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Interactive  Quantitative  Visualization,  a 
methodology  to  enhance  scientific  and 
engineering  computational  simulation 
prototyping,  is  defined.  Appropriate  strategies 
for  implementing  IQV  in  a  workstation-based 
distributed  computing  environment are 
discussed.  Object-oriented  graphical  tools  and  a 
new  data  management  technique  to  support  IQV 
and  computational  steering are described. Two 
examples of  IQV  and  computational  steering are 
presented: 1) a  system  to  allow  interactive 
solution  and  visualization  of  nonlinear  boundary- 
value  problems;  and 2) a modeling  exercise 
illustrating  how  IQV  and  computational  steering 
are  used  together  to  prototype  simulation  of  a 
complex  physical  system,  namely  a  flag  flapping 
in  the  wind. 

Introduction 
Our objective in this research  program  is to develop 
strategies for Interactive Quantitative Visualization 
(IQV). We mean by this the ability to dynamically 
present  results of  scientific and engineering computations 
in a graphical (e.g., visual) format and also to allow the 
user to extract accurate quantitative information directly 
from the visual  presentation. One important need  for 
such a capability  arises  in simulation model development 
and prototyping; this activity  requires continuous 

interaction between the computational model and 
visualizations of its data output. For example, an 
aerodynamics engineer  may  need to simulate turbulent 
flow  over a wing. His computational model  consists of a 
set of partial differential equations and a flow-region 
(geometry)  specification.  However, in order to describe 
the turbulence, he  uses approximations in his  basic 
equations, and the prototyping process  involves 
computational assessment of the validity of these 
approximations. To do this, the engineer initiates 
computations, and, after an appropriate number of 
computational steps, examines a visual  (graphical) 
representation of the interim results. If he  notices  some 
questionable features,  he uses  his  interactive pointing 
device to retrieve the actual numerical data associated 
with the locality of these  features.  After examination of 
this retrieved dataset, and perhaps some  subsidiary 
computation using this set,  he  may  revise  his 
approximations, modify  his  model equations accordingly, 
and proceed  with the simulation using the newly  revised 
model. We refer to this sort of  procedure,  which  requires 
incremental data visualization and model modification, 
as computational steering [ 11. It should be  noted that we 
are concerned with  steering the model  itself, not the 
specific numerical methods and procedures  employed in 
effecting a solution. 

IQV  is  also  needed to supplement information 
obtained from visual feature recognition  when more 
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traditional postprocessing  visualization  is  used in the 
supercomputing environment. New hardware  capabilities 
in computer graphics, coupled with the ability of 
supercomputers to produce massive amounts of data, 
have  created  both the need and the capability to use 
graphics and visualization in the analysis of data. 
Dramatic visual  graphic  effects (both static and, in a few 
cases, dynamic) have  been  produced. In some instances 
these  have  been  useful in identifying  physical 
phenomena. Often,  however, the exotic  graphics  obscure 
the underlying quantitative information. The extraction 
of quantitative information from  a  complex  rendered 
volumetric scene  is  a dfficult problem.  IQV  strategies are 
directed  toward data structure manipulation and pictorial 
representation that allow  access to quantitative 
information necessary  for the user to judge the viability 
of  his simulation. Interaction with the visual output, use 
of color, rotation, translation, scaling, and other features 
are all  designed to enable the user  rapidly to obtain 
quantitative information that can be  used  for model 
evaluation in the case  of  postprocessing, or for in situ 
changes in the prototyping case.  At  present,  IQV and 
some  of the more complex  visualization techniques 
should be  viewed as separate but complementary 
methodologies; as visualization  technology  advances, we 
expect that these  methodologies will  merge. 

There has  been much attention paid  recently to the 
area of  scientific  visualization; the field  was brought into 
focus by a National Science Foundation report [I]. This 
report, which  stressed the need to bring  visualization 
techniques to bear on the problem of  large 
supercomputer dataset analysis,  also  emphasized the 
necessity  of  developing computational steering 
methodologies to improve prototyping and effect better 
interaction between the user and his numerical 
simulation. Our research is aimed at developing  a 
computational steering environment for computational 
fluid dynamics (CFD). We  feel that meaningful 
experimentation in quantitative visualization and 
computational steering  requires domain specificity; it is 
unlikely that applicable techniques can be  developed 
solely in the abstract. However, we do broaden the scope 
of CFD to include not only traditional Navier-Stokes 
equation simulation, but problems in nonlinear 
dynamics and differential equations which are applicable 
to the CFD and related  fields.  Consequently, we expect 
our work to be adaptable to other technical domains. 

In the following  sections, we first consider interactive, 
quantitative graphics  from  a  historical  perspective. We 
then describe the overall  system environment which  is 
being  developed to support our prototyping framework, 
and we discuss  some  of the quantitative visualization 
tools which  have  been  developed.  These are useful  for 
both prototyping environments and postprocessing.  Next 

R. L. PESKIN ET AL. 

we discuss the general data management strategies we 
have  developed, and how  they are implemented in our 
object-oriented environment. As examples of  IQV and 
computational steering, we describe in some detail a 
differential equation solution system and the 
development of a  physical  model (a flag flapping in the 
wind) in  the context of  how that development employs 
IQV. We also  show  examples  of  a more complex CFD 
tool set and some flow-field applications. Finally we draw 
some conclusions about our concepts and their future 
directions. 

Previous related work 
Although  scientific computer graphics was originally 
implemented as subroutine calls to be included in the 
user’s program, and, in  fact, this mode remains the 
predominant one today, interactive packages appeared in 
the late 1970s. Among the first  were the EZGraphing’ 
package from Tektronix Corporation and its successor, 
PLOTIOIG’ [2]. These were written in FORTRAN, and 
were meant to be  used  with TEKTRONIX’ display 
terminals. The UNIX’ Plot libraries are similar in 
functionality to these PLOTlO’ programs. The UNIX 
libraries  allow  easier  interfacing  with computational 
programs through the use  of  pipes,  etc., but the user 
interface to the graphics is command-line based. 
Furthermore, the UNJX Plot libraries are limited in 
variety  of  graphical representation. With the advent of 
the X-Windows Sy~ tem,~  there has  been improvement in 
both the user  interface and the spectrum of graphic tools 
available.  Designed  primarily  for interactive control of 
postprocessing  display,  these products introduced 
concepts,  such as dynamic scaling, that remain part of a 
modern interactive display  program.  However,  user 
interfaces for the early  systems are difficult to learn and 
use. In addition, they do not provide  for dynamic 
interaction between the computational component and 
the graphics.  Such dynamic interaction is necessary  if the 
user  is to be able to interactively  modify the numerical 
computation while simultaneously being  able to view the 
results  of the modification.  Nevertheless,  these traditional 
interactive  packages  established the desirability of  being 
able to manipulate visualizations of computed data 
without  being constrained to pre-bound subroutines. 

The advent of the personal computer resulted in the 
generation of numerous interactive graphics  products, so 
many that it is futile to discuss them in detail here.  In 
general, the “number-crunching’’ limitations of the PCs 
implied that the interactive graphics  systems were 
designed to emphasize manipulation of already 
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computed or measured data. In some  cases  these datasets 
were in file format, and in a few cases the data were 
available  from “on-line” instrumentation interfaces. As in 
other areas of software, many of  these  PC  graphics 
systems  serve as paradigms for systems that would  be 
desirable on workstations.  They contain many features 
which promote interactivity and experimentation with 
the data they  visualize.  However, many of these PC 
systems are written in machine language and thus do not 
readily conform to user  needs. For example, three- 
dimensional surface representation might  be part of such 
a PC package, but the user  would not be able to rotate 
the surface.  With the advent of  increased computation 
power in the PCs, more user options are appearing. 
Recent  spreadsheet products now integrate graphics, and, 
in so doing,  allow the user  some  access to interactive 
quantitative visualization. For example,  a new product, 
Wingz4  [3], not only promotes interactive visualization of 
data, but provides  features  such as three-dimensional 
surface rotation and transformation normally found on 
more complex  hardware-software  systems. 

