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This  paper  describes  a  graphic  rendering 
system  for  use in visualizing  the  behavior  of 
three-dimensional  physical  systems.  The  tool is 
general  and  allows  the  user  to  characterize  a 
great  variety of phenomena.  The  only 
requirement is that  the  physical  system  be 
represented  by  variables  defined  on  quantifiable 
positions  (sites)  within  a  three-dimensional  grid. 
The  variables  may be  discrete (e.g.,  binary), 
real,  or  even  complex  numbers.  The first  part of 
the  paper  gives  a  technical  description  of  the 
graphic  program,  which is based on a graPHlGS' 
interface; two versions  of  the  code  (in  the C and 
FORTRAN  languages)  are  available.  The 
hardware  platform  consists  of  an  IBM 5080 
graphic  workstation  with  a 5081 high-resolution 
monitor  which  can  be  driven  either  by  a  machine 
employing  IBM  Systeml370'  architecture  with 
VM/XA1 (in our  case  a  3090'  processor  rynning 
under  VM/XA)  or  by  a RlSC System/6000 
workstation  [we  have  used  both  an IBM RT2 

I graPHIGS, System/370, VM/XA, 3090, and RlSC System/6OOO are  trademarks of 
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* RT and AIX  are  registered  trademarks of International Business Machins 
Corporation. 

System  and  (recently)  an  IBM RlSC System/6000 
processor]  running  under AIX.2 The  second  part 
of  the  paper  describes  three  different  examples 
of the  application  of  this  tool:  discrete  spin 
models,  quantum  chromodynamics (QCD), and 
three-dimensional  turbulence.  For  spin  systems 
and QCD, the  physical  problem  consists in 
understanding  the  nature  of  the  phase  transition 
from  disordered to ordered  states of  the  system. 
In  both  cases  a  direct (i.e., through  visualization) 
investigation  of  the  system  configurations 
reveals  valuable  information  about  properties 
such  as  the  order  of  the  transition,  the  behavior 
of  the  correlation  length,  and  phase 
coexistence. We note,  however,  that  the 
meaning  of  the site  variables is very  different in 
the two cases. In particular,  for QCD the  site 
variables  are  complex  numbers,  which  we  code 
by  using  a  color  table to represent  the  phase  of 
the  number  and pixel size  to  represent  a  value 
proportional to the  modulus.  This kind of  coding 
is also  used  for  three-dimensional  turbulence. 
Here  the  analysis  can  show  where  dissipation 
phenomena  take  place in the  fluid  and 
characterize  the  geometrical  nature  of  the  set  of 
dissipative  structures. 

"Copyright 1991 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that ( I )  each 
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of 
this paper may be copied or distributed royalty free without further permission by  computer:based and other information-service systems. Permission to republish any other 

254 portion of this paper must  be obtained from the Editor. 

M. BERNASCHI ET AL. IBM J. RES.  DEVELOP. VOL. 35 NO. 1/2 JANUARYMARCH 1 9 9 1  



Introduction 
Computer simulations are  adding  a new dimension to the 
world  of  scientific  investigation, and computational 
physics  has  emerged as an invaluable  third alternative to 
the two traditional avenues of analytic  theory and direct 
physical  experimentation. The impressive  growth of 
computing power made  possible by technological 
advances  permits today’s scientists to attack complex 
problems whose solution  would  have  been  inconceivable 
only  a few years  ago.  This  increased  power  has  begun to 
satisfy an increasingly  compelling  need not only to 
“crunch numbers”  and  solve equations, but also to 
display and manage the voluminous data produced by 
numerical simulation. A clear and global  visual 
representation  improves  enormously the quality of 
numerical approaches to the comprehension of physical 
problems. In this respect,  a  key  role  is  played  by 
computer graphics,  which has in itself  gained the rank  of 
a  software  engineering  discipline. 

In  this  paper we present  a new graphic  tool,  which we 
have  used to analyze  the  behavior of a  variety  of  complex 
systems  arising in different domains of theoretical 
physics. The underlying  physical  problems  are quite 
diverse,  but our technique can be applied to all  of them, 
the only requirement being that they  can be formulated 
in terms of local  variables  defined in a  discrete  three- 
dimensional  space. The test  problems  discussed  in  this 
paper include the study of phase transitions in  magnetic 
systems, the origin of quark confinement in hadronic 
matter, and the nature of three-dimensional  fluid 
turbulence. 

The paper is organized as follows:  In Section  1 we 
briefly  describe the main  technical  features of the code 
and the computing environment in which the code  runs. 
In Section  2,  applications to many-body  systems at 
equilibrium are reported,  with particular attention to 
statistical  physics and quantum chromodynamics (the 
theory which  describes interactions among quarks). 
Section 3 is devoted to the use  of this tool  in the context 
of three-dimensional  fluid flows (that is,  of  chaotic 
systems that are not in equilibrium). Finally,  Section 4 
outlines  ongoing and future developments  for  this 
project. 

1. Graphic tool 
The tool we have  developed  is  primarily oriented toward 
the visualization of data obtained from simulations of 
physical  systems  defined on a  lattice.  Redefining  on  a 
lattice a  theoretical  model that was  originally formulated 
as a continuum is  often  a  prerequisite  for  numerical 
simulation. It is  also  necessary,  of  course, to extrapolate 
back to the continuum case the results obtained on the 
lattice, and our tool can be  very  effective for that purpose 
as well. 
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Two directives  have  been  always followed during the 
design and implementation of the tool:  simplicity  of use 
(we  need something that simplifies our work,  not  a 
further complication) and enough  flexibility and 
generality that the tool can be applied  with minor effort 
to the visualization of data obtained from simulations of 
many different  physical  systems. We chose as display 
station for the tool an IBM 5080  graphics  workstation 
with  a  5081  high-resolution  (1024 x 1024) monitor. The 
choice  was  justified by the powerful  capabilities  of the 
5080 monitor; zooming, 3D rotations, clipping, and 
perspective view can all  be  effectively executed in an 
interactive way. On the other hand, the 5080  is  not  a 
standalone workstation; it must be guided by a  host 
machine, either a  System/3701 architecture with  VM/XAl 
or a  powerful  workstation  such as the RT2 System or 
RISC  System/6000’  processor. Our goal  was to be  able to 
use the tool on both hardware  platforms,  which  requires 
a high  degree  of code portability. In order to achieve this 
goal, we wrote both a FORTRAN and a  C  version  of the 
tool, always  using  graPHIGS’ as the graphics  interface. 
However, we actually  did  most  of the work on the RT 
because we consider the AIX2 environment to be more 
suitable  for  application  development.  Moreover,  AIX 
offers much more support for  interprocess 
communications, and we  were interested in this aspect 
for  reasons to be explained  later. 

follows (the description  is  more  faithful to the RT 
version): As a  general  rule we tried to split the code into 
several “atomic” parts (subroutines in FORTRAN or 
functions in  C) so that changes and updates  could  be 
easily located. The first part of the code  reads  the data to 
be  displayed. We  always  used unformatted data to speed 
up the  reading and reduce  disk  space  occupancy. When 
data are  moved  from  System/370  machines  (where  they 
are  often  produced) to RTs,  a  set of routines makes 
conversions  between the respective internal formats. The 
next step is the initialization of the graPHIGS 
environment, which  involves the specification  of  things 
such as the display station and the  color  table that will  be 
used. The most  interesting  parts of the code  are  those 
used to define the graPHIGS structures and manipulate 
the structures themselves. We manipulate the data to 
extract  all  possible information; part of the information is 
displayed  in  graphic  form and another part is  shown in 
text  form on the screen. Three different output primitive 
elements are employed blocks of pixels,  polymarkers, 
and polylines.  For instance, when  we  show  results from  a 
simulation of a  system  of  spins that can take complex 
values, we represent  every  spin as a pixel  block, the size 
of the block  being proportional to the modulus and the 
calor indicating the phase  of the complex number 
according to a  scale  shown in a  legend on the screen. 

