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Visualizing 
processes 
in  neural networks 

by J. Wejchert 
G. Tesauro 

A real-time  visualization toolkit has  been 
designed to study  processes in neural  network 
learning.  To  date,  relatively little attention  has 
been  given to visualizing  these  complex, 
nonlinear  systems.  Two  new  visualization 
methods  are  introduced  and  then  applied. One 
represents  synaptic  weight  data as “bonds”  of 
varying  length  embedded in the  geometrical 
structure  of  a  network.  The  other  maps the 
temporal  trajectory of the  system in a 
multidimensional  configuration  space as a  two- 
dimensional  diagram.  Two-dimensional  graphics 
were  found to be sufficient  for  representing 
dynamic  neural  processes. As an  application, 
the  visualization  tools  are linked to simulations 
of  networks  learning  various  Boolean  functions. 
A multiwindow  environment  allows  different 
aspects  of the simulation to be viewed 
simultaneously  using  real-time  animations.  The 
visualization toolkit can be used in a  number  of 
ways: to see  how  solutions to a  particular 
problem  are  obtained; to observe  how  different 
parameters  affect  learning  dynamics;  and to 
identify the  decision  stages  of  learning. A 
demonstration  videotape is provided. 

Introduction 
Representing  scientific data by visual means is the 
essence of scientific  visualization.  It  allows the human 
eye-brain  system to perceive and infer visual information 

by geometrical and pictorial means rather than by linear 
numerical form. Enhanced with  facilities  for interactive 
manipulation of the imaging and display  process, it is  a 
highly  efficient form of information transfer between 
simulation and user [ 1,2]. 

Although neural networks are being widely investigated 
via computer simulations, the graphical  display of related 
information has  received little attention (with the 
exception of Hinton diagrams [3]). In other fields  such as 
fluid dynamics and chaos theory, the development of 
visualization tools has  proven to be  a tremendously 
useful  aid to research, development, and education. 
Similar  benefits should result from the application of 
such techniques to neural network  research,  especially 
because such systems  involve nonlinear, parallel, 
cooperative, and complex phenomena [ 31. 

In this paper,  several  visualization methods are 
introduced to investigate learning in neural networks 
which  use the back-propagation  algorithm.  A 
multiwindow environment is  used that allows  different 
aspects of the simulation to be  displayed simultaneously 
in each  window. 

presented that displays synaptic weights as “bonds” of 
varying  length embedded in the geometrical structure of 
a  network. This description can be  used  statically, or as 
animation to depict the dynamics of learning. 

trajectory of the system in configuration  space during the 
course  of one or more learning runs is  also introduced. 

A new representation of neural network data is 

A technique for representing the full temporal 
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This draws multidimensional trajectories of the system as 
two-dimensional  diagrams. Other more conventional 
graphical representations are used in other windows, and 
it is this set  of  visual  tools that makes up our 
visualization toolkit. 

As an application, the toolkit is used to study small 
networks that are learning  Boolean functions. The 
animations are used to observe the emerging structure of 
connection strengths, to study temporal behavior, and to 
understand the relationships and effects of parameters. 
The simulations and graphics can run  at real-time 
speeds. 

given  first.  Next, the motivation for the design  of the 
graphics  is  discussed and the visual tools are described. 
Later, we present  examples of the software  applied to 
neural  networks  performing  different operations. Finally, 
some  general  conclusions are made. 

Neural  networks 
Neural  networks offer a new approach to computation, 
based on a simplified  model of the brain’s organization. 
They can learn and generalize and are ideally suited to 
implementation on parallel architectures. The idealized 
models currently being examined consist of a set of 
elementary computational elements (neurons or nodes) 
and a corresponding  set of interconnections (synapses). 
The strength of an interconnection is referred to as the 
weight  of the connection between any two neurons. 

In the majority of neural network  models, neurons 
carry out a simple operation: All the weighted inputs 
from other neurons are summed, and this sum is passed 
through a nonlinear function; this becomes the output 
value  of that neuron, in  turn feeding to others: 

A brief summary of the operation of neural networks  is 

0, =f(? w i p 1  + e,). 

