomes solid when cooled down clearly becomes more
ordered (organized in a crystalline structure). Conversely,
when the temperature of such a liquid is increased, it
becomes a vapor or gas, which is a state of increased
disorder. This description is of course rather general: In a
real phase transition there is usually a many-body system,
which may exhibit both ordered and disordered states
(a thorough review of the subject is provided by [1]).

Most systems in phase transition show certain peculiar
properties called critical phenomena. Looking at the
optical properties of a pot of boiling water, one can see
regions where light is scattered in an unusual fashion, a
feature known as the critical opalescence of the system.
The bubbles of vapor which grow in the liquid behave as
“scattering centers” which affect the refractive behavior of
the medium. These bubbles are evidence that at the
transition point, phenomena of phase coexistence take
place: Some regions of the more disordered phase (the
gaseous one) appear inside the more ordered one (the
liquid). Another feature to note in the example of boiling
water is the presence of gaseous bubbles of all sizes in the
system, a property which is often referred to as scale
invariance. All length scales are dynamically relevant:
Any event at a point P is able to influence any other

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991

point P’, no matter how far apart the two points may be.
This concept can be made more rigorous: A correlation
length can be mathematically defined corresponding to
the maximum distance over which cooperative effects
have long-range influence. The divergence of the
correlation length at the point of transition is another
interesting property of critical systems.

Phase coexistence and scale invariance do not occur in
all phase transitions. Those transitions which show such
properties are defined as second-order transitions, as
opposed to those showing first-order behavior. An
example of the latter is the transition from the liquid to
the solid phase in materials (one cannot see “bubbles” of
ice of all sizes inside a body of freezing water). The
distinction between first-order and second-order behavior
is one of the key points in understanding systems at
criticality, as we discuss below.

The class of critical phenomena we consider in this
paper is related to the magnetic properties of matter,
Magnetism is a very well-known phenomenon. A bar of
iron can behave as a magnet and affect with its action
other metallic materials with similar magnetic properties,
because it produces a magnetic field in its neighborhood.
Magnetic properties are strongly affected by the
temperature of the system, and for most magnetic
materials there exists a critical temperature T,

For T > T, thermal disorder prevails, and the magnetic
properties of the material are somehow suppressed. At
T = T, ordering phenomena start to take place, and at
temperatures lower than 7, even an infinitesimal
magnetic field is able to order the system, which then
becomes a magnet. At a microscopic level, cooperative
effects take place; each atom of the system has its own
magnetic moment, or spin, and behaves as a tiny magnet.
Below T, the interactions among the spins tend to align
them in the same direction, and the macroscopic effect
which stems from this cooperation is the magnetic field
produced by the magnet.

Many models have been introduced to describe
magnetic phase transitions, the most popular being the
Ising model [1, 2], which was introduced by E. Ising in
1925. Here the magnetic moment of the atom is modeled
as a binary variable; i.e., an Ising spin may take only two
values, which in general are chosen to be +1 or —1. This
means that one is considering only the projection of the
magnetic moment (which, strictly speaking, is a vector in
three-dimensional space) along one direction. Thus, the
only remaining degree of freedom is the orientation of
the spin, which may point “up” (corresponding to the
state +1) or “down” (state —1). This approximation may
seem very crude, but in fact the model at this stage shows
many interesting features.

To study an interacting spin system, it is natural to
assign such spins to a regular crystalline structure, or
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lattice. If each point of this regular structure is labeled
with an index {, each site will be occupied with an Ising
spin s,. In considering the interaction among these
magnetic moments, the simplest notion is a /ocal
interaction, which couples sites which are neighbors on
the lattice and is proportional to the product of the two
spin variables. This leads to the following expression for
the total energy of the system:

E=-3 Kss,. (3)
i)

The coupling constant K gives the strength of the
interaction, which is homogeneous over all the lattice.
The constraint (i) limits the sum to nearest-neighbor
sites of the lattice. The energy distribution favors
configurations where spins are aligned (s, = s,). In fact,
the lowest-energy states of the system are completely
ordered: Either all spins are +1 (we define this state as
S.) or they are —1 (state S_).

The critical behavior of the Ising model is very simple:
At high temperature, the action of thermal disorder is
such that each spin points randomly up or down, because
it is not strongly influenced by neighboring spins. On the
other hand, at very low temperatures the probability of
either S, or S_ is exponentially dominant, and the system
becomes ordered. This competition between entropic and
energetic effects becomes maximal at an intermediate
temperature, which is the critical temperature 7, of the
system,

In this context the symmetry of the system is the
reversal of the spin 5, — —s,. This is the same symmetry
group as the permutation group for two elements, the Z,
group. A disordered state has no preferred orientation, as
spins randomly point in the +1 or the —1 direction. The
dynamics of the system below T, however, are such that
it chooses one of the two states .S, or S_. In this case the
symmetry is lost; reversing all spins simply changes one
ordered state into the other.