The structure of the tool can be rapidly  summarized as 
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Finally, we report the “global magnetization” of the 
system as a text  string on  the higher part of the screen 
(Figures 1-4,  shown  later). The construction of 
graPHIGS structures is the CPU-bound part of this 
visualization  code. For the more complex  cases (e.g., 
when we deal  with  large lattices or with  complex-valued 
spins), the RT could not offer enough computing power. 
(In the last  section we briefly  present  possible solutions to 
this problem.) In general, the rendered graPHIGS 
structures represent 3D lattices; parameters (such as 
visualization  angles)  defining their representation have 
values at this stage that are read  from an  input file.  As  we 
define this “default” representation form for the 
structures, we also  initialize and set  all the 5080 devices 
(dials,  mouse,  tablet, etc.) that will  be  used later. When 
this operation is completed, the graphic structures are 
sent to the 5080 to be  displayed; the features of the 5080 
can then be  exploited  for interactive manipulation of the 
displayed lattice. 

As an aid to better understanding of the usefulness  of 
the tool, we provide  some  examples of typical 
applications. In Section 2 we find that one of the most 
interesting observable attributes of a spin system  is the 
correlation length.  With our graphic representation, the 
order of magnitude of the correlation length can be 
extrapolated from the size  of those spin blocks (spins 
which  in turn are represented by  pixel blocks) that are 
distinguished by the same color. The view  we have at the 
beginning of the display  phase is global  (Figures 1-6, 
shown later); at this level,  for instance, one can  check by 
zooming whether a certain area of the lattice  is coherent, 
or whether there are impurities indicated by spins of a 
different  color. Then, by clipping and realigning the 
lattice, we can isolate one or more planes so that it is 
possible to distinguish among 1 D,  2D, and 3D coherence 
zones.  Finally, 3D rotations allow  us to look at the entire 
lattice regardless  of its initial position, without having to 
restart the program  from the beginning. 

ability to elaborate and manipulate more than one 
configuration at a time. This means that we can read a 
certain number of different  configurations of the same 
physical  system  (e.g.,  configurations  related to different 
temperatures), manipulate these  configurations, and then 
by changing in rapid  sequence the configuration that is 
displayed,  observe the evolution of the system.  It  is 
possible to gain an immediate comprehension of the 
simulation dynamics with this kind of visualization. The 
sequence structure in the “fast  visualization” is circular 
so that, at the end, the sequence restarts itself from the 
first  displayed configuration; moreover,  changes  such as 
zooming or 3D rotations, made  interactively during the 
visualization, can be  preserved during the rest  of the 
sequence. The transition from one configuration to 

Another interesting and useful feature of the tool is the 
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another can be  made  simply by pressing one of the 
buttons on the 5080 mouse, and we stress that the 
updating of the image is immediate, since the definition 
of the image structures is made only once, at  the 
beginning. The number of configurations that we can see 
in sequence  is  limited only by the size  of the 5085 
memory  buffer.  Because the memory used  by a given 
configuration depends on both the lattice size and the 
complexity of the physical  system, we typically  have from 
4 to 16  different  configurations. 

A few comments on limitations related to the choice of 
chromatic scale are in order. Quantitative judgments 
based on particle  color can be  biased  by the different 
chromatic significance  of the three (red,  green, and blue) 
base colors, as well as by the fact that in the absence of 
depth-cueing,  some  pixels at the “back” of the image  may 
be  hidden by those at the “front.” Improvements planned 
or in development are described in  the last  section. 

Real  physical  problems  studied  with the aid of the tool 
are introduced and discussed in Sections 2 and 3. 

2. Phase  transitions and critical  phenomena 

0 Discrete  spin  models 
Equilibrium statistical mechanics is one of the tools used 
by physicists to describe  many-body  systems. In dealing 
with a system  with many elementary components, one 
must  distinguish  between the microscopic state of the 
system and its macroscopic description. A microscopic 
state is  defined in terms of the specific  values  of the 
coordinates which  describe the motion of  each 
elementary component. For a gas  of N atoms this would 
correspond to providing the 3N values  of the position 
and the 3N values of the velocity  for  each  of the atoms. 
In  practice, one cannot track the microscopic description 
of the system in real time. However, there is another 
approach which is successful:  Assuming that the 
evolution of the system  over time (which  is a trajectory in 
the 6N-fold  space  of the system coordinates) can be 
reproduced by a statistical distribution, one can 
determine the probability that a given  microscopic state 
will occur. Pursuit of this strategy  reveals that the 
probability distribution for a microscopic state is a simple 
function of a single,  macroscopic quantity, the energy E 
of the system.  Let S be a microscopic state with  energy 
E; the probability that state S will occur during the 
evolution of the system  is 

e -Elk~T 

P(S) = 7 9 (1) 

where Z is the partition function of the system, 

Z = 2 e-EIkBT, ( 2 )  
S 

IBM I. RES. DEVELOP. VOL. 35 NO. 112 JANUARYIMARCH 1 9 9 1  



which  normalizes the probability p(S) so that C,p(S) = 1 .  
In this formula, the temperature T of the system  appears, 
multiplied by a dimensional factor, the Boltzmann 
constant k,, whose numerical value depends on the 
system  of units chosen.  Since one can choose  a  system 
where k, = 1, we omit the Boltzmann constant hereafter 
in  our notation. The probability p ( S )  is often  referred to, 
however, as the “Boltzmann weight”  of the microscopic 
state. 

The solution provided in this framework  consists in 
labeling  a  microscopic state in terms of a  single, 
macroscopic  variable  (its  energy) and expressing the 
probability for that state in terms of that variable. From 
this basic relation one is able in principle to compute all 
macroscopic quantities as  average  values.  Given the 
dependence of the Boltzmann weight on T, it is quite 
evident that when temperature is  large compared with the 
typical  energy  scales for the system, the probability is the 
same  for  any  given  microscopic  state.  When T decreases, 
however, the role of  energy E becomes important, and as 
T tends to 0, the states most  likely to be entered by the 
system are those  of lowest energy. 