The summation is taken over i neurons feeding to unit j .  
Oi is the output of neuron i, wlj is the weight  of the 
connection between neurons i and j ,  and 0 is  called the 
threshold  value. The sum is then passed through a 
nonlinearity, usually the sigmoid functionf(x) = 
(1  + e-”)”. 

The networks  considered  here are of the feed-forward 
type, and are ordered into layers  called input, hidden, 
and output. Each  layer  is  fully connected to the next. The 
back-propagation  algorithm  provides a method for 
training such  multilayer  networks. During learning, the 
weights of the synaptic connections are adapted so that 
the difference  between the calculated  network output  and 
desired output is minimized. Learning is a two-stage 
process:  First the network output is  calculated  for  each 
node, then the error is calculated and back-propagated 
through the network, and each weight  is adjusted in 
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proportion to  that error. This overall procedure is 
iterated until the network  converges and produces the 
required  responses. 

Usually the error function is given by 

where Oi is the state of the output unit, Tis the teacher 
signal  (desired output), and p is the number of patterns. 

method 
The weights are changed by the gradient descent 

where e is the learning rate, or by using an accelerating 
method that mixes in some  of the previous iteration, 

where LY is referred to as the momentum parameter. The 
momentum and learning rate are important parameters 
for tuning the network to improve performance. 

A useful  way  of interpreting the learning procedure is 
to consider it in terms of the movement of the point 
representing the system  down an error hypersurface in a 
multidimensional weight  space.  Such an interpretation is 
commonly used in  the description of  physical  systems, 
but cannot be  simply  visualized  except  for  low- 
dimensional spaces. 

found in [3] or [4]. 
Further information about neural networks  may be 

Visual tools 
In the visualization toolkit, different  aspects of a 
simulation may  be  displayed  simultaneously in a 
multiwindow environment, with  each component of 
information mapped into a separate window.  In 
designing the graphics,  simple  principles of displaying 
quantitative data were  used [5 ] .  The information in each 
window  is as uncluttered as possible, and information is 
distributed in a number of  windows,  allowing the user to 
control which information should be  displayed. 

weight data as a “bond diagram”; other windows  display 
projections of trajectories of the system in configuration 
space and show conventional plots of variables  with time. 
We found that  it is this integrated environment that is 
most  effective in displaying the information. 

A principal  window  shows  network  topology and 

Bond diagram 
The principal visualization question is  how to represent 
synaptic strength (weight) data. Hinton’s method [3] of 
drawing squares of different  sizes to represent  different 
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A Hinton diagram for  a neural network with four input units, four 
hidden units, and four output units. 

The “bond”  diagramfor  anetwork  withfour input units,  fourhidden 
units, and four output units. Red and blue correspond to positive and 
negative weights. 

weight  values has  been  used  extensively  for this purpose. 
Typically,  squares  may  be  ordered  according to the 
application  for  which the neural network  is  being trained, 
or placed  in  a way that suggests the network  connectivity. 
Figure 1 shows a Hinton diagram  for  a neural network 

246 with four input units, four  hidden units, and four output 
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units;  positive and negative  weights are displayed as red 
and blue  squares,  respectively. 

The Hinton diagram  does not explicitly  reveal  network 
topology  in  relation to the weight data, and it is not very 
useful in trying to understand problems  relating to the 
internal representation of the network.  Because it is of 
interest to try to see  how the internal configuration of 
weights  relates to the problem the network  is  learning, it 
is  clearly  worthwhile to have  a  graphical  representation 
that explicitly  includes  weight information integrated 
with  network  topology. (A method  used by Edelman [6] 
that color-codes connections between  nodes  has  been 
used, but it is  susceptible to color distortion and is not 
very suitable  for animation.) 