There have  been  some  recent  efforts to provide  more 
interactivity in systems  primarily  used for postprocessing 
visualization.  DAVID  [4] runs under X-Windows, and 
was  designed  for  two-dimensional computational fluid 
dynamics data visualization.  DAVID supports such 
features  as sequential views  of time frames (“movie 
views”), and provides tools used to view data  in a  variety 
of  ways,  e.g., cross-sectional  graphs, contour plots, and 
surface  plots. Similar capabilities are available  with the 
NCSA Software Suite [SI. More powerful  graphics can be 
obtained by combining X-Windows and direct hardware 
graphics support. By  use of  X-Windows controllers and 
screen  regions devoted to display of native graphics, the 
Ardent’ computer is able to provide  a  degree  of 
animation speed  response to user manipulation of dial 
boxes [6]. Some direct coupling of scientific computation 
and visualization  is  possible  with “mini-supercomputers” 
such as the Ardent or Stellar’ products. User  feedback to 
adjust computational parameters is  possible, but 
flexibility  is limited by the need to accommodate the 
feedback requirements at compilation time. 

Some recent  work in enhancing simulations of  physics 
phenomena with  visualization  has included some limited 
interactive  capabilities. The paper by Rapaport [7] shows 
an example.  Additionally, there exist interactive 
computer tutoring systems that rely on interactive 
graphics  which are strongly coupled to physical  models. 
An example  is found in the paper by Bourne et al.  [8]; 
this  paper  is of particular interest because it describes 
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an implementation of the tutoring system in 
Smalltalk-80.6 

The IQV  system to be  discussed in this paper traces 
some of its origins to work by Walther [9] in the 
development of quantitative graphics tools for UNIX 
workstations.  These tools provided  a uniform user 
interface to a  set of linear graphing programs and three- 
dimensional graphing  programs. Based on a common set 
of algorithms,  these tools have  now  been enhanced and 
implemented in Smalltalk-80. The primary characteristic 
of this latest implementation is its  use  of the Smalltalk 
Model- View-Controller paradigm  as the basic  mechanism 
supporting a  wide latitude of  user options for 
quantitatively based data visualization. Furthermore, 
customization is  straightforward and does not require 
alteration of the underlying structures holding the user’s 
data. In effect, the same interface and graphic tool set  is 
available for either file-based data (postprocessing) or 
data computed in situ. These  tools, then, are capable of 
incorporation into a computational steering 
environment. There seems to be  little in the literature 
reporting actual computational steering  systems.  A 
prototype computational steering  example was  developed 
by Campbell  for  two-point  boundary-value problems: it 
was implemented under Suntools.’ We later discuss  a 
similar  differential equation system we have  developed 
using  IQV techniques and having  some computational 
steering  capabilities. Our overall  research direction 
vis-&-vis IQV and its relation to computational steering is 
described in the paper by Peskin,  Walther, et al. [ 101. 

System overview 
The computational system that is  being  developed to 
support the IQV  research  is  based on a distributed 
computing concept:  a  graphics  workstation in 
communication with one or more “back-end” high- 
power computers. A  discussion of the technical  aspects of 
the system can be found in the paper by Walther and 
Peskin [ 1 11. As described in [ 101 above,  a prototyping 
environment that is dedicated to scientific simulations 
must combine ease of use  with  flexibility.  At the same 
time, performance must be at a  sufficient  level to support 
true interactive computing. The well-known P I  
(features, performance, interface)  of  Macintosh’ 
programming [ 121 apply in the scientific simulation 
environment. 

UNIX systems. We are using either the Sun 
The workstations employed are common bit-mapped 
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Microsystems* stations or the Tektronix  43 17-  19 color 
stations.  These  stations  typically  have  12  megabytes  of 
memory and large ( 19-inch)  screens. (In addition, we 
have implemented  some of the IQV capabilities on the 
Ardent Titan5 workstation.  This  machine  has  vector 
hardware and advanced  color  graphics  capabilities.)  Key 
to our system implementation  is the use of Smalltalk-80 
[ 131 as the user  interface on the workstation.  Depending 
on the platform, we are able to take  advantage of color 
graphics  under  Smalltalk, as well as all of its other 
features. Of greatest  importance to us is the utilization of 
the Model-View-Controller paradigm.  This  allows  a  tight 
coupling  between  model  (simulation  representation) 
changes, the graphical view  of those  changes, and user 
interface  via  keyboard and/or pointing device. S e e  
Peskin,  Walther, et al. [ 101 for  a  more  detailed  discussion 
of the use of the MVC in scientific  prototyping.  This 
reference  also  discusses the merits and drawbacks of 
Smalltalk as a  scientific  computing  environment.  For the 
purposes of this paper, it is important to note that 
Smalltalk  provides  a  highly  productive environment 
under which  we are able to experiment  with new 
concepts and strategies for IQV. 

Smalltalk’s major  liability in scientific computation is 
its  performance; the true object-oriented  features of the 
language together with its incremental  compilation and 
dynamic  binding  produce computational performance 
about an order of magnitude less than statically  compiled 
C code. This  results in very  severe restrictions in those 
scientific  models that require  multiple  iterations. 
Smalltalk  itself  has  high  performance in its graphics and 
character  scanner  operations; this is  accomplished by use 
of primitives,  i.e.,  machine  code.  While  there  is 
significant  work  being done in improving  Smalltalk 
performance [ 14,  151, our approach  has been to use 
primitives to perform  numerically  intensive 
computations while  still in the Smalltalk  environment.  In 
some  cases,  these  primitives  perform  machine-code 
operations on the workstation itself.  However, as is 
appropriate to a  scientific  computing environment, our 
primary use of primitives  is to invoke  numerically 
intensive computations on a  “back-end” computer via 
distributed  computing which  employs  a  networking 
protocol. 

parallel and serial  high-performance  computers, 
specifically a  128-processor  NCUBE”  hypercube,  a  32- 
processor Butterfly’’  GP1000, and a  two-processor 
Ardent Titan. The networking  protocol  allows the user’s 
interface system to request  appropriate computation 
services from one or  more of  these  machines.  In the 

Our distributed  environment  consists of a  collection  of 
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future,  “intelligence” in the Smalltalk  system will choose 
resources on the basis  of  most appropriate functionality. 
At present we are concentrating on establishing  reliable 
distributed  networking; we use the Butterfly  for 
specialized  parallel  back-end  processing and the Ardent 
for  more routine numerical processing. In order to effect 
transparency, we are currently  installing  C-Linda [ 161 on 
the Butterfly and NCUBE, and plan to develop  methods 
to allow Smalltalk to initiate Linda  programs  over the 
distributed system. In  a  technical  sense,  these  back-end 
processors  perform  “methods”  on  behalf  of  Smalltalk 
objects. Figure 1 presents  a  diagram of the current 
configuration  of our distributed  computational 
environment. 

