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Many  engineering  and  scientific  problems 
involve  the  solution  of large  sparse  linear 
systems.  To  determine  an  optimal  solving 
strategy for  such  systems, it  is  essential to 
understand  the  large-  and  small-scale  properties 
of  the  associated  sparse  matrices.  We  present a 
graphic  tool  to analyze  the sparsity pattern and 
the  numeric  structure of these  matrices. 
Through  examples,  drawn  from  our  practical 
experience,  we  demonstrate  the  effectiveness 
and  the  interactive  features of  the  tool. These 
features  include zooming,  scrolling  in  different 
directions,  sorting of  rows and/or  columns,  and 
selective  plotting,  according  to  the  values  of  the 
matrix  coefficients. 

1. Introduction 
Solving a large  sparse  system of linear equations is a 
common task in many large-scale  scientific or 
engineering computations. Such  systems  have the form 
Ax = b, where A is a M x A4 matrix, b is the known 
right-hand-side  vector, and x is the unknown vector. In 

problems  arising  from the discretization  of a set  of partial 
differential equations, a given node is only connected to a 
few other neighboring  nodes; consequently, each 
equation of the system  has  only a few nonzero elements. 
Thus, a large number of the coefficients  of A are zero, 
and the matrix  is  therefore  called sparse. 

With the advent of large supercomputers, it is now 
possible to solve  very  large  sparse linear problems  (i.e., 
with A4 - 104-106). A number of both direct [ 11 and 
iterative [2] algorithms to solve  such  systems  have  been 
developed  over  time. Their performance is strongly 
dependent on the specific  problem, as well  as on the 
computing facilities currently available.  It is therefore 
necessary to obtain some  detailed information about the 
peculiar properties of a given  matrix  before  choosing the 
appropriate solving technique. 

The experience of the authors has  shown that one can 
gain  insight  regarding the choice of a solving  strategy if 
one can visualize the sparsity pattern of the matrix. 
Moreover,  even an approximate idea of the values of its 
coefficients  is often useful. It is  clear that only a graphic 
tool can provide  all this information quickly. 
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menu  on  the  left  contains  the  white  input  fields  that  can  be  utilized 
to interactively  change  the  graphic plot. 

As a typical  example of the utilization of such a tool, 
the graphic appearance of a block structure for a large 
matrix immediately  suggests that a general  solver  may 
not be the most  efficient one. In fact, a block structure 
suggests a “block  algebra” as a good  solving  strategy [3]. 

An important detail of such a graphic tool is  the 
possibility  of  analyzing the sparse matrix structure when 
the matrix is  subjected to a given permutation. In  fact, 
some features  may appear only for a particular matrix 
permutation, and the solving  strategy  may  be 
correspondingly  different. For example, matrix 
permutations are useful in the case  of  skyline  solvers [4] 
to reduce the bandwidth of the matrix. Another example 
shows  how a particular class  of  those permutations allows 
the vectorized solution of sparse triangular systems [5 ] .  

In  Section 2 we describe the properties of the graphic 
tool, while in Section 3 we show through examples how 
these  properties can be  used to collect  relevant 
information about the matrix. 

2. Graphic tool 
To analyze the sparsity structure of matrices, a graphic 
tool has  been  developed,  based on  GDDM (Graphical 
Data Display  Manager [6 ,  7]), which can run under VM 
or MVS/TSO operating systems and operates on all the 
graphic  devices supported by GDDM (including the 5080 
special  device). 

The tool comprises a subroutine (MATPLO) that can 
be used through a simple FORTRAN call in a GDDM 

232 environment as follows: 
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C  To initialize GDDM 
CALL  FSlNlT 

. . . . . . . 

* . . . .  

C Call  to  the  sparse  matrix  plotting  routine 
CALL MATPLO (list of arguments) 

. . . . . . . 

. . . . . . . 

C To  terminate GDDM 
CALL FSTERM 

. . . . . . . 

where the input arguments, described in detail in [8], 
refer to the matrix in the standard row-wise format. 

When the subroutine is  called, a menu is presented on 
the left  side  of the screen, indicating the parameters that 
the subroutine actually uses to plot the matrix. Once 
these parameters have  been  selected, the matrix picture is 
displayed on the screen,  as  shown in Figure 1. (On a 
5080 high-resolution  device,  which  uses a dual screen, the 
menu is  shown  separately on the alphanumeric screen.) 
The structure of the matrix is  visualized inside a square 
frame,  using a colored  symbol for each nonzero element. 
By default, some  given colors are used to tag the elements 
of the diagonal, and of the lower and upper triangles of 
the matrix. Alternatively, if sets of elements are to be 
logically grouped together  according to a given criterion, 
the user can provide additional input information to 
label  with the same color all the matrix elements 
belonging to a given  set. 

