244

Visualizing
processes
in neural networks

by J. Wejchert
G. Tesauro

A real-time visualization toolkit has been
designed to study processes in neural network
learning. To date, relatively little attention has
been given to visualizing these complex,
nonlinear systems. Two new visualization
methods are introduced and then applied. One
represents synaptic weight data as “bonds” of
varying length embedded in the geometrical
structure of a network. The other maps the
temporal trajectory of the systemin a
multidimensional configuration space as a two-
dimensional diagram. Two-dimensional graphics
were found to be sufficient for representing
dynamic neural processes. As an application,
the visualization tools are linked to simulations
of networks learning various Boolean functions.
A multiwindow environment allows different
aspects of the simulation to be viewed
simultaneously using real-time animations. The
visualization toolkit can be used in a number of
ways: to see how solutions to a particular
problem are obtained; to observe how different
parameters affect learning dynamics; and to
identify the decision stages of learning. A
demonstration videotape is provided.

Introduction

Representing scientific data by visual means is the
essence of scientific visualization. It allows the human
eye-brain system to perceive and infer visual information

by geometrical and pictorial means rather than by linear
numerical form. Enhanced with facilities for interactive
manipulation of the imaging and display process, it is a
highly efficient form of information transfer between
simulation and user [1, 2].

Although neural networks are being widely investigated
via computer simulations, the graphical display of related
information has received little attention (with the
exception of Hinton diagrams [3]). In other fields such as
fluid dynamics and chaos theory, the development of
visualization tools has proven to be a tremendously
useful aid to research, development, and education.
Similar benefits should result from the application of
such techniques to neural network research, especially
because such systems involve nonlinear, parallel,
cooperative, and complex phenomena {3].

In this paper, several visualization methods are
introduced to investigate learning in neural networks
which use the back-propagation algorithm. A
multiwindow environment is used that allows different
aspects of the simulation to be displayed simultaneously
in each window.

A new representation of neural network data is
presented that displays synaptic weights as “bonds” of
varying length embedded in the geometrical structure of
a network. This description can be used statically, or as
animation to depict the dynamics of learning.

A technique for representing the full temporal
trajectory of the system in configuration space during the
course of one or more learning runs is also introduced.

©Copyright 1991 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

J. WEJCHERT AND G. TESAURO

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991

This draws multidimensional trajectories of the system as
two-dimensional diagrams. Other more conventional
graphical representations are used in other windows, and
it is this set of visual tools that makes up our
visualization toolkit.

As an application, the toolkit is used to study small
networks that are learning Boolean functions. The
animations are used to observe the emerging structure of
connection strengths, to study temporal behavior, and to
understand the relationships and effects of parameters.
The simulations and graphics can run at real-time
speeds.

A brief summary of the operation of neural networks is
given first. Next, the motivation for the design of the
graphics is discussed and the visual tools are described.
Later, we present examples of the software applied to
neural networks performing different operations. Finally,
some general conclusions are made.

Neural networks

Neural networks offer a new approach to computation,
based on a simplified model of the brain’s organization.
They can learn and generalize and are ideally suited to
implementation on parallel architectures. The idealized
models currently being examined consist of a set of
elementary computational elements (neurons or nodes)
and a corresponding set of interconnections (synapses).
The strength of an interconnection is referred to as the
weight of the connection between any two neurons.

In the majority of neural network models, neurons
carry out a simple operation: All the weighted inputs
from other neurons are summed, and this sum is passed
through a nonlinear function; this becomes the output
value of that neuron, in turn feeding to others:

0]. =f(2 wijoi + 01) .

The summation is taken over i neurons feeding to unit j.
O, is the output of neuron i, w,; is the weight of the
connection between neurons / and j, and ¢ is called the
threshold value. The sum is then passed through a
nonlinearity, usually the sigmoid function f(x) =
(1+e™)7.

The networks considered here are of the feed-forward
type, and are ordered into layers called input, hidden,
and output. Each layer is fully connected to the next. The
back-propagation algorithm provides a method for
training such multilayer networks. During learning, the
weights of the synaptic connections are adapted so that
the difference between the calculated network output and
desired output is minimized. Learning is a two-stage
process: First the network output is calculated for each
node, then the error is calculated and back-propagated
through the network, and each weight is adjusted in

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991

proportion to that error. This overall procedure is
iterated until the network converges and produces the
required responses.

