Picturing
randomness
on a graphics
supercomputer

by C. A. Pickover

This paper provides a light introduction to a
simple graphics technique which can be used to
represent random data on a graphics
supercomputer. The representation, called a
“noise-sphere,” can be used to detect “bad”
random-number generators with little training on
the part of the observer. The system uses
lighting and shading facilities of 3D extensions
to the X-Windows or the PHIGS+ standard. To
encourage reader involvement, computational
recipes and suggestions for future experiments
are included.

Introduction

“The generation of random numbers is too important
to be left to chance.” — Robert Coveyou,
mathematician, Qak Ridge National Laboratory

The idea that the human visual system can be used to
detect trends in complicated data is not new—and

“Copyright 1991 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of
this paper may be copied or distributed royalty free without further permission by computér-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor. 227

IBM J. RES. DEVELOP. VOL. 35 NO. 172 JANUARY/MARCH 1991

neither is the application of that idea in computer
graphics. What is new is the use of rich software tools
and powerful new hardware to visualize random data.
This paper provides a light introduction to a simple
graphics technique which uses colored balls to visualize
the output of random-number generators. The
representation, called a “noise-sphere,” can be used to
detect “bad” random-number generators with little
training on the part of the observer. In modern science,
random-number generators have proven invaluable in
simulating natural phenomena and in sampling data [1-
6]. It is therefore useful to build easy-to-use graphic tools
which, at a glance, help to determine whether a random-
number generator being used is “bad” (i.e., nonuniform
and/or with non-independence between various digits).
Although a graphics supercomputer facilitates the
particular representation described below, a simpler
version would also be easy to implement on a personal
computer; therefore, one of the objectives of this paper is
to stimulate and encourage programmers, students, and
teachers to explore this technique in a classroom setting.

C. A. PICKOVER




228

' Noise-sphere for a bad pseudorandom generator used in a version
g of the BASIC language. As the ball is rotated, various tendrils

appear.

Note also that the colorful representations can be
considered solely as art objects, providing another
example of the link between mathematics and art.’

Noise-sphere

Figures 1-3 are representations which I call noise-
spheres. The various spiral projections in Figures 1 and 2
are indicative of a bad random-number generator. To
produce the figures, simply map the output of a random-
number generator to the position of spheres in a spherical
coordinate system. This is easily achieved with a
computer program using random numbers {X,, i = 1, 2,
3, .-, N;0< X, < 1}, where X, X,, |, and X,,, are
converted to 8, ¢, and r, respectively. For each triplet, an
(r, 6, ¢) is generated, and these coordinates position the
individual spheres. The data points may be scaled to
obtain the full range in spherical coordinates:

2rX, — 0,
X — &,
VX, —r

i+2

' This paper is number 80 in an eighty-part “Mathematics and Beauty” series which
emphasizes the aesthetic side of mathematics and scientific visualization. For others in
the series, see for example C. Pickover, “Overrelaxation and Chaos,” Phys. Lett. A 30,
No. 3, 125-128 (1988); C. Pickover, “Mathematics and Beauty: Time-Discrete Phase
Planes Associated with the Cyclic System, {x(2) = —f((2)), ¥(¢) = fx(¢e)},” Comput.
& Graph. 11, No. 2, 217-226 (1986); C. Pickover, “A Note on Chaos and Halley’s
Method,” Commun. ACM 31, No. 11, 1326-1329 (1988); C. Pickover, “A Note on
Rendering Chaotic ‘Repeller Distance-Towers,”” Computers in Physics 2, No. 3, 75-76
(May/June 1988); C. Pickover, “Blooming Integers,” Comput. Graph. World 10, No.
3, 54-57 (1987); C. Pickover, “Graphics, Bifurcation, Order and Chaos,” Comput.
Graph. Forum 6, 26-33 (1987).

C. A. PICKOVER

The square root for X,,, serves to spread the ball density
though the spherical space and to suppress the tight
packing for small .

The resultant pictures (Figures 1-3) can be used to
represent different kinds of noise distributions or
experimental data. In particular, by using this approach,
“bad” random-number generators can be visually
detected. Figure 3 represents a standard good random-
number generator where no particular correlations in the
ball positions are visually evident. I have, however, found
surprising results when this approach is applied to the
BASIC [7, 8] random-number generator. As the noise-
sphere is rotated (Figures 1 and 2), the user can perceive
various tendrils emanating from the cluster. There should
be no such correlations if the distribution is truly
random. The method is effective in showing that
random-number generators prior to release 3.0 of BASIC
have subtle problems.