displaying  weights as “bonds” between  nodes. The 
stronger the connection, the greater the length of the 
bond between any two  nodes.  Figure 2 shows the “bond” 
representation  for the same network as in the Hinton 
diagram. As can be seen, it clearly incorporates structure 
with  weight data. The bonds  representing the weights 
extend  from both nodes of a connection; one can look at 
any node and clearly  see the magnitude of the weights 
feeding into and out of  it.  This  allows one to detect 
differences in weight magnitude as differences in bond 
length, and is better  suited to animation because  changes 
in  geometry  are  easier to perceive than changes in color 
[7]. Also, a  sense of direction  is built into the picture, 
since the bonds point to the node to which  they are 
connected. Further, the collection  of  weights  forms 
distinct patterns that can  easily  be  perceived by the user, 
so that one can also  infer  global information from the 
overall patterns formed. It is  probable that a  different 
graphical  design  should  be  used  for  larger  data-set  sizes 
(networks  with thousands of  weights),  where  color or 
texture  maps  may be more appropriate. In such  a case, 
the  present  method  could be  used to show portions of 
larger  networks. 

In our representation, the above  objectives are met by 

Trajectory diagram 
The description of a dynamic system in terms of a  phase 
space or configuration  space  has  been  used  extensively  in 
the  physical  sciences. It has the advantage that the whole 
system can be  described as one point in a  space  which 
encompasses  all the possible  states  of the system. 
Information about the dynamics can be deduced  from 
the behavior of the paths or trajectories  created by the 
time evolution of such  points.  Like that of a  physical 
system, the state of a neural network  can be defined as a 
point in “weight  space”; as the weights adapt and evolve, 
the dynamics of  learning  can then be  described by 
trajectories of these points in weight space. Conventional 
2D phase  plots can be  used to study the behavior of two 
components, but this is  of  little  use  if trajectories  are 
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embedded in  a  high-dimensional  space.  Although 
attention has  been  given to visualizing multidimensional 
data [&IO], the issue  of  visualizing paths in such 
multidimensional spaces  has not received much 
consideration. A  straightforward way  of reducing the 
trajectories in a multidimensional space into a  two- 
dimensional picture is  presented in this section. 

The scheme is based on the premise that the human 
user  has  a  good  visual notion of vector addition. To 
represent an n-dimensional point in the plane, the axial 
components defining the point are defined as vectors and 
then plotted radially in the plane; the vector sum of  these 
components is then calculated to yield the point 
representing the n-dimensional  position. It is  obvious that 
for n > 2 the resultant point is not unique; however, the 
method does allow one  to infer information about 
families of similar trajectories, make comparisons 
between  trajectories, and notice important deviations in 
behavior, as shown in the next  section. A more formal 
account of this method is  given in the Appendix. 

Using the trajectory diagram, information can also  be 
deduced about the error hypersurface [error landscape, as 
defined by Equation (2)] in the locality of a path. By 
assigning the current value of the global error function as 
the color  of the current point in weight space, one 
obtains a sense of the contours of the error hypersurface 
and the dynamics of the gradient-descent evolution on 
this hypersurface. Further, the spacing of points gives an 
indication of the velocity on the surface. (An earlier 
attempt to obtain information about the energy 
landscape perturbed a  system about a  chosen arbitrary 
axis in weight space and plotted energy as a function of 
perturbation [ 1 11.) 

0 Technical points 
The graphics  software  was written in C using 
X-Windows'  version 1 1. X-Windows  is portable and can 
be used to run graphics  remotely on different  machines 
using  a  local area network. The FORTRAN neural 
network simulator was linked and executed  within the 
UNIX' environment, on the RT3 workstation.  Execution 
time was  slow for  real-time interaction except  for very 
small  networks  (typically up  to 30 weights). For larger 
networks the Stella; graphics  workstation was  used, on 
which the simulator code could be  vectorized and 
parallelized. The Stellar was  used to run the graphics 
remotely  over the local area network for display on the 
RT workstation. This resulted in a  speed  increase  of  a 

' X-Windows is  a  trademark of MIT. 

UNIX is a registered trademark of UNlX Systems Laboratories, Inc. 

RT is a  registered  trademark of International Business Machines Corporation. 

Stellar is a  trademark of Stardent Computer, Inc. 