Usually the error function is given by

E=3%(0,-T), (1)

where O, is the state of the output unit, T is the teacher
signal (desired output), and p is the number of patterns.

The weights are changed by the gradient descent
method

AW=—86—'W, 2

where ¢ is the learning rate, or by using an accelerating
method that mixes in some of the previous iteration,

oF
Iw(t)

Aw(t) = —¢ + aAw(t — 1), 3)
where « is referred to as the momentum parameter. The
momentum and learning rate are important parameters
for tuning the network to improve performance.

A useful way of interpreting the learning procedure is
to consider it in terms of the movement of the point
representing the system down an error hypersurface in a
multidimensional weight space. Such an interpretation is
commonly used in the description of physical systems,
but cannot be simply visualized except for low-
dimensional spaces.

Further information about neural networks may be
found in [3] or [4].

Visual tools

In the visualization toolkit, different aspects of a
simulation may be displayed simultaneously in a
multiwindow environment, with each component of
information mapped into a separate window. In
designing the graphics, simple principles of displaying
quantitative data were used [5]. The information in each
window is as uncluttered as possible, and information is
distributed in a number of windows, allowing the user to
control which information should be displayed.

A principal window shows network topology and
weight data as a “bond diagram™; other windows display
projections of trajectories of the system in configuration
space and show conventional plots of variables with time.
We found that it is this integrated environment that is
most effective in displaying the information.

& Bond diagram

The principal visualization question is how to represent
synaptic strength (weight) data, Hinton’s method [3] of
drawing squares of different sizes to represent different

J. WEJCHERT AND G. TESAURO

245

246

A Hinton diagram for a neural network with four input units, four
hidden units, and four output units.

The “*bond’’ diagram for a network with four input units, four hidden
units, and four output units. Red and blue correspond to positive and
negative weights.

weight values has been used extensively for this purpose.
Typically, squares may be ordered according to the
application for which the neural network is being trained,
or placed in a way that suggests the network connectivity.
Figure 1 shows a Hinton diagram for a neural network
with four input units, four hidden units, and four output

J. WEJICHERT AND G. TESAURO

units; positive and negative weights are displayed as red
and blue squares, respectively.

The Hinton diagram does not explicitly reveal network
topology in relation to the weight data, and it is not very
useful in trying to understand problems relating to the
internal representation of the network. Because it is of
interest to try to see how the internal configuration of
weights relates to the problem the network is learning, it
is clearly worthwhile to have a graphical representation
that explicitly includes weight information integrated
with network topology. (A method used by Edelman [6]
that color-codes connections between nodes has been
used, but it is susceptible to color distortion and is not
very suitable for animation.)

In our representation, the above objectives are met by
displaying weights as “bonds” between nodes. The
stronger the connection, the greater the length of the
bond between any two nodes. Figure 2 shows the “bond”
representation for the same network as in the Hinton
diagram. As can be seen, it clearly incorporates structure
with weight data. The bonds representing the weights
extend from both nodes of a connection; one can look at
any node and clearly see the magnitude of the weights
feeding into and out of it. This allows one to detect
differences in weight magnitude as differences in bond
length, and is better suited to animation because changes
in geometry are easier to perceive than changes in color
[7]. Also, a sense of direction is built into the picture,
since the bonds point to the node to which they are
connected. Further, the collection of weights forms
distinct patterns that can easily be perceived by the user,
so that one can also infer global information from the
overall patterns formed. It is probable that a different
graphical design should be used for larger data-set sizes
(networks with thousands of weights), where color or
texture maps may be more appropriate. In such a case,
the present method could be used to show portions of
larger networks.

o Trajectory diagram

The description of a dynamic system in terms of a phase
space or configuration space has been used extensively in
the physical sciences. It has the advantage that the whole
system can be described as one point in a space which
encompasses all the possible states of the system.
Information about the dynamics can be deduced from
the behavior of the paths or trajectories created by the
time evolution of such points. Like that of a physical
system, the state of a neural network can be defined as a
point in “weight space”; as the weights adapt and evolve,
the dynamics of learning can then be described by
trajectories of these points in weight space. Conventional
2D phase plots can be used to study the behavior of two
components, but this is of little use if trajectories are

IBM J. RES, DEVELOP. VOL.35 NO. 12 JANUARY/MARCH 191

embedded in a high-dimensional space. Although
attention has been given to visualizing multidimensional
data [8-10], the issue of visualizing paths in such
multidimensional spaces has not received much
consideration. A straightforward way of reducing the
trajectories in a multidimensional space into a two-
dimensional picture is presented in this section.