Statistical  physics  applied to many-body  systems  has 
been found very  useful in the study of phase transitions. 
A  phase transition is  characterized,  roughly  speaking, by 
the transition from one state having  a certain degree of 
order to another state of  greater or lesser order under the 
influence of a control parameter, which in most 
situations is the temperature T. An example  is the phase 
transition which  characterizes  a  material:  A liquid that 
becomes  solid  when  cooled  down  clearly  becomes  more 
ordered  (organized in a  crystalline structure). Conversely, 
when the temperature of such  a  liquid  is  increased, it 
becomes  a vapor or gas,  which  is  a state of increased 
disorder. This description  is of course rather general: In a 
real  phase transition there is  usually  a  many-body  system, 
which  may exhibit both ordered and disordered states 
(a thorough review of the subject  is  provided by [ 11). 

properties  called critical phenomena. Looking at the 
optical  properties of a  pot of boiling  water, one can see 
regions  where  light  is  scattered in  an unusual fashion,  a 
feature known as the critical  opalescence of the system. 
The bubbles of vapor which  grow in the liquid behave as 
“scattering centers” which  affect the refractive  behavior of 
the medium. These  bubbles are evidence that  at the 
transition point, phenomena of phase coexistence take 
place: Some  regions  of the more disordered  phase (the 
gaseous one) appear inside the more ordered one (the 
liquid). Another feature to note in  the example of boiling 
water  is the presence of  gaseous  bubbles of all sizes in the 
system,  a property which is often referred to as scale 
invariance. All length  scales are dynamically  relevant: 
Any event at a point P is  able to influence any other 

Most  systems in phase transition show certain peculiar 
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point P’, no matter how far apart the two points may  be. 
This concept can be made more rigorous: A correlation 
length can be mathematically defined  corresponding to 
the maximum distance over  which  cooperative  effects 
have  long-range  influence. The divergence  of the 
correlation length at  the point of transition is another 
interesting property of critical systems. 

Phase  coexistence and scale invariance do not occur in 
all  phase transitions. Those transitions which  show  such 
properties are defined as second-order transitions, as 
opposed to those showingfirst-order behavior. An 
example of the latter is the transition from the liquid to 
the solid  phase in materials (one cannot see “bubbles” of 
ice  of  all  sizes  inside  a  body of freezing  water). The 
distinction between  first-order and second-order  behavior 
is one of the key points in understanding systems at 
criticality, as we discuss  below. 

The class  of  critical phenomena we consider in this 
paper  is  related to the magnetic properties of matter. 
Magnetism  is  a very  well-known phenomenon. A bar of 
iron can behave as a  magnet and affect  with its action 
other metallic materials with  similar  magnetic  properties, 
because it produces a magneticjeld in its  neighborhood. 
Magnetic  properties are strongly  affected by the 
temperature of the system, and for  most  magnetic 
materials there exists  a critical temperature T,. 
For T > Tc, thermal disorder  prevails, and  the magnetic 
properties of the material are somehow  suppressed.  At 
T = Tc, ordering phenomena start to take place, and at 
temperatures lower than T, even an infinitesimal 
magnetic field  is  able to order the system,  which then 
becomes  a  magnet. At a  microscopic  level,  cooperative 
effects take place;  each atom of the system  has its own 
magnetic moment, or spin, and behaves as a tiny magnet. 
Below T, the interactions among the spins tend to align 
them in the same direction, and the macroscopic effect 
which stems from this cooperation is the magnetic field 
produced by the magnet. 

magnetic  phase transitions, the most popular being the 
Ising model [ 1,2], which  was introduced by E. Ising in 
1925. Here the magnetic moment of the atom is modeled 
as  a binary variable; i.e., an Ising spin may take only  two 
values,  which in general are chosen to be +1 or -1. This 
means that one is considering  only the projection of the 
magnetic moment (which,  strictly  speaking,  is  a  vector in 
three-dimensional space)  along one direction. Thus, the 
only remaining degree  of  freedom is the orientation of 
the spin, which  may point “up” (corresponding to the 
state +1) or “down” (state -1). This approximation may 
seem  very crude, but in fact the model at this stage  shows 
many interesting features. 

To study an interacting spin  system, it is natural to 
assign such spins to a  regular  crystalline structure, or 

Many  models  have  been introduced to describe 
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lattice. If each point of this regular structure is  labeled 
with an index i, each  site  will  be  occupied  with an Ising 
spin s,. In considering the interaction among these 
magnetic moments, the  simplest notion is a local 
interaction, which couples  sites which are  neighbors on 
the lattice and is proportional to the product of the two 
spin  variables.  This  leads to the following  expression  for 
the total  energy of the system: 

E = -x Ks,s,. (3) 
(0) 

The coupling constant K gives the strength  of the 
interaction, which is  homogeneous  over all the lattice. 
The constraint (ij) limits the sum to nearest-neighbor 
sites of the lattice. The energy distribution favors 
configurations  where spins are  aligned (s, = 3). In fact, 
the lowest-energy states of the system are completely 
ordered:  Either  all  spins are + 1 (we  define this state as 
S+) or they are - 1 (state 5”). 

The critical  behavior  of the king model  is  very  simple: 
At high temperature, the action of thermal disorder is 
such that each  spin points randomly up or down,  because 
it is not  strongly  influenced by neighboring  spins. On the 
other hand, at very  low temperatures the probability of 
either S+ or S- is exponentially dominant, and the system 
becomes  ordered. This competition between entropic and 
energetic effects  becomes  maximal at  an intermediate 
temperature, which  is the critical temperature T, of the 
system. 

In  this  context the symmetry of the  system  is the 
reversal  of the spin si + -si. This  is the same  symmetry 
group as  the permutation group for  two  elements,  the 2, 
group. A disordered state has no preferred orientation, as 
spins  randomly point in the + 1 or the - 1 direction. The 
dynamics of the system  below T,, however, are such that 
it chooses one of the two  states S+ or S-. In  this  case the 
symmetry is lost;  reversing  all spins simply  changes one 
ordered state into the other. 

characterizes the disordered state as well as S+ and S-. 
This is the magnetization density of the system: 

There is a very simple quantity which  precisely 

1 1 m = -  N si = E (N+ - N J .  (4) 

Here N is the total number of spins, N+ is the number of 
spins in the state + 1, and N- is the number of spins  in 
the state - 1. The magnetization gives the degree  of 
alignment of the spins of the system.  In a disordered 
state, on average, N+ = N- and m = 0. For S+, m is 1, 
whereas  for S-, m is - 1. Magnetization is  also  referred to 
as the order parameter of the system.  Its  behavior at the 
critical point is another criterion for  distinguishing 
second-order  from  first-order  transitions.  Since in the 

258 former case the two  phases  coexist, this transition must 
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be continuous at T,. So must  be the behavior of the order 
parameter as a function of temperature, across the 
transition from one phase to the other. Conversely, in the 
case  of a first-order transition the change in the order 
parameter is abrupt; it is  essentially a step function from 
the value it takes in the ordered  phase to that in the 
disordered  phase. 

