238

Visualization

in a VLSI design
automation
system

by D. L. DeMaris

Problems unique to the visualization of complex,
partially automated design tasks such as VLSI
system design are reviewed, and approaches
are described. The design domain used to
illustrate the approaches is chip-level “floor-
planning,” an iterative-refinement design
methodology for VLSI layout, routing, and timing
control. The general view structure and control
structure are described. Other visualization
topics addressed are display of evolving data,
sequencing of overlay data, an interleaved
temperature-color metaphor for view
consistency and clarity, and dynamically
generated iconic measurement tools.

Introduction: From CAD to full-lifecycle design
automation frameworks

Over the last decade, designers of various products have
come to rely increasingly on computer-aided design
(CAD) 1o0is for editing and visualization. The initial
design tools supported direct editing and straightforward
visualization of spatial design and text annotation in
domains such as mechanical design and mask layout for
integrated circuits. Second-generation software began to
support applications involving simulation, such as digital
schematic entry coupled with behavioral simulation.
Typically, the focus of these tools was narrow, with
separate programs and interfaces used for each successive
stage of design.

The current generation of CAD products supports
complex, partially automated design tasks (such as
computer system design) consisting of many processing
steps performed in sequence. In such applications, several
trends have emerged to increase the need for tool
integration and visualization of results of what were
previously considered separate design activities. Designer
productivity has been raised by automating a range of
design tasks; but the information generated must still be
reviewed to balance requirements, invoke and control
constructive automation tools, and make manual changes
and edits where necessary to improve designs or
compensate for imperfect automation. The amount of
information generated per designer is generally greater, so
that the cross-referencing previously acceptable among
different design and analysis tools would be
unmanageable today. Competitive pressures have also
forced designers (and CAD software developers) to take
many more factors into account to maximize
performance and minimize both design and
manufacturing costs.

Current logic circuit technologies offer such high
circuit density, small devices, and narrow interconnection
linewidths that system performance is increasingly
determined by the quality of the layout and routing.
Since a greater portion of computer system delay is in
wire interconnections, there is increased emphasis on
early prediction and rapid convergence of feasible layout
and routing which obey timing constraints. System

©Copyright 1991 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

D. L. DeMARIS

IBM J. RES. DEVELOP. VOL. 35 NO. 12 JANUARY/MARCH 1991




designers must use logic synthesis and automatic
placement and routing techniques for design
productivity, yet the use of these automation tools makes
early system timing more difficult when they are applied
to an entire chip at once to achieve the best possible
automatic result. To better predict and control system
timing and design feasibility, many chip-design groups
are adopting a structured chip-design methodology, in
contrast to flat logic synthesis or complete “bottom-up”
macrocell designs with no global physical or timing
influence. A floor-plan editor and a visualization
environment are critical to the productive use of a
structured strategy. Abstract design analysis tools such as
floor-planning can provide feedback from early stages in
the development cycle, permitting design changes before
much manual work has been done and eliminating the
need for many attempts to do the designs with traditional
CAD tools [1, 2].

Views and subviews
Designers must manage simultaneous and often
conflicting requirements, so they must look at several

Network subview overlaid on layout subview. Nets not meeting
performance targets are adaptively displayed as “‘flylines’’ prior to
routing. Note randomization for easier viewing of problem sever-
ity, and use of cues to indicate design status. Solid lines or dashed
distinguish macrocells or random logic regions; small rectangles
or asterisks correspond to exact or estimated contact points for
nets. Circuit layout edges are colored (green or red) to show rout-
ing availability at the global level. Local population numbers are
displayed as percentages inside the circuit region, indicating place-
ment and routing feasibility for the many small circuits within
.that region.

IBM J. RES. DEVELOP. VOL. 35 NO. 12 JANUARY/MARCH 1991

S s

Fixing timing problems using network and layout subview. When
layout adjustments are made, population and porosity layout sub-
views are automatically updated. The timing problem subview
was regenerated after some changes reduced the number of prob-
lems. A proposed change is evaluated by turning on the *‘gross
connectivity’’ subview, scope to the current object, and selecting
affected objects in turn.

dimensions or domains of data at the same time. Design
subsystems using general optimization techniques such as
simulated annealing attempt to balance multiple
constraints and objectives [3]. When all goals cannot be
met, designers resort to visualization of results to make
judgments about what to change. To assist in this
analysis, we employ many views of the data. Subviews
within floor-planning (which is, in effect, an abstract
physical view) include object attributes and geometry,
network topology, and measurement subviews such as
routing congestion maps, timing problems, and net
“global” routes. Such displays may be composed in one
window, or in multiple windows with less visual density.

Figures 1-3 are screen displays composed of subviews
within a single window. Typical subviews presented are
the basic layout of circuit region outlines (the actual
“floor-plan” of the chip), and the connections between
circuits (referred to as nets). Circuit outlines are presented
by default as a porosity attribute, which indicates whether
those circuits have space designed in for nets to pass over
them. Other attributes displayed in the layout subview
include population numbers and connectivity (a
summary of the connections between circuits,

D. L. DeMARIS

239




240

Slow paths overlaid on congestion map. After routing, exact paths
are shown, rather than the ‘‘air line’’ approximations. Paths are
randomized for better presentation of patterns. Known macrocell
pins are denoted by blocks; unassigned pins on random logic
(gate) macros are denoted with asterisks. Use of the interleaved
spectrum clarifies the interpretation of vectors in the display, so
that congested edges are not mistaken for components in the net path.

i
|
|
l
|
%

Subview 1
Blue Green Yellow Red

Subview 2

g Interleaved spectrum.

represented as a band with width corresponding to the
number of individual nets).

The attributes and subviews are controlled or “scoped”
by activating them for all displayed design objects, for a
selected group of objects, or only for the currently
selected object. If multiple floor-plan views in separate

D. L. DeMARIS

windows are used, each window has independent scoping
and control information. When an object is modified, the
view update command is broadcast to all copies of the
application. All copies use the same model data in
memory, maintaining consistency. The actual display of
objects is controlled by hierarchy-scoping commands.
After an object has been selected, its components may be
displayed (if subviews are activated) or hidden. This
hierarchy scoping is maintained independently for each
window.

The floor-planner can also be used as a control
environment to invoke more detailed design tasks such as
gate-level automatic and interactive placement and
routing. The visual analysis provided by the floor-planner
reveals the high-risk areas which should be explored first
in the detailed design tools or in other views. (Gate-level
synthesis and path tuning, or more fundamental
structural changes, are accessed through other views for
problems not solvable in physical design.)

Adaptive presentation of incrementally refined
design

In this new design environment, the design data evolve
incrementally over the full product lifecycle. Design is a
flexible, iterative process using constructive automation
actions, visualization, and analysis, with editing and
parameter selection between steps. Software must take
into account the incremental process and partially known
state, adaptively showing the data in the most well-
defined representation available. Forcing designers to
invoke more commands to see each increment would
complicate an atready difficult task. Over time, we have
reduced the number of required subviews designers must
select, unifying them and automatically presenting them
as they are generated. This is an important distinction
between a design automation environment and other
CAD or scientific visualization tasks that present
complex, but complete and well-defined or measured
data [4].

Figures 1-3 illustrate the adaptive refinement of net
path presentation, with cues to indicate the state of each
design object. Solid lines in the default outline and
porosity views indicate reusable circuit components;
dashed lines represent regions where many small circuits
should be placed, indicating that designers have flexibility
in the layout of that function.

Consistency and color mapping

Another challenge in complex design applications
involves consistent visual presentation of various
subviews. The primary technique we employ is the
systematic use of a color-mapping metaphor to indicate
the quality of some measured result. A “temperature
spectrum” metaphor is used, with cool colors (blue-

IBM J. RES. DEVELOP. VOL.35 NO. 12 JANUARY/MARCH 1991




green) representing feasible designs or measured good
results and hot (yellow-red) indicating problems or
marginal results. This mapping is applied uniformly in
our application to diverse visualization elements: local
wire demand, global wire availability, routing congestion,
and net timing-target goal completion. Because in some
cases two dimensions of information must be displayed
in the same space, we modify the color strategy to an
“interleaved hot—cool” metaphor (Figure 4). Experience
has shown us that a consistent purist use of a “traffic
light” metaphor is confusing when the subviews are
overlaid.