The scheme is based on the premise that the human
user has a good visual notion of vector addition. To
represent an n-dimensional point in the plane, the axial
components defining the point are defined as vectors and
then plotted radially in the plane; the vector sum of these
components is then calculated to yield the point

representing the n-dimensional position. It is obvious that

for n > 2 the resultant point is not unique; however, the
method does allow one to infer information about
families of similar trajectories, make comparisons
between trajectories, and notice important deviations in
behavior, as shown in the next section. A more formal
account of this method is given in the Appendix.

Using the trajectory diagram, information can also be
deduced about the error hypersurface [error landscape, as
defined by Equation (2)] in the locality of a path. By
assigning the current value of the global error function as
the color of the current point in weight space, one
obtains a sense of the contours of the error hypersurface
and the dynamics of the gradient-descent evolution on
this hypersurface. Further, the spacing of points gives an
indication of the velocity on the surface. (An earlier
attempt to obtain information about the energy
landscape perturbed a system about a chosen arbitrary
axis in weight space and plotted energy as a function of
perturbation {11].)

o Technical points

The graphics software was written in C using
X-Windows' version 11. X-Windows is portable and can
be used to run graphics remotely on different machines
using a local area network. The FORTRAN neural
network simulator was linked and executed within the
UNIX® environment, on the RT’ workstation. Execution
time was slow for real-time interaction except for very
small networks (typically up to 30 weights). For larger
networks the Stellar® graphics workstation was used, on
which the simulator code could be vectorized and
parallelized. The Stellar was used to run the graphics
remotely over the local area network for display on the
RT workstation. This resulted in a speed increase of a

' X-Windows is a trademark of MIT.
UNIX isa registered trademark of UNIX Systems Laboratories, Inc.
*RTisa registered trademark of International Business Machines Corporation.

4 Stellar is a trademark of Stardent Computer, Inc.

IBM J. RES. DEVELOP. VOL.35 NO. 122 JANUARY/MARCH 1991

An example of the toolkit being used, with most of the windows

§ active; the command line appears on the bottom.

factor of ten, allowing networks of up to 200 weights to
be run at real-time speeds.

A command-line argument is used to enter parameters
such as momentum, learning rate, random seed, or the
magnitude range of initial weights into a simulation.
Runs can be restarted from the same random seed so as
to study effects of changing parameters. Windows can be
moved or closed during simulation, allowing the user to
concentrate on chosen aspects of the simulation. The
topology used for a problem may easily be adjusted from
input files, and the graphics can be used to display neural
networks of different topologies learning different tasks.

Research applications

Using the visualization toolkit, one can see how solutions
to a particular problem are obtained and how different
parameters affect these solutions, and observe stages at
which learning decisions are made. In the examples, the
bond diagram is used to represent weight values, which
are colored red for positive and blue for negative; nodes
are colored green. The same color code is used for the
vectors representing the weights in the trajectory diagram.
A gradation of red to blue is used to denote the
magnitude of the error function in these plots. Two other
windows are used to trace the time evolution of the total
error function and the state of the output node. Figure 3
gives an example of the toolkit in use, showing the bond
diagram, the trajectory diagram, and other plots.

J. WEJCHERT AND G. TESAURO

247

248

layer network that has learned the majority function,
from which we have an indication of how the network
has solved the problem: A large output node is displayed
and the magnitudes of all the weights are roughly
uniform, indicating that a large bias (or threshold) is
required to offset the sum of the weights. Majority is
quite a simple problem for the network to learn; more
complicated functions require hidden units, in which case
the whole visualization toolkit becomes useful.

To see how the network solves a more complicated
function, we consider a simplified symmetry function.
This function discriminates between perfectly symmetric
and perfectly antisymmetric patterns, and it is only given
these two possibilities in the input set. This function may
be defined as follows: Given an input vector u,,
i=1-..n, where u, = *1, the teacher signal is set to 1
when w,=u,,,_;, j=1,---, n/2 (symmetric), and 0

n

when w,=-u,,, ;, j=1,---, n/2 (antisymmetric). The
network required to solve this mapping requires a
topology with at least two hidden units [3].