Graphical visualization tools 
As indicated  above, the interactive  visualization  tools we 
have  been  developing are described in detail in several 
other  forums [9-11]. The earliest  versions  of our user 
interface  [9]  serviced  monochrome and color  graphics 
terminals  through  libraries of  device-independent  2D and 
3D graphics  functions,  written in C, which  provided  both 
interactive and subroutine-callable  graphic  tools  for 
scientific and engineering data analysis.  These  libraries 
were extended to support  bit-mapped  workstations  under 
Sunview’ and X-Windows and to make use of certain 
experimental environments using multiple 
processors [ 171. 

functionally around a  set of visualization  behaviors; the 
2D graphing  methods  presented data according to the 
Graphics  Kernel  Standard  (GKS); the 3D  graphing 
methods used standard transformation and perspective 
techniques to present data as  three-dimensional wire- 
frame  surfaces.  But  while  these  functions  were modular, 
the structure was not yet object-oriented; thus,  although 
coded functions were  reusable and software  could  be 
extended by adding  routines to existing  libraries, the 
logical relations between  graphical  behaviors  did not 
support  inheritance and encapsulation.  Most 
significantly, the event-management  facilities of the 
interfacing environments (e.g., Suntools or X-Windows), 
lacked  a  good  paradigm  for  implementing intelligent 
process control, that is, interaction  engineered  jointly by 
the user  viewing the data and by the data itself. 

Under Smalltalk-80, the Model- View-Controller 
paradigm  provides  a  process-control  facility  through 
which data objects  (models)  can  deploy  a  variety of visual 
presentation  behaviors (views) and can be responsive to 
interruptions from  a  user  (controllers). The prototyping 
of the basic  scientific  visualization  repertoire in Smalltalk 
is  described in [ 101 and in [ 1 11. 

Figure 2 shows the present  organization of 
visualization  classes.  DataModel  is the class that 

In  these  iterations, the tools were  organized 
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comprises  basic 2D graphing methods (Graphics Kernel 
Standard compatible). DataView contains the display 
methods supporting these 2D presentation methods. 
DataSurface is the class that comprises  basic 3D graphing 
methods, inheriting from DataModel such  graphing 
methods as are common to them both. DataSurfaceView 
contains the display methods supporting 3D presentation 
methods. Datacontour comprises methods for the 
presentation of 3D data as two-dimensional  cross 
sections. Datavector uses the 2D graphing methods of 
DataModel, adding some of its own. StreamData uses 3D 
graphing  methods,  again  with  its  own additions. The 
view supporting Datavector's display  needs,  VectorView, 

B 

B 

Visualization classes (Model-View-Controller paradigm) 

ViualizationObjects DisplayBehaviors hanagers 
(Models) (Views) (Controllers) 

Object  View 
DataMcdel 

MouseMenuController 
DataView  DataViewController 

DataSurface DataSurfaceView DataSurfaceViewController 
PrimitiveSurface 

:::data 
FlagView 
Streamview 

FlagViewController 

Datacontour 
StreamViewController 

Contourview 
Datavector  VectorView  VectorViewController 

ContourViewController 

Logistickpation 
Oscillator 
TwoPointBVP  "koPointBVPView  TwoPointBVPController 
XYData 

is a subclass of DataView (the basic  two-dimensional 
view).  DataSurfaceView  comprises  display  behaviors 
supporting three-dimensional representation. Each  view 
class  has a controller to manage  requests  for view 
behavior and f or model  behavior. 209 
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Any object that needs  some numbers graphed can 
declare an instance of DataModel, DataSurface, or any 
other visualization  class, and can thereby make use  of 
that class's graphing methods directly as it is computing. 
In effect, computational objects can deploy visualization 
objects in the same way that any object in Smalltalk can 
deploy other objects  for  its  own  purposes. This is one of 
the most  powerful  features  of true object-oriented 
environments; the total repertoire of described  objects is 
accessible at all times and is ready to perform on behalf 
of any  request  properly  made. The impact of this 
structure for  scientific  visualization  is that computational 
elements are neither isolated from the visualizing 
apparatus nor forced to become  specialized to only one 
representation format. Moreover, as visualization  classes 
are added, any computational object that has (or can 
generate) the appropriate information can immediately 

210 avail  itself  of that capability. 
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In addition, each of the views described  above  provides 
a class method to open an instance of  itself  as a stand- 
alone tool that can access and display precomputed data 
files. A "sampler" of visualization  utilities  is  presented in 
Figure 3. Figure 4 shows Vectortool, a view opened on an 
instance of Datavector, the class that knows  how to 
represent  two-dimensional  vector data (position and 
velocities).  In that figure, the view has  been  invoked  as a 
stand-alone postprocessing visualization tool to explore 
data resulting  from a parallelized computation of a two- 
dimensional flow. 

Another handy technique to effect computational 
steering  is to subclass a computational model  directly off 
one of these  visualization  classes so that the graphic 
behavior can be inherited or modified.  Normally, this 
would mean that such an object  has computation 
methods of its  own to generate  graphable data and that  it 
will add initialization and control methods suitable to its 
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VectorTool. Features shown illustrate vector flow, zoom, path interpolation, and retrieval of data value\. The inspection box shows thc 
position and velocity values of the vector by the red dot in the zoomed view. 

user interface requirements. As shown in Figure 2 ,  the 
classes  LogisticEquation,  Oscillator, TwoPointBVP 
(described in the sections on the ODE solution tool), and 
Flag  (described  in the last example section) are 
computational objects taking the subclassing route to 
their own visualization. 

retrievability of  original data values from any graphic 
effect. Put another way, a visual effect  is  of  value 
primarily because  it  is informative and/or can be 
manipulated to yield further visual  effects that, for 
example, lead the user to derivable quantities or  to 
identification of structural features. Figure 5 illustrates 
the multiple zoom capability  of XYtool which  allows the 
user to explore  regions in a visualization based on a 
computation of the Henon attractor [ 181. Zoomed 
regions  can  be zoomed further themselves, and so on 

A key feature of this visualization environment is the 

until the resolution of the data is exhausted. The user  is 
completely  free to probe any region  of any view or 
subview as many times as desired;  all the original data 
are retained, and only  original computed values are used. 
In Vectortool, shown in Figure 4, the user can zoom on 
any area of the flow  field,  retrieve  original data values of 
any vectors, or generate path lines from any point in the 
flow. 

Moreover, the view paradigm  is  itself quite adaptable 
for  visualizing multiple objects acting concurrently and 
for tracking their behavior. We have  been experimenting 
with a "spreadsheet"  graphical interface, based on  the 
MVC  paradigm in which a master view  of integrated 
subviews  is opened on a "matrix" of  models. 
Computational objects (the models in the cells)  have 
access to the full repertoire of graphic visualization 
described above and can also  display icons or flash text 211 
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XYTool graphing Henon attractor data. XYTool has  been used to  zoom in on regions of the data that are of interest. Each Loomed  view can 
itself be zoomed. Clockwise from top left, the views explore orbital \tructures whow  sub\tructure\ are themselves orbital. 

messages to report specific  values or  to indicate their 
status. In addition, the user can open another view,  with 
a control panel on a  cell  object, so as to manipulate the 
view interactively. Figure 6 shows  a  spreadsheet on a 
2 X 2 matrix object (a domain decomposition problem) 
in which  each  cell  object (the subdomains) has  deployed 
surface-plotting  display  methods. As the subdomain 
computations progress,  they update the views  which 
represent their solution at  the time for their region  of the 
problem  space. The processes that are computing the 
regions can be  executing on different  processors from the 
processor  which is running the graphics. The individual 
views are updated in response to messages sent by the cell 
objects  from  wherever  they are computing. Currently, the 
messaging is implemented through remote procedure 
calls  using  sockets as provided  for in 4.3BSD’’ UNIX [191. 