There is a very simple quantity which precisely
characterizes the disordered state as well as S, and S_.
This is the magnetization density of the system:

m= (N, - N). @

1
2oy
Here N is the total number of spins, N, is the number of
spins in the state +1, and N_ is the number of spins in
the state —1. The magnetization gives the degree of
alignment of the spins of the system. In a disordered
state, on average, N, = N_and m= 0. For S,, mis 1,
whereas for S_, m is —1. Magnetization is also referred to
as the order parameter of the system. Its behavior at the
critical point is another criterion for distinguishing
second-order from first-order transitions. Since in the
former case the two phases coexist, this transition must
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be continuous at T,. So must be the behavior of the order
parameter as a function of temperature, across the
transition from one phase to the other. Conversely, in the
case of a first-order transition the change in the order
parameter is abrupt; it is essentially a step function from
the value it takes in the ordered phase to that in the
disordered phase.

A set of quantities that are important in describing
phase transitions are the so-called critical exponents.
These characterize the behavior of many relevant
physical attributes at the critical temperature 7. An
example is the aforementioned correlation length &,
which becomes infinite at 7. The critical exponent »
describes this divergence:

E~IT-T|™ (5)

Other exponents are defined at the critical point. Many
response functions, which measure the sensitivity of the
system to external solicitations, become infinite. One
example is the specific heat of the system, whose
divergence near T, is described by the exponent «:

C~|T-T\|™ (6)

The set of critical exponents that one measures on a
system defines the analytical behavior at the critical point
and thus identifies the phase transition in a precise way.
Thus, one is able to classify all second-order phase
transitions by looking at the set of critical exponents at
T,. Another important element in the theory of critical
phenomena is the property of universality: The set of
exponents of a phase transition are uniquely defined by
the dimensionality of the model and by its internal
symmetry. Other microscopic details of the interaction
do not change behavior at 7, and two models defined in
the same number of space dimensions, with the same
kind of internal symmetry, fall in the same universality
class. This also explains why even a simplified model
such as the Ising model mimics a magnetic phase
transition quite well.

The Ising model has been studied for different values
of the spatial dimensionality d. Most real magnetic
materials exist in 4 = 3 (and we can also perform some
revealing experiments in d = 2). However, understanding
the behavior of models defined in other dimensions is
relevant for at least two reasons: It lends insight to the
study of the three-dimensional model, and it is also
useful in the analysis of different universality classes.

In d = | the model represents a chain of interacting
spins. The critical properties in this case are trivial,
because ordering takes place only at 7 = 0; no phase
transition occurs at any finite temperature. The two-
dimensional model is much more interesting; its critical
behavior was determined by means of an exact analytical
computation by Onsager [3] in 1944. At this stage, taking
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correlations at all scales into account makes the
computation highly nontrivial. No such exact solution
exists for Ising models in higher (finite) dimensions. The
critical temperature and some critical exponents in d = 2
are shown in Table 1.

The Ising model in d = 3 also undergoes a phase
transition at finite temperature, which has been studied
so far using approximate techniques. Some estimates for
critical quantities are also shown in Table 1.

Among the many approximate techniques used to
study these complex systems, numerical methods are
becoming increasingly important. This is primarily
because modern supercomputers can perform numerical
computations which were impossible ten years ago. This
is particularly true for Monte Carlo simulations [4, 5],
which are used to reproduce the Boltzmann probability
distribution of the system. This is obtained by generating
a chain of microscopic states, with Markovian probability
rules for the elementary transition [the (i + 1)th state of
the chain depends on the ith state]. When the simulation
is long enough (and statistical equilibrium is achieved),
the probability of generating a state in the chain
converges to the Boltzmann weight, which we have
defined in Equation (2).

Thus, Monte Carlo simulation is in principle a
wonderful tool, because it permits the simulation of a
process in which temperature is varied, and ultimately
the phase transition can be reproduced. One can measure
all interesting averages and some of the critical
exponents. Many difficulties are encountered, however,
in simulating complex systems, the two most important
ones being probably the following:

¢ The very method of generating states via a Markov
chain induces correlations among such states; these are
particularly relevant near the critical temperature (and,
eventually, correlation times diverge at T,) and
strongly bias the average values of measured quantities.
This problem is known as critical slowing down.