A solution for a network with six input units, two
hidden units, and one output is shown in Figure 5. It 1s
interesting to note that the network has determined

§ The final configuration of weights for the majority function. The
i size of the green disc corresponds to the threshold value.

As an example of the operation of the visualization
toolkit, we focus on networks learning Boolean functions:
Binary input vectors are presented to the network
through the input nodes, and the teacher signal is set to
either 1 or 0 depending on how the patterns are to be
classified. Examples of such functions are majority,
parity, and symmetry. The output of the majority
function is 1 only if more than half of the input nodes
are on; parity is an extension of the exclusive-or function;
symmetry identifies input vectors that are perfectly
symmetric about a central axis.

First we show how the configuration of weights
corresponds to solutions for the majority and simplified
symmetry functions using the bond diagram. Later, we
investigate the evolution of learning for the general
symmetry problem. The accompanying video shows the
time evolution of the network as it learns these functions.

o Configurations and solutions: Learning majority and
simple symmetry

Consider an input vector #,, i = [- - - n presented to the
network, where ¥, = +1. The majority function teacher
signal is 1 if 2 », > 0, and O otherwise. A network
topology with no hidden units can solve this classification
[3]. Figure 4 shows the final configuration of the two-

% A solution of the simple symmetry function. As can be seen, only
% two input units are required to solve this problem.

J. WEJCHERT AND G. TESAURO IBM J. RES. DEVELOP. VOL.35 NO. 1/2 JANUARY/MARCH 1991

An example of a network learning the general symmetry function. There are six input units, two hidden units, and one output unit. Weights
are shown by bonds emanating from nodes. (a) Early in the learning process the weights are still small, and no overall structure has emerged.
(b) An intermediate stage when the connections are becoming established. (¢) The end of learning, showing the final pattern of weights.

(correctly) that it needs only two units to decide whether
the input is totally symmetric or totally antisymmetric. In
fact, solutions are not unique, as can be shown by using
various random starting configurations; the network then
may choose other symmetrically separated input pairs to
support its decision. Note the patterns that the weights
have created, as shown by the “bond” representation. As
will be seen, this simple pattern carries over into the
more general symmetry function, where the network
must identify perfectly symmetric inputs from all the
other permutations of input examples,

o Parameters and decisions: General symmetry function
To investigate the effects of parameters and see what
decisions are made during the learning process, a more
difficult learning function is required. The general
symmetry function detects symmetrical patterns among
all the binary permutations; i.e., it has a teacher signal of
lwhenu,=u,, , ., j=1,---, n/2 (symmetric) and 0 for
all other patterns. Again, a network with six input units,
two hidden units, and one output was used. Patterns
were presented at random and the weights were updated
every 2" patterns. The command-line parameters were
chosen to be o (momentum), r (magnitude of weights),
and ¢ (time for the simulation). The learning rate was
fixed at ¢ = 1.0. To improve learning performance, the
symmetric patterns must be presented with higher
probability because they occur quite infrequently.

IBM I. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991

Snapshots of the evolution of a sample network are
shown in Figures 6(a)-(c). At the start of a simulation
the weights are set to small random values [Figure 6(a)].
This can be seen as small random clusters of blue and red
around each node. During learning, many example
patterns of vectors are presented to the input of the
network and weights are adjusted accordingly. Initially
the rate of change of weights is small; later, as the
simulation gets under way, the weights change rapidly,
until only small changes are made as the system moves
toward the final solution [Figure 6(b)]. A distinct pattern
of red and blue triangles shows the configuration of
weights in their final form [Figure 6(c)].

As can be seen from the bond diagram, the network
has chosen a hierarchical structure of weights to solve the
problem, using the same basic pattern of weights as in the
simple symmetry problem. The major decision is made
on the outer pair and additional decisions are made on
the remaining pairs with decreasing strength. As before,
the choice of pairs in the hierarchy depends on the initial
random weights.