Graphics

Interestingly, only a single graphic primitive was used for
each figure, namely a “polysphere” (i.e., n spherical
surfaces at given centers with specified radii). The
polysphere primitive is one of several 3D extensions to
the X-Windows” and PHIGS+ standard provided by the
Stellar GS1000 graphics supercompute:r.3 PHIGS+,
itself, is an extension to the PHIGS' graphics standard
(ISO 9592), and it addresses the lighting and shading

of three-dimensional data [9]. Today, the noise-

sphere representation is used on an IBM RISC
System/60005 processor using the GL graphics

language.

Lighting of the shapes in the figures was applied on a
primitive-by-primitive basis; no interactions between
objects such as shadows or reflections were defined. The
reflectance calculation is conceptually applied at points
on the spheres being lit and shaded, and produces color
at these points. Input to the reflectance calculation
includes the position on the primitive at which the
reflectance equation is being applied, the reflectance
normal, diffuse color at that position, the set of light-
source representations, and the eye point (see for
example [9]). For the figures, three lights were used (red,
white, and green), and the lights were rotated in real
time, using a mouse, to produce the desired final

% X-Windows is a trademark of MIT.

3 Stellar and GS1000 are trademarks of Stardent Computer Inc., 85 Wells Ave.,
Newton, MA 02159. The Stellar machine contains four high-speed floating-point
engines configured to work separately or in tandem. The rendering processor performs
special computations such as per-pixel arithmetic for hidden-surface elimination,
depth-cueing, and shading. The floating-point performance is 40 MFLOPS, single or
double precision. The polygon rending rate is 150K Gouraud-shaded, Z-buffered
triangles per second.

* PHIGS (the Programmer’s Hierarchical Interactive Graphics System) goes beyond
the older CORE and GKS standards to provide 3D primitives such as polyline and fill
area, as well as hierarchical data structures.

*RISC System/6000 is a trademark of International Business Machines Corporation.

IBM J. RES. DEVELOP. VOL. 35 NO. 12 JANUARY/MARCH 1991




Same as Figure 1, viewed from another angle. By coloring the
balls as a function of r, 6 and ¢, correlations become more obvi-
ous to the human analyst.

graphical effects. Specular reflections produced the
highlights on the shiny surfaces. As is traditional, the
intensity of specular reflections, unlike diffuse reflections,
is highly dependent on the viewing angle of the observer.
The specular exponent [10] used to control the shininess
was about 100.

Care must be taken in the coloration of the individual
component spheres within the noise-spheres to help
empbhasize the various spiral striations. I have found that
simply mapping the random-number triplet values to red,
green, and blue intensities helps the eye see correlated
structures in 3D.

It is fascinating to note that the Stellar GS1000 and
IBM RISC System/6000 can be used to rotate the spheres
with only a few seconds’ pause between images. This is
useful, since correlations not visible from one viewpoint
may become visually apparent when the sphere is viewed
from another angle. The required computations for a
similar animated sequence of spheres, with hidden-
surface removal, could take many minutes on traditional
high-powered mainframe computers. However, interested
users without access to graphics supercomputers can
render their data simply by plotting a scattering of dots
and projecting them on a plane, The visual effect may be
less striking without the real-time rotation, but with just a
few test rotations of the noise-sphere, the user can detect
a problem generator with relative computational ease.
Since the noise-ball approach is sensitive to small
deviations from randomness, it may have value in

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991

Noise-sphere for a good pseudorandom generator. No particular
correlations are seen.

helping researchers find patterns in complicated data
such as genetic sequences and acoustical waveforms. For
example, James Ramsey (New York University) and I
have used this approach to examine stock market data.
Interestingly, the spherical coordinate transformation
used for the noise-ball allows the user to see trends more
easily, and with many fewer trial rotations, than an
analogous representation which maps the random-
number triplets to three orthogonal coordinates.

Reader experimentation

The reader is urged to test the approach outlined here on
a variety of random-number generators. For example,
consider the linear congruential generator: s(x) =

(137x + 187) mod 256, which is given by Knuth as an
example of a bad random-number generator [1].
Generate several thousand points, map them to the
noise-sphere, and view the results.

In another experiment, consider introducing a slight
Markov dependence of the data points to determine how
sensitive the noise-sphere is to this kind of deviation from
randomness. In a computer program, generate random
numbers X__, save the previous random number in

new?

variable X ;, and execute the following code:

GenRandom(X __ )

new.

if X, < X, then X, = max (0, X,,, — )
else-Xnew = min (I’Xnew + 6)
Xold =X

C. A. PICKOVER

229




230

The parameter 6 controls the dependence of the value of
each new random number on the value of the preceding
number. The standard, uncorrelated numbers are created
when é = 0.

