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Many engineering and scientific problems
involve the solution of large sparse linear
systems. To determine an optimal solving
strategy for such systems, it is essential to
understand the large- and small-scale properties
of the associated sparse matrices. We present a
graphic tool to analyze the sparsity pattern and
the numeric structure of these matrices.
Through examples, drawn from our practical
experience, we demonstrate the effectiveness
and the interactive features of the tool. These
features include zooming, scrolling in different
directions, sorting of rows and/or columns, and
selective plotting, according to the values of the
matrix coefficients.

1. Introduction

Solving a large sparse system of linear equations is a
common task in many large-scale scientific or
engineering computations. Such systems have the form
Ax = b, where A is a M X M matrix, b is the known
right-hand-side vector, and x is the unknown vector. In

problems arising from the discretization of a set of partial
differential equations, a given node is only connected to a
few other neighboring nodes; consequently, each
equation of the system has only a few nonzero elements.
Thus, a large number of the coefficients of A are zero,
and the matrix is therefore called sparse.

With the advent of large supercomputers, it is now
possible to solve very large sparse linear problems (i.e.,
with M ~ 10°-10%). A number of both direct [1] and
iterative [2] algorithms to solve such systems have been
developed over time. Their performance is strongly
dependent on the specific problem, as well as on the
computing facilities currently available. It is therefore
necessary to obtain some detailed information about the
peculiar properties of a given matrix before choosing the
appropriate solving technique.

The experience of the authors has shown that one can
gain insight regarding the choice of a solving strategy if
one can visualize the sparsity pattern of the matrix.
Moreover, even an approximate idea of the values of its
coeflicients is often useful. It is clear that only a graphic
tool can provide all this information quickly.
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Typical screen displaying the application on a 3179 terminal. The
menu on the left contains the white input fields that can be utilized
to interactively change the graphic plot.

As a typical example of the utilization of such a tool,
the graphic appearance of a block structure for a large
matrix immediately suggests that a general solver may
not be the most efficient one. In fact, a block structure
suggests a “block algebra” as a good solving strategy [3].

An important detail of such a graphic tool is the
possibility of analyzing the sparse matrix structure when
the matrix is subjected to a given permutation. In fact,
some features may appear only for a particular matrix
permutation, and the solving strategy may be
correspondingly different. For example, matrix
permutations are useful in the case of skyline solvers [4]
to reduce the bandwidth of the matrix. Another example
shows how a particular class of those permutations allows
the vectorized solution of sparse triangular systems [5].

In Section 2 we describe the properties of the graphic
tool, while in Section 3 we show through examples how
these properties can be used to collect relevant
information about the matrix.

2. Graphic tool
To analyze the sparsity structure of matrices, a graphic
tool has been developed, based on GDDM (Graphical
Data Display Manager [6, 7]), which can run under VM
or MVS/TSO operating systems and operates on all the
graphic devices supported by GDDM (including the 5080
special device).

The tool comprises a subroutine (MATPLO) that can
be used through a simple FORTRAN call in a GDDM
environment as follows:
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C To initialize GDDM
CALL FSINIT

C Call to the sparse matrix plotting routine
CALL MATPLO (list of arguments)

C To terminate GDDM
CALL FSTERM

where the input arguments, described in detail in [8],
refer to the matrix in the standard row-wise format.

When the subroutine is called, a menu is presented on
the left side of the screen, indicating the parameters that
the subroutine actually uses to plot the matrix. Once
these parameters have been selected, the matrix picture is
displayed on the screen, as shown in Figure 1. (On a
5080 high-resolution device, which uses a dual screen, the
menu is shown separately on the alphanumeric screen.)
The structure of the matrix is visualized inside a square
frame, using a colored symbol for each nonzero element.
By default, some given colors are used to tag the elements
of the diagonal, and of the lower and upper triangles of
the matrix. Alternatively, if sets of elements are to be
logically grouped together according to a given criterion,
the user can provide additional input information to
label with the same color all the matrix elements
belonging to a given set.