¢ Since the computational power and memory of a
computer, though large, are finite, we can afford only
simulations of finite systems (i.e., a finite number of
lattice points); the more complex the system, the
smaller the size of the lattices we are able to simulate.
Such size effects are again a strong source of errors in
the measurements.

The problem of discriminating among first- and second-
order transitions is strongly affected by these limitations.
Looking at the behavior of the order parameter (e.g.,
magnetization in the Ising model), how can one identify
a discontinuity for a finite system? True singular behavior
does not occur for a system with a finite number of
degrees of freedom. To circumvent this difficulty, many
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Table 1 Correlation length () and specific heat () critical
exponents for Ising model in two and three dimensions. The
value « = 0 means that in d = 2 the specific heat diverges as a

logarithm.
d v a
2 1 0
3 0.628 0.116

strategies have been introduced. The most commonly
used is finite size scaling, in which the dependence of
physical quantities on the size of the system is used to
obtain information on the transition [6]. As an example,
the inverse critical temperature 8, = 1/T has the
following dependence on the size of the system:

BL) - B, =L M

Here 8.(L) is the inverse critical temperature for a finite
system of linear size L, whereas 8, is the same quantity
for the infinite system and v is the critical exponent for
the correlation length £. Similar scaling laws, which can
be used to determine critical exponents, hold for many
physical quantities. This is an ingenious method, as it
exploits a limitation of the strategy (the finite size of the
simulated system) to recover useful information.
However, it is not absolutely reliable, because simulation
within the scaling region (near T ) is subject to critical
slowing down, which means longer simulation times. It
also implies that correlation length £ is very large.
Moreover, if one is simulating systems with ¢ < L, the
fact that scaling holds for nontrivial critical exponents
cannot be ignored, even for a first-order phase transition.
One is forced once again to larger and larger systems.

Thus, the problem of understanding the order of a
phase transition via a numerical simulation is per se very
challenging. It makes sense to try to analyze it for
relatively straightforward situations, such as the Ising
model and related approximations. Consider the model
in three dimensions; all computations (both numerical
and analytical) consistently predict for this model a
second-order phase transition. It would be useful to
compare its behavior with that of a (possibly very similar)
model which is known to undergo a first-order transition.
Such a model exists, the so-called Potts model [7]. This is
a generalization of the Ising model, in that instead of
considering only two possible states for the spin variable,
one can think of a spin which may take g possible values.
For each value of g a model is defined (¢ = 2 is the now-
familiar Ising case). The three-state Potts model is the
simplest generalization that can be defined, and the
interaction favors configurations where the spins are all
in the same state. The model has an internal Z,

symmetry (permutations of a group of three elements). 259
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(b)

The energy is defined as

E=-3 K5, . ®)
(U]
Here the spin variable o, may be in three different states
(one can choose them to be —1, 0, 1) and the Kronecker
¢ function takes value 1 if ¢, = ¢, and 0 otherwise. Note
that the Ising model with energy defined as the product
of two spin variables [Equation (3)] can easily be
remapped into this one (apart from an overall constant
term, which redefines ground-state energy).

There is a general consensus that the three-state Potts
model in three dimensions (¢ = 3, d = 3) undergoes a
first-order phase transition. Recently a very accurate
numerical study [8] definitely confirmed this scenario.
Thus it is clear that testing the effectiveness of criteria for
distinguishing second-order from first-order phenomena
does not require very complicated models. By comparing
the Ising model to the three-state Potts model (i.e.,
comparing ¢ = 2 to ¢ = 3) one can analyze the two
situations without dealing with very different systems.

o Visualization of results

The graphic tool described in Section 1 has precisely the
purpose of comparing the dynamics of the two systems.
The idea is to show directly the configurations of the
systems as they evolve during the Monte Carlo
simulations, which is a literal way of viewing these
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Display of two configurations from a Monte Carlo simulation for an Ising model (see text). Configuration (a) is a typical ordered, low-
temperature state (spins are mostly in the red state), whereas configuration (b) refers to a disordered, high-temperature state, which the
system visits later during the simulation. The pictures show that, at the critical temperature, the two phases coexist.

numerical “laboratories.” Together with the important
analysis of global and average quantities (e.g., the
behavior of magnetization or specific heat), we claim that
this graphic analysis can greatly improve our
understanding of a phase transition.