IBM J. RES.  DEVELOP. VOL. 35 NO. 112 JANUARYIMARCH 1991 

An example of the toolkit being used, with most of the windows 
active; the  command  line  appears on the  bottom. 

factor of ten, allowing  networks of up to 200 weights to 
be run at real-time  speeds. 

such  as momentum, learning rate, random seed, or the 
magnitude range of initial weights into a simulation. 
Runs can be restarted from the same random seed so as 
to study  effects  of  changing parameters. Windows can be 
moved or closed during simulation, allowing the user to 
concentrate on chosen  aspects of the simulation. The 
topology  used  for  a  problem  may  easily  be  adjusted  from 
input files, and the graphics can be  used to display  neural 
networks of different  topologies  learning  different tasks. 

A command-line argument is used to enter parameters 

Research  applications 
Using the visualization toolkit, one can see  how solutions 
to a particular problem are obtained and how different 
parameters affect these solutions, and observe  stages at 
which learning decisions are made. In the examples, the 
bond diagram is used to represent weight  values,  which 
are colored  red  for  positive and blue  for  negative;  nodes 
are colored  green. The same  color  code  is  used  for the 
vectors  representing the weights in the trajectory diagram. 
A gradation of  red to blue is  used to denote the 
magnitude of the error function in these  plots.  Two other 
windows are used to trace the time evolution of the total 
error function and the state of the output node. Figure 3 
gives an example of the toolkit in use,  showing the bond 
diagram, the trajectory diagram, and other plots. 
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As an example of the operation of the visualization 
toolkit, we focus on networks learning Boolean  functions: 
Binary input vectors are presented to the network 
through the input nodes, and the teacher signal  is  set to 
either 1 or 0 depending on how the patterns are to be 
classified.  Examples  of  such functions are majority, 
parity, and symmetry. The output of the majority 
function is 1 only if more than half  of the input nodes 
are on; parity is an extension of the exclusive-or function; 
symmetry  identifies input vectors that are perfectly 
symmetric about a central axis. 

First we show  how the configuration  of  weights 
corresponds to solutions for the majority and simplified 
symmetry functions using the bond diagram. Later, we 
investigate the evolution of learning for the general 
symmetry  problem. The accompanying video  shows the 
time evolution of the network as  it learns these functions. 

Configurations and solutions: Learning majority  and 
simple symmetry 
Consider an input vector ui ,  i = 1 . . n presented to the 
network,  where ui = f 1. The majority function teacher 
signal  is 1 if Z ui > 0, and 0 otherwise. A network 
topology  with no hidden units can solve this classification 

248 [3]. Figure 4 shows the final  configuration of the two- 
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layer  network that has learned the majority function, 
from which we have an indication of  how the network 
has  solved the problem: A large output node is  displayed 
and the magnitudes of  all the weights are roughly 
uniform, indicating that a  large  bias (or threshold) is 
required to offset the sum of the weights. Majority  is 
quite a simple problem for the network to learn; more 
complicated functions require hidden units, in which  case 
the whole  visualization toolkit becomes  useful. 

To see  how the network  solves  a more complicated 
function, we consider  a  simplified  symmetry function. 
This function discriminates between  perfectly symmetric 
and perfectly antisymmetric patterns, and it is only  given 
these  two  possibilities in the input set. This function may 
be defined as follows: Given an  input vector ui, 
i = 1 . . n, where ui = f 1, the teacher signal  is  set to 1 
when uj = u ~ + , - ~ ,  j = 1, - , n/2 (symmetric), and 0 
when uj = -u~+,-~, j = 1, . , n/2  (antisymmetric). The 
network required to solve this mapping requires  a 
topology  with at least  two hidden units [3]. 

A solution for  a  network  with six input units, two 
hidden units, and  one  output is shown in Figure 5. It is 
interesting to note that  the network has determined 

1 A solution of the simple symmetry function. As can be seen, only 
two input  units are required to solve this problem. 
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An example of a network learning the general symmetry function. There are six input units, two hidden units, and one output unit. Weights 
8 are shown by bonds emanating from nodes. (a) Early in the learning process the weights are still small, and no overall structure has emerged. 1 (b) An intermediate stage when the connections are becoming established. (c) The end of learning, showing the final pattern of weights. 