phase transitions are the so-called critical  exponents. 
These  characterize the behavior of many  relevant 
physical attributes at the critical temperature T,. An 
example  is the aforementioned correlation  length E,  
which becomes  infinite at T,. The critical exponent v 
describes  this  divergence: 

A set  of quantities that are important in describing 

5 - I T -  T,)-”.  ( 5 )  

Other exponents  are  defined at the critical point. Many 
response functions, which measure the sensitivity  of the 
system to external  solicitations,  become  infinite. One 
example  is the specific  heat of the system, whose 
divergence  near T, is  described by the exponent a: 

C - I T - T, ( 6 )  

The  set  of  critical exponents that one measures on a 
system  defines the analytical  behavior at the critical point 
and thus identifies the phase transition in a precise way. 
Thus, one is able to classify  all  second-order  phase 
transitions by looking at the set  of critical  exponents at 
T,. Another important element  in the theory of critical 
phenomena is the property  of universality: The set  of 
exponents of a phase transition are uniquely  defined by 
the  dimensionality of the model and by its internal 
symmetry. Other microscopic  details  of the interaction 
do not  change  behavior at T,, and two  models  defined in 
the same number of  space  dimensions,  with  the  same 
kind of internal symmetry,  fall  in the same universality 
class. This also  explains why even a simplified  model 
such as the king model  mimics a magnetic  phase 
transition quite well. 

The Ising  model  has  been  studied  for  different  values 
of the spatial  dimensionality d. Most  real  magnetic 
materials  exist in d = 3 (and we can  also  perform  some 
revealing experiments in d = 2). However, understanding 
the behavior of  models  defined  in other dimensions is 
relevant  for at least  two  reasons:  It  lends  insight to the 
study of the three-dimensional  model, and it is  also 
useful in the analysis of different  universality classes. 

spins. The critical  properties in this case are trivial, 
because  ordering  takes  place  only at T = 0; no phase 
transition  occurs at any finite  temperature. The two- 
dimensional  model is much  more  interesting; its critical 
behavior was determined by means of an exact analytical 
computation by Onsager [3] in 1944. At this stage,  taking 

In d = 1 the model  represents a chain of interacting 
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correlations at all  scales into account makes the 
computation highly nontrivial. No such  exact  solution 
exists  for  Ising  models in higher  (finite)  dimensions. The 
critical temperature and some  critical  exponents in d = 2 
are shown  in Table 1. 

transition at finite temperature, which  has  been  studied 
so far  using approximate techniques.  Some  estimates  for 
critical quantities are also  shown  in  Table  1. 

Among  the  many approximate techniques used to 
study  these  complex  systems,  numerical  methods are 
becoming  increasingly important. This is primarily 
because modem supercomputers can  perform  numerical 
computations which  were  impossible ten years  ago. This 
is particularly true for  Monte  Carlo simulations [4,5], 
which are used to reproduce the Boltzmann  probability 
distribution of the system. This is  obtained by generating 
a  chain of  microscopic  states,  with  Markovian  probability 
rules  for  the  elementary transition [the (i + 1)th state of 
the chain  depends  on the ith state]. When the simulation 
is  long  enough (and statistical equilibrium is  achieved), 
the probability of generating a state in the chain 
converges to the Boltzmann  weight, which  we have 
defined  in  Equation (2). 

Thus, Monte  Carlo simulation is in  principle  a 
wonderful  tool,  because  it  permits the simulation of a 
process  in  which temperature is varied, and ultimately 
the  phase transition can be reproduced. One can  measure 
all interesting  averages and some of the critical 
exponents.  Many  difficulties are encountered, however, 
in  simulating  complex  systems, the two  most important 
ones  being  probably the following: 

The Ising model  in d = 3 also  undergoes  a  phase 

0 The very method of generating  states via a  Markov 
chain  induces  correlations among such  states;  these  are 
particularly  relevant  near the critical temperature (and, 
eventually,  correlation  times  diverge at T') and 
strongly  bias the average  values  of  measured quantities. 
This  problem  is  known as critical slowing  down. 
Since the computational power and memory  of  a 
computer, though  large,  are  finite, we can  afford  only 
simulations offinite systems  (i.e.,  a  finite number of 
lattice  points); the more  complex  the  system,  the 
smaller the size  of the lattices we are  able to simulate. 
Such size efects are  again  a  strong  source  of errors in 
the measurements. 

The problem of discriminating among first- and second- 
order transitions is  strongly  affected  by  these  limitations. 
Looking at the behavior  of the order parameter (eg ,  
magnetization  in the king model), how can one identify 
a discontinuity for  a  finite  system? True singular  behavior 
does not occur  for  a  system  with  a  finite number of 
degrees  of  freedom. To circumvent this difficulty,  many 

Table 1 Correlation  length (u) and  specific  heat (a) critical 
exponents for king model in two  and  three dimensions. The 
value O( = 0 means  that  in d = 2 the  specific  heat  diverges  as  a 
logarjthm. 

d U a 

2 1 0 
3 0.628 0.1 16 

strategies  have  been  introduced. The most commonly 
used isfinite size scaling,  in which the dependence of 
physical quantities on the size  of the system  is  used to 
obtain information on the transition [6] .  As an example, 
the inverse  critical temperature 0, = l/Tc has the 
following dependence  on the size  of the system: 

&(L) - 0, = L"'". (7) 

Here PC(L) is the inverse  critical temperature for  a  finite 
system  of linear size L, whereas Bc is the same quantity 
for the infinite  system and v is the critical  exponent  for 
the  correlation  length (. Similar  scaling  laws,  which  can 
be  used to determine critical  exponents,  hold  for  many 
physical quantities. This  is an ingenious  method, as it 
exploits  a limitation of the strategy (the finite size  of the 
simulated  system) to recover  useful information. 
However, it is not  absolutely  reliable,  because simulation 
within the scaling  region (near T,) is  subject to critical 
slowing down, which means  longer simulation times. It 
also  implies that correlation  length 5 is very  large. 
Moreover, if one is  simulating  systems  with ( < L, the 
fact that scaling  holds  for  nontrivial  critical  exponents 
cannot be ignored,  even  for  a  first-order  phase  transition. 
One  is  forced  once  again to larger and larger  systems. 