212 l2 BSD is a trademark of the  Regents of the University of California. 
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Data management techniques for IQV 
If incremental quantitative visualization is to accomplish 
the graphical representation of a computational model 
while the computation is in process in a way that 
supports the interactive manipulation of that 
representation, two  separable but interrelated aspects of 
visualization procedure must be  recognized.  First, to 
evaluate  a computational feature through a  visual  effect, 
one must  establish  visualization  vocabularies in which 
the attributes of the representation medium (for present 
purposes,  a  two-dimensional  color  display), e.g., hue and 
intensity of  color, forms (lines,  dots,  shaded  areas), as 
well as conventional icons (e.g., arrows) are bound, either 
loosely or rigorously, to specific computational elements. 
A loosely bound association (e.g., bright  red tones to 
indicate the regions in a contour plot of temperature 
distribution wherein the highest  values  fall) operates 
metaphorically and aesthetically;  a  rigorous binding is  a 
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rule-governed transformation of a data value to a visual 
effect at a particular pixel,  e.g., the representation of xy 
data values in a two-dimensional  plot  scaled to its own 
data ranges and labeled.  Such a correlation is  frequently 
thought of as a denotation; the visual  design points to 
and is  isomorphic  with the computational elements. 

While we tend to take for granted the associative and 
rule-governed  visualization techniques of the familiar 
repertoire of scientific  graphics, e.g., the Cartesian  plots, 
contour maps, three-dimensional wire-frame  surface 
plots, we are forced to attend to  the issue of “graphical 
meaning”  when confronted with a new idiom. For 
example, apart from their aesthetic appeal,  which can be 
quite powerful,  fractal representations provoke 
recognition of a distinct conceptual framework (the logic 

of iteration) [7] and yield  possibilities  for  studying 
iteratively  modeled phenomena. Extensions in 
computational techniques, particularly  those  involving 
concurrency, open up wholly  new  “visualizables”  both 
with  respect to the amount of information that can be 
generated and the dynamics of that generation. The 
expansion of our visualization  vocabulary  rests on the 
collaboration of those  who  generate and wish to explore 
their computations and those  who  design and implement 
the interfaces through which that exploration is 
expressed. 

Second,  when the desired computational information 
and its visual counterparts have  been  identified, we face 
major questions of  strategy.  Succinctly, it comes down to 
this:  What  is the information? When  is it available?  How 213 
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StreamTool  on  a 15 X 15 X 15 problem. In this  view,  stream  lines have been interpolated from starting points indicated by thc uscr.  Thc 
entire  volume  grid  and the stream  lines  can be rotated. A single  plane can be selected  for  display,  or  the  strcam lincs can bc displayed 
without the spatial  gridding. 

is it accessed?  If incremental visualization is to provide 
an environment for prototyping genuine scientific 
problems, it must be capable  of  managing the volume  of 
data that a  numerically  stable,  physically  significant 
statement of the model  would  generate.  While the 
maximum capability of virtual on-line real-time data 
management will increase continually as hardware and 
software  state-of-the-art  advances, the data volume 
we are working to accommodate at this stage  would 
support a three-dimensional fluid-flow computation of a 
50 X 50 X 50 matrix across  several time slices. 

Operationally, the features  described  above require the 
following  specific  capabilities: 

1. Retrieval  of  physical data from display coordinates. 
The user should be able to indicate via  mouse or other 
pointing device  a screen object, e.g., a  colored  pixel, or 

214 a  region  of the screen  (a contour section) and thereby 

cause the retrieval and display  of the actual data 
values that are the basis  of the graphic representation 
and that in fact constitute the conceptual  meaning of 
the perceived graphic  state. For example,  Figure 4 
shows  a  flow-field  based on a  two-dimensional 
computation in which the user  has  selected  a 
particular vector (a red dot marks the place  where the 
user  positioned the cursor) and  an “inspector box” has 
popped up showing the velocities at  the closest 
meshpoint in the computational grid.  Similarly, 
Figure 7 shows  a three-dimensional computation in 
which  a point on an interpolated stream line has  been 
queried and the values at the closest  grid point have 
been retrieved. The values of the interpolated point 
could  have  been  retrieved as well. 

2. Integration of dynamically  generated  derivative  values 
into the basic computational information. For 
example, the user  may  choose to compute and display 
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the vorticity at selected  positions.  These additional 
data elements are time-consuming to compute and, 
once computed, need to remain in the computational 
database but must be integrated into the retrieval 
strategies so that they can respond to user  queries. 

3. Organization of historical  slices of a computation as a 
“warehouse”  of  significant  subsections or snapshots of 
the model as it is computing. The role of the 
warehouse is to support queries into graphic  effects  for 
which the computational trail (or conceptual basis) 
leads  back into stages  of the computation that precede 
the current visualized  slice. 

All  of these requirements can be  met by adopting a 
strategy in which the computational objects  whose 
behaviors we are visualizing are designed as extensible 
data structures accessible  by a search key that is unique 
for  each  object, that remains invariant or  at least 
“trackably transmutable” during the computation 
process, and that lends itself to implementation and 
manipulation by as few rules as possible.  Such a strategy 
has in fact  been  employed in the vector  visualization 
tools described  above and is best  explained by their 
example. 

0 Logical maps and computational objects 
Typically, a computation of a two-dimensional  fluid flow 
yields,  as output for  graphing,  positions and velocities; 
the positions are the computational grid  values or 
independent variables of each dimension of the 
computation, and the velocities are those  values 
computed “at” each rowfcolumn index of the 
computational mesh  viewed as a two-dimensional matrix. 
In this case, the computational object of interest, a two- 
dimensional vector, can be  defined as an object whose 
attributes are a position and a velocity. Furthermore, the 
attributes themselves are “objects,” namely  two- 
dimensional  points. 

Now,  consider a collection of numbers that have  been 
computed by a two-dimensional flow model,  using a 
32 x 32 grid.  Assume that  the numbers are in groups of 
four,  with the order within  each group implemented as 
x, y, u, u. Each group represents a vector; the x and y 
components represent the position coordinates, the u and 
u, the velocities. The retrieval  keys are the members of 
the arrays  of independent variable points (hereafter 
referred to as grids) of each dimension of the calculation. 
The grids can be extracted from the data itself or they 
can  be  specified  numerically.  If the grid  indices are given 
along  with the actual data values  for the spatial 
coordinates, the steps that identify the grid  values are not 
needed. This is  normally the case  when the data have 
been computed in noncartesian coordinates. The 
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computational objects  themselves can be in any order; all 
that is required is that a “conceptual element,” in this 
case a vector  consisting of position coordinates and 
velocities,  is  identifiable as an entity and that it can be 
parsed into its components. 

To extract the grids, the dataset is  organized into 
component collections. In this example, for each  vector, 
its x-position component is placed in a collection of x 
values and its y-position component in a collection of y 
values.  Each  collection is sorted and an ordered  set of 
unique values is extracted. If the data are in a Cartesian 
coordinate system,  these sets will represent the grids  of 
each dimension of the computation. The x grid  is the 
ordered  set of x,, x,, . , x,,; the y grid is the ordered  set 
of y,, y2, . , y,. Since the  data collection  itself (in effect 
a collection of records containing x, y, u, v values), can 
be in any order as  long as the internal integrity of each 
record  is maintained, this technique can be used to 
organize  dynamically a collection of data elements that 
are being computed concurrently but which  complete at 
different times and in indeterminate order. 