In this perspective the key feature to investigate is
phase coexistence. As previously explained, for a system
in which a second-order phase transition takes place, one
should see at T = T, that the ordered and disordered
phases coexist; “bubbles” of one phase should grow inside
the other. In Figures 1 and 2 (for the Ising and Potts
models, respectively), we show some output from the
visualization part of our codes. The pictures are quite
self-explanatory; both sets refer to systems of 16> degrees
of freedom. In other words, we map our system on a
cubic grid, the linear size of the cube being 16 grid
points. The representation of the value of each degree of
freedom 1is based on colors: two possible values (red and
blue) for the up and down states of the Ising model, and
three (red, blue, and green) for the Potts model. We show
the configurations of the system during a Monte Carlo
simulation at 7 ~ T, For the Ising model the
“snapshots” were taken at 8§ = 1/T = 0.45; for the Potts
model 8 was 0.551 in Figure 2(a) and 0.553 in Figure
2(b). During the simulation the system is able to jump
from one ordered phase (i.e., one color) to the other. This
is true for both systems, but a basic difference is that in

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991




(b

Display of two configurations from a Monte Carlo simulation for a Potts model (where the spin can exist in three states, coded as red, green,
and blue). 1In this case the two configurations are in the critical region at different temperatures (inverse temperatures are displayed in the
pictures). Here the system does not jump from ordered to disordered states, but persists in the ordered phase.

the Potts case this transition takes place as a competition
between two ordered states which both belong to the low-
temperature region, as shown in Figures 2(a) and 2(b). In
the case of the Ising model this is not true; when going
from one ordered state to the other, the system spends a
considerable amount of time in a disordered, high-
temperature phase configuration like the one in Figure
1(b). This is direct evidence that in this case the two
phases coexist, as they should for second-order behavior.

The other quantity that one can examine quite
instructively in this context is the correlation length of
the system. In all figures it is clear that there are regions
of coherence (where all points are of the same color). By
zooming and cutting sections, the geometry of these
coherent regions can be better understood.

e Quantum chromodynamic model

Another physical problem that we considered as a test
ground for this tool is quantum chromodynamics (QCD),
a theory which describes strong interactions of matter.
Understanding QCD is one of the most challenging
problems of modern theoretical physics. Again,
numerical simulations are one of the widely used tools of
investigation, and the complexity of the problem is such
that very powerful computers, optimized for this class of
problem, have been built to perform the simulations

[9, 10]. One of the quantities that play a major role in
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this framework is the set of particle fields which mediate
interactions among quarks, the so-called gauge fields.
Quarks are supposed to be, in our universe, permanently
confined within the observable particles that constitute
matter (protons and neutrons, for example). But at high
matter densities (i.e., at high temperatures such as those
thought to exist during the first moments of life of the
universe, which physicists are now trying to reproduce in
high-density plasma), a phase transition could deconfine
some quarks. The study of such a phenomenon has
crucial importance. One can build from elementary
gauge fields an effective system that strongly resembles
the three-state Potts model (since quarks can appear as
three different types, called colors), and universality
concepts can then be applied.

o Visualization of the complex variable

We have examined the output configurations of some
very long numerical simulations performed by the APE
group on the APE computer [9]; some examples are
shown in Figures 3-5. The behavior of the system was
again analyzed on a cubic lattice by looking at its critical
properties. The variable defined on the site is in this case
a complex variable (so is the gauge field), so our graphic
representation had to deal with two degrees of freedom, a
modulus and a phase. As briefly described in Section 1,
the representation we chose for a complex variable on a
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JBM-ECSEC (Rome-Italy)

site is as follows: Each variable is associated with a block
of pixels, the size of the block being proportional to the
modulus of the complex number. The phase is described
by means of a color scale; phases near 0 degrees are
represented as red, those near 60 degrees as green, and
those near 120 degrees as blue. In principle, variables
whose phase is intermediate between two of these three
values could well exist, but from the universality
argument one expects that “Potts-like” configurations will

M. BERNASCHI ET AL.

Three examples taken from a simulation of quantum chromodynamics (QCD-see text). Here the site variable is a complex field whose
magnitude varies with position and is proportional to the size of the pixel. The phase of this complex number is color-coded, and it appears
from these pictures that site angular variables are concentrated around three fundamental, *‘Potts-like’’ phase angles.