Thus, the problem of understanding the order of a 
phase transition via a  numerical simulation is per se very 
challenging.  It  makes  sense to try to analyze it for 
relatively  straightforward  situations,  such as the Ising 
model and related approximations. Consider the model 
in three  dimensions;  all computations (both numerical 
and analytical)  consistently  predict for this  model  a 
second-order  phase  transition.  It would be useful to 
compare its behavior  with that of  a  (possibly  very  similar) 
model  which  is  known to undergo  a  first-order transition. 
Such  a  model  exists, the so-called Potts model [7]. This is 
a  generalization of the Ising  model, in that instead  of 
considering  only  two  possible  states  for the spin  variable, 
one can think of a  spin  which  may take q possible  values. 
For each  value  of q a  model  is  defined ( q  = 2 is the now- 
familiar king case). The three-state Potts model  is the 
simplest  generalization that can be  defined, and the 
interaction favors  configurations where the spins are all 
in the same  state. The model has an internal Z ,  
symmetry (permutations of  a group of three elements). 259 
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Display of two configurations from a Monte Carlo simulation for an king model (see text). Configuration (a) is a typical ordered, low- 
temperature state (spins  are mostly in the red state), whereas configuration (b) refers to a disordered, high-temperature state, which the 
system visits later during the simulation. The pictures show that, at the critical temperature, the two phases coexist. 

The energy is defined as 

E = - E Q I a j  (8) 
( d )  

Here the spin  variable ui may be in three different  states 
(one can choose them to be - 1 , O ,  1) and the Kronecker 
6 function takes value 1 if ui = uj and 0 otherwise. Note 
that the Ising  model  with  energy  defined as the product 
of  two  spin  variables [Equation (3)] can easily  be 
remapped into this one (apart from an overall constant 
term, which  redefines ground-state energy). 

There is a general  consensus that the three-state Potts 
model in three dimensions (q = 3, d = 3) undergoes a 
first-order  phase transition. Recently a very accurate 
numerical study [8] definitely  confirmed this scenario. 
Thus it is  clear that testing the effectiveness  of criteria for 
distinguishing  second-order from first-order phenomena 
does not require very complicated  models. By comparing 
the Ising  model to the three-state Potts model (i.e., 
comparing q = 2 to q = 3) one can analyze the two 
situations without dealing  with very different  systems. 

Visualization of results 
The graphic tool described in Section 1 has  precisely the 
purpose of comparing the dynamics of the two  systems. 
The idea is to show  directly the conjigurations of the 
systems as they  evolve during the Monte Carlo 

260 simulations, which is a literal way  of  viewing these 

numerical  “laboratories.”  Together  with the important 
analysis of  global and average quantities (e.g., the 
behavior  of  magnetization or specific  heat), we claim that 
this graphic  analysis can greatly improve our 
understanding of a phase transition. 

In this perspective the key feature to investigate is 
phase  coexistence. As previously  explained,  for a system 
in which a second-order  phase transition takes place, one 
should see at T = T, that the ordered and disordered 
phases  coexist; “bubbles” of one phase should grow inside 
the other. In Figures 1 and 2 (for the Ising and Potts 
models,  respectively), we show  some output from the 
visualization part of our codes. The pictures are quite 
self-explanatory; both sets  refer to systems  of 163  degrees 
of freedom.  In other words, we map our system on a 
cubic  grid, the linear size  of the cube  being 16  grid 
points. The representation of the value of each  degree  of 
freedom  is  based on colors:  two  possible  values  (red and 
blue) for the up and down states of the Ising  model, and 
three (red, blue, and green)  for the Potts model. We show 
the configurations of the system during a Monte Carlo 
simulation at T - T,, For the king model the 
“snapshots” were taken at /3 = 1 f T = 0.45; for the Potts 
model ,8 was 0.55 1 in Figure 2(a) and 0.553 in Figure 
2(b). During the simulation the system is able to jump 
from one ordered phase  (i.e., one color) to the other. This 
is true for both systems, but a basic  difference  is that in 
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Display of two configurations from a Monte Carlo simulation for a Potts model (where the s p h  can exist in three states, coded as red, green, 
and blue). In this case the two configurations are in the critical region at different temperatures (inverse temperatures are displayed in the 
pictures). Here the system does not jump from ordered to disordered states, but persists in the ordered phase. 

the Potts case this transition takes  place as a competition 
between  two  ordered  states  which  both  belong to the low- 
temperature region, as shown  in  Figures 2(a) and 2(b). In 
the case of the Ising  model this is not true; when  going 
from one ordered state to the other, the system  spends  a 
considerable amount of time in  a  disordered,  high- 
temperature phase  configuration  like the one in Figure 
l(b). This is direct  evidence that in this  case the two 
phases  coexist,  as  they  should  for  second-order  behavior. 

The other quantity that one can  examine quite 
instructively  in  this  context is the correlation  length of 
the  system.  In  all  figures it is  clear that there are regions 
of coherence  (where  all points are of the same  color). By 
zooming and cutting sections, the geometry  of  these 
coherent  regions  can be better understood. 

0 Quantum chromodynamic model 
Another physical  problem that we considered as a  test 
ground  for this tool is quantum chromodynamics (QCD), 
a  theory which  describes  strong interactions of matter. 
Understanding QCD is one of the most  challenging 
problems of modem theoretical physics.  Again, 
numerical simulations are one of the widely  used tools of 
investigation, and the complexity of the problem is such 
that very  powerful computers, optimized  for this class  of 
problem,  have been built to perform the simulations 
[9, lo]. One of the quantities that play a major role  in 

this framework  is the set  of  particle  fields  which  mediate 
interactions among quarks, the so-called gaugefields. 
Quarks are supposed to be, in our universe,  permanently 
confined  within the observable  particles that constitute 
matter (protons and neutrons, for  example).  But at high 
matter densities  (i.e., at high temperatures such  as  those 
thought to exist during the first moments of  life  of the 
universe,  which  physicists  are  now  trying to reproduce in 
high-density  plasma),  a  phase transition could  deconfine 
some  quarks. The study of such  a phenomenon has 
crucial  importance.  One can build from elementary 
gauge  fields an effective  system that strongly  resembles 
the three-state Potts model  (since quarks can appear as 
three  different  types,  called  colors), and universality 
concepts  can then be applied. 

0 Visualization of the complex variable 
We have  examined the output configurations of some 
very  long  numerical simulations performed by the APE 
group on the APE computer [9]; some  examples are 
shown in Figures 3-5. The behavior  of the system  was 
again  analyzed on a  cubic  lattice by looking at its critical 
properties. The variable  defined on the site is in this case 
a  complex  variable (so is the gauge  field), so our graphic 
representation  had to deal with  two  degrees  of  freedom,  a 
modulus and a  phase. As  briefly  described in Section 1, 
the representation we chose  for  a  complex  variable on a 261 
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Three  examples taken from a simulation of quantum chromodynamics (QCD-see text). Here the site variable is a complex field whose 
magnitude varies with position and is proportional to the size of the pixel. The phase of this complex number is color-coded,  and it appears 
from these pictures that site angular variables are concentrated around three fundamental,  “Potts-like” phase angles. 

site is as follows:  Each variable is  associated  with  a  block 
of pixels, the size of the block  being proportional to the 
modulus of the complex number. The phase  is  described 
by means of a  color  scale;  phases  near 0 degrees are 
represented as red,  those near 60 degrees as green, and 
those  near 120 degrees as blue. In principle,  variables 
whose  phase  is intermediate between  two of these three 
values  could well exist, but from the universality 

262 argument one expects that “Potts-like”  configurations will 

be dynamically  selected  close to the  phase  transition. 
This  is  indeed  confirmed by our visualizations, which 
show  only  site  variables  with  phase near the three  “basic” 
angles. 