The indices of the elements in these ordered sets are 
used as the keys  by  which any composite element in the 
dataset can be  accessed.  Retrieval  is  based on establishing 
a mapping of two  collections: a numbered list (one- 
dimensional indexed  collection) of the composite data 
components (in this case, the vectors) in any order, and a 
mapped collection of n indexors, where n is the number 
of dimensions of the computation. That is, a two- 
dimensional computation would  establish a map whose 
entries are referenced by two  indexors, i, j ;  a three- 
dimensional computation would  establish a map whose 
entries are referenced  by three indexors, i, j ,  k. Each 
location of the mapped collection (Map[i]Lj] or 
Map[i]Lj][k]) points to the unique data element whose 
x, y (or x, y,  z) values are in fact the grid  values at those 
indices (in the ordered  sets). Figure 8 illustrates these 
concepts  for a small  collection of ten objects keyed  by a 
4 x 4 mesh. 

Although  these  strategies were  first formulated and 
implemented in Smalltalk, an object-oriented language, 
they  could  be implemented in other languages,  since the 
logic  does not depend on linguistic  features. (In fact, our 
present  system  involves concurrent implementation in C 
and in Smalltalk  for a distributed computation.) A 
mapped collection of  grid indices to original data is 
constituted by the following  procedures: 

Let  Map[xn][yn] be a Collection  [xgrid size] by  [ygrid 

Let xorder be the set of xgrid values in ascending order. 
Let yorder be the set of ygrid values in ascending order. 

Map is  set up by iterating through the data collection, 
jinding the  index in the ordered set  of  grid elements that 
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Computation objects 
(vectors) 

index x y u v 

I 0.7  0.4 -0.23 0.15 
2 0.3 0.2 -0.44 -0.12 
3 0.1 0.4 0.76 0.00 
4 0.1 0.6 -0.58 0.36 
5 0.5 0.2 0.63 -0.54 
6 0.3 0.4 0.0 0.0 
7 0.7 0.8 -0.67 -0.47 
8 0.5 0.4 0.22 -0.68 
9 0.1 0.2 0.51 0.17 

I O  0.3 0.8 -0.79 -0.82 

Ordered grid keys Map (partial) 
(4 x 4mesh) 4 X 4 array keyed 

as x@y 

index xorder yorder xindex yindex index 
object 

0.1 0.2 
0.3 0.4 
0.5 0.6 
0.7 0.8 

1 
I 
I 
I 
2 
2 
2 
2 
3 
3 

2 
I 

3 
4 

2 
I 

3 
4 

2 
I 

9 
3 

nil 
4 

2 

nil 
6 

IO 
5 
8 

Logical map  to a 4 X 4 computation. The left group of items is in 
arbitrary order.  The center shows the ordered sets of unique x val- 
ues (xorder) and y values (yorder) of the .x and y grids.  The right 
group  shows a partial map  to the left  group based on the center 
group.  The map is shown “partially”  for only 10 entries. For a 
4 X 4 mesh,  the  full  map would have 16 entries.  The  example 
also  shows that certain map  locations, indexed by valid mesh val- 
ues, have no computational object and indicate “nil” rather than 
an index to a computed item. 

matches that factor in the composite data element, and 
using that index as the index for that dimension into  the 
map: 

1 to:  (dataCollection  size)  do: [: datalndex 
thisvector := (dataCollection at:  datalndex). 
xindex := match:  (thisvector  x)  to:  xorder. 
yindex := match:  (thisvector  y)  to:  yorder. 
Map atRow: yindex  column:  xindex  put:  datalndex]. 

Thus, if a given  vector, e.g., a vector  whose x = 0.234 
(at xorder [lo])  and y = 0.792 (at yorder [ 161) is at index 
321 in the data collection of vectors, Map [ 10, 161 
contains the number 32 1. With such a map, whenever 
the x and y values  of a vector can be determined, all 
other information associated  with it can be  retrieved. 
Furthermore, xy values not in  the original data can be 
evaluated to find the “closest” or “most appropriate” 
match in the physical  grid. The set of nearest 
approximations to a match can also  be  generated. For 
example, the four nearest  neighbors  enclosing a point 
px p y  are found by searching xorder and yorder to find 
the four grid  values  “bracketing” px and py. 

interpolation features in Vectortool that allow the user to 
select a place in  the displayed  vector field at which a path 
line is to be computed. The screen coordinates of the 
mouse location are “reverse-transformed” to recover the 
equivalent  values in the coordinate system  of the data. 

These mechanisms underlie the interactive 
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The “recovered” x value  is  evaluated  against the ordered 
x grid to find the closest x grid  value; the “recovered” y 
value is evaluated  against the ordered y grid to find the 
index of the closest y value. The resulting indices are 
used to reach into the map to retrieve the index of the 
vector  object.  Retrieving that object  from the 
computational object  list  provides  access to its  velocities. 
By finding the closest  grid point and evaluating its 
position  with  respect to the selected point, we can 
retrieve the remaining grid points of the region  enclosing 
the selected point. 

This mapping strategy can easily  be  extended to three- 
dimensional computations. (Figure 7 shows a volume in 
which stream lines are traced.)  Assume a three- 
dimensional model  whose computational object 
comprises a coordinate position in 3D space (an xyz 
point) and a velocity in three directions. The 
organization  proceeds as above,  with the difference that 
we  now have a z grid and another level  of  indexing into 
the control map. We have implemented the added 
dimension by defining a storage  object,  XYZcollection, 
as a collection  of  two-dimensional or XYcollection 
objects.  An  XYZcollection  stores and retrieves elements 
by row, column, and depth. The mapping algorithm goes 
as  follows: 

1 to:  (dataCollection  size)  do: [: datalndex 
this  Vector := (dataCollection  at:  datalndex). 
xindex := match:  (thisvector  x)  to:  xorder. 
yindex := match:  (thisvector y)  to:  yorder. 
zindex := match:  (thisvector  z)  to:  zorder. 
Map  atRow: yindex  column:  xindex  depth:  zindex put: 
datalndex]. 

Since  each mapped collection location or keyed 
reference “points” to the corresponding object by storing 
the index of that matched item in the first  collection, 
rather than the item itself, we can extend the data 
structure of the object  itself without having to reconstruct 
the map. For example, the three-dimensional vector 
described  above  could  be computed and organized 
initially  as a position and a velocity; its components are 
six data values  representing  position (x, y ,  z)  and velocity 
(u, u, w). Because the key to its retrieval depends entirely 
on its  position components (and their sequential place in 
the ordered  set of mesh  values  for their dimension), 
additional data elements can be added to the basic 
computational objects,  extending their storage 
requirements as well as their definition without 
disrupting the retrieval mechanism. Thus, a vorticity 
component for some of the vectors could be computed 
By being incorporated into  the object  collection, it would 
be immediately “manageable.” 

applicable to adaptive grids (computational mesh  regions 
The logic  of this management strategy is also 
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that are recalibrated during the course of the 
computation). In terms of the above  description, this 
means that the number of elements in the ordered  sets 
comprising the position keys has  changed for a time step 
or  set  of time steps. A dataset computed for multiple 
time steps  would  be  organized as an ordered  collection of 
“computational slices,”  where  each  “slice”  is a set of 
computational objects and its  map. For nonadaptive 
grids, the indices  of the map would be identical at each 
time step.  Adaptive  grids  could  be accommodated with a 
meta map which  would  “tag” the indices in a time slice 
that comprised a subset of, or that had subsumed, other 
indices. 