To monitor the simulation it is useful to have windows
display the total error and the state of the output unit
(Figure 7). Typically, the error initially stays high, then
decreases rapidly and levels off to zero as final
adjustments are made to the weights. Spikes in this curve
are due to the method of presenting patterns at random.
The state of the output unit initially oscillates and then

J. WEICHERT AND G. TESAURO

249

The total error (top) and the state of the output unit (bottom) for the
learning run described in Figure 6.

bifurcates into the two required output states. As can be
seen from Figure 7, bifurcation and the rapid decrease in
error occur at roughly the same time.

The temporal trajectory of the system in weight space
reveals interesting information. As described in the
Appendix, the components of a point in the
multidimensional space are treated as vectors, plotted
radially in the plane and then added to yield a point in
the two-dimensional representation. In developing this
method we initially experimented with conventional 2D
phase trajectories, which were then compared with the
vector method. We found that the qualitative features of

both carried over into the higher-dimensional
representations.

Instead of using the trajectory diagram to represent the
whole space, we found it more useful to map trajectories
into subspaces, particularly when tracking the behavior of
the hidden units. Thus, for the same six-input network as
used before, we displayed two diagrams (one for each
hidden unit), each representing a six-dimensional path
[Figures 8(a) and 8(b)]. In this example, where the
network does converge to a correct solution, the paths of
the two hidden units tried either to match each other (in
which case the configurations of the units were identical)
or to move in opposite directions (in which case the units
were opposites). Both led to valid solutions, the former of
which is displayed in Figure 8.

By contrast, for learning runs which do not converge to
global optima, we found that (usually) one of the hidden
units followed a normal trajectory, whereas the other unit
was not able to achieve the appropriate match or anti-
match. This is because the signs of the weights of the
second hidden unit were not correct and the learning
algorithm could not make the necessary adjustments.

By repeatedly watching the animations, we could make
some qualitative observations about the stages of learning
from the bond diagram. We found that the early stages
were the most critical, because the signs of the weights
feeding to the hidden units were determined at this time.
Any problems with the gradient search always occurred
at this stage. The later stages posed fewer problems
because only the relative magnitudes of the weights were
adapted. Once the network had sorted the signs of the

(b)

to the weights feeding into the respective units.

). WEJCHERT AND G. TESAURO

Two reduced trajectories of the hidden units. (a) corresponds to the topmost unit in the network. Note that the axes in (a) and (b) correspond

IBM J. RES. DEVELOP. VOL. 35 NO. 112 JANUARY/MARCH 191

weights, rapid gradient descent could occur and the error
quickly decreased; simultaneously the output state
bifurcated.

The trajectory diagram can be used to locate the exact
point during learning that determines whether the
network will end up in global or local minima. To do
this, one can treat the momentum parameter as a
variable that affects the final solution. If momentum is
increased, then trajectories tend to follow straighter lines,
which speeds up learning. However, if momentum is too
large, problems occur with the gradient search and the
system may end up in a local minimum. Figure 9 shows
an example of trajectories that were collected for two
hidden units. In this case both the trajectories are
mapped onto the same diagram. These are similar to
previous runs, except that the graphics are plotted on a
scale that shows the initial behavior of the trajectories in
greater detail. The momentum was set to o = 0.6 and
a = (.7; these values mark a transition between the
network finding a global solution and getting stuck in a
local minimum. As the trajectory diagram reveals, a
definite point in configuration space marks a decision for
one of the hidden units. If « > 0.7, then the hidden unit
proceeds into a completely different portion of
configuration space corresponding to a local minimum
on the error hypersurface. Thus the trajectory diagram
was able to show that deviations in behavior are
determined at the early stages of learning. Further, it
could give an indication of the exact point in weight
space at which such deviations occur. In this way the
trajectory diagram can be used as a herald of bad
learning behavior and may suggest heuristics that could
improve learning by setting initial trajectories in
“correct” directions.

Conclusions

We have created a visualization toolkit to study processes
in neural networks, and have used this toolkit to gain
insights into learning processes. At the design phase of
the project we concentrated on creating useful graphical
representations of neural networks. These are the bond
diagram for representing neural weight data and a way of
mapping the configuration trajectory of the system.