Many features of the plot can be  changed  interactively. 
It is possible to zoom in to  the plot by defining a window 
on the matrix either dynamically  with the aid of the 
cursor or by directly  typing the numerical bounds of the 
submatrix in the proper input fields  of the screen. Other 
functions permit scrolling up and down or diagonally and 
changing the thickness of the represented  elements. If the 
matrix  size  is  very  large (number of  rows -lo5), plotting 
can be quite time-consuming, depending on the device 
utilized. To circumvent this problem, we introduced into 
the menu an option to represent matrix rows  only at 
regular  intervals. This way one can get a coarse 
representation of the whole matrix, which  always  proves 
to be  very  useful  as a starting point for a later and closer 
analysis. 

An important feature of this tool is the capability of 
supplying a permutation vector to sort the matrix 
elements. This is  useful in testing  interactively the effect 
of the permutation on  the sparsity pattern of the matrix. 
Two  cases are allowed: 

1. A unique permutation P is specified  for both rows 
and columns, so that the transformed matrix  is 
a = PAP”. 
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2. Two permutations Wand P are provided for rows and 
columns, respectively, so that the transformed matrix 
is 2 = WAP“. This corresponds to the case in which 
the solution vector x must be sorted  with an ordering 
different  from that of the right-hand-side  vector b. 

It is  worthwhile to note that the colors  used to 
represent  matrix elements stay the same under any 
permutation. This way, after a permutation is  applied, it 
is  possible to identify the source of a given element, 
independently of the coloring  strategy. For example, if 
the default  coloring  is used, it is possible to tell  whether 
the given element was  originally  placed in the upper or 
lower  triangle, or along the main diagonal. 

interactively obtained by selecting an arbitrary range of 
values  for the matrix coefficients, thus excluding  all of the 
other values  from the actual plot: This is  particularly 
useful  for the analysis of the numeric structure of the 
matrix. This feature can be  efficiently combined with 
coloring information to tag  with  different  colors the 
elements belonging to different  numerical  ranges. 

Another degree of freedom is the capacity to enrich the 
plot by providing  some additional graphics. Features such 
as a title, lines, or grids can be  added to the plot by 
writing corresponding FORTRAN code in a subroutine 
with the special name $USER, to be linked just before 
the MATPLO subroutine. The x and y coordinates must 
lie  within the range 1 to M ,  M being the dimension of 
the matrix. Any variable required by the subroutine must 
be  passed through COMMON  blocks,  shared by the main 
program and subroutine $USER, while parameters 
corresponding to the current plot are provided to $USER 
through a specially  named COMMON block. 

At any time the content of the plot  visualized on the 
screen  can  be  saved in a file to be  successively  included in 
a document or printed separately on a laser printer. 

3. Some applications of the  tool 
We present  two  examples to demonstrate the usefulness 
of the graphic  tool. The first comes  from a large-scale 
reservoir-modeling study which  uses a finite difference 
scheme. The second  one, taken from another reservoir- 
modeling  package,  comes  from the analysis of the 
vectorization  strategy  for an iterative linear system 
solver [ 5 ] .  

Reservoir  modeling is an important source of 
“difficult”  matrices,  i.e., of linear systems  which are very 
hard to solve.  In this area, the partial differential 
equations governing the multicomponent oil and water 
flows are often  discretized on a multilayer  rectangular 
domain with  relatively  coarse horizontal resolution, and 
with  local  grid  refinements to describe in detail the flow 
around oil wells. The number of layers  is  generally much 

Numeric information about the matrix can be 
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3D grid. Standard colors are employed: 
and lower triangles, respectively, and 

smaller than the number of mesh points in each 
horizontal direction; thus, the flow has a roughly 
horizontal nature. Moreover,  each  space node contains 
many physical  variables  such as pressure and saturation 
of water and the different  oil components. 