-~

be dynamically selected close to the phase transition.
This is indeed confirmed by our visualizations, which
show only site variables with phase near the three “basic”
angles.

o Spin glasses

We conclude this section by considering a third physical
system, which is again closely related to the Ising

model in which interactions are deterministic and
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homogeneous. However, one can conceive some sort of
class of “amorphous” models, where interactions strongly
depend on space position and translational invariance is
explicitly broken, These are known as spin glasses. The
energy for an Ising spin glass is

(Home -Ttaly)

E=-3 Kys5;. 9)
<)
The interaction strengths K, vary from site to site and are
randomly extracted from a probability distribution. For
example, K, can be a Gaussian random variable with an
average value of 0. Thus disorder is explicitly present in
the coupling strengths. The real materials which inspired
this model are alloys of magnetic with nonmagnetic
materials (such as CuMn). The behavior of this model is
very complex to disentangle. An approximate solution
(the mean field) has already shown some very complex
and rich properties which have been precisely analyzed
by means of an ingenious analytical method (for a review
of that subject, see [11]). However, the nature of the
phase transition in three dimensions is still an open issue.
One source of complexity manifests itself at the very
microscopic level. A spin s, interacts with its neighbors
with the interactions K. These forces may impose
competing constraints; e.g., if two K are both negative,
and the two neighbors are in opposite states, the spin s,
cannot “choose” one state without violating one
constraint. This property is referred to as frustration, for
obvious reasons. This local property can be examined by
looking at the value of the link energy K s,s,. If this —
energy is positive, the link is said to be frustrated. A Lo1BM-E ¢ (Rome-Ttaly)
recent set of numerical simulations has benefited greatly '
from the analysis of “frustration maps” generated during
the running of the simulations, such as the one shown in
Figure 6. From this picture it is clear that frustration is
not locally concentrated, but rather widely distributed
throughout the system. This rules out some proposed
models for 34 spin glasses [12] and makes more plausible
that many crucial features of the mean-field solution are
also preserved for finite-dimensional models [13].

Another QCD visunalization from a different perspective view, to
permit identification of coherent regions and their dimensionalities.

Three-dimensional turbulence

¢ 3D fluid dynamics

The problems discussed so far are concerned with
systems at thermodynamic equilibrium. Qur graphic tool,
however, can also be profitably employed in the analysis
of nonequilibrium systems such as, for example, the
motion of a fluid in a three-dimensional space. This is
particularly true in view of the recent finding that

hydrodynamic phenomena can be simulated by means of Zooming of one QCD configuration. This makes it possible to see
the different values of the modulus of the complex site variable as

the size of the “*block pixel’” varies from site to site.

[
discrete lattice methods (lattice gas cellular automata [14]) |
which bear many technical similarities to the lattice
methods adopted in statistical mechanics. Therefore, all
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Frustration map for a spin glass system (see text).

the simulations of fluid flows presented in this section
have been carried out by means of a lattice gas code.

As a matter of fact, even though the basic equations of
fluid dynamics were established more than a century ago
by Claude Navier and Gabriel Stokes, the rules which
govern the overall behavior of fluids are, to a large extent,
still poorly understood. The reason is that, in many
instances, fluids are turbulent, in the sense that they
alternate regions of strongly chaotic motion with other
regions where the fluid motion is quite smooth and
quiescent. This “dual” nature makes hydrodynamic
turbulence one of the most enigmatic and challenging
phenomena of macroscopic physics.

The Navier-Stokes equations take the form
@--‘9—'1+(ﬁ.v)a=—¥+uva, (10)
where # is the velocity field, p is the fluid pressure, and
p is the fluid density. The physics of hydrodynamic
turbulence is ultimately dictated by the competition
between nonlinear convective effects [the term (it - V)iz],
which couple disparately different spatial scales, and
viscous damping (the term »Vi) associated with
molecular dissipation. The relative strength of these two
mechanisms, usually expressed by a single dimensionless
parameter, the Reynolds number, is commonly accepted
as a good measure of the degree of turbulence of a given
fluid. The Reynolds number is defined as the ratio
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N =&, (a1

where U is a typical speed of the fluid, L a typical length,
and » the molecular viscosity. When the Reynolds
number is of order 1, the fluid is said to be “laminar™;
i.e., it moves smoothly and uniformly in a fairly
predictable fashion. However, for increasing values of
Ny, the aforementioned chaotic motions take over and
start to dominate the dynamics of the fluid. This is
normally understood by formulating fluid turbulence in
classical nonlinear field theory, which, as such, gives rise
to problems in which the relevant dynamics are spread
over an increasingly wider range of mutually interacting
modes as the Reynolds number increases. More precisely,
at a given Reynolds number Ny, the spectrum of
turbulence covers the whole range from the macroscopic
scale L up to the dissipative scale / ~ LN ;z/ * which is the
typical scale at which energy starts to be dissipated. A
turbulent fluid can be regarded as a collection of
elementary excitations whose number grows rapidly with
increasing Reynolds number. Some of these elementary
excitations reorganize coherently into ordered and
smooth aggregates of vorticity that exhibit a longevity
well in excess of the decay time one would expect from
viscous dissipation. The persistence of these coherent
structures, a sort of metastable state of the theory, is
intimately related to the existence of invariants of
motion, i.e., quantities which are preserved in the course
of the evolution. On the contrary, however, where the
elementary excitations interact randomly, these
invariants break down. Coherence is replaced by chaos,
and dissipation becomes the dominant mechanism.