Many features of the plot can be changed interactively.
It is possible to zoom in to the plot by defining a window
on the matrix either dynamically with the aid of the
cursor or by directly typing the numerical bounds of the
submatrix in the proper input fields of the screen. Other
functions permit scrolling up and down or diagonally and
changing the thickness of the represented elements. If the
matrix size is very large (number of rows ~10°), plotting
can be quite time-consuming, depending on the device
utilized. To circumvent this problem, we introduced into
the menu an option to represent matrix rows only at
regular intervals. This way one can get a coarse
representation of the whole matrix, which always proves
to be very useful as a starting point for a later and closer
analysis.

An important feature of this tool is the capability of
supplying a permutation vector to sort the matrix
elements. This is useful in testing interactively the effect
of the permutation on the sparsity pattern of the matrix.
Two cases are allowed:

1. A unique permutation P is specified for both rows
and columns, so that the transformed matrix is
A=P4aP™",
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2. Two permutations W and P are provided for rows and
columns, respectively, so that the transformed matrix
is A = WAP™", This corresponds to the case in which
the solution vector x must be sorted with an ordering
different from that of the right-hand-side vector b.

It is worthwhile to note that the colors used to
represent matrix elements stay the same under any
permutation. This way, after a permutation is applied, it
is possible to identify the source of a given element,
independently of the coloring strategy. For example, if
the default coloring is used, it is possible to tell whether
the given element was originally placed in the upper or
lower triangle, or along the main diagonal.

Numeric information about the matrix can be
interactively obtained by selecting an arbitrary range of
values for the matrix coefficients, thus excluding all of the
other values from the actual plot: This is particularly
useful for the analysis of the numeric structure of the
matrix. This feature can be efficiently combined with
coloring information to tag with different colors the
elements belonging to different numerical ranges.

Another degree of freedom is the capacity to enrich the
plot by providing some additional graphics. Features such
as a title, lines, or grids can be added to the plot by
writing corresponding FORTRAN code in a subroutine
with the special name $USER, to be linked just before
the MATPLO subroutine. The x and y coordinates must
lie within the range 1 to M, M being the dimension of
the matrix. Any variable required by the subroutine must
be passed through COMMON blocks, shared by the main
program and subroutine $USER, while parameters
corresponding to the current plot are provided to $USER
through a specially named COMMON block.

At any time the content of the plot visualized on the
screen can be saved in a file to be successively included in
a document or printed separately on a laser printer.

3. Some applications of the tool

We present two examples to demonstrate the usefulness
of the graphic tool. The first comes from a large-scale
reservoir-modeling study which uses a finite difference
scheme. The second one, taken from another reservoir-
modeling package, comes from the analysis of the
vectorization strategy for an iterative linear system
solver [5].

Reservoir modeling is an important source of
“difficult” matrices, i.c., of linear systems which are very
hard to solve. In this area, the partial differential
equations governing the multicomponent oil and water
flows are often discretized on a multilayer rectangular
domain with relatively coarse horizontal resolution, and
with local grid refinements to describe in detail the flow
around oil wells. The number of layers is generally much
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Oil reservoir matrix from a 3D grid. Standard colors are employed:
red and blue for the upper and lower triangles, respectively, and
white for the main diagonal.

smaller than the number of mesh points in each
horizontal direction; thus, the flow has a roughly
horizontal nature. Moreover, each space node contains
many physical variables such as pressure and saturation
of water and the different oil components.

o Block strategy in reservoir modeling

Figure 2 represents the matrix of the linear system
associated with the structure of a four-layer, double-
porosity oil reservoir discretized with finite differences,
where the number of nodes in each layer is
approximately a thousand. Since the number of
simulated partial differential equations is three, there are
three variables—the pressure and the saturations of oil
and water—at each space point. Thus, we have an
estimated amount of about 3 (variables) X 2 (double-
porosity) X 4 (layers) X 1000 (nodes) = 24 000
unknowns. The associated system is thus a large one, and
represents a challenge for any solving algorithm.