ODE solution tool 
In this section, we describe an interactive, numerical 
differential equation solver, as an example of some of the 
IQV ideas  presented in this paper. This tool was  designed 
to allow a user to specify an ordinary differential 
equation (ODE) and visualize the solution interactively, 
while  changing the boundary conditions and the equation 
parameters. In keeping  with the intent of the prototyping 
environment, the solver  is  completely automatic, and the 
working  details are transparent to the user (although this 
can be changed by providing a selection of different 
solution methods,  each of  which is more appropriate to a 
certain equation type). The user  need  only  specify the 
problem formulation: the equation in string format, the 
boundary conditions, the discretization resolution, and 
the solution domain. The parsing of the equation, finite- 
difference formulation, construction of problem, and 
solution are  all  handled by the system. 

Numerical  solution of ODES 
Numerical solution methods for ODES are numerous and 
very  well established, and several variations exist.  What is 
needed  in a prototyping environment, however, is a 
robust and quick solution method to facilitate the 
computational steering step of fine-tuning the design 
parameters. For this tool, a relaxation method was 
chosen  because it involves computing solutions to large 
matrix equations which can be implemented on a fast 
machine in  parallel  with the user’s machine, and the 
results  downloaded, thus making full use  of the 
distributed computing environment. The following  is an 
overview  of the steps  required in the general  relaxation 
method. 

In  general, the nth-order differential equation 

y(“) = f [ x ,  y ,  y’”, . . . , y’“4’1 

can be reduced to a set of n first-order equations 

yi’ = g,(x, y , ,  .. , y,)  i = 1, . . . , n (2) 

by using  some  auxiliary functions [20]. 

This set of first-order equations is then rewritten as a 
set  of  finite  difference equations (FDEs) for  each of the 
interior points in the discretized domain. A forward- 
differencing  scheme, 

1 
u’ = x (up+, - up), 

where ui is the value of the function at point i in the 
discretized domain, can be  used in this case. The FDEs 
are linearized by rewriting them as a set of linear 
equations in the highest  derivatives, taking the nonlinear 
terms from the previous iteration. The equations are then 
expanded into first-order Taylor series  with  respect to 
small  changes Ay around each of the interior points in 
the domain. The terms are arranged to form a matrix 
equation in the correction terms from the series 
expansion, and the boundary conditions are incorporated 
to produce an equation of the form 

A * x = b  (3) 

relating  all the interior points in the discretized domain. 
This equation is more accurately  written as 
A(k-1) x(k) - - b(k-1) 

(4) 

and solved  several times in a loop,  using the solution 
from the previous iteration k - 1 to construct the matrix 
and solve  for the next iteration k. The solution is thus 
relaxed until convergence  is  reached. 

Numerical  solutions  with the ODE tool 
In standard numerical methods, the equations are usually 
reduced and prepared  beforehand, and the computer is 
only used in the final solution steps that require number- 
crunching (matrix solutions and relaxation iterations). 
The purpose of  using our prototyping environment is to 
automate the initial stages as well as the number- 
crunching steps, so that  an equation is  processed  from 
string form to a solution plot. 

Problem formulation 
The most important user-system  interface step is the 
initial one, that of problem formulation. The problem 
equation must be entered, parsed, and processed.  An 
algebraic manipulator (e.g.,  Maple [21]) can be  used to 
do this on a remote system, or, as we opted to do, the 
processing can be done in Smalltalk. 

Inheritance rules  in  Smalltalk  allow a subclass to 
understand the methods associated  with its parent class. 
As mentioned previously, this is  very  useful  for  designing 
special-purpose  classes that are very similar to existing 
classes. By using  Smalltalk  syntax  rules, a string 217 
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expression can easily  be converted into  an equation by 
using  a  scanner. The equation u,, = u, for example,  is 
entered as 'uxx - u', and when scanned produces  a new 
instance of Array having the value (uxx - u). By analogy, 
a new subclass of the Smalltalk Scanner class, 
BVPScanner, was created, and  the conversion methods of 
Scanner were  modified  for BVPScanner to produce 
instances of EquationList, a  subclass of Array which 
understands the methods associated  with Array (e.g., 
accessing,  adding,  removing,  testing, etc.), along  with  all 
the new methods for  algebraic manipulations that have 
been implemented. 

A  subclass  of the Smalltalk Dictionary class  was  used to 
perform this conversion. A set of higher-order  derivative 
variables a, b, c, e . .) are defined  such that 

du/dx = ux = a 

da/dx = ax = b 

The EquationList instance representing the nth-order 
equation is recursively scanned and the above 
substitutions applied, producing n  first-order equations. 
The FDEs are then produced by performing the following 
substitutions: 

ux + (l/deltaX)*((u at : (p + 1)) - (u at : p)) 

u + 0.5*((u at : (p + 1)) + (u at : p)) 

ax + (l/deltaX)*((a at : (p + 1)) - (a  at : p)) 

a + 0.5*((a at : (p + 1)) + (a at : p)) 

The above chain of translations and substitutions 
produces equations whose structure may  be quite 
complex,  since  each substitution adds a  level  of 
complexity. As a  result, it is necessary to apply  a  series of 
expansion and simplification  rules to  the equations to 
reduce the equations to a  manageable form. 

The resulting set of  difference equations must be 
linearized and written in the form  given by Equation (4). 
For this purpose, the variables in the equations must be 
isolated from their coefficients in  the  main body of the 
equations. In  a  general equation, the highest  derivative 
term in each factor is taken to be the equation variable 
for step k, while the nonlinear terms are substituted from 
iteration k - 1. 

The final  result  is  a template for producing one block 
in the block-diagonal matrix A relating points p and 
(p + 1). This block is filled in by interpreting it at each 
interior point on the discretized domain, while the 
boundary conditions are interpreted at the two 
boundaries. The resulting equation can be  solved through 
a number of solution schemes in a  relaxation loop. We 

invoke distributed computations at this point and effect 
the relaxation on a  faster remote computer. 

Example problem 
As an example, the equation cuxx - uux + u = 0 with 
c = 0.05 is  processed. The equation is entered in string 
form  as 

(O.O5*uxx) - (u*ux) + u 

The first set of transformations produces two  first-order 
equations and  the auxiliary function a: 

(ux - a) 

((0.05ax) - (u*a) + u) 

Introducing the forward-differentiation  scheme  produces 
the following equations: 

(((1  .O/dX)*(uaO - usl)) - (0.5*(aaO + asl))) 

((0.05*((1 .O/dXj*(aaO - asl))) - 
((0.5*(uaO + usl))*(0.5 (aa0 + asl))) + 
(0.5*(ua0 + usl))) 

In the notation used, the a0 and sl  suffixes denote the 
function at the points k and k - 1, respectively, so that 
uaO = (u  at: k) and us1 = (u at: (k - 1)). Finally, after 
expansion and simplification, 

(((1  .O/dX)*uaO) - ((1 .O/dX)*usl) - 

05aaO) - (0.5easl)) 

((0.05*(1 .O/dX)*aaO) - (0.05*(1 .O/dX)*asl) - 

(0.25.uaO*aaO) - (0.25*uaO*asl) - 

(0.25*usl *aaO) - (0.25*usl *asl) + 
(0.5*ua0) + (0.5eusl)) 

Figure 9 shows the matrix block to be interpreted at 
each point, along  with the structure of the final matrix 
equation. The complete matrix can then be constructed, 
and the right-hand-side  vector b determined by 
evaluating  each row in the matrix. 