Most flows in nature are fully turbulent, with values of
the Reynolds number ranging from N,_~ 10’ for the air
flow past a car, to 10" in geophysical phenomena, to
several orders higher in astrophysical plasmas. From a
practical point of view, a major consequence of
turbulence (and possibly its most distinctive property) is
the great difficulty encountered in trying to formulate
reliable predictions of the temporal evolution of a
turbulent system in terms of its initial conditions.

This is the basic reason for the tremendous recent
impact of supercomputers in advancing fluid-dynamics
research. On one side, this impact entails all the aspects
related to the development of faster algorithms for vector
and parallel architectures. Equally important, however, is
the ability to develop a suitable graphic representation of
the enormous amount of data produced by three-
dimensional fluid simulation. In addition to the most
immediate variables such as density, pressure, and
velocity, there are other quantities of direct physical
relevance. Among these, of particular interest are the
vorticity @, the helicity A, and the dissipation D. These
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are defined as follows:

&=V Xi,

[}
£

-,

h
D = |Vil.

(12)

Vorticity is especially useful in two-dimensional
turbulent flows, as is easily seen once the Navier-Stokes
equations are recast in terms of a vorticity-evolution
equation:
D&

— = A6 — (@ -

D1 V)it

(13)
The first term on the right-hand side represents the
viscous dissipation, while the second one is the “vortex-
stretching” term which can be either positive (vorticity
source) or negative (vorticity sink). In two dimensions,
the vortex-stretching term vanishes (& and # are
necessarily perpendicular); as a result, in the inviscid case
(v — 0), vorticity is locally conserved. This means that @
does not vary in a reference frame moving with the local
speed of the fluid. (This property is referred to as
“topological” invariance.) The result is that the best
graphical representation of developed 2D turbulence is
one which shows isovorticity contours; it permits
immediate identification of those spatial regions where
the coherent structures (vortices) tend to concentrate. In
three dimensions, however, the vorticity-stretching term
becomes active and vorticity is no longer a topological
invariant. This means that the vortex tubes (surfaces

of isovorticity) undergo complex topological
transformations which may even lead to the development
of singularities in the vorticity field. In particular, there is
considerable speculation that these singularities might
occur as a fractal set [15].

In such a complicated scenario, the primary source of
information is flow visualization, which directly implies
the strategic value of graphic algorithms that can follow
these complex transformations as far as possible through
the course of evolution of the fluid (see also the paper by
M. Briscolini and P. Santangelo in this issue [16]).

Another quantity of primary interest, possibly playing
a very profound role in the physics of three-dimensional
turbulence, is fluid helicity [17]. The reasoning, which
evokes analogies with the concepts of statistical field
theory discussed in the first part of this paper, is as
follows.

Starting from the Navier~Stokes equations, one can
prove that at zero dissipation there is an uncountable set
of fluid flows with the same energy but a different
helicity. Hence, the helicity can serve as a label for a
degenerate set of flows in much the same way as the
magnetization does for the ground state of the Ising
Hamiltonian (with the important difference that the set
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of degenerate flows is uncountable, as it must be in view
of the fact that the inviscid Navier-Stokes equations are
invariant under a continuous group of transformations).
It can be proved that, among the inviscid solutions of the
Navier-Stokes equations, there is a special class of
solutions for which the vorticity field tends to align with
the velocity field, thereby achieving maximal helicity.
These solutions are called “Beltrami” flows and are
considered the “ordered” states of the theory. In the
absence of dissipation, these configurations are
topologically “frozen” in the fluid and cannot transform
from one into another because they are separated by an
infinitely high topological barrier (note the
correspondence between dissipation in a fluid and
temperature in a magnetic system). However, even an
infinitesimal amount of dissipation is sufficient to bring
the topological barrier down to a finite height, thus
generating a nonzero tunneling probability between
distinct topologies. This means that a whole ensemble of
flows becomes accessible to the fluid and, by invoking a
principle of minimum dissipation, that Beltrami flows
should be the most frequently visited configurations in
fully developed turbulence (v — 0, Ny, — ).