Visual inspection of Figure 2 does not show any
interesting pattern, and the enlargement of a portion of
the main diagonal, which is shown in Figure 3, provides
no significant details to help in choosing the appropriate
solver. On the other hand, Figures 4 and 5 show the
same matrix after the application of a particular
permutation. Here a well-defined block structure, with
block length 24, can be detected. This permutation is
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! Detail of matrix shown in Figure 2. The enlargement shows small
g 3 X 3 squares representing the three variables considered: pressure,
and saturations of oil and water.

Effect of matrix permutation. The matrix of Figure 2 sorted accord-
ing to the permutation described in the text. Since standard coloring
is used, it is possible to trace the matrix elements back to their
initial positions.
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Medium-scale block structure. The enlargement along the diagonal
of the sorted matrix in Figure 4 clearly indicates the 24 X 24 block
structure given by the permutation. Note the use of subroutine
$USER (see Section 2) to delimit the blocks in order to enhance
their graphic appearance.

obtained by coupling all the variables which are aligned
on each vertical column of the three-dimensional mesh.
This coupling is a very reasonable one, since in oil
reservoirs the flow has a roughly horizontal nature and
does not vary strongly along the vertical direction. In
particular, the block length may be understood in terms
of the above description: 24 = 3 (variables) X 2 (double-
porosity) X 4 (layers).

There is another important point. The graphic tool has
revealed that a certain physically reasonable permutation
organizes the matrix in a block structure; this in turn
suggests that the solving strategy must take blocks into
consideration. By exploiting blocks, we can take into
account the vertical correlation of the variables and
therefore control the propagation of errors, thus
achieving a faster convergence rate. This is not surprising.
Indeed, when the structure of the solution does not vary
much for different layers, it is convenient to conceptually
group together the nodes across the layers.

We have checked that, in this case, a block successive
overrelaxation (BSOR) method gives the shortest total
computational time by more than an order of magnitude,
when compared to the standard SOR (successive
overrelaxation) or even more advanced iterative solvers
such as GMRES (generalized minimum residual) or CGS
(conjugate gradient squared) [2]. In this case, direct
solvers definitely show the worst performance.
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Oil reservoir matrix from a 3D irregular grid. Standard coloring.

o Wavefront technique for sparse linear systems

Another interesting example of the usefulness of the
graphic tool comes from the field of numeric software. A
key problem in supercomputing is the vectorization of
basic kernels of linear algebra, since these constitute the
backbone of many routines, such as solvers for sparse
linear systems [9]. Here we consider how the various
features of this tool can help in designing and testing an
efficient vectorized solver for a linear system.

A common way to solve a linear system is to factor the
associated matrix into a lower (L) and an upper (U)
triangular matrix such that 4 = LU. This way the
problem is transformed into the solution of two
triangular systems. In fact, by defining the vector y = Ux,
one first solves the lower triangular system Ly = b, and
then the upper triangular one Ux = y.

When the system is sparse, one must try to keep the
sparsity structure as close as possible to the original
system. Among the possible factorizations, a technique
known as incomplete LU factorization (ILU) [10] is often
used, since this produces factors L and U which have
respectively the same sparsity pattern as the lower and
upper triangles of the original matrix. While this
technique provides only an approximate solution of the
system, it can be regarded as a good starting point for
other solving methods. The ILU technique is used as a
preconditioner for the linear system Ax = b, in order to
lower the condition number of the problem, i.c., the value
Al - 147", where || 4| is the norm of matrix 4. The
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Ordering by wavefronts. The lower incomplete triangular factor of
the matrix of Figure 6, after reordering by wavefronts (see Section
3). The grey horizontal lines delimiting the wavefronts were drawn
using subroutine SUSER. The boxes undemeath the main diagonal
highlight the underlying block structure. Coloring is also used to
tag the different wavefronts.

%
%
!
!

modified system (LU)'Ax = (LU)™'b is then solved,
instead of Ax = b. If the preconditioner is good, (LU)"'4
is better conditioned than A. Preconditioning is often
crucial in obtaining a rapid convergence in many
iterative algorithms when applied to large linear systems.