Spin glasses 
We conclude this section  by  considering  a third physical 
system,  which  is  again  closely  related to the king 
model in which interactions are deterministic and 
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homogeneous.  However, one can conceive  some  sort  of 
class of “amorphous” models,  where interactions strongly 
depend on space  position and translational invariance  is 
explicitly  broken.  These  are  known as spin glasses. The 
energy  for an Ising  spin glass is 

E = - 2 K,,S(S, . (9) 
( i l )  

The interaction strengths K,  vary from  site to site and are 
randomly  extracted  from a probability distribution. For 
example, K, can be a Gaussian random variable  with an 
average  value  of 0. Thus disorder is explicitly  present in 
the coupling  strengths.  The  real  materials which inspired 
this  model are alloys  of  magnetic  with  nonmagnetic 
materials  (such as CuMn). The behavior of this model  is 
very  complex to disentangle. An approximate solution 
(the meanfield) has  already  shown  some  very  complex 
and rich  properties which  have  been  precisely  analyzed 
by means of an ingenious  analytical  method  (for a review 
of that subject,  see [ 1 11). However, the nature of  the 
phase transition in three dimensions is still an open  issue. 
One source of complexity  manifests  itself at the very 
microscopic  level. A spin si interacts with its neighbors 
with the interactions K,. These  forces  may  impose 
competing constraints; e.g., if two K are both negative, 
and the two  neighbors  are in opposite  states, the spin si 
cannot “choose” one state  without  violating one 
constraint. This  property  is  referred to as frustration, for 
obvious  reasons.  This  local  property  can be examined by 
looking at the value  of the link energy K,sisj. If this 
energy  is  positive, the link is  said to be frustrated. A 
recent set  of numerical simulations has  benefited  greatly 
from the analysis of “frustration maps”  generated during 
the running of the simulations,  such  as the one shown in 
Figure 6. From this picture it is  clear that frustration is 
not locally concentrated, but rather widely distributed 
throughout the system. This rules out some  proposed 
models  for 3d spin glasses [ 121 and makes  more  plausible 
that many  crucial  features of the mean-field  solution  are 
also  preserved  for  finite-dimensional  models [ 131. 

Three-dimensional  turbulence 

0 3DJluid dynamics 
The problems  discussed so far are concerned  with 
systems at thermodynamic equilibrium. Our graphic  tool, 
however, can  also be  profitably  employed  in the analysis 
of nonequilibrium  systems  such  as,  for  example, the 
motion of a fluid  in a three-dimensional  space. This is 
particularly true in view  of the recent  finding that 
hydrodynamic phenomena can be simulated by means of 
discrete  lattice  methods  (lattice gas cellular automata [ 141) 
which  bear  many  technical  similarities to the lattice 
methods adopted in statistical  mechanics.  Therefore, all 
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Another QCD visualization from a different perspective view, to 
emi t  identification of coherent re ions and their dimensionalities. 

! Zooming of one QCD configuration. This make\ i t  pos\ible t o  see 1 the different values of the modulu\ of the complex site variable a\ 
1 the size of the “block pixel” varie\ from \ite to site. 
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Frustration map for a spin glass system (see text). 

the simulations of  fluid  flows presented  in  this  section 
have been carried out by means of a  lattice g a s  code. 

As a matter of fact,  even  though the basic equations of 
fluid  dynamics were  established  more than a century ago 
by Claude  Navier and Gabriel  Stokes, the rules which 
govern the overall  behavior of fluids are, to a  large extent, 
still  poorly  understood. The reason  is that, in  many 
instances,  fluids are turbulent, in the sense that they 
alternate regions  of  strongly chaotic motion with other 
regions  where the fluid motion is quite smooth and 
quiescent. This "dual" nature makes  hydrodynamic 
turbulence one of the most  enigmatic and challenging 
phenomena of macroscopic physics. 

The Navier-Stokes equations take the form 

DC = ac - 
Dt at 

- + (fi . V)fi = " vp + vvii, 
P 

where ii is the velocity  field, p is the fluid  pressure, and 
p is the fluid  density. The physics of hydrodynamic 
turbulence is  ultimately dictated by the competition 
between nonlinear convective effects [the term (2 e V)ii], 
which  couple  disparately  different  spatial  scales, and 
viscous damping (the term vVii) associated  with 
molecular  dissipation. The relative  strength of these  two 
mechanisms,  usually  expressed by a  single  dimensionless 
parameter, the Reynolds number, is  commonly  accepted 
as a good measure of the degree  of turbulence of a given 

264 fluid.  The  Reynolds number is  defined as the ratio 

where U is a  typical  speed  of the fluid, L a  typical  length, 
and v the molecular  viscosity.  When the Reynolds 
number is  of order 1, the fluid  is  said to be "laminar"; 
i.e., it moves  smoothly and uniformly in a  fairly 
predictable  fashion.  However, for increasing  values of 
NRe, the aforementioned chaotic motions take over and 
start to dominate the dynamics of the fluid. This is 
normally understood by formulating  fluid turbulence in 
classical nonlinear field theory,  which, as such, gives  rise 
to problems  in which the relevant dynamics are  spread 
over an increasingly  wider  range  of  mutually interacting 
modes as the Reynolds number increases.  More  precisely, 
at a  given  Reynolds number NRe, the spectrum of 
turbulence covers the whole  range  from the macroscopic 
scale L up to the dissipative  scale 1 - LNi2'3, which  is the 
typical  scale at which  energy starts to be  dissipated. A 
turbulent fluid  can be regarded as a  collection of 
elementary  excitations whose number grows  rapidly  with 
increasing  Reynolds number. Some  of  these  elementary 
excitations  reorganize  coherently into ordered and 
smooth aggregates  of vorticity that exhibit  a  longevity 
well in excess  of the decay time one would  expect  from 
viscous  dissipation. The persistence of these coherent 
structures, a  sort of metastable state of the theory,  is 
intimately  related to the existence  of invariants of 
motion, i.e., quantities which  are  preserved in the course 
of the evolution. On the contrary, however,  where the 
elementary  excitations interact randomly,  these 
invariants break  down.  Coherence  is  replaced by chaos, 
and dissipation  becomes the dominant mechanism. 

the  Reynolds number ranging  from NRe - lo7 for the air 
flow past  a  car, to 10" in geophysical  phenomena, to 
several orders  higher  in  astrophysical  plasmas. From a 
practical point of  view, a  major  consequence of 
turbulence (and possibly  its  most  distinctive  property)  is 
the great  difficulty encountered in  trying to formulate 
reliable  predictions  of the temporal  evolution of a 
turbulent system  in terms of its initial conditions. 