(correctly) that it needs  only  two units to decide  whether 
the input is totally  symmetric or totally  antisymmetric. In 
fact,  solutions  are not unique, as can be shown by  using 
various random starting  configurations; the network then 
may  choose other symmetrically  separated input pairs to 
support its  decision.  Note the patterns that the weights 
have  created, as shown by the "bond"  representation. As 
will be  seen, this simple pattern carries  over into the 
more  general  symmetry function, where the network 
must  identify  perfectly  symmetric inputs from  all the 
other permutations of input examples. 

0 Parameters and decisions: General symmetry function 
To investigate the effects  of  parameters and see  what 
decisions are made during the learning  process, a more 
difficult  learning  function  is  required. The general 
symmetry function detects  symmetrical patterns among 
all the binary permutations; i.e., it has a teacher  signal of 
1 when uj = u,, I-j ,  J = 1, + . , n/2 (symmetric) and 0 for 
all other patterns.  Again, a network  with six input units, 
two hidden units, and one output was used. Patterns 
were  presented at random and the weights  were updated 
every 2"" patterns. The command-line parameters were 
chosen to be a (momentum), r (magnitude of  weights), 
and t (time for the simulation). The learning  rate was 
fixed at E = 1.0. To improve  learning  performance, the 
symmetric patterns must be presented  with  higher 
probability  because  they  occur quite infrequently. 

Snapshots of the evolution of a sample  network  are 
shown in Figures 6(a)-(c). At the start of a simulation 
the weights are set to small random values  [Figure  6(a)]. 
This  can be  seen as small random clusters of  blue and red 
around each  node. During learning,  many  example 
patterns of vectors  are  presented to the input of the 
network and weights are adjusted  accordingly.  Initially 
the rate of  change  of weights is  small;  later, as the 
simulation gets under way, the weights change  rapidly, 
until only  small  changes are made as the system  moves 
toward the final  solution  [Figure 6(b)]. A distinct pattern 
of  red and blue  triangles  shows the configuration of 
weights in their final  form  [Figure  6(c)]. 

As can be seen  from  the  bond  diagram, the network 
has  chosen a hierarchical structure of  weights to solve the 
problem,  using the same  basic pattern of  weights as in the 
simple  symmetry  problem. The major  decision  is  made 
on the outer pair and additional decisions are made  on 
the remaining  pairs  with  decreasing  strength. As before, 
the choice  of  pairs  in the hierarchy  depends  on the initial 
random weights. 

To monitor the simulation it is  useful to have  windows 
display the total error and the state of the output unit 
(Figure 7). Typically, the error initially  stays  high,  then 
decreases  rapidly and levels off to zero as final 
adjustments are made to the weights.  Spikes  in this curve 
are due to the method of presenting patterns at random. 
The state of the output unit initially  oscillates and then 249 
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The total error (top) and the state of the output unit (bottom)  for the 
learning run described in Figure 6. 

bifurcates into the two required output states. As can  be 
seen  from  Figure 7, bifurcation and the rapid  decrease in 
error occur at roughly the same  time. 

The  temporal  trajectory of the system  in  weight  space 
reveals interesting  information. As described in the 
Appendix, the components of a point in the 
multidimensional space are treated as vectors,  plotted 
radially in the plane and then added to yield a point in 
the two-dimensional  representation.  In  developing this 
method we initially  experimented with conventional 2D 
phase  trajectories, which  were then  compared  with the 
vector method. We found that the qualitative  features of 

both  carried over into the higher-dimensional 
representations. 

Instead of  using the trajectory  diagram to represent the 
whole  space, we found  it  more useful to map trajectories 
into subspaces,  particularly when tracking the behavior of 
the hidden  units.  Thus,  for the same  six-input  network as 
used  before, we displayed  two  diagrams (one for  each 
hidden unit), each  representing  a  six-dimensional  path 
[Figures 8(a) and 8(b)]. In this example,  where the 
network  does  converge to a  correct  solution, the paths of 
the two  hidden  units  tried  either to match each other  (in 
which  case the configurations of the units were identical) 
or to move in opposite  directions (in which  case the units 
were  opposites).  Both  led to valid  solutions, the former of 
which is  displayed in Figure 8. 