The BVP as a  computational object 
Although the ODE tool can be  used  for initial- and final- 
value  problems, the main emphasis is on the two-point 
boundary-value problem (BVP). A BVP computational 
object is viewed as a model at the heart of the ODE tool. 
The object instance variables are listed  below: 

0 bcs contains a  definition of the boundary conditions. 
This consists of  two  lists, one for  each boundary. Each 
list  might be nil, or might contain more than one 
value, corresponding to higher-order boundary 
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conditions. The order of each  value in the list 
corresponds to the order of the boundary condition it 
sets. 
delta is the discretization  resolution of the equation 
domain. 
equationList contains the set  of  reduced  first-order 
equations. 
equationstring is the equation as entered in string 
form. 
Jacobian holds the equation template used to build the 
block-diagonal equation matrix. 
range is the discretization domain. 
resolution is the discretization  resolution. 

Using the powerful  MVC  paradigm, a view and a view 
controller are associated  with this object.  These are 
subclasses of the DataView and DataViewController 
classes  described  elsewhere in this paper. Figure 10 shows 
the global  organization of the tool. As shown in the 
figure, the BVP model,  its view and view controller are 
maintained by Smalltalk, and the user  interfaces  with it 
through the view. Smalltalk, in turn,  and independently 
of the user, can interact with  several  possible distributed 
processes to perform any tasks  needed by the 
computations. These  can include number-crunching on 
MATLAB [22] (an interactive version of LINPACK 
[22]),  algebraic manipulation on Maple  [21], and 
database management  for  providing accurate initial 
guesses for the solution. These data paths are not 
necessary,  however, if all the processing is done in the 
Smalltalk environment. 

Creating the BVP model 
The model  is  created either by explicitly stating all the 
parameters, then opening the view, 

aBVP := TwoPointBVP 
newFromEquation: 
withBCs: 
resolution: 
range: 

aBVP  openview. 

or by opening a view on a nil  model 

TwoPointBVP  start. 

and using the newBVP option to fill the model's 
parameters.  When  creating the object,  Smalltalk  also 
opens data paths to MATLAB, Maple, and any other 
remote system, and initializes the problem on these 
systems. 

Viewing the BVP solution 
The BVP  view (an instance of TwoPointBVPView) is 
shown in Figure 11. As shown, there are three option lists 
and two  slide  gauges. The option lists  allow the user to 
send computation messages to the model,  while the slide 
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Jacobian: 
j(1,l)  = - l/dX j(2,l)  = 1/2 
j(1,2) = - 1/2 j(2,2) = (-0.05/& - us1/4) 
j(1-3) = I/& j(2,3) = (112 - as1/4) 
j(1,4) = - 112 j(2.4) = (0.0YdX - m0/4 - us1/4) 

Boundary  conditions  at  point 1 

L 

L 

Jacobian I 
1' Boundary  conditions  at  point 2 

Equation matrix A 

Building the equation matrix A. The Jacobian obtained from the 
Taylor  expansion of the  finite  difference  equations is used as a 
building block to relate points k and k + 1 in the internal discreti- 
zation of the solution domain. The boundary conditions are han- 
dled separately. 

User 
A 

Smalltalk I 
aBvP 1 

\/ 
Algebraic 
manipulation 

BVP 

object 
computational  View 

Global organization of the ODE tool.  The  BVP  object is main- 
tained as the model of an MVC structure in Smalltalk. The user 
interacts with this model through its view and view controller. 
The  algebraic  manipulator  and any other  Smalltalk  applications 
send messages directly to the model, whereas Smalltalk interacts 
with remote  applications as needed through separate  data  paths, 
independently of the user. 
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gauges are used to modify the boundary conditions. The 
first option list  is  concerned  with  setting the various 
parameters of the equation. The possible options are 
listed  below: 

newBVP Start up another problem. The user  is  led 
through the steps of specifying the complete problem. 
This is one of the two  possible  ways to create a BVP. 
resetsolution The displayed solution is  reset to the 
initial guess,  which  is  usually a line  between the 
boundary conditions, unless an initial guess  has  been 
obtained  from a knowledge  base [23]. 
changeBCs Change the boundary conditions. This 
option can be  used  in addition to the slide  gauges. 
changeEquation Change  only the equation for the 

220 problem. All the other specifications (boundary 

conditions, resolution,  range) are kept. The user can 
also  specify that the displayed solution be kept as an 
initial guess for the next  problem. This feature is 
extremely useful  when  successive approximations for 
an equation parameter are investigated. The equation 
can  be  solved  with the first parameter, the parameter 
changed  while  keeping the last obtained solution, and 
the process  repeated. 
changeDomain Change the problem domain, keeping 
the same  resolution. 
changeResolution Change the discretization resolution. 
acceptGauges Accept the input from the sliding gauges. 
The gauges are used to enter the boundary conditions 
for the TwoPointBVP. 

window on the model. 
selflnspect Instruct Smalltalk to open an Inspector 
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The options in the second  window  handle the 
visualization  process. The options are the following: 

e remoteSolve Send the ‘solve’ command to the remote 
system. The command activates a command file that 
repeats the iteration step until convergence to a 
tolerance  set by the user  is  reached. The solution is 
then displayed and previous  results  erased. 

remote system. This option allows the user to perform 
a limited number of iteration steps and display the 
intermediary results.  Previous  results  are‘displayed 
superimposed on the same plot. 

erased. 

remotelterate Send the ‘iterate’ command to the 

e keepLastSolution All the results  except the last one are 

redraw The plot  is  redrawn. 

The other window  is concerned with the visual 
presentation of the x and y axes,  ticks and grids on the 
plots.  They are inherited from the DataView  class. 

Example application 
The ODE tool was found to be very  useful in exploring 
the behavior of differential equations, especially 
nonlinear equations, by allowing the rapid  visualization 
of the solutions as the parameters and boundary 
conditions were changed. To illustrate this process of 
creating and solving an equation, we  go through the steps 
for the equation shown in Figure 12. The problem 
specification  is entered from the workspace as 

aBVP := TwoPointBVP 
newFromEquation: (0.1 wxx) - (UWX) + u 
withBCs: ((1 .O) (-1 .O)) 
resolution: 40 
range: (-1.0 1.0). 

aBVP openview. 

From the view, remotelterate is  first  selected  for  two 
iteration steps to check  for the stability of the solution, 
then remoteSolve to proceed  with the solution [Figure 
12(a)]. The parameter is  changed  now  from 0.1 to 0.05 
by selecting changeEquation and choosing to keep the old 
solution as a starting guess for the new one, thereby 
reducing the computation time [Figure  12(b)].  Now, the 
parameter is further reduced to 0.0 1 with 
changeEquation. This time, however, the iterations from 
remotelterate show  some  instability in the solution 
[Figure  12(c)],  which  leads  us to increase the 
discretization  resolution by selecting changeResolution 
from 40 to 200. This again  results in a stable solution 
[Figure  12(d)]. 