Interleaved spectrum

When the same scale was used for both subviews, we
found that routes or portions of routes might be confused
with cuts used to measure congestion. We then settled on
the interleaved scheme, so that one subview of a
concurrently displayed pair might use green-red, while
the other used blue-yellow. For example, in views of
global routes to manage both routing congestion and
timing problems, congested edges use the green-red
coding, and overlaid routes for individual nets use blue-
yellow coding for timing problems. The complementary
colors used are also easily distinguished [5].

Figure 3 illustrates the use of alternating color mapping
for concurrent subviews. Proposed connection routes
which may fail timing constraints are displayed against
the background of a routing congestion map.

When both dimensions of the design can be visualized
effectively, trade-offs can be made and problems in one
domain which impact another can be identified. Often, a
few timing problems arise because a local wire congestion
problem results in “roundabout” or indirect wiring paths.
If chip population permits, more space can be allotted
locally, allowing the timing-sensitive paths to follow more
direct routes. Designers may also invoke the global router
with different weighting factors on timing or routing
congestion [6].

Color mapping for program control
The same color-mapping scheme is employed in cases
where controls for automated subsystems are
interactively specified. Cool colors indicate that programs
are free to modify some value or use some resource; hot
colors indicate that some value cannot be changed or is
blocked for the program.

Figure 5 illustrates the use of this visual indicator to
control and display the state of global routing setup
parameters.

Dynamic icon generation
A technique used in the floor-planner which we believe
to be novel is the construction of iconic measurement

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991

R
Controlling global routing through regions. Green circles in a
region indicate that the routes may pass through the region; red
circles mean that region is forbidden unless an explicit connection
to the region is required. The large circle in the lower left is a
*global"" controller which toggles the state of all the regions.

TR

tools based on measured data. The designer can use a
customized “ruler” built for each slow net to make a
floor-plan correction based on the maximum distance the
connection can span while meeting its performance
target. This translates the abstract electrical performance
data into a form directly related to the effective actions
which can be taken in the interactive floor-planning
environment.

Figure 6 shows a ruler icon, displayed together with the
route chosen for that circuit connection.

Interactive checking

The floor-planner is designed to support a range of design
styles, including full custom, and to work in an
exploratory fashion with early (possibly incomplete) data;
as a general philosophy, all constraints on layouts and
legality conditions are optional. The many interactive
operations supported allow a good deal of robustness,
which is useful for getting good results when developing
new design approaches or dealing with inconsistent or
incomplete data. Checks for illegalities can be turned on
during interactive commands, or they may simply be
invoked after many edit operations as a “debugger.” In
this case, floor-plan violations are highlighted visually for
ease in correcting overlap or local wiring (population)
eITOTrS.

D. L. DeMARIS

241




242

Slow path with iconic timing ruler. A net with a timing problem is
displayed. The cursor (red crosshair) is displayed as a timing
“‘ruler’’ sized to the maximum length the net could span horizon-
tally or vertically and still meet a performance goal. Rulers for all
nets reviewed may be placed into the timing view display and left
until that subview is cleared. The designer can use these as guides
for floor-plan changes such as moving circuits or changing the
shapes of flexible circuit regions.

Figure 7 illustrates the use of crosshatched fill patterns
to indicate design objects which violate design constraints
or overlap rules.

Data overload: detail hiding, sequencing

Perhaps the most challenging visualization problem to
address is that of data overload. While we have touched
on this regarding the use of multiple views to manage
conflicting requirements, the need for greater detail
within a single analysis subview such as routing or timing
poses special requirements.

In some cases we show abstract maps with optional
detailed attributes, such as exact routing supply and
demand numbers. In this case, numerical values are
shown only for problem regions. It is still possible to
generate busy overlaid displays in which individual paths
cannot be distinguished, or interfere with other important
data in making adjustments.

The only alternative to simultaneous presentation is
sequential presentation; we have employed a uniform
approach based on data filters and queues. After selecting
a set of interesting objects (such as slow paths or nets in a
congested region), a design may iterate through the queue

D. L. DeMARIS

Error checking. Floor-plan errors are highlighted for debugging.
Crosshatched areas indicate a violation of design rules, such as over-
lap or regions too small to contain the logic specified for them.

one at a time, draw all at once, or select any subset.
When drawing the queue one at a time, each object may
be overlaid on the previous object, or each subview may
be cleared after it has been displayed.