Iterative solvers are often used with ILU factorization
in a two-step procedure. First, once the proper ILU
factorization is computed and verified, an iterative loop
begins. At each iteration, preconditioning inside the
iterative loop requires the solution of an upper and a
lower sparse triangular system in addition to the usual
operations for the nonpreconditioned sparse solver (such
as GMRES or CGS [2]). This method can be efficiently
vectorized if the unknowns of such triangular systems are
reordered in sets of noninterconnected variables
(wavefronts) that can be solved concurrently [5].

Once the different wavefronts have been identified 5],
the matrix must be rearranged accordingly in order to be
able to separate the variables into independent groups,
thus allowing for vectorization. Technically this
corresponds to sorting the lower (L) and the upper (U)
factors with a “lower-wavefront” and an “upper-
wavefront” permutation, respectively. Figures 6 and 7
show the effect of wavefront reordering of the lower
triangular part of a matrix coming from an oil reservoir
problem discretized on a 3D irregular grid. Figure 6
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Value selection of matrix coefficients. Elements from the matrix of
Figure 6, selected for a specific range (1-10°) of numeric values
and displayed by using the interactive features of the visualization
tool.

SRR

Value selection of matrix coefficients. Display of elements from
the matrix of Figure 6 for the range of (10°-10%). The remaining
elements belong to the diagonal and have negative values.

depicts the matrix with no wavefront reordering (i.e., no
permutation). Figure 7 shows its lower triangle after the
“lower-wavefront” permutation has been applied. For

G. V. PAOLINI AND P. SANTANGELO

§ Enhancement of numeric structure by color tagging. Plot of the

entire matrix of Figure 6. The elements from Figures 8 and 9 are
z colored turquoise and yellow, respectively; the diagonal is shown in
red.

this plot we have made use of the user-provided routine
$USER to obtain the additional horizontal lines that
delimit the different wavefronts. Vectorization takes place
inside each horizontal band, because the variables
belonging to the same wavefront do not depend on each
other.

Pictorial representation of the effect of wavefront
reordering is very important because it gives an
immediate idea of the vectorization potential for a given
linear system, In other words, the larger the number of
elements belonging to the same wavefront (i.e., the dots
having the same color in Figure 7), the longer the
corresponding vector and the better the achievable
performance. Another important point is understanding
the extent to which the structure of the matrix is affected
by the permutation in terms of bandwidth: This is crucial
in minimizing the memory traffic. Figure 7 shows how
the algorithm performs well for both of the above points.
In fact, graphics immediately shows that the bulk of the
reordered matrix has a lower bandwidth than the original
one. Moreover, the average length of the wavefronts is
large enough to allow a good vectorization of the
computational kernel, as we observed in performance
tests.

Employing the same oil reservoir matrix, we show in
Figures 8, 9, and 10 how it is possible to investigate the
numeric structure of a matrix using various techniques
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provided by this tool. One method consists in selecting
only those values that belong to an arbitrary interval.
This can be done interactively using the menu options:
Once a given interval is specified changing the input
values to the menu, only the chosen range is plotted. We
note incidentally that this includes the possibility of
selecting the values external to a given interval, not just
those which are inside the specified range. Figures 8 and
9 show the elements of the matrix for two different
ranges. The other method exploits the capability of
providing color information. Figure 10 contains the same
information as the two previous figures, but identifies the
different numeric ranges by different colors on the same
plot.

Conclusions

We have seen that a key issue in many scientific and
engineering problems is the efficient solution of very large
sparse linear systems, Once the problem reaches a
considerable size, it becomes inconvenient and
prohibitive to gain insight into choosing a solving
technique solely by inspection of the numeric data. A
pictorial representation is then crucial in obtaining
synthetic information on the specific problem. To this
end an easy-to-use graphic tool based on GDDM has
been developed and found to be helpful to analyze
interactively the structure of the large sparse matrices
encountered in many practical problems. The graphic
routine MATPLO, introduced in this paper, provides a
useful and flexible tool for investigating the structure of
such matrices. Some examples have been presented to
demonstrate the idea that a visual inspection of the
sparsity and numeric structure of a given matrix may
effectively help in choosing and designing the optimal
solution strategy for the corresponding linear system.
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