
Interactive
Quantitative
Visualization

by R. L. Peskin
S. S. Walther
A. M. Froncioni
T. I. Boubez

Interactive Quantitative Visualization, a
methodology to enhance scientific and
engineering computational simulation
prototyping, is defined. Appropriate strategies
for implementing IQV in a workstation-based
distributed computing environment are
discussed. Object-oriented graphical tools and a
new data management technique to support IQV
and computational steering are described. Two
examples of IQV and computational steering are
presented: 1) a system to allow interactive
solution and visualization of nonlinear boundary-
value problems; and 2) a modeling exercise
illustrating how IQV and computational steering
are used together to prototype simulation of a
complex physical system, namely a flag flapping
in the wind.

Introduction
Our objective in this research program is to develop
strategies for Interactive Quantitative Visualization
(IQV). We mean by this the ability to dynamically
present results of scientific and engineering computations
in a graphical (e.g., visual) format and also to allow the
user to extract accurate quantitative information directly
from the visual presentation. One important need for
such a capability arises in simulation model development
and prototyping; this activity requires continuous

interaction between the computational model and
visualizations of its data output. For example, an
aerodynamics engineer may need to simulate turbulent
flow over a wing. His computational model consists of a
set of partial differential equations and a flow-region
(geometry) specification. However, in order to describe
the turbulence, he uses approximations in his basic
equations, and the prototyping process involves
computational assessment of the validity of these
approximations. To do this, the engineer initiates
computations, and, after an appropriate number of
computational steps, examines a visual (graphical)
representation of the interim results. If he notices some
questionable features, he uses his interactive pointing
device to retrieve the actual numerical data associated
with the locality of these features. After examination of
this retrieved dataset, and perhaps some subsidiary
computation using this set, he may revise his
approximations, modify his model equations accordingly,
and proceed with the simulation using the newly revised
model. We refer to this sort of procedure, which requires
incremental data visualization and model modification,
as computational steering [11. It should be noted that we
are concerned with steering the model itself, not the
specific numerical methods and procedures employed in
effecting a solution.

IQV is also needed to supplement information
obtained from visual feature recognition when more

"Copyright 1991 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (I) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, hut no other portions, of
this paper may he copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other

portion of this paper must be obtained from the Editor.

IBM J . RES. DEVELOP. VOL. 35 NO. 1/2 JANUARYIMARCH 1991 R. L. PESKIN ET AL.

205

206

traditional postprocessing visualization is used in the
supercomputing environment. New hardware capabilities
in computer graphics, coupled with the ability of
supercomputers to produce massive amounts of data,
have created both the need and the capability to use
graphics and visualization in the analysis of data.
Dramatic visual graphic effects (both static and, in a few
cases, dynamic) have been produced. In some instances
these have been useful in identifying physical
phenomena. Often, however, the exotic graphics obscure
the underlying quantitative information. The extraction
of quantitative information from a complex rendered
volumetric scene is a dfficult problem. IQV strategies are
directed toward data structure manipulation and pictorial
representation that allow access to quantitative
information necessary for the user to judge the viability
of his simulation. Interaction with the visual output, use
of color, rotation, translation, scaling, and other features
are all designed to enable the user rapidly to obtain
quantitative information that can be used for model
evaluation in the case of postprocessing, or for in situ
changes in the prototyping case. At present, IQV and
some of the more complex visualization techniques
should be viewed as separate but complementary
methodologies; as visualization technology advances, we
expect that these methodologies will merge.

There has been much attention paid recently to the
area of scientific visualization; the field was brought into
focus by a National Science Foundation report [I]. This
report, which stressed the need to bring visualization
techniques to bear on the problem of large
supercomputer dataset analysis, also emphasized the
necessity of developing computational steering
methodologies to improve prototyping and effect better
interaction between the user and his numerical
simulation. Our research is aimed at developing a
computational steering environment for computational
fluid dynamics (CFD). We feel that meaningful
experimentation in quantitative visualization and
computational steering requires domain specificity; it is
unlikely that applicable techniques can be developed
solely in the abstract. However, we do broaden the scope
of CFD to include not only traditional Navier-Stokes
equation simulation, but problems in nonlinear
dynamics and differential equations which are applicable
to the CFD and related fields. Consequently, we expect
our work to be adaptable to other technical domains.