In conclusion, one postulates that “Beltramization” of
the flow should normally occur where dissipation is
minimal or, differently stated, that helicity 4 and
dissipation D should be strongly anticorrelated.

Again, it is apparent that three-dimensional
visualization (possibly concurrent) of these two fields can
be of crucial value in validating or disclaiming such a
speculative scenario.

o Graphic representation
In the previous section we have shown that there are
several fields which can be visualized to aid in the
comprehension of three-dimensional turbulence. We now
present a series of examples which show how our tool can
be used in this context.

In general, the field is systematically displayed in the
complex “order parameter” format,

V= A+ iB, (14)

where 4 and B are “dummy” fields whose actual content
can be selected case by case according to the specific
need. The quantity 4 normally corresponds to an
amplitude and is associated with the size of the pixels,
while B is meant to describe the cosine of a real angle
and is normally associated with a color scale.

As a first example, we display a series of three pictures
(Figures 7, 8, and 9) corresponding to the temporal
evolution of two offset orthogonal vortex tubes. In this
case the identification is

(15)

@,
B=—"=cosé
(o] "
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Perspective view of the vorticity field at 7 = 0. Vorticity is maxi-
mum on the axes of the two red offset orthogonal tubes and decays
thereafter with a Gaussian profile.

The configuration of Figure 7 after 600 steps of the Navier—Stokes
solver. The axes of the vortex tubes bend under the effect of con-
vective effects, while the cores expand and diffuse away from the
axes as a result of viscous dissipation.
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where w,, designates the maximum of the three
components of the vector @. The amplitude 4 is
discretized over ten values of the pixel size which go
linearly from the minimum to the maximum value of
vorticity. The quantity B is designated to distinguish
between counterclockwise rotation (positive vorticity, red
color) and clockwise rotation (negative vorticity, blue
color).

Figure 7 contains 32? sites, a number sufficient to show
the cores of the two offset orthogonal vortex tubes.
According to the physical picture outlined in the previous
section, once this configuration is evolved, the nonlinear
terms promote a conservative, long-range interaction
which would make the tubes attract, stretch in a
complicated way, and possibly merge after a sufficient
length of time. This is in competition with viscous
dissipation, which tends to “broaden” the tubes and
spread them over the space, thus ultimately annihilating
them. Figures 8 and 9 offer a neat visualization of the
aforementioned competition. In fact, we see in Figure 8
that the extremities of the two vortex cores tend to bend
under the effects of advection and vortex stretching, At
the same time the vortex cores undergo a strong
diffusion, as evidenced by the broadening of the red
regions. As time proceeds further, viscous dissipation
becomes more and more dominant and, as shown in
Figure 9, the system tends to lose the memory of its
initial well-organized shape. Such a neat dominance by
dissipative effects is due to the low resolution of the
lattice gas solver, in this case 32° grid points
corresponding to a Reynolds number of the order
of 10 [18].

This kind of visualization can offer a useful
complement to the conventional representation of
isovorticity surfaces, especially when the interaction tends
to generate complicated nesting which is difficult to trace
with connectivity-path algorithms. An additional
potential advantage is having the whole range of vorticity
values available through the size of the pixels. For
smooth configurations, this is equivalent to viewing
several isosurfaces at the same time (even if less smooth);
for chaotic configurations it can help in localizing the
regions where vorticity gradients tend to concentrate, a
stage at which zooming capabilities are likely to become
essential.

Next, we show an example of “hybrid” representation
in which the terms 4 and B refer to two distinct physical
quantities. This is particularly useful in highlighting the
presence of spatial regions where 4 and B exhibit
correlation or anticorrelation effects. In view of the
discussion presented in the previous section, we let

B = ,h

A = |A#|, TRER

(16)
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so that A represents the intensity of dissipation while

B is a measure of the fluid “Beltramization,” i.e., the
tendency of the vorticity field to align with the velocity
field. The color table has been chosen so as to yield red
for positive 2 (@ parallel to i), blue for negative
(antiparallel), and green for 4 = 0 (perpendicular). As a
result, Beltrami structures should appear as red or blue
spots in the picture.

