
238 

Visualization 
in a VLSl design 
automation 
system 

by D. L. DeMaris 

Problems  unique  to  the  visualization  of  complex, 
partially  automated  design  tasks  such  as VLSl 
system  design are  reviewed,  and  approaches 
are described.  The  design  domain  used  to 
illustrate  the  approaches is chip-level  “floor- 
planning,”  an  iterative-refinement  design 
methodology  for VLSl layout,  routing,  and  timing 
control.  The  general  view  structure  and  control 
structure are described.  Other  visualization 
topics  addressed  are  display  of  evolving  data, 
sequencing  of  overlay data,  an  interleaved 
temperature-color  metaphor  for  view 
consistency  and  clarity,  and  dynamically 
generated  iconic  measurement  tools. 

Introduction:  From CAD to full-lifecycle  design 
automation  frameworks 
Over the last  decade,  designers of various products have 
come to rely increasingly on computer-aided design 
(CAD) tools for editing and visualization. The initial 
design tools supported direct editing and straightforward 
visualization  of spatial design and text annotation in 
domains such as mechanical  design and mask layout for 
integrated  circuits.  Second-generation  software  began to 
support applications involving simulation, such as digital 
schematic entry coupled  with  behavioral simulation. 
Typically, the focus of these tools was narrow,  with 
separate programs and interfaces  used for each  successive 
stage  of  design. 

The current generation of CAD products supports 
complex,  partially automated design  tasks  (such as 
computer system  design)  consisting of many processing 
steps  performed in sequence. In such  applications,  several 
trends have  emerged to increase the need  for tool 
integration and visualization of results of what were 
previously  considered separate design  activities.  Designer 
productivity has  been  raised by automating a  range  of 
design  tasks; but the information generated  must  still be 
reviewed to balance requirements, invoke and control 
constructive automation tools, and make manual changes 
and edits where  necessary to improve designs or 
compensate for  imperfect automation. The  amount of 
information generated per designer  is  generally  greater, so 
that the cross-referencing  previously  acceptable among 
different  design and analysis  tools  would be 
unmanageable  today. Competitive pressures  have  also 
forced  designers (and CAD  software  developers) to take 
many more factors into account to maximize 
performance and minimize both design and 
manufacturing costs. 

Current logic circuit technologies offer such high 
circuit density,  small  devices, and narrow interconnection 
linewidths that system performance is  increasingly 
determined by the quality of the layout and routing. 
Since  a  greater portion of computer system  delay  is in 
wire interconnections, there is increased emphasis on 
early prediction and rapid convergence of  feasible layout 
and routing which  obey timing constraints. System 

QCopyright 1991 by International Business Machines Corporation. Copying in  printed form for private use is permitted without payment of royalty provided that ( I )  each 
reproduction is  done without alteration and (2) the Journal reference and  IBM copyright notice are included on the first page. The title and abstract, but no other portions, of 
this paper may be copied or distributed royalty free without further permission by computgr-based and other information-service systems. Permission to republish any other 

portion of this paper  must be obtained from the Editor. 

D. L. DeMARlS IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARYNARCH 1991 



Designers  must  manage simultaneous  and  often 
conflicting  requirements, so they  must  look  at  several { Fixing  timing  problems  using  network and layout subview. When 

's lavout  adiustments  are  made.  Domlation  and  Dorositv  lavout sub- 

1 IBM J. RES. DEVELOP. VOL. 35 NO. 1 ,  12 JANUARYIMARCH 1991 

239 

D. L. DeMARlS 



Slow paths overlaid on congestion map. After routing, exact paths 
are  shown, rather than the “air  line”  approximations. Paths are 
randomized for better presentation of patterns. Known macrocell 
pins  are  denoted by blocks;  unassigned  pins on random  logic 
(gate) macros are denoted with asterisks. Use of the interleaved 
spectrum clarifies the interpretation of vectors in the display, so 
that congested edges are not  mistaken for components in  the  net path. 