This is the basic  reason  for the tremendous recent 
impact of supercomputers  in  advancing  fluid-dynamics 
research. On one side, this impact  entails  all the aspects 
related to the development of faster  algorithms  for  vector 
and parallel  architectures.  Equally important, however,  is 
the ability to develop  a  suitable  graphic  representation  of 
the enormous amount of data produced by three- 
dimensional  fluid simulation. In addition to the most 
immediate  variables  such as density,  pressure, and 
velocity,  there are other quantities of direct physical 
relevance.  Among  these,  of particular interest  are the 
vorticity ij, the helicity h, and the dissipation D. These 

Most  flows in nature are fully turbulent, with  values  of 
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are defined as follows: 

L j = V x i i ,  

h r w .  - 6, 

D = IViil. (12) 

Vorticity is especially  useful in two-dimensional 
turbulent flows, as is  easily  seen once the Navier-Stokes 
equations are recast in terms of a vorticity-evolution 
equation: 

DLj 
Dt 

The first term on  the right-hand  side  represents the 
viscous dissipation, while the second one is the “vortex- 
stretching” term which  can  be either positive  (vorticity 
source) or  negative  (vorticity  sink).  In  two dimensions, 
the vortex-stretching term vanishes (tj and ii are 
necessarily perpendicular); as a result, in the inviscid  case 
(V + 0), vorticity is locally  conserved. This means that tj 
does not vary in a reference  frame  moving  with the local 
speed of the fluid. (This property is referred to as 
“topological” invariance.) The result is that the best 
graphical representation of developed 2D turbulence is 
one which  shows  isovorticity contours; it permits 
immediate identification  of  those spatial regions  where 
the coherent structures (vortices) tend to concentrate. In 
three dimensions, however, the vorticity-stretching term 
becomes  active and vorticity  is no longer a topological 
invariant. This means that the vortex tubes (surfaces 
of isovorticity)  undergo  complex  topological 
transformations which  may  even  lead to  the development 
of singularities in the vorticity  field. In particular, there is 
considerable speculation that these  singularities  might 
occur  as a fractal  set [ 151. 

In such a complicated  scenario, the primary source  of 
information is  flow visualization, which directly  implies 
the strategic  value of graphic algorithms that can follow 
these  complex transformations as far  as  possible through 
the course  of evolution of the fluid  (see  also the paper by 
M. Briscolini and P. Santangelo in this issue [ 161). 

Another quantity of primary interest, possibly  playing 
a very profound role  in the physics  of three-dimensional 
turbulence, is fluid  helicity [ 171. The reasoning,  which 
evokes  analogies  with the concepts of statistical field 
theory  discussed in the first part of this paper,  is  as 
follows. 

Starting from the Navier-Stokes equations, one can 
prove that  at zero  dissipation there is an uncountable set 
of fluid flows  with the same energy but a different 
helicity.  Hence, the helicity can serve as a label  for a 
degenerate  set of  flows in much the same way as the 
magnetization does for the ground state of the Ising 
Hamiltonian (with the important difference that the set 

-=  VAG - (G b)ii. (1 3) 
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of degenerate flows  is uncountable, as it must be in view 
of the fact that the inviscid  Navier-Stokes equations are 
invariant under a continuous group of transformations). 
It can be proved that, among the inviscid solutions of the 
Navier-Stokes equations, there is a special  class of 
solutions for  which the vorticity field tends to align  with 
the velocity  field,  thereby  achieving maximal helicity. 
These solutions are called  “Beltrami” flows and are 
considered the “ordered” states of the theory. In the 
absence of dissipation,  these  configurations are 
topologically “frozen” in the fluid and cannot transform 
from one into another because  they are separated by an 
infinitely  high  topological barrier (note the 
correspondence between  dissipation in a fluid and 
temperature in a magnetic  system).  However,  even an 
infinitesimal amount of dissipation  is  sufficient to bring 
the topological  barrier  down to a finite  height, thus 
generating a nonzero tunneling probability  between 
distinct topologies. This means that a whole  ensemble of 
flows becomes  accessible to the fluid and, by invoking a 
principle of minimum dissipation, that Beltrami flows 
should  be the most  frequently  visited  configurations in 
fully  developed turbulence (v + 0, NRe + t~). 

the flow should normally occur  where  dissipation  is 
minimal or, differently stated, that helicity h and 
dissipation D should be  strongly anticorrelated. 

Again, it is apparent that three-dimensional 
visualization  (possibly concurrent) of these  two  fields can 
be  of crucial  value in validating  or  disclaiming  such a 
speculative  scenario. 

In  conclusion, one postulates that “Beltramization” of 

Graphic  representation 
In the previous  section we have  shown that there are 
several  fields  which can be visualized to aid in the 
comprehension of three-dimensional turbulence. We now 
present a series of examples  which  show how our tool can 
be  used in this context. 

In  general, the field is systematically  displayed in the 
complex “order parameter” format, 

\k = A + iB, (14) 

where A and B are “dummy” fields  whose actual content 
can  be  selected  case  by  case  according to the specific 
need. The quantity A normally  corresponds to an 
amplitude and is associated  with the size  of the pixels, 
while B is meant to describe the cosine of a real  angle 
and is normally  associated  with a color  scale. 

(Figures 7,8,  and 9) corresponding to the temporal 
evolution of  two  offset orthogonal vortex  tubes. In this 
case the identification is 

As a first  example, we display a series  of three pictures 
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Perspective view of the vorticity field at t = 0. Vorticity is maxi- 
mum on the axes of the  two red offset orthogonal tubes and decays 
thereafter with a Gaussian profile. 

The configuration of Figure 7 after 600 steps of the Navier-Stokes 
solver.  The axes of the vortex tubes bend under the effect of con- 
vective effects, while the cores expand and diffuse away from the 
axes as a result of viscous dissipation. 
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where wM designates the maximum of the three 
components of the vector G. The amplitude A is 
discretized  over ten values  of the pixel  size  which go 
linearly from the minimum to the maximum value of 
vorticity. The quantity B is designated to distinguish 
between  counterclockwise rotation (positive  vorticity,  red 
color) and clockwise rotation (negative  vorticity, blue 
color). 

Figure 7 contains 32’ sites, a number sufficient to show 
the cores of the two offset orthogonal vortex  tubes. 
According to the physical picture outlined in  the previous 
section,  once this configuration  is  evolved, the nonlinear 
terms promote a conservative,  long-range interaction 
which  would  make the tubes attract, stretch in a 
complicated way, and possibly  merge after a sufficient 
length of time. This is in competition with  viscous 
dissipation,  which tends to “broaden” the tubes and 
spread them over the space, thus ultimately annihilating 
them. Figures 8 and 9 offer a neat visualization of the 
aforementioned competition. In fact, we  see in Figure 8 
that the extremities of the two  vortex  cores tend to bend 
under the effects of advection and vortex  stretching. At 
the same time the vortex  cores undergo a strong 
diffusion, as evidenced by the broadening of the red 
regions. As time proceeds further, viscous  dissipation 
becomes more and more dominant and, as shown in 
Figure 9, the system tends to lose the memory of its 
initial well-organized  shape.  Such a neat dominance by 
dissipative effects  is due  to the low resolution of the 
lattice gas solver, in this case 323 grid points 
corresponding to a Reynolds number of the order 
of 10 [18]. 

complement to the conventional representation of 
isovorticity  surfaces,  especially  when the interaction tends 
to generate  complicated  nesting which is difficult to trace 
with connectivity-path algorithms. An additional 
potential advantage is  having the whole  range  of  vorticity 
values  available through the size  of the pixels. For 
smooth configurations, this is  equivalent to viewing 
several  isosurfaces at the same time (even if  less smooth); 
for chaotic configurations it can help in localizing the 
regions  where  vorticity gradients tend to concentrate, a 
stage at which  zooming  capabilities are likely to become 
essential. 