Figure 10 shows the same fluid configuration as Figure
7 in the helicity-dissipation representation. From this
figure we first notice a large majority of green points,
with small fluctuations of red color and practically no
blue regions. A tentative conclusion is that the fluid does
not exhibit much Beltramization, which is not surprising
because dissipation is by far the dominant mechanism.
Because of the moderate size of the red pixels which do
appear, however, one might speculate that where
Beltramization does occur, the dissipation is rather
contained. It should be stressed that these considerations
are purely qualitative; one color might affect pixel size
differently than another, and pixels representing points
near the “front” of the lattice might, depending on the
drawing order, obscure those representing points near the
“back.” The former difficulty is alleviated to some extent
by allowing the user to swap colors in a simple way,
while the latter is considerably mitigated by the ability to
rotate the picture in real time. In any case, it is clear that
a careful inspection of a whole series of different pictures
of the same data are required before quantitative
assessments can be made.

The same representation is also extremely well suited
for checking the speculation that dissipation should take
place on a highly irregular set of fractal measure. To test
this point, Navier-Stokes simulations with at least 256°
grid points would be required, a resolution that cannot be
accommodated within the present memory capability of
the 50835 graphics processor. Several alternatives are
available, however. For instance, one could select a
subset of the computational domain, either by
decimation (one graphic node for each four or eight
computational nodes) or by spatial averaging, but in
order to control the loss of information on the short
scales, both of these procedures should be repeated over
an ensemble of such subsets.

Conclusions and future plans

We have described both the tool, as it currently exists,
and some examples of its utilization. However, even if we
consider the tool extremely useful as it is, many
improvements and extensions are still possible. One of
our primary goals is to achieve a visualization in real
time of many-body system dynamics. The approach we
are following is essentially based on the exploitation of
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The configuration of Figure 7 after 1200 steps. Due to the low

Reynolds number. dissipative broadening definitely prevails over
convection.

The configuration of Figure 7 in the helicity-dissipation picture.
The dissipation is proportional to the size of the pixels, while he-
licity is represented in a color scale: red for positive (velocity par-
allel to vorticity), blue for negative (antiparallel), and green for
values around zero (perpendicular). Note the dominance of green
pixels, which indicates that helicity production is strongly inhib-
ited by dissipation. Note also that most of the red pixels are small,
indicating that where helicity is maximal, dissipation tends to be
small (Beltrami flow).
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cooperative processing in a heterogeneous environment.
We have a mainframe (3090) and a number of
workstations of different types (RISC System/6000
processors, RT PCs3, and PS/2s3) all connected in a
LAN. For the time being we are using token ring as
physical support and TCP/IP as the communication
protocol. The “cooperative processing” concept can be
described as follows: One of the machines just mentioned
(typically the 3090 processor) runs a simulation; as soon
as a new set of results is produced it is sent through the
LAN to another machine running the process that
produces and handles the graphic output. A “socket”
abstraction is used at the application level. This allows
both processes to regard the LAN as being very similar to
a standard I/O unit. Moreover, there is no reciprocal
dependency, as there would be in an RPC model of
interprocess communication; the simulation and the
graphics actually run in parallel. In order to hide the
details of communication as much as possible from the
user, a library is under development which will allow
both C and FORTRAN codes to be easily adapted to the
distributed environment. Since all of our machines
support graPHIGS, we could use, in principle, a PS/2 or
an RT PC as workstation for the graphics, but the RISC
System/6000 processor offers performance so much
higher than the others that, apart from the development
phase, it is the workstation we use for the production of
graphic output. The presence of the 24-bit Color
Graphics Processor on the RISC System/6000 (possibly
with the optional 24-bit z-buffer) will allow the addition
of new features to the tool, such as the removal of hidden
lines and depth cueing (with this facility, the points on a
line further from the eye are less bright, so that there is a
fading effect with increasing distance). Another key point
is the possibility that the user can modify the behavior of
the simulation by changing the value of the parameters
or suspending and then restarting the simulation itself. In
the typical scenario the user works at a RISC
System/6000 monitor and has four windows
(X-Windows®) active on the screen; two windows are the
consoles of the workstation and of the machine running
the simulation, one contains the output from a
graPHIGS manipulation of the data, and the last allows
the user to send feedback to the simulation. The results
we have obtained in this “new” environment so far,
although preliminary, are encouraging as to the quality of
the animation we are able to achieve.

In summary, the tool we have developed allows us to
extract from numerical simulations much more
information than was previously possible, and to present
this information in a clearer and more intuitive manner.

*RT PC and PS/2 are registered trademarks of International Busi Machi
Corporation.
* X-Windows is a trademark of MI1.
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The availability of more and more efficient hardware will
improve both the quality of the graphic ocutput and the
degree of interactivity of the tool.
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