We have found that the bond diagram was very useful
in showing how internal representations are related to
network function. It was also helpful in revealing insights
about the dynamic stages of learning. Similarly, we
demonstrated the usefulness of the trajectory diagram in
depicting multidimensional trajectories as two-
dimensional pictures. This method should also be of use
in other areas where similar problems must be visualized.
In general, we found the use of the interactive
multiwindow environment to be extremely effective for
the purpose of visualization. Such an approach allows

IBM J. RES. DEVELOP. VOL. 35 NO. 12 JANUARY/MARCH 1991

A trace of paths of the two hidden units for o equal to 0.6 and 0.7.
The upper path deviates and ends up in a different region of weight
space by trying to match the lower path. The ‘‘X’’ marks the transi-
tion in the upper path for the parameter change. The lower path
remains the same in both cases.

modularity so that new tools can be added to the toolkit.
For example, Hinton diagrams or alternative
representations could easily be included.

It is fascinating to conjecture how much can be
understood from simulations and experiments by purely
visual means. Indeed, we have gained many insights from
the visualization toolkit, and further use of such visual
tools should lead to even greater knowledge. Two-
dimensional graphics were found to be sufficient for
representing dynamic neural processes, and this approach
allowed us to concentrate on all the aspects of
visualization, rather than just on building the tools. We
fear that visualization research has so far concentrated
too much on techniques for producing pictures rather
than on /ow to design them or on real examples of their
application and usefulness. We hope to have contributed
to bridging this gap by building, applying, and using
visual tools for our research purposes.

Appendix
Consider a vector representation of a point in an

n-dimensional spacer € R”,
r=(r, r,---,r)=rk +rk+ ... +rk, (A1)

where k,, k,, - - -, k, are the orthonormal basis vectors.

J. WEJCHERT AND G. TESAURO

251

An example of a collection of paths from a six-dimensional space
taken from a network simulation. Paths ending in local minima and
the symmetry of certain solutions can be identified.

To represent this point in a two-dimensional diagram,
r is mapped into the point a € R’ defined as

a=(a, a,) = aji+ a,j, (A2)

where i, j are the usual orthonormal basis vectors. Now
suppose we take » unit vectors, m,, m,, - - -, m,, and plot
them radially in the plane. This corresponds to taking
each of the k, and positioning them so as to lie in the
plane. Then, by analogy with Equation (A1), we take the
representation of r to be the sum

a=rm +rm+..-4+rm = yrm,. (A3)
i

Now, any of the above vectors ,m, can be written in

terms of components relative to the i, j axes, that is,

rm, = r, cos (6,)i + r, sin (6,)j, (A4)

where 0, is the angle between m, and the i unit vector.
Since a is defined by the sum of these vectors, its
components are

a, = Xr, cos (8), (AS)
a, = Yr,;sin (8,). (A6)
This explicitly defines the mapping from R” to R®. Each

of the 8, are control parameters left to the user. By
252 changing the directions of the unit vectors, one changes

J. WEJCHERT AND G. TESAURO

the display of the trajectory. For example, if it were
found that too many of the vectors rm, were canceling
each other, the unit vectors could be reorganized to yield
an alternative plot. Note that when n = 2, the two unit
vectors m,, m, can be chosen at right angles and the
mapping results in the usual geometry of an x~y plot.
However, when »n > 2 the resultant point becomes
nonunique and can be produced in many ways.

In general, the mapping corresponds to making a
projection in n-space onto a surface, and moving the unit
vectors corresponds to rotations of such a surface in the
space. However, the method described here has
advantage over conventional projection techniques
because the user can estimate how the vectors will add so
as to ensure a good spread of points.

Figure 10 gives an example of the use of a diagram
which shows a collection of trajectory traces for a
network with six weights. From this one can identify
which families of paths end in local minima, or observe
the symmetry of certain groups of paths. The trajectory
diagram has similar uses to a conventional phase plot: It
can distinguish between different regions of configuration
space, it can be used to detect critical stages of the

dynamics of a system, and it gives a trace of its time
evolution.

Acknowledgments

We wish to thank Scott Kirkpatrick for help and
encouragement during the project and to thank members
of the Visuyalization Laboratory (Yorktown Heights) for
the use of their resources.

References

1. B. H. McCormick, T. A. DeFanti, and M. D. Brown, Eds.,
“Visualization in Scientific Computing,” Comput. Graph. 21,
No. 6 (1987); see also “Visualization in Scientific Computing—
A Synopsis,” IEEE Computer Graph. & Appl. 7, 38-44 (July
1987).