Flag simulation 
The applicability of the Smalltalk-80 IQV environment 
to the development of  numerically intensive models was 
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tested on a flag-simulation  model. This problem was 
chosen  because of its complexity of implementation and 
computation, particularly as a means of testing the 
SmalltalkjIQV paradigm; the motion of the flag occurs in 
three dimensions and requires three-dimensional vector 
algebra  for the computation. In addition, the appearance 
of a flag moving in the wind  is familiar to most  people. 
The flag model  essentially  consists of a grid of mass 
points connected by a set of  springs. This sheet of masses 
and springs is fixed in space at two  points, P1 and P2,  as 
depicted in Figure 13. The flag is subject to a net  force, 
F,,,, which  is made up of four forces: 

‘net = Fspnng + ’friction + Fgrw + ’wind 

The four forces are the spring,  frictional,  gravitational, 
and wind  forces.  These  forces on an arbitrary mass point 
are given by the vector  relations 

F, = k A x i ,  
8 

i= 1 

F, = rv , ,  

F, = ge,, ,  

F, = w[(v, - v,) . %I”, * 

In the equations above,  boldface denotes vectors, Ax, 
represents a vector to the ith neighbor, v, represents a 
velocity  vector, e,, represents the unit y-direction  vector, 
and n, represents the unit normal to the flag at a given 
mass point. The relative strengths of the forces are given 
by the parameters k, r, g, and w. The position and 
velocity  vectors, and v,, at each  mass point are 
computed at time t + At from time t by applying the 
following kinematic relations: 

x&t + At) = xo(t)  + v,(t) At + 0.5 . a At’, 

v,(t + At)  = vo(t) + a At, 

where 

a = FJm. 

The flag simulation consists of multiple repetitions of 
update and display,  using the velocity and position 
update formulas above. 

Flag IQV computational  objects 
The definition of  usable  objects in the IQV environment 
led to quick prototyping of the flag simulation. Code 
development consisted of creating structures which 
encapsulated much of the computational detail, thus 
allowing a higher-level  “language” for programming. New 
classes  were built incrementally from  existing classes; 
each new  class  addressed the flag simulation at a higher 
level  of abstraction. The ease  of  visual  display at any level 22 1 
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A session with the ODE tool. The BVP computational object for the jame shock equation with E = 0. I was created in a workspace (\cc 
text). The parameter E is varied to determine its effect on the final solution: 
(a) For  a value of E = 0.1 and a resolution of 40, remoteSolve yields a stable jolution. 
(b) Changing E to 0.05 still yields a similar solution. 
(c )  When E is further changed to 0.01, the coarse resolution causes instabilities in the solution, shown by performing onc iteration with 

(d) Changing the resolution to 200 points with changeResnlution leads to a stable solution again. 
remotelierate. 

of abstraction contributed greatly to the programming 
efficiency. This section demonstrates this idea. 

The first task consisted of defining  a  vector  class in 
order to deal  with the vector  algebra. This stage  of 
programming led to the programmer’s  ability to perform 
the following types of operations: 

a := Vector3D  new. “Create a new 3D vector.” 

b cross: a. “Vector cross product.” 

c*( 1 /2). “Multiplying  vector by scalar.” 

222 d norm. “Length of vector d.” 

As is  evident  from this code, there was no need to deal 
with the details of vector operations from that point 
onward. 

Next, the classes  Flag and FlagPoint were developed. 
These  classes  allowed the forces to be dealt with at a very 
high  level. For instance, the four flag forces  described 
above  were each applied to all the mass points (FlagPoint 
objects) in the model. The classes  provided  easy  access to 
the flag data, as well as a  logical,  simple command 
syntax. For example, an instance of Flag  could  be 
invoked and displayed by the following  series  of 
Smalltalk commands: 
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FlagTool simulation  cnvironmcnt 

flag := Flag  new. “Create a flag model.” 

flag  initialize. “Initialize the flag position.” 

flag  openFlag. “Open the IQV environment.” 

Immediate visualization of the modified  forces  could 
be obtained in this fashion. Figure 14 depicts the Hag 
environment and the current version  of the frictional 
force component procedure. The flag could be made to 
flap  for  several iterations, then visually  debugged in the 
Flag environment. The appropriate force terms could 
then easily  be  edited. The flag would, thereafter, resume 
its motion with the corrected  force term applied. 

Several parameters required  subtle  modifications in 
order to ensure that the flag model was  visually  realistic. 
For instance, the wind  velocity, the spring constant, the 
frictional  coefficient, and the downward  pull on the flag 
all  required adjustment. This portion of code 
development  is  called physical debugging. If, for  example, 

the frictional  coefficient  was  made too low, the flag 
motion appeared much too random. The IQV 
environment allowed the feedback  process  between the 
numerical  model and the programmer to proceed  quickly 
enough that a change  could  be incorporated into the flag 
environment in just a few seconds. The resulting  model 
(Figure 15) would then proceed to flap, this time with a 
higher  frictional  coefficient, and in a more realistic  visual 
manner. 

The IQV environment certainly  enabled a manyfold 
increase in programming speed in this instance. The 
rapid  feedback to the user  was  particularly  useful in the 
physical  debugging  stage of simulation. 

Conclusions  and  future resdarch 
In this paper we have  described  strategies to effect 
interactive  graphical support for the quantitative 
requirements associated  with prototyping of scientific and 223 
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FlagTool  showing  simulated flag. This vicw shows  erratic flag motion duc t o  improper  wtting of friction.  spring. and time-step  yaramcters. 

engineering computer simulations. Object-oriented 
software and access to distributed computing resources 
are important features  of our system.  Flexible  graphics 
tools which emphasize quantitative connection with the 
underlying computational data are essential. The user’s 
ability to recover  his computed data from any arbitrary 
graphical view depends on a  dictionary-based data 
structure which  serves as a link between the graphical 
visualization and the real data. With this 
implementation, the user  can  interactively  query any 
visual  point  for its associated  datasets. 

supports our concept of computational steering. The 
system  constructed  for nonlinear boundary-value 
problem  solution  also  illustrates how distributed 
computer resources,  accessible to the user in a 
transparent manner, are employed to improve 

In  the  examples  presented, we have  shown  how  IQV 

224 performance,  which  itself is an important aspect of the 

interactive environment. Both the differential equation 
solver  system and the flag  model  show  how  IQV  is  used 
to support incremental in situ changes to the 
mathematical model. In our system, the implementation 
of computational steering  depends on Smalltalk‘s 
incremental compilation capability. 

We have  established the feasibility  of  new  forms  of 
computer environments for the scientist and engineer; it 
is no longer  necessary  for  these  professionals to be 
constrained to old edit-compile-link-run environments 
with only  postprocessing  graphics as an option. The 
scientific  professional  needs the same  modern  interfaces 
we  now afford  businessmen  who use small  computers. 
Much  remains to be done before  these  new  scientific 
environments will be  accepted into widespread use. 

There is a  need to replace the “string” format used  for 
equation input with the capability  for input expression  in 
mathematical  symbols; this is a nontrivial task  in 
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contextual pattern recognition.  Intelligent  databases  (e.& 
expert  systems)  need to be added to tools  like our 
boundary-value  problem  solver, so that these tools can 
have  access to theoretical information such as methods 
for  high-order approximations. Inclusion of such  access 
will  allow  faster and more accurate prototype solutions. 
While we  use distributed computing, there is a need to 
develop internal system  “intelligence” so that the most 
appropriate resource  is  used.  Additionally,  parallel and 
concurrent computation must become a more integral 
part of the overall environment, particularly the parts 
that support interactive graphics. As our graphical 
requests  become more complex,  parallel computation 
will  be required to implement database access,  perform 
transformations, and service  user  requests in a 
deterministic manner. Perhaps the most  challenging  task 
is to integrate visual “realism,” with  all of its complex 
rendering, and IQV so that users can have  access to as 

complex and dynamic graphical representation as they 
need,  without  losing interactive connection to their 
physical  model and its data. 
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