Block strategy  in  reservoir  modeling 
Figure 2 represents the matrix of the linear system 
associated  with the structure of a four-layer, double- 
porosity oil  reservoir  discretized  with  finite  differences, 
where the number of nodes in each  layer  is 
approximately a thousand. Since the number of 
simulated partial differential equations is three, there are 
three variables-the pressure and the saturations of oil 
and water-at each  space point. Thus, we have an 
estimated amount of about 3 (variables) x 2 (double- 
porosity) X 4 (layers) X 1000 (nodes) = 24 000 
unknowns. The associated  system  is thus a large  one, and 
represents a challenge  for  any  solving algorithm. 

interesting pattern, and the enlargement of a portion of 
the main  diagonal,  which  is  shown in Figure 3, provides 
no significant details to help in choosing the appropriate 
solver. On the other hand, Figures 4 and 5 show the 
same  matrix after the application of a particular 
permutation. Here a well-defined  block structure, with 
block  length 24, can  be detected. This permutation is 

Visual  inspection of Figure 2 does not show  any 
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Medium-scale block structure. The enlargement along the diagonal I of the sorted matrix in Figure 4 clearly indicates the 24 X 24 block 1 structure given by the permutation. Note the use of subroutine 
f $USER (see Section 2) to delimit the blocks in order to enhance 

their graphic appearance. 

obtained by coupling  all the variables  which are aligned 
on each  vertical column of the three-dimensional mesh. 
This coupling is a very reasonable  one,  since in oil 
reservoirs the flow has a roughly horizontal nature and 
does not vary  strongly  along the vertical  direction. In 
particular, the block  length  may  be understood in terms 
of the above description: 24 = 3 (variables) x 2 (double- 
porosity) X 4 (layers). 

There is another important point. The graphic tool has 
revealed that a certain physically  reasonable permutation 
organizes the matrix in a block structure; this in  turn 
suggests that the solving  strategy must take blocks into 
consideration. By exploiting  blocks, we can take into 
account the vertical correlation of the variables and 
therefore control the propagation of errors, thus 
achieving a faster  convergence  rate. This is not surprising. 
Indeed,  when the structure of the solution does not vary 
much for different  layers, it is convenient to conceptually 
group together the nodes  across the layers. 

We have  checked that, in this case, a block  successive 
overrelaxation  (BSOR) method gives the shortest total 
computational time by more than  an order of magnitude, 
when compared to the standard SOR (successive 
overrelaxation) or even more advanced iterative solvers 
such as GMRES (generalized minimum residual) or CGS 
(conjugate gradient squared) [ 2 ] .  In this case, direct 
solvers  definitely  show the worst performance. 
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.. . . .. . 

b Wavefont technique for sparse  linear systems 
Another interesting  example of the usefulness of the 
graphic  tool comes from the field  of numeric software. A 
key problem in supercomputing is the vectorization of 
basic  kernels of linear algebra,  since  these constitute the 
backbone of many routines, such as solvers for sparse 
linear systems [9] .  Here we consider how the various 
features of this tool can  help in designing and testing an 
efficient  vectorized  solver for a linear system. 

associated matrix into a lower ( L )  and an upper ( U )  
triangular matrix such that A = LU. This way the 
problem  is transformed into the solution of  two 
triangular systems.  In  fact,  by  defining the vector y = Ux, 
one first  solves the lower triangular system Ly = b, and 
then the upper triangular one Ux = y. 

When the system is sparse, one must try to keep the 
sparsity structure as close as possible to the original 
system.  Among the possible factorizations, a technique 
known  as incomplete LU factorization (ILU) [ 101 is often 
used,  since this produces factors L and U which  have 
respectively the same sparsity pattern as the lower and 
upper triangles of the original  matrix.  While this 
technique provides  only an approximate solution of the 
system,  it can be  regarded as a good starting point for 
other solving  methods. The ILU technique is  used  as a 
preconditioner for the linear system Ax = 6, in order to 
lower the condition  number of the problem, i.e., the value 
( (A((  . 1IA-l 11, where (!A 11 is the norm of matrix A.  The 

A common way to solve a linear system  is to factor the 

Ordering by wavefronts. The lower incomplete triangular factor of 1 the matrix of Figure 6 ,  after reordering by wavefronts (see Section 
3). The grey horizontal lines delimiting the wavefronts were drawn 
using subroutine $USER. The boxes underneath the main diagonal 1 highlight the underlying block structure. Coloring is also used to t tag the different wavefronts. 

modified  system (LU)”Ax = (LU)-lb is then solved, 
instead of Ax = b. If the preconditioner is  good, (LU)-’A 
is better conditioned than A.  Preconditioning is  often 
crucial in obtaining a rapid  convergence in many 
iterative algorithms when  applied to large linear systems. 