Subview 1 

Subview 2 

Interleaved spectmm. 

represented  as a band with  width corresponding to  the 
number of individual nets). 

by activating them for  all  displayed  design  objects, for a 
selected group of objects, or only for the currently 

The attributes and subviews are controlled or “scoped” 

240 selected  object.  If multiple floor-plan views in separate 

windows are used,  each  window  has independent scoping 
and control information. When an object  is  modified, the 
view update command is broadcast to all  copies of the 
application. All copies  use the same  model data in 
memory, maintaining consistency. The actual display of 
objects  is controlled by hierarchy-scoping commands. 
After an object  has  been  selected, its components may be 
displayed  (if  subviews are activated) or hidden. This 
hierarchy  scoping is maintained independently for  each 
window. 

The floor-planner can also  be  used as a control 
environment to invoke more  detailed  design  tasks  such as 
gate-level automatic and interactive placement and 
routing. The visual  analysis  provided by the floor-planner 
reveals the high-risk areas which should be  explored  first 
in the detailed  design  tools or in other views. (Gate-level 
synthesis and path tuning, or more fundamental 
structural changes, are accessed through other views for 
problems not solvable in physical  design.) 

Adaptive  presentation  of  incrementally  refined 
design 
In this new  design environment, the design data evolve 
incrementally over the full product lifecycle.  Design  is a 
flexible, iterative process  using constructive automation 
actions,  visualization, and analysis,  with  editing and 
parameter selection  between  steps.  Software  must take 
into account the incremental process and partially  known 
state,  adaptively  showing the data in the most well- 
defined representation available.  Forcing  designers to 
invoke more commands to see each increment would 
complicate an already  difficult task. Over time, we have 
reduced the number of required subviews  designers  must 
select,  unifying them and automatically presenting them 
as they are generated. This is an  important distinction 
between a design automation environment and other 
CAD or scientific  visualization  tasks that present 
complex, but complete and well-defined or measured 
data [ 41. 

Figures 1-3 illustrate the adaptive refinement of net 
path presentation, with  cues to indicate the state of each 
design  object. Solid lines in the default outline and 
porosity views indicate reusable circuit components; 
dashed  lines  represent  regions  where many small circuits 
should be  placed, indicating that designers  have  flexibility 
in the layout of that function. 

Consistency  and  color  mapping 
Another challenge in complex  design applications 
involves consistent visual presentation of  various 
subviews. The primary technique we employ is the 
systematic  use  of a color-mapping metaphor to indicate 
the quality of some  measured  result. A “temperature 
spectrum” metaphor is  used,  with  cool  colors  (blue- 

D. L. DeMARlS IBM J .  RES. DEVELOP. VOL. 35 NO. 112 JANUARYIMARCH 1 9 9 1  



green)  representing  feasible  designs or measured  good 
results and hot (yellow-red) indicating problems or 
marginal  results. This mapping is  applied uniformly in 
our application to diverse  visualization  elements:  local 
wire demand, global  wire  availability, routing congestion, 
and net  timing-target  goal completion. Because in some 
cases  two dimensions of information must be  displayed 
in the same space, we modify the color strategy to  an 
“interleaved hot-cool’’ metaphor (Figure 4). Experience 
has  shown  us that a  consistent purist use  of  a  “traffic 
light” metaphor is  confusing  when the subviews are 
overlaid. 

Interleaved  spectrum 
When the same scale  was  used for both subviews, we 
found that routes or portions of routes might  be  confused 
with cuts used to measure  congestion. We then settled on 
the interleaved  scheme, so that one subview  of  a 
concurrently displayed  pair  might use  green-red,  while 
the other used  blue-yellow. For example, in views  of 
global  routes to manage both routing congestion and 
timing  problems,  congested edges  use the green-red 
coding, and overlaid routes for individual nets use  blue- 
yellow coding for timing problems. The complementary 
colors used are also easily distinguished [5 ] .  

for concurrent subviews.  Proposed connection routes 
which  may  fail timing constraints are displayed  against 
the background of a routing congestion map. 

When both dimensions of the design can be  visualized 
effectively,  trade-offs can be made and problems in one 
domain which impact another can be  identified. Often, a 
few timing problems  arise  because  a  local  wire  congestion 
problem  results in “roundabout” or indirect wiring  paths. 
If chip population permits, more space can be allotted 
locally,  allowing the timing-sensitive paths to follow more 
direct routes.  Designers  may  also invoke the global router 
with  different  weighting  factors on timing or routing 
congestion [ 6 ] .  