We have also used animation on subview sequences
such as timing problems or congestion to give an
overview leading to conclusions or further queries. When
presenting data sequences, we have developed heuristics
to draw attention, so that users are aware that a new item
is displayed even though the actual “data points” may be
the same as those for the item just previously displayed.
For example, we randomize points within the legal range
of unassigned values when displaying net paths, so that a
number of similar global routes are distinguished. The
randomization technique is also used to spread out the
display points in simultaneous or overlaid displays.

Figures 1 and 3 illustrate the use of randomization in
network displays to help distinguish individual data
objects with similar or identical data.

Figure 8 shows a selection menu used for filtering
network views.

Summary and future work

While the visualization aspects of the floor-plan system
are still undergoing refinement, it has already proven
useful to designers. It has also been of value to algorithm
developers, who obtain much better feedback from users

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991




on problems than was obtained with previous batch-
oriented systems, in which only final detailed results,
such as exact routes on plots of finished designs, could be
examined.

Future developments are expected to take the form of
generalizing the techniques and data structures described
here and incorporating them into an object-oriented
application framework, helping to enforce consistency
and reduce development time. Given that many previous
object-oriented frameworks and view/control paradigms
[7] originated on monochrome displays, the systematic
use of color at the framework level still needs definition
and standardization. Other features discussed here, such
as stepping through queued subviews and dynamically
built iconic measurement tools, should be provided as
reusable framework components.

Acknowledgments

The interactive and visual aspects of the Maple floor-plan
editor owe much to the efforts of Dan Mainiero, Tim
Holohan, John Thorvaldson, William Livingstone, and
particularly Kevin McCullen. We also appreciate the
comments and patience of early users; Patrick Lampin
and Juergen Koehl should be singled out for their help
and encouragement.

References

1. Kevin McCullen, John Thorvaldson, David DeMaris, and Patrick
Lampin, “A System for Floorplanning with Hierarchical
Placement and Wiring,” Proceedings of the 1990 European
Design Automation Conference, March 1990, pp. 262-265.

2. Ravi Nair, C. Leonard Berman, Peter S. Hauge, and Ellen J.
Yoffa, “Generation of Performance Constraints for Layout,”
IEEE Trans. Computer-Aided Design 8, No. 8, 860-874 (August
1989).

3. S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization
by Simulated Annealing,” Science, May 1983.

4. Bruce H. McCormick, Thomas A. DeFanti, and Maxine D.
Brown, “Visualization in Scientific Computing,” Comput. Graph.
21, No. 6, 3 (November 1987).

5. Gerald M. Murch, “Physiological Principles for the Effective Use
of Color,” IEEE Comput. Graph. & Appl. 4, No. 11, 49-53
(November 1984).

6. W. K. Luk, Paola Sipala, Markku Tamminen, Donald Tang, Lin
S. Woo, and C. K. Wong, “A Hierarchical Global Wiring
Algorithm for Custom Chip Design,” IEEE Trans. Computer-
Aided Design CAD-6, No. 4, 518-533 (July 1987).

7. Glenn E. Krasner and Stephen T. Pope, “A Cookbook for Using
the Model-View-Controller User Interface Paradigm,” J. Object-
Oriented Programming 1, No. 3, 26-49 (August 1988).

Received November 16, 1989; accepted for publication
September 7, 1990

IBM J. RES. DEVELOP. VOL.35 NO. 1/2 JANUARY/MARCH 1991

A filter presented for selection. The net view filter allows graph-
ics in the congestion subview to be queried to select a subset of
interesting nets, such as slow nets through a congested area. A
queue of nets is returned which can be reviewed, edited, or passed

|
.
¢ as input to other views and commands in the environment.

David L. DeMaris IBM General Technology Division, Burlington

Jacility, Essex Junction, Vermont 05452. Mr. DeMaris joined the

IBM Burlington laboratory in 1982 after receiving his B.S.E.E. from
the University of Illinois. He has worked on logic modeling, RISC
microprocessors, VLSI design methodologies, and computer-aided
design software. Mr. DeMaris’ technical interests include computer
architecture, design methodologies, design and programming
frameworks, and applications of discrete complex systems dynamics
in pattern recognition and data compression.

D. L. DeMARIS

243