Next, we show an example of “hybrid” representation 
in which the terms A and B refer to two distinct physical 
quantities. This is  particularly  useful in highlighting the 
presence of spatial regions  where A and B exhibit 
correlation or anticorrelation effects. In view  of the 
discussion  presented in the previous section, we let 

This kind of visualization can offer a useful 

h A = J A G ( ,  B = - 
1 6 .  61’ 
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so that A represents the intensity of dissipation  while 
B is  a  measure of the fluid “Beltramization,” i.e., the 
tendency of the vorticity field to align  with the velocity 
field. The color table has  been  chosen so as to yield  red 
for  positive h (W parallel to ii), blue for  negative 
(antiparallel), and green  for h = 0 (perpendicular). As a 
result,  Beltrami structures should appear as red or blue 
spots in the picture. 

7 in the helicity-dissipation representation. From this 
figure we  first notice a  large majority of green points, 
with  small fluctuations of red  color and practically no 
blue  regions. A tentative conclusion  is that the fluid  does 
not exhibit much Beltramization, which  is not surprising 
because  dissipation  is by far the dominant mechanism. 
Because  of the moderate size  of the red  pixels  which do 
appear, however, one might  speculate that where 
Beltramization  does occur, the dissipation  is rather 
contained. It should be  stressed that these considerations 
are purely qualitative; one color might  affect  pixel  size 
differently than another, and pixels  representing points 
near the “front” of the lattice  might, depending on the 
drawing  order,  obscure  those  representing points near the 
“back.” The former difficulty is alleviated to some extent 
by allowing the user to swap  colors in a  simple way, 
while the latter is  considerably  mitigated by the ability to 
rotate the picture in real time. In  any  case, it is  clear that 
a  careful inspection of a  whole  series  of dzfferent pictures 
of the same data are required  before quantitative 
assessments can be  made. 

The same representation is  also  extremely well suited 
for  checking the speculation that dissipation should take 
place on a highly irregular  set of fractal  measure. To test 
this point, Navier-Stokes simulations with at least 2563 
grid points would  be  required,  a  resolution that cannot be 
accommodated within the present  memory  capability of 
the 5085 graphics  processor.  Several alternatives are 
available,  however. For instance, one could  select  a 
subset of the computational domain, either by 
decimation (one graphic node for each four or eight 
computational nodes) or by spatial averaging, but in 
order to control the loss  of information on the short 
scales, both of these  procedures should be  repeated  over 
an ensemble  of  such  subsets. 

Figure 10 shows the same  fluid  configuration as Figure 

Conclusions  and  future  plans 
We have  described  both the tool, as it currently exists, 
and some  examples  of its utilization. However,  even  if we 
consider the tool  extremely  useful  as it is, many 
improvements and extensions are still  possible. One of 
our primary goals  is to achieve  a  visualization in real 
time of  many-body  system dynamics. The approach we 
are following  is  essentially  based on the exploitation of 

1 The  configuration of Figure 7 after 1200 steps.  Due  to the low 
Reynolds number. dissipative broadening definitely prevails over I convection. 

The configuration of Figure 7 in the helicity-dissipation picture. 
The dissipation is proportional to the size of the pixels, while he- 
licity is represented in a  color scale: red for positive (velocity par- 
allel to vorticity), blue for negative (antiparallel), and green for 
values around zero (perpendicular). Note the dominance of green 
pixels, which indicates that helicity production is strongly inhib- 
ited by dissipation. Note also that most of the red pixels are small, 
indicating that where helicity is maximal, dissipation tends to be 
small (Beltrami flow). 
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cooperative  processing in a heterogeneous environment. 
We have a mainframe (3090) and a number of 
workstations of different  types  (RISC  System/6000 
processors, RT PCs3, and PS/2s3)  all connected in a 
LAN. For the time being we are using token ring  as 
physical support and TCP/IP as the communication 
protocol. The “cooperative processing” concept can be 
described as follows: One of the machines just mentioned 
(typically the 3090 processor) runs a simulation; as soon 
as a new  set  of results  is produced it is sent through the 
LAN to another machine running the process that 
produces and handles the graphic output. A “socket” 
abstraction is used at  the application level. This allows 
both  processes to regard the LAN as being  very similar to 
a standard 1/0 unit. Moreover, there is no reciprocal 
dependency, as there would  be in an RPC model of 
interprocess communication; the simulation and  the 
graphics  actually run in parallel.  In order to hide the 
details of communication as much as  possible from the 
user, a library  is under development which  will  allow 
both C and FORTRAN codes to be easily adapted to  the 
distributed environment. Since  all of our machines 
support graPHIGS, we could use, in principle, a PS/2 or 
an  RT PC as workstation  for the graphics, but the RISC 
System/6000  processor offers performance so much 
higher than the others that, apart from the development 
phase, it is the workstation we use  for the production of 
graphic output. The presence of the 24-bit Color 
Graphics Processor on the RISC  System/6000  (possibly 
with the optional 24-bit  z-buffer)  will  allow the addition 
of new features to the tool,  such as the removal of hidden 
lines and depth cueing  (with this facility, the points on a 
line further from the eye are less bright, so that there is a 
fading effect  with  increasing distance). Another key point 
is the possibility that the user can modify the behavior of 
the simulation by changing the value  of the parameters 
or suspending and then restarting the simulation itself. In 
the typical  scenario the user  works at a RISC 
System/6000 monitor and has four windows 
(X-Windows4)  active on the screen;  two  windows are the 
consoles of the workstation and of the machine running 
the simulation, one contains the output from a 
graPHIGS manipulation of the data, and  the last  allows 
the user to send  feedback to the simulation. The results 
we have obtained in this “new” environment so far, 
although preliminary, are encouraging as to the quality of 
the animation we are able to achieve. 

In summary, the tool we have  developed  allows us to 
extract from  numerical simulations much more 
information than was  previously  possible, and to present 
this information in a clearer and more intuitive manner. 

RT PC and PS/2 are  registered  trademarks of International  Business Machines 
Corporation. ‘ X-Windows is a  trademark of MI I ,  
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The availability of more a md more efficient  hardware  will 
improve both the quality of the graphic output  and  the 
degree  of interactivity of the tool. 
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