Figure 3 illustrates the use  of alternating color mapping 

Color  mapping  for  program  control 
The same color-mapping  scheme  is  employed in cases 
where controls for automated subsystems are 
interactively  specified.  Cool  colors indicate that programs 
are free to modify  some  value or use  some  resource; hot 
colors indicate that some  value cannot be  changed or is 
blocked  for the program. 

Figure 5 illustrates the use  of this visual indicator to 
control and display the state of  global routing setup 
parameters. 

Dynamic  icon  generation 
A technique used in the floor-planner  which we believe 
to be  novel is the construction of iconic measurement 

IBM J .  RES. DEVELOP, VOL. 35 NO. 112 JANUARYIMARCH 1991 

tools  based on measured data. The designer can use a 
customized “ruler” built  for  each slow net to make  a 
floor-plan correction based on the maximum distance the 
connection can span while  meeting  its  performance 
target. This translates the abstract electrical  performance 
data into a  form  directly  related to the effective actions 
which can be taken in the interactive  floor-planning 
environment. 

route chosen  for that circuit connection. 
Figure 6 shows  a ruler icon, displayed  together  with the 

Interactive  checking 
The floor-planner is  designed to support a  range of  design 
styles, including full custom, and to work in  an 
exploratory  fashion  with  early  (possibly incomplete) data; 
as a  general  philosophy,  all constraints on layouts and 
legality conditions are optional. The many interactive 
operations supported allow  a  good  deal of robustness, 
which is useful for getting  good  results  when  developing 
new  design approaches or dealing  with inconsistent or 
incomplete data. Checks  for  illegalities can be turned on 
during interactive commands, or they  may  simply  be 
invoked after many edit operations as a  “debugger.” In 
this case,  floor-plan  violations are highlighted  visually  for 
ease in correcting overlap or local  wiring (population) 
errors. 

D. L. DeMARIS 

1 



Slow path with iconic timing ruler. A net with a timing problem is 
displayed.  The  cursor  (red  crosshair) is displayed as a  timing 
“ruler” sized to the maximum length the net could span horizon- 
tally or veftically and still meet a performance goal. Rulers for all 
nets reviewed may be placed into the timing view display and left 
until that subview is cleared.  The designer can use these as guides 
for floor-plan  changes such as  moving  circuits  or  changing  the 
shapes of flexible circuit regions. 

Figure 7 illustrates the use  of crosshatched fill patterns 
to indicate design  objects  which  violate  design constraints 
or overlap  rules. 

Data  overload:  detail  hiding,  sequencing 
Perhaps the most  challenging  visualization  problem to 
address  is that of data overload.  While we have touched 
on this regarding the use  of multiple views to manage 
conflicting requirements, the need  for greater detail 
within a single  analysis  subview  such as routing or timing 
poses  special  requirements. 

In some  cases we show abstract maps with optional 
detailed attributes, such as exact routing supply and 
demand numbers. In this case, numerical values are 
shown  only  for  problem  regions. It is still  possible to 
generate  busy  overlaid  displays in which individual paths 
cannot be  distinguished, or interfere with other important 
data in making adjustments. 

The only alternative to simultaneous presentation is 
sequential presentation; we have  employed a uniform 
approach based on data filters and queues.  After  selecting 
a set of interesting  objects  (such as slow paths or nets in a 

242 congested  region), a design  may iterate through the queue 

D. L. DeMARlS 

I Error checking. Floor-plan errors are highlighted for  debugging. 
f Crosshatched areas indicate a violation of design rules, such as over- 
! lap or regions too small to contain the logic specified for them. 

one at a time, draw  all at once, or select any subset. 
When  drawing the queue one at a time, each  object  may 
be  overlaid on the previous  object, or each  subview  may 
be  cleared after it has  been  displayed. 

We have  also  used animation on subview  sequences 
such as timing problems or congestion to give an 
overview  leading to conclusions or further queries.  When 
presenting data sequences, we have  developed  heuristics 
to draw attention, so that users are aware that a new item 
is displayed  even though the actual “data points” may  be 
the same as those for the item just previously  displayed. 
For example, we randomize points within the legal range 
of unassigned  values  when  displaying  net  paths, so that a 
number of similar global routes are distinguished. The 
randomization technique is also used to spread out the 
display points in simultaneous or overlaid  displays. 