By contrast, for  learning runs which do not converge to 
global optima, we found that (usually)  one of the hidden 
units followed a normal trajectory,  whereas the other unit 
was not able to .achieve the appropriate  match or anti- 
match.  This is  because the signs  of the weights  of the 
second hidden unit were not  correct and the learning 
algorithm  could not make the necessary adjustments. 

By repeatedly  watching the animations, we could  make 
some  qualitative  observations about the stages  of learning 
from the bond diagram. We found that the early  stages 
were the most  critical,  because the signs  of the weights 
feeding to the hidden units were determined at this time. 
Any problems with the gradient  search always  occurred 
at this stage. The later stages  posed  fewer  problems 
because  only the relative  magnitudes of the weights  were 
adapted.  Once the network  had  sorted the signs of the 

Two reduced trajectories of the hidden units. (a) corresponds to the topmost unit in the network. Note that the axes in (a) and (b) correspond 
to the weights feeding into the respective units. 
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weights, rapid  gradient  descent  could  occur and the error 
quickly  decreased; simultaneously the output state 
bifurcated. 

point during learning that determines whether the 
network will end up in global or local minima. To do 

variable that affects the final solution. If momentum is 
increased, then trajectories tend to follow straighter lines, 
which  speeds up learning.  However, if momentum is too 
large, problems occur with the gradient  search and the 
system  may end up in a  local minimum. Figure 9 shows 
an example of trajectories that were collected for two 
hidden  units.  In this case both the trajectories are 
mapped onto the same diagram. These are similar to 
previous runs, except that the graphics are plotted on a 
scale that shows the initial behavior  of the trajectories in 
greater  detail. The momentum was set to a = 0.6 and 
a = 0.7; these  values mark a transition between the 
network finding a  global solution and getting stuck in a 
local minimum. As the trajectory diagram  reveals,  a 
definite  point in configuration  space marks a decision for 
one of the hidden units. If a > 0.7, then the hidden unit 
proceeds into a  completely  different portion of 
configuration  space corresponding to a  local minimum 
on the error hypersurface. Thus the trajectory diagram 
was able to show that deviations in behavior are 
determined at  the early  stages  of  learning. Further, it 
could give an indication of the exact point in weight 
space at which  such deviations occur. In this way the 
trajectory  diagram can be used as a  herald  of bad 

improve learning by setting initial trajectories in 
“correct” directions. 

The trajectory diagram can be  used to locate the exact 

b this, one can treat the momentum parameter as a 

1 

D 

B learning  behavior and may suggest heuristics that could 

Conclusions 
We have  created  a  visualization toolkit to study processes 
in neural networks, and have used this toolkit to gain 
insights into learning processes.  At the design  phase  of 

representations of neural networks.  These are the bond 
diagram  for  representing  neural weight data and a way  of 
mapping the configuration trajectory of the system. 

We  have found that the bond diagram was  very useful 
in showing  how internal representations are related to 
network function. It was also helpful in revealing  insights 
about the dynamic stages  of  learning.  Similarly, we 
demonstrated the usefulness  of the trajectory diagram in 
depicting multidimensional trajectories as two- 
dimensional  pictures. This method should also  be of  use 
in other areas  where  similar problems must be  visualized. 
In general, we found the use  of the interactive 
multiwindow environment to be extremely  effective for 
the purpose  of  visualization.  Such an approach allows 

1 the project we concentrated on creating  useful  graphical 
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It A trace of paths of the two hidden  units  for a equal to 0.6 and 0.7.  1 The upper path deviates and ends up in a  different region of weight 
space by trying to match  the lower path. The “X” marks  the  transi- 
tion in  the  upper  path for the  parameter change. The lower path 1 remains  the  same  in  both cases. 

modularity so that new tools can be added to the toolkit. 
For example, Hinton diagrams or alternative 
representations could  easily  be included. 

understood from simulations and experiments by purely 
visual  means.  Indeed, we have  gained many insights from 
the visualization toolkit, and further use  of such  visual 
tools should lead to even  greater  knowledge.  Two- 
dimensional graphics were found to be sufficient for 
representing dynamic neural processes, and this approach 
allowed  us to concentrate on all the aspects of 
visualization, rather than  just on building the tools. We 
fear that visualization  research  has so far concentrated 
too much on techniques for producing pictures rather 
than on how to design them or on real  examples of their 
application and usefulness. We hope to have contributed 
to bridging this gap by building,  applying, and using 
visual tools for our research  purposes. 