As a last experiment, consider a uniform distribution
of random numbers between 0 and 1. Take these random
numbers and round or truncate them to finite accuracy
so that each is an integer multiple of 1/» for some given
number ». If this is done, the scattering of points in the
noise-sphere will show a regular pattern. The noise-sphere
acts as a kind of microscope, revealing the “grain” of the
random numbers. The resulting figures for these and
other experiments are left as a puzzle and surprise to the
reader. Enjoy!

Why graphics?

Some readers may wonder why we should consider the
noise-sphere approach over traditional brute-force
statistical calculations. One reason is that this graphic
description requires little training on the part of users,
and the software is simple enough to allow users to
quickly implement the basic idea (without the
sophisticated lighting and shading) on a personal
computer. The graphics description provides a qualitative
awareness of complex data trends, and may subsequently
guide the researcher in applying more traditional
statistical calculations (e.g., see [1, 3]). Also, fairly detailed
comparisons between sets of “random” data are useful
and can be achieved by a variety of brute-force
computations, but sometimes at a cost of the loss of an
intuitive feeling for the structures. When one is just
looking at a page of numbers, differences among the
statistics of the data may obscure the similarities. The
approach described here provides a way of simply
summarizing comparisons between random data sets and
capitalizes on the feature integration abilities of the
human visual system to see trends.

Summary

A paper such as this can only be viewed as introductory;
however, it is hoped that the techniques, equations, and
systems will provide useful tools and stimulate future
studies in the graphic characterization of morphologically
rich shapes produced by simple random-number
generators. For the use of tiling patterns to represent
random numbers, see the American Mathematical
Society paper in [4].

Acknowledgment
I thank Terry Richards for providing the BASIC random
numbers and for helpful discussions.

References and note

1. D. Knuth, The Art of Computer Programming, Vol. 2, 2nd ed.,
Addison-Wesley Publishing Co., Reading, MA, 1981.

C. A. PICKOVER

2. K. Mckean, “The Orderly Pursuit of Disorder,” Discover, pp.
72-81 (January 1987).

3. G. Gordon, System Simulation, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1978.

4. H. Jeffrey, “Chaos Game Representation of Gene Structure,”
Nucleic Acids Res. 18, No. 8, 2163-2170 (1990); C. Pickover,
“Mathematics and Beauty: Several Short Classroom
Experiments,” Amer. Math. Soc. Notices 38, No. 3, 192-196
(1991); C. Pickover, Computers, Pattern, Chaos, and Beauty, St.
Martin’s Press, New York, 1990; C. Pickover, Computers and
the Imagination, St. Martin’s Press, New York, 1991.

5. S. Park and K. Miller, “Random Numbers Generators:

Good Ones Are Hard to Find,” Commun. ACM 31, No. 10,
1192-1201 (1988).

6. J. Voelcker, “Picturing Randomness,” IEEE Spectrum 26,
No. 8, 13 (1988).

7. IBM Personal Computer BASIC, Version A2.10. This is an
interpreted BASIC.

8. T. Richards, “Graphical Representation of Pseudorandom
Sequences,” Comput. & Graph. 13, No. 2, 261-262 (1989).

9. A. van Dam, PHIGS+ functional description, revision 3.0;
Computer Graph. 22, No. 3 (ACM SIGGRAPH) (entire volume)
(July 1988).

10. J. Foley and A. van Dam, Fundamentals of Interactive
Computer Graphics, Addison-Wesley Publishing Co., Reading,
MA, 1984.

Received November 8, 1989; accepted for publication May
11, 1990

Clifford A. Pickover IBM Thomas J. Watson Research Center,
P.O. Box 218, Yorktown Heights, New York 10598. Dr. Pickover
received his Ph.D. in 1982 from Yale University’s Department of
Molecular Physics and Biochemistry. He joined IBM in October
1982 at the Thomas J. Watson Research Center as a member of a
speech synthesis group. Currently he is a member of the scientific
visualization group, where he has developed GALAXY, a general-
purpose visualization program for the IBM RISC System/6000
processor. Dr. Pickover’s primary interest is scientific visualization;
he is the author of the books Computers, Pattern, Chaos, and Beauty
(St. Martin’s Press, New York, 1990) and Computers and the
Imagination (St. Martin’s Press, 1991), as well as more than 200
journal and periodical articles on topics in science, art, and
mathematics. He is an associate editor for the international journal
Computers and Graphics, a member of the editorial boards of
Computers in Physics and Speculations in Science and Technology,
and the editor of a number of books and topical journal issues on
subjects in his field. Dr. Pickover received the first-place prize in a
computer graphics competition sponsored by the American Institute
of Physics, and his book Computers, Pattern, Chaos, and Beauty was
honored as “one of the best science books of 1990 by Library
Journal. He holds eight IBM Invention Achievement Awards and an
IBM Research Division Award.

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991