Figures 1 and 3 illustrate the use  of randomization in 
network  displays to help  distinguish individual data 
objects  with similar or identical data. 

Figure 8 shows a selection menu used  for  filtering 
network views. 

Summary  and  future  work 
While the visualization  aspects of the floor-plan  system 
are still  undergoing  refinement, it has already  proven 
useful to designers. It has  also  been  of  value to algorithm 
developers,  who obtain much better feedback  from  users 

IBM I. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARYMARCH 1 9 9 1  



on problems than was obtained with  previous  batch- 
oriented  systems, in which only  final  detailed  results, 
such as exact routes on plots of finished  designs,  could  be 
examined. 

Future developments are expected to take the form of 
generalizing the techniques and  data structures described 
here and incorporating them into  an object-oriented 
application  framework,  helping to enforce  consistency 
and reduce development time. Given that many previous 
object-oriented  frameworks and view/control paradigms 
[7] originated on monochrome displays, the systematic 
use  of color at the framework  level  still  needs definition 
and standardization. Other features discussed  here,  such 
as stepping through queued subviews and dynamically 
built  iconic measurement tools, should be  provided as 
reusable  framework components. 

Acknowledgments 
The interactive and visual  aspects of the Maple  floor-plan 
editor owe much to the efforts  of Dan Mainiero, Tim 
Holohan, John Thorvaldson, William  Livingstone, and 
particularly  Kevin  McCullen. We also appreciate the 
comments and patience  of  early users; Patrick Lampin 
and Juergen  Koehl should be  singled out for their help 
and encouragement. 

References 
1. Kevin  McCullen, John Thorvaldson, David  DeMaris, and Patrick 

Lampin, “A System  for Floorplanning with Hierarchical 
Placement and Wiring,” Proceedings of the  1990  European 
Design Automation Conference, March 1990,  pp.  262-265. 

2.  Ravi  Nair, C. Leonard  Berman,  Peter S. Hauge, and Ellen J. 
Yoffa, “Generation of Performance Constraints for Layout,” 
IEEE Trans. Computer-Aided Design 8, No.  8,  860-874  (August 
1989). 

3. S. Kirkpatrick, C. D. Gelatt, Jr., and M.  P.  Vecchi, “Optimization 
by Simulated Annealing,” Science, May  1983. 

4.  Bruce  H. McCormick, Thomas A. DeFanti, and Maxine  D. 
Brown, “Visualization in  Scientific Computing,” Comput. Graph. 
21, No. 6 ,  3 (November 1987). 

5.  Gerald M. Murch, “Physiological Principles for the Effective Use 
of Color,” IEEE Comput. Graph. & Appl. 4, No. 1 1, 49-53 
(November 1984). 

6. W. K. Luk,  Paola  Sipala, Markku Tamminen, Donald Tang,  Lin 
S. Woo, and C. K. Wong, “A Hierarchical Global Wiring 
Algorithm  for Custom Chip Design,” IEEE Trans. Computer- 
Aided Design CAD-6, No. 4, 518-533 (July 1987). 

7. Glenn E. Krasner and Stephen T. Pope, “A Cookbook for  Using 
the Model-View-Controller User Interface Paradigm,” J.  Object- 
Oriented  Programming 1, No. 3, 26-49 (August 1988). 

Received  November 16, 1989; accepted for publication 
September 7, 1990 

IBM J. RES. DEVELOP. VOL. 35 NO. 112 JANUAKYIMARCH 1991 

I A filter presented  for selection. The  net  view filter allows  graph- 
{ ics  in  the  congestion  subview  to be queried  to  select a subset of 

David L. DeMaris IBM  General  Technology Division, Burlington 
Iucility, Essex Junction,  Vermont 05452. Mr. DeMaris joined the 
IBM Burlington laboratory in  1982 after receiving  his B.S.E.E. from 
the  University  of  Illinois. He has worked on logic  modeling,  RISC 
microprocessors, VLSI  design  methodologies, and computer-aided 
design  software. Mr. DeMaris’ technical interests include computer 
architecture, design  methodologies,  design and programming 
frameworks, and applications of discrete complex  systems dynamics 
in pattern recognition and data compression. 

243 

D. L. DeMARlS 