It is fascinating to conjecture how much can be 

Appendix 
Consider  a  vector representation of a point in an 
n-dimensional space r E R“ , 

r = ( r , ,  r , , .  . . , r,) = r,k, + r2k2 + . . . + r,k, , (AI) 

where k,, k,, . . . , k, are the orthonormal basis  vectors. 
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An example of a collection of paths  from a six-dimensional  space 
taken  from a network simulation. Paths  ending in local  minima and 
the  symmetry of certain  solutions  can be identified. 

To represent this point in a  two-dimensional  diagram, 
r is  mapped into the point a E R z  defined as 

a = (u,, a,) = u,i + a2j, (A2) 

where i, j are the usual orthonormal basis  vectors.  Now 
suppose we take n unit vectors, m,, m2, a , m,, and plot 
them radially in the plane. This corresponds to taking 
each of the ki and positioning them so as to lie in the 
plane. Then, by analogy  with Equation (AI), we take the 
representation  of r to be the sum 

a = rim, + r2m, + . . + r,m, = zrim,. (A3) 

Now, any of the above  vectors r,m, can be written in 
terms of components relative to the i, j axes, that is, 

riml = ri cos (0,)i + ri sin (Oi)j, (‘44) 

where Oi is the angle  between mi and the i unit vector. 
Since a is  defined  by the sum of  these  vectors, its 

components are 

I 

a, = Cr, cos (e,), 

u2 = zri  sin (e,). 
I 

I 

This  explicitly  defines the mapping  from [w” to R2. Each 
of the Bi are control parameters left to the user. By 
changing the directions of the unit vectors, one changes 
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the display  of  the  trajectory. For example, if it  were 
found  that too many  of the vectors rimi were canceling 
each other, the unit vectors  could be reorganized to yield 
an alternative plot.  Note that when n = 2, the two unit 
vectors m,, m, can  be  chosen at right  angles and the 
mapping  results in the usual  geometry  of an x-y plot. 
However,  when n > 2 the resultant point becomes 
nonunique and can be produced in many ways. 

projection  in n-space onto a  surface, and moving the unit 
vectors  corresponds to rotations of such  a  surface  in the 
space.  However, the method  described  here has 
advantage  over  conventional  projection  techniques 
because the user  can  estimate  how the vectors will add so 
as to ensure a good spread of points. 

Figure 10 gives an example of the use  of  a  diagram 
which  shows  a  collection  of  trajectory  traces  for  a 
network  with  six  weights. From this one can  identify 
which families of paths end in  local minima, or observe 
the  symmetry of certain groups of paths. The trajectory 
diagram has similar uses to a conventional phase  plot: It 
can  distinguish  between  different  regions of configuration 
space, it can be  used to detect  critical  stages  of the 
dynamics of a  system, and  it gives a  trace of its time 
evolution. 
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Video notes 

I )  Majority function 
This shows a 15-input network learning the majority 
function. During the  run many input patterns are being 
presented to the network, during which time the weights 
are changed. The weights  evolve  from  small random 
values through to  an almost uniform set corresponding to 
the solution of the problem. The threshold of the output 
unit (green  disc)  evolves to offset the sum of the weights. 

2) Simple  symmetry function 
Here  perfectly symmetric or perfectly antisymmetric 
patterns are presented to  the network.  Two  examples of 
learning are shown  leading to different but valid 
solutions. Positive and negative  weights are colored  red 
and blue,  respectively. The upper window  shows the total 
error, and the lower  window the state of the output 
window. 

3) General symmetry function 
Here the network  is  required to detect symmetry among 
all the possible input patterns. The two extra windows on 
the right  show the trajectory diagrams for the two hidden 
units.  In the first  example the network can find a solution 
to the problem. In the second  example the momentum 
parameter has  been  changed, and the network  gets stuck 
in a local minimum; the upper unit follows a different 
trajectory. 
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