2. R. S. Wolff, “Visualization in the Eye of the Scientist,”
Computers in Physics 2, No. 3, 28-35 (May/June 1988).

3. D. E. Rumelhart and J. L. McClelland, Parallel Distributed
Processing: Explorations in the Microstructure of Cognition,
Volume 1, MIT Press, Cambridge, MA, 1986.

4. R. P. Lippmann, “An Introduction to Computing with Neural
Nets,” IEEE ASSP Mag. 4, No. 2, 4-22 (April 1987).

5. E. R. Tufte, The Visual Display of Quantitative Information,
Graphic Press, Cheshire, CT, 1983.

6. G. M. Edelman, Neural Darwinism, Basic Books, New York,
1987.

7. M. Livingstone, “Art Illusion and the Visual System,” Sci.
Amer. 258, No. 1, 78-85 (January 1988).

8. D. J. Cox, “Using the Supercomputer to Visualize Higher
Dimensions: An Artist’s Contribution to Scientific
Visualization,” Leonardo 21, No. 3, 233 (1988).

9. E. J. Farrell, “Visual Interpretation of Complex Data,” IBM
Syst. J. 26, No. 2, 174-200 (1987).

10. C. A. Pickover, “DNA Vectorgrams: Representations of Cancer
Genes as Movements on a 2D Cellular Lattice,” IBM J. Res.
Develop. 31, No. 1, 111-119 (1987).

I1. D. C. Plaut, S. J. Nowlan, and G. E. Hinton, “Experiments on
Learning by Back Propagation,” Research Report CMU-CS-86-
126, Carnegie Mellon University, Pittsburgh, PA, 1986.

1BM J. RES. DEVELOP. VOL. 35 NO. 12 JANUARY/MARCH 1991

Received November 12, 1989; accepted for publication July
26, 1990

Video notes

1) Majority function

This shows a 15-input network learning the majority
function. During the run many input patterns are being
presented to the network, during which time the weights
are changed. The weights evolve from small random
values through to an almost uniform set corresponding to
the solution of the problem. The threshold of the output
unit (green disc) evolves to offset the sum of the weights.

2) Simple symmetry function

Here perfectly symmetric or perfectly antisymmetric
patterns are presented to the network. Two examples of
learning are shown leading to different but valid
solutions. Positive and negative weights are colored red
and blue, respectively. The upper window shows the total
error, and the lower window the state of the output
window.

3) General symmetry function

Here the network is required to detect symmetry among
all the possible input patterns. The two extra windows on
the right show the trajectory diagrams for the two hidden
units. In the first example the network can find a solution
to the problem. In the second example the momentum
parameter has been changed, and the network gets stuck
in a local minimum; the upper unit follows a different
trajectory.

IBM J. RES, DEVELOP. VOL. 35 NO. 12 JANUARY/MARCH 1991

Jakub Wejchert European Visualization Centre, IBM Scientific
Centre, St. Clements St., Winchester, Hampshire SO23 9DR,
England. Dr. Wejchert is currently a Research Fellow working with
the European Visualization Group at the IBM Scientific Centre,
Winchester. He obtained his B.A. in theoretical physics from Trinity
College, Dublin, Ireland (1983). He then went to University College,
Dublin, to do a M.Sc. (by research) in simulational physics. Dr.
Wejchert then returned to Trinity to do his Ph.D. research in
simulational physics, obtaining his degree in 1988. He has worked at
the Centro Commune di Ricerca, Italy (1986-1988) and at the
Computer Sciences Department of the IBM Thomas J. Watson
Research Center (1988-1990). Dr. Wejchert’s current interests are in
the areas of scientific visualization and computer animation.

Gerald Tesauro IBM Thomas J. Watson Research Center,
Yorktown Heights, New York 10598. Dr. Tesauro is a Research Staff
Member in the Computer Sciences Department at the IBM Thomas
J. Watson Research Center. He received a B.S. degree in physics
from the University of Maryland in 1980 and a Ph.D. in physics
from Princeton University in 1985. After a postdoctoral
appointment at the Center for Complex Systems Research,
University of Illinois, Dr. Tesauro joined IBM in 1988. His research
interests include theoretical analysis of neural network learning
algorithms, as well as their application to real-world problems, and
modeling of learning and information processing in real biological
neural networks.

J. WEJCHERT AND G. TESAURO

253