Iterative  solvers are often used  with ILU factorization 
in a two-step  procedure.  First,  once the proper ILU 
factorization is computed and verified, an iterative loop 
begins. At each iteration, preconditioning inside the 
iterative loop requires the solution of an upper and a 
lower  sparse triangular system in addition to the usual 
operations for the nonpreconditioned sparse  solver  (such 
as GMRES or CGS [2]). This method can be  efficiently 
vectorized if the unknowns of such triangular systems are 
reordered in sets of noninterconnected variables 
(wavejronts) that can be solved concurrently [ 51. 

Once the different  wavefronts  have  been  identified [5 ] ,  
the matrix must be  rearranged  accordingly in order to be 
able to separate the variables into independent groups, 
thus allowing  for  vectorization.  Technically this 
corresponds to sorting the lower ( L )  and the upper ( U )  
factors  with a “lower-wavefront” and an “upper- 
wavefront” permutation, respectively. Figures 6 and 7 
show the effect  of wavefront  reordering of the lower 
triangular part of a matrix coming from an oil  reservoir 
problem  discretized on a 3D irregular  grid.  Figure 6 235 
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Enhancement of numeric  structure  by color tagging. Plot of the 

red turquoise  and yellow, respectively; the  diagonal is shown in 
selection Of matrix  COeffiCientS. Elements from the  matrix Of entire  matrix of Figure 6 .  The elements from  Figures 8 and 9 =e 
6, selected for a specific range (]-lo3) of numeric  values 

and  displayed  by using the  interactive  features of the  visualization 

this plot we have  made  use  of the user-provided routine 
$USER to obtain the additional horizontal lines that 
delimit the different  wavefronts.  Vectorization  takes  place 
inside each horizontal band, because the variables 
belonging to the same  wavefront do not depend on each 
other. 

Pictorial representation of the effect  of wavefront 
reordering is very important because it gives an 
immediate idea of the vectorization potential for a given 
linear  system. In other words, the larger the number of 
elements belonging to the same  wavefront  (i.e., the dots 
having the same color in Figure 7), the longer the 
corresponding vector and the better the achievable 
performance. Another important point is understanding 
the extent to which the structure of the matrix is affected 
by the permutation in terms of bandwidth: This is  crucial 
in minimizing the memory  traffic.  Figure 7 shows  how 
the algorithm performs well for both of the above points. 
In  fact,  graphics immediately shows that the bulk of the 
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one. Moreover, the average  length of the wavefronts  is 
large  enough to allow a good  vectorization of the 
computational kernel, as we observed in performance 
tests. 

depicts the matrix with no wavefront  reordering  (i.e., no Employing the same oil  reservoir matrix, we  show in 
permutation). Figure 7 shows  its  lower  triangle after the Figures 8,  9, and 10 how it is  possible to investigate the 
“lower-wavefront” permutation has  been  applied. For numeric structure of a matrix using various techniques 



provided by this tool. One  method consists in selecting 
only those values that belong to an arbitrary interval. 
This can be done interactively using the menu options: 
Once a given interval is  specified changing the input 
values to the menu, only the chosen range  is plotted. We 
note incidentally that this includes the possibility of 
selecting the values external to a given interval, not just 
those which are inside the specified  range. Figures 8 and 
9 show the elements of the matrix for two different 
ranges. The  other method exploits the capability of 
providing color information. Figure 10 contains  the same 
information as  the two previous figures, but identifies the 
different numeric ranges by different colors on the same 
plot. 
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Conclusions 
We have  seen that a key issue  in many scientific and 
engineering problems is the efficient solution of  very  large 
sparse linear systems. Once the problem reaches a 
considerable size, it becomes inconvenient and 
prohibitive to gain insight into choosing a solving 
technique solely by inspection of the numeric data. A 
pictorial representation is then crucial in obtaining 
synthetic information on the specific problem. To this 
end an easy-to-use graphic tool based on GDDM has 
been developed and found to be  helpful to analyze 
interactively the structure of the large sparse matrices 
encountered in many practical problems. The graphic 
routine MATPLO, introduced in  this paper, provides a 
useful and flexible tool for investigating the structure of 
such matrices. Some examples have been presented to 
demonstrate  the idea that a visual inspection of the 
sparsity and numeric structure of a given matrix may 
effectively help in choosing and designing the optimal 
solution strategy for the corresponding linear system. 
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