In the following sections, we first consider interactive,
quantitative graphics from a historical perspective. We
then describe the overall system environment which is
being developed to support our prototyping framework,
and we discuss some of the quantitative visualization
tools which have been developed. These are useful for
both prototyping environments and postprocessing. Next

R. L. PESKIN ET AL.

we discuss the general data management strategies we
have developed, and how they are implemented in our
object-oriented environment. As examples of IQV and
computational steering, we describe in some detail a
differential equation solution system and the
development of a physical model (a flag flapping in the
wind) in the context of how that development employs
IQV. We also show examples of a more complex CFD
tool set and some flow-field applications. Finally we draw
some conclusions about our concepts and their future
directions.

Previous related work
Although scientific computer graphics was originally
implemented as subroutine calls to be included in the
user’s program, and, in fact, this mode remains the
predominant one today, interactive packages appeared in
the late 1970s. Among the first were the EZGraphing’
package from Tektronix Corporation and its successor,
PLOTIOIG’ [2]. These were written in FORTRAN, and
were meant to be used with TEKTRONIX’ display
terminals. The UNIX’ Plot libraries are similar in
functionality to these PLOTlO’ programs. The UNIX
libraries allow easier interfacing with computational
programs through the use of pipes, etc., but the user
interface to the graphics is command-line based.
Furthermore, the UNJX Plot libraries are limited in
variety of graphical representation. With the advent of
the X-Windows Sy~ tem,~ there has been improvement in
both the user interface and the spectrum of graphic tools
available. Designed primarily for interactive control of
postprocessing display, these products introduced
concepts, such as dynamic scaling, that remain part of a
modern interactive display program. However, user
interfaces for the early systems are difficult to learn and
use. In addition, they do not provide for dynamic
interaction between the computational component and
the graphics. Such dynamic interaction is necessary if the
user is to be able to interactively modify the numerical
computation while simultaneously being able to view the
results of the modification. Nevertheless, these traditional
interactive packages established the desirability of being
able to manipulate visualizations of computed data
without being constrained to pre-bound subroutines.

The advent of the personal computer resulted in the
generation of numerous interactive graphics products, so
many that it is futile to discuss them in detail here. In
general, the “number-crunching’’ limitations of the PCs
implied that the interactive graphics systems were
designed to emphasize manipulation of already

Tektronix, Inc.
’ EZGraphing, PLOTIOIG, TEKTRONIX, and PLOT10 are registered trademarks of

UNIX is a registered trademark of UNIX Systems Laboratories, Inc.

’ X-Windows is a trademark of MIT.

IBM J . RES. DEVELOP. VOL. 35 NO. 112 JANUARYiMARCH 1 9 9 1

computed or measured data. In some cases these datasets
were in file format, and in a few cases the data were
available from “on-line” instrumentation interfaces. As in
other areas of software, many of these PC graphics
systems serve as paradigms for systems that would be
desirable on workstations. They contain many features
which promote interactivity and experimentation with
the data they visualize. However, many of these PC
systems are written in machine language and thus do not
readily conform to user needs. For example, three-
dimensional surface representation might be part of such
a PC package, but the user would not be able to rotate
the surface. With the advent of increased computation
power in the PCs, more user options are appearing.
Recent spreadsheet products now integrate graphics, and,
in so doing, allow the user some access to interactive
quantitative visualization. For example, a new product,
Wingz4 [3], not only promotes interactive visualization of
data, but provides features such as three-dimensional
surface rotation and transformation normally found on
more complex hardware-software systems.

There have been some recent efforts to provide more
interactivity in systems primarily used for postprocessing
visualization. DAVID [4] runs under X-Windows, and
was designed for two-dimensional computational fluid
dynamics data visualization. DAVID supports such
features as sequential views of time frames (“movie
views”), and provides tools used to view data in a variety
of ways, e.g., cross-sectional graphs, contour plots, and
surface plots. Similar capabilities are available with the
NCSA Software Suite [SI. More powerful graphics can be
obtained by combining X-Windows and direct hardware
graphics support. By use of X-Windows controllers and
screen regions devoted to display of native graphics, the
Ardent’ computer is able to provide a degree of
animation speed response to user manipulation of dial
boxes [6]. Some direct coupling of scientific computation
and visualization is possible with “mini-supercomputers”
such as the Ardent or Stellar’ products. User feedback to
adjust computational parameters is possible, but
flexibility is limited by the need to accommodate the
feedback requirements at compilation time.

Some recent work in enhancing simulations of physics
phenomena with visualization has included some limited
interactive capabilities. The paper by Rapaport [7] shows
an example. Additionally, there exist interactive
computer tutoring systems that rely on interactive
graphics which are strongly coupled to physical models.
An example is found in the paper by Bourne et al. [8];
this paper is of particular interest because it describes

‘Wing is a trademark of Informix Software, Inc.

Ardent, Titan, and Stellar are trademarks of Stardent Computer, Inc.

an implementation of the tutoring system in
Smalltalk-80.6

The IQV system to be discussed in this paper traces
some of its origins to work by Walther [9] in the
development of quantitative graphics tools for UNIX
workstations. These tools provided a uniform user
interface to a set of linear graphing programs and three-
dimensional graphing programs. Based on a common set
of algorithms, these tools have now been enhanced and
implemented in Smalltalk-80. The primary characteristic
of this latest implementation is its use of the Smalltalk
Model- View-Controller paradigm as the basic mechanism
supporting a wide latitude of user options for
quantitatively based data visualization. Furthermore,
customization is straightforward and does not require
alteration of the underlying structures holding the user’s
data. In effect, the same interface and graphic tool set is
available for either file-based data (postprocessing) or
data computed in situ. These tools, then, are capable of
incorporation into a computational steering
environment. There seems to be little in the literature
reporting actual computational steering systems. A
prototype computational steering example was developed
by Campbell for two-point boundary-value problems: it
was implemented under Suntools.’ We later discuss a
similar differential equation system we have developed
using IQV techniques and having some computational
steering capabilities. Our overall research direction
vis-&-vis IQV and its relation to computational steering is
described in the paper by Peskin, Walther, et al. [101.

System overview
The computational system that is being developed to
support the IQV research is based on a distributed
computing concept: a graphics workstation in
communication with one or more “back-end” high-
power computers. A discussion of the technical aspects of
the system can be found in the paper by Walther and
Peskin [1 11. As described in [101 above, a prototyping
environment that is dedicated to scientific simulations
must combine ease of use with flexibility. At the same
time, performance must be at a sufficient level to support
true interactive computing. The well-known P I
(features, performance, interface) of Macintosh’
programming [121 apply in the scientific simulation
environment.

UNIX systems. We are using either the Sun
The workstations employed are common bit-mapped

Smalltalk-80 is a trademark of ParcPlace Systems, Inc.

’ J. A. Campbell, Los Alamos Scientific Laboratories, Los Alamos, NM, 1989, private
communication.

Inc.
* SunTools, Sun Microsystems, and SunView are trademarks of Sun Microsystems,

Macintosh is a trademark of Apple Computer, Inc. 207

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARYIMARCH 1991 R. L. PESKIN ET AL.

Microsystems* stations or the Tektronix 43 17- 19 color
stations. These stations typically have 12 megabytes of
memory and large (19-inch) screens. (In addition, we
have implemented some of the IQV capabilities on the
Ardent Titan5 workstation. This machine has vector
hardware and advanced color graphics capabilities.) Key
to our system implementation is the use of Smalltalk-80
[131 as the user interface on the workstation. Depending
on the platform, we are able to take advantage of color
graphics under Smalltalk, as well as all of its other
features. Of greatest importance to us is the utilization of
the Model-View-Controller paradigm. This allows a tight
coupling between model (simulation representation)
changes, the graphical view of those changes, and user
interface via keyboard and/or pointing device. S e e
Peskin, Walther, et al. [101 for a more detailed discussion
of the use of the MVC in scientific prototyping. This
reference also discusses the merits and drawbacks of
Smalltalk as a scientific computing environment. For the
purposes of this paper, it is important to note that
Smalltalk provides a highly productive environment
under which we are able to experiment with new
concepts and strategies for IQV.

Smalltalk’s major liability in scientific computation is
its performance; the true object-oriented features of the
language together with its incremental compilation and
dynamic binding produce computational performance
about an order of magnitude less than statically compiled
C code. This results in very severe restrictions in those
scientific models that require multiple iterations.
Smalltalk itself has high performance in its graphics and
character scanner operations; this is accomplished by use
of primitives, i.e., machine code. While there is
significant work being done in improving Smalltalk
performance [14, 151, our approach has been to use
primitives to perform numerically intensive
computations while still in the Smalltalk environment. In
some cases, these primitives perform machine-code
operations on the workstation itself. However, as is
appropriate to a scientific computing environment, our
primary use of primitives is to invoke numerically
intensive computations on a “back-end” computer via
distributed computing which employs a networking
protocol.

parallel and serial high-performance computers,
specifically a 128-processor NCUBE” hypercube, a 32-
processor Butterfly’’ GP1000, and a two-processor
Ardent Titan. The networking protocol allows the user’s
interface system to request appropriate computation
services from one or more of these machines. In the

Our distributed environment consists of a collection of

lo NCUBE is a trademark of NCUBE Corporation.

208 ” Butterfly is a trademark of Bolt, Beranek and Newman, Inc.

R. L. PESKIN ET AL.

future, “intelligence” in the Smalltalk system will choose
resources on the basis of most appropriate functionality.
At present we are concentrating on establishing reliable
distributed networking; we use the Butterfly for
specialized parallel back-end processing and the Ardent
for more routine numerical processing. In order to effect
transparency, we are currently installing C-Linda [161 on
the Butterfly and NCUBE, and plan to develop methods
to allow Smalltalk to initiate Linda programs over the
distributed system. In a technical sense, these back-end
processors perform “methods” on behalf of Smalltalk
objects. Figure 1 presents a diagram of the current
configuration of our distributed computational
environment.

Graphical visualization tools
As indicated above, the interactive visualization tools we
have been developing are described in detail in several
other forums [9-11]. The earliest versions of our user
interface [9] serviced monochrome and color graphics
terminals through libraries of device-independent 2D and
3D graphics functions, written in C, which provided both
interactive and subroutine-callable graphic tools for
scientific and engineering data analysis. These libraries
were extended to support bit-mapped workstations under
Sunview’ and X-Windows and to make use of certain
experimental environments using multiple
processors [171.

functionally around a set of visualization behaviors; the
2D graphing methods presented data according to the
Graphics Kernel Standard (GKS); the 3D graphing
methods used standard transformation and perspective
techniques to present data as three-dimensional wire-
frame surfaces. But while these functions were modular,
the structure was not yet object-oriented; thus, although
coded functions were reusable and software could be
extended by adding routines to existing libraries, the
logical relations between graphical behaviors did not
support inheritance and encapsulation. Most
significantly, the event-management facilities of the
interfacing environments (e.g., Suntools or X-Windows),
lacked a good paradigm for implementing intelligent
process control, that is, interaction engineered jointly by
the user viewing the data and by the data itself.

Under Smalltalk-80, the Model- View-Controller
paradigm provides a process-control facility through
which data objects (models) can deploy a variety of visual
presentation behaviors (views) and can be responsive to
interruptions from a user (controllers). The prototyping
of the basic scientific visualization repertoire in Smalltalk
is described in [101 and in [1 11.

Figure 2 shows the present organization of
visualization classes. DataModel is the class that

In these iterations, the tools were organized

1BM I. RES. DEVELOP. VOL. 35 NO. 112 JANUARYMARCH 1 9 9 1

D

b

b

u\er interface

D

b

Shared-memor!
MIMD remote access

32-processor
BBN GP-1000

Supercomputer

netnorh l ink

b

r
Shared-memor!
MIMD

32-processor
BBN GP-1000

H! percuhe
118-processor rno-processor
SCCBE IO Ardent Titan

Bua-based

comprises basic 2D graphing methods (Graphics Kernel
Standard compatible). DataView contains the display
methods supporting these 2D presentation methods.
DataSurface is the class that comprises basic 3D graphing
methods, inheriting from DataModel such graphing
methods as are common to them both. DataSurfaceView
contains the display methods supporting 3D presentation
methods. Datacontour comprises methods for the
presentation of 3D data as two-dimensional cross
sections. Datavector uses the 2D graphing methods of
DataModel, adding some of its own. StreamData uses 3D
graphing methods, again with its own additions. The
view supporting Datavector's display needs, VectorView,

B

B

Visualization classes (Model-View-Controller paradigm)

ViualizationObjects DisplayBehaviors hanagers
(Models) (Views) (Controllers)

Object View
DataMcdel

MouseMenuController
DataView DataViewController

DataSurface DataSurfaceView DataSurfaceViewController
PrimitiveSurface

:::data
FlagView
Streamview

FlagViewController

Datacontour
StreamViewController

Contourview
Datavector VectorView VectorViewController

ContourViewController

Logistickpation
Oscillator
TwoPointBVP "koPointBVPView TwoPointBVPController
XYData

is a subclass of DataView (the basic two-dimensional
view). DataSurfaceView comprises display behaviors
supporting three-dimensional representation. Each view
class has a controller to manage requests for view
behavior and f or model behavior. 209

IBM J. RES. DEVELOP. VOL. 35 NO. 112 JANUARYIMARCH 1991 R. L. PESKIN ET AL.

Any object that needs some numbers graphed can
declare an instance of DataModel, DataSurface, or any
other visualization class, and can thereby make use of
that class's graphing methods directly as it is computing.
In effect, computational objects can deploy visualization
objects in the same way that any object in Smalltalk can
deploy other objects for its own purposes. This is one of
the most powerful features of true object-oriented
environments; the total repertoire of described objects is
accessible at all times and is ready to perform on behalf
of any request properly made. The impact of this
structure for scientific visualization is that computational
elements are neither isolated from the visualizing
apparatus nor forced to become specialized to only one
representation format. Moreover, as visualization classes
are added, any computational object that has (or can
generate) the appropriate information can immediately

210 avail itself of that capability.

R. L. PESKIN ET AL.

In addition, each of the views described above provides
a class method to open an instance of itself as a stand-
alone tool that can access and display precomputed data
files. A "sampler" of visualization utilities is presented in
Figure 3. Figure 4 shows Vectortool, a view opened on an
instance of Datavector, the class that knows how to
represent two-dimensional vector data (position and
velocities). In that figure, the view has been invoked as a
stand-alone postprocessing visualization tool to explore
data resulting from a parallelized computation of a two-
dimensional flow.

Another handy technique to effect computational
steering is to subclass a computational model directly off
one of these visualization classes so that the graphic
behavior can be inherited or modified. Normally, this
would mean that such an object has computation
methods of its own to generate graphable data and that it
will add initialization and control methods suitable to its

IBM 1. RES. DEVELOP. VOL. 35 NO. 112 JANUARYIMARCH 1 9 9 1

 ha user a n mkcl point9 in tha flow from
whkh path lines can be Interpoktsd. 0.1s
values at my polnt a n be Inspcasd. V l e w
a n bc zoomed.

L I I I I I L * t

VectorTool. Features shown illustrate vector flow, zoom, path interpolation, and retrieval of data value\. The inspection box shows thc
position and velocity values of the vector by the red dot in the zoomed view.

user interface requirements. As shown in Figure 2 , the
classes LogisticEquation, Oscillator, TwoPointBVP
(described in the sections on the ODE solution tool), and
Flag (described in the last example section) are
computational objects taking the subclassing route to
their own visualization.

retrievability of original data values from any graphic
effect. Put another way, a visual effect is of value
primarily because it is informative and/or can be
manipulated to yield further visual effects that, for
example, lead the user to derivable quantities or to
identification of structural features. Figure 5 illustrates
the multiple zoom capability of XYtool which allows the
user to explore regions in a visualization based on a
computation of the Henon attractor [181. Zoomed
regions can be zoomed further themselves, and so on

A key feature of this visualization environment is the

until the resolution of the data is exhausted. The user is
completely free to probe any region of any view or
subview as many times as desired; all the original data
are retained, and only original computed values are used.
In Vectortool, shown in Figure 4, the user can zoom on
any area of the flow field, retrieve original data values of
any vectors, or generate path lines from any point in the
flow.

Moreover, the view paradigm is itself quite adaptable
for visualizing multiple objects acting concurrently and
for tracking their behavior. We have been experimenting
with a "spreadsheet" graphical interface, based on the
MVC paradigm in which a master view of integrated
subviews is opened on a "matrix" of models.
Computational objects (the models in the cells) have
access to the full repertoire of graphic visualization
described above and can also display icons or flash text 211

R. L. PESKIN ET AL. 1
IBM J. RES. DEVELOP. VOL. 35 NO. 112 JANUARYIMARCH 1991

XYTool graphing Henon attractor data. XYTool has been used to zoom in on regions of the data that are of interest. Each Loomed view can
itself be zoomed. Clockwise from top left, the views explore orbital \tructures whow sub\tructure\ are themselves orbital.

messages to report specific values or to indicate their
status. In addition, the user can open another view, with
a control panel on a cell object, so as to manipulate the
view interactively. Figure 6 shows a spreadsheet on a
2 X 2 matrix object (a domain decomposition problem)
in which each cell object (the subdomains) has deployed
surface-plotting display methods. As the subdomain
computations progress, they update the views which
represent their solution at the time for their region of the
problem space. The processes that are computing the
regions can be executing on different processors from the
processor which is running the graphics. The individual
views are updated in response to messages sent by the cell
objects from wherever they are computing. Currently, the
messaging is implemented through remote procedure
calls using sockets as provided for in 4.3BSD’’ UNIX [191.

212 l2 BSD is a trademark of the Regents of the University of California.

R. L. PESKIN ET AL.

Data management techniques for IQV
If incremental quantitative visualization is to accomplish
the graphical representation of a computational model
while the computation is in process in a way that
supports the interactive manipulation of that
representation, two separable but interrelated aspects of
visualization procedure must be recognized. First, to
evaluate a computational feature through a visual effect,
one must establish visualization vocabularies in which
the attributes of the representation medium (for present
purposes, a two-dimensional color display), e.g., hue and
intensity of color, forms (lines, dots, shaded areas), as
well as conventional icons (e.g., arrows) are bound, either
loosely or rigorously, to specific computational elements.
A loosely bound association (e.g., bright red tones to
indicate the regions in a contour plot of temperature
distribution wherein the highest values fall) operates
metaphorically and aesthetically; a rigorous binding is a

IBM J. RES. DEVELOP. VOL. 35 NO. 112 JANUARYIMARCH 1991

rule-governed transformation of a data value to a visual
effect at a particular pixel, e.g., the representation of xy
data values in a two-dimensional plot scaled to its own
data ranges and labeled. Such a correlation is frequently
thought of as a denotation; the visual design points to
and is isomorphic with the computational elements.

While we tend to take for granted the associative and
rule-governed visualization techniques of the familiar
repertoire of scientific graphics, e.g., the Cartesian plots,
contour maps, three-dimensional wire-frame surface
plots, we are forced to attend to the issue of “graphical
meaning” when confronted with a new idiom. For
example, apart from their aesthetic appeal, which can be
quite powerful, fractal representations provoke
recognition of a distinct conceptual framework (the logic

of iteration) [7] and yield possibilities for studying
iteratively modeled phenomena. Extensions in
computational techniques, particularly those involving
concurrency, open up wholly new “visualizables” both
with respect to the amount of information that can be
generated and the dynamics of that generation. The
expansion of our visualization vocabulary rests on the
collaboration of those who generate and wish to explore
their computations and those who design and implement
the interfaces through which that exploration is
expressed.

Second, when the desired computational information
and its visual counterparts have been identified, we face
major questions of strategy. Succinctly, it comes down to
this: What is the information? When is it available? How 213

IBM J. RES. DEVELOP. VOL. 35 NO. 112 JANUARYIMARCH 1991 R. L. PESKIN ET AL.

StreamTool on a 15 X 15 X 15 problem. In this view, stream lines have been interpolated from starting points indicated by thc uscr. Thc
entire volume grid and the stream lines can be rotated. A single plane can be selected for display, or the strcam lincs can bc displayed
without the spatial gridding.

is it accessed? If incremental visualization is to provide
an environment for prototyping genuine scientific
problems, it must be capable of managing the volume of
data that a numerically stable, physically significant
statement of the model would generate. While the
maximum capability of virtual on-line real-time data
management will increase continually as hardware and
software state-of-the-art advances, the data volume
we are working to accommodate at this stage would
support a three-dimensional fluid-flow computation of a
50 X 50 X 50 matrix across several time slices.

Operationally, the features described above require the
following specific capabilities:

1. Retrieval of physical data from display coordinates.
The user should be able to indicate via mouse or other
pointing device a screen object, e.g., a colored pixel, or

214 a region of the screen (a contour section) and thereby

cause the retrieval and display of the actual data
values that are the basis of the graphic representation
and that in fact constitute the conceptual meaning of
the perceived graphic state. For example, Figure 4
shows a flow-field based on a two-dimensional
computation in which the user has selected a
particular vector (a red dot marks the place where the
user positioned the cursor) and an “inspector box” has
popped up showing the velocities at the closest
meshpoint in the computational grid. Similarly,
Figure 7 shows a three-dimensional computation in
which a point on an interpolated stream line has been
queried and the values at the closest grid point have
been retrieved. The values of the interpolated point
could have been retrieved as well.

2. Integration of dynamically generated derivative values
into the basic computational information. For
example, the user may choose to compute and display

I R. L. PESKIN ET AL. IBM I. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARYIMARCH 1991

the vorticity at selected positions. These additional
data elements are time-consuming to compute and,
once computed, need to remain in the computational
database but must be integrated into the retrieval
strategies so that they can respond to user queries.

3. Organization of historical slices of a computation as a
“warehouse” of significant subsections or snapshots of
the model as it is computing. The role of the
warehouse is to support queries into graphic effects for
which the computational trail (or conceptual basis)
leads back into stages of the computation that precede
the current visualized slice.

All of these requirements can be met by adopting a
strategy in which the computational objects whose
behaviors we are visualizing are designed as extensible
data structures accessible by a search key that is unique
for each object, that remains invariant or at least
“trackably transmutable” during the computation
process, and that lends itself to implementation and
manipulation by as few rules as possible. Such a strategy
has in fact been employed in the vector visualization
tools described above and is best explained by their
example.

0 Logical maps and computational objects
Typically, a computation of a two-dimensional fluid flow
yields, as output for graphing, positions and velocities;
the positions are the computational grid values or
independent variables of each dimension of the
computation, and the velocities are those values
computed “at” each rowfcolumn index of the
computational mesh viewed as a two-dimensional matrix.
In this case, the computational object of interest, a two-
dimensional vector, can be defined as an object whose
attributes are a position and a velocity. Furthermore, the
attributes themselves are “objects,” namely two-
dimensional points.

Now, consider a collection of numbers that have been
computed by a two-dimensional flow model, using a
32 x 32 grid. Assume that the numbers are in groups of
four, with the order within each group implemented as
x, y, u, u. Each group represents a vector; the x and y
components represent the position coordinates, the u and
u, the velocities. The retrieval keys are the members of
the arrays of independent variable points (hereafter
referred to as grids) of each dimension of the calculation.
The grids can be extracted from the data itself or they
can be specified numerically. If the grid indices are given
along with the actual data values for the spatial
coordinates, the steps that identify the grid values are not
needed. This is normally the case when the data have
been computed in noncartesian coordinates. The

IBM I. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991

computational objects themselves can be in any order; all
that is required is that a “conceptual element,” in this
case a vector consisting of position coordinates and
velocities, is identifiable as an entity and that it can be
parsed into its components.

To extract the grids, the dataset is organized into
component collections. In this example, for each vector,
its x-position component is placed in a collection of x
values and its y-position component in a collection of y
values. Each collection is sorted and an ordered set of
unique values is extracted. If the data are in a Cartesian
coordinate system, these sets will represent the grids of
each dimension of the computation. The x grid is the
ordered set of x,, x,, . , x,,; the y grid is the ordered set
of y,, y2, . , y,. Since the data collection itself (in effect
a collection of records containing x, y, u, v values), can
be in any order as long as the internal integrity of each
record is maintained, this technique can be used to
organize dynamically a collection of data elements that
are being computed concurrently but which complete at
different times and in indeterminate order.

The indices of the elements in these ordered sets are
used as the keys by which any composite element in the
dataset can be accessed. Retrieval is based on establishing
a mapping of two collections: a numbered list (one-
dimensional indexed collection) of the composite data
components (in this case, the vectors) in any order, and a
mapped collection of n indexors, where n is the number
of dimensions of the computation. That is, a two-
dimensional computation would establish a map whose
entries are referenced by two indexors, i, j ; a three-
dimensional computation would establish a map whose
entries are referenced by three indexors, i, j , k. Each
location of the mapped collection (Map[i]Lj] or
Map[i]Lj][k]) points to the unique data element whose
x, y (or x, y, z) values are in fact the grid values at those
indices (in the ordered sets). Figure 8 illustrates these
concepts for a small collection of ten objects keyed by a
4 x 4 mesh.

Although these strategies were first formulated and
implemented in Smalltalk, an object-oriented language,
they could be implemented in other languages, since the
logic does not depend on linguistic features. (In fact, our
present system involves concurrent implementation in C
and in Smalltalk for a distributed computation.) A
mapped collection of grid indices to original data is
constituted by the following procedures:

Let Map[xn][yn] be a Collection [xgrid size] by [ygrid

Let xorder be the set of xgrid values in ascending order.
Let yorder be the set of ygrid values in ascending order.

Map is set up by iterating through the data collection,
jinding the index in the ordered set of grid elements that

size].

R. L. PESKIN ET AL.

215

216

Computation objects
(vectors)

index x y u v

I 0.7 0.4 -0.23 0.15
2 0.3 0.2 -0.44 -0.12
3 0.1 0.4 0.76 0.00
4 0.1 0.6 -0.58 0.36
5 0.5 0.2 0.63 -0.54
6 0.3 0.4 0.0 0.0
7 0.7 0.8 -0.67 -0.47
8 0.5 0.4 0.22 -0.68
9 0.1 0.2 0.51 0.17

I O 0.3 0.8 -0.79 -0.82

Ordered grid keys Map (partial)
(4 x 4mesh) 4 X 4 array keyed

as x@y

index xorder yorder xindex yindex index
object

0.1 0.2
0.3 0.4
0.5 0.6
0.7 0.8

1
I
I
I
2
2
2
2
3
3

2
I

3
4

2
I

3
4

2
I

9
3

nil
4

2

nil
6

IO
5
8

Logical map to a 4 X 4 computation. The left group of items is in
arbitrary order. The center shows the ordered sets of unique x val-
ues (xorder) and y values (yorder) of the .x and y grids. The right
group shows a partial map to the left group based on the center
group. The map is shown “partially” for only 10 entries. For a
4 X 4 mesh, the full map would have 16 entries. The example
also shows that certain map locations, indexed by valid mesh val-
ues, have no computational object and indicate “nil” rather than
an index to a computed item.

matches that factor in the composite data element, and
using that index as the index for that dimension into the
map:

1 to: (dataCollection size) do: [: datalndex
thisvector := (dataCollection at: datalndex).
xindex := match: (thisvector x) to: xorder.
yindex := match: (thisvector y) to: yorder.
Map atRow: yindex column: xindex put: datalndex].

Thus, if a given vector, e.g., a vector whose x = 0.234
(at xorder [lo]) and y = 0.792 (at yorder [161) is at index
321 in the data collection of vectors, Map [10, 161
contains the number 32 1. With such a map, whenever
the x and y values of a vector can be determined, all
other information associated with it can be retrieved.
Furthermore, xy values not in the original data can be
evaluated to find the “closest” or “most appropriate”
match in the physical grid. The set of nearest
approximations to a match can also be generated. For
example, the four nearest neighbors enclosing a point
px p y are found by searching xorder and yorder to find
the four grid values “bracketing” px and py.

interpolation features in Vectortool that allow the user to
select a place in the displayed vector field at which a path
line is to be computed. The screen coordinates of the
mouse location are “reverse-transformed” to recover the
equivalent values in the coordinate system of the data.

These mechanisms underlie the interactive

R. L. PESKIN ET AL.

The “recovered” x value is evaluated against the ordered
x grid to find the closest x grid value; the “recovered” y
value is evaluated against the ordered y grid to find the
index of the closest y value. The resulting indices are
used to reach into the map to retrieve the index of the
vector object. Retrieving that object from the
computational object list provides access to its velocities.
By finding the closest grid point and evaluating its
position with respect to the selected point, we can
retrieve the remaining grid points of the region enclosing
the selected point.

This mapping strategy can easily be extended to three-
dimensional computations. (Figure 7 shows a volume in
which stream lines are traced.) Assume a three-
dimensional model whose computational object
comprises a coordinate position in 3D space (an xyz
point) and a velocity in three directions. The
organization proceeds as above, with the difference that
we now have a z grid and another level of indexing into
the control map. We have implemented the added
dimension by defining a storage object, XYZcollection,
as a collection of two-dimensional or XYcollection
objects. An XYZcollection stores and retrieves elements
by row, column, and depth. The mapping algorithm goes
as follows:

1 to: (dataCollection size) do: [: datalndex
this Vector := (dataCollection at: datalndex).
xindex := match: (thisvector x) to: xorder.
yindex := match: (thisvector y) to: yorder.
zindex := match: (thisvector z) to: zorder.
Map atRow: yindex column: xindex depth: zindex put:
datalndex].

Since each mapped collection location or keyed
reference “points” to the corresponding object by storing
the index of that matched item in the first collection,
rather than the item itself, we can extend the data
structure of the object itself without having to reconstruct
the map. For example, the three-dimensional vector
described above could be computed and organized
initially as a position and a velocity; its components are
six data values representing position (x, y , z) and velocity
(u, u, w). Because the key to its retrieval depends entirely
on its position components (and their sequential place in
the ordered set of mesh values for their dimension),
additional data elements can be added to the basic
computational objects, extending their storage
requirements as well as their definition without
disrupting the retrieval mechanism. Thus, a vorticity
component for some of the vectors could be computed
By being incorporated into the object collection, it would
be immediately “manageable.”

applicable to adaptive grids (computational mesh regions
The logic of this management strategy is also

IBM J . RES. DEVELOP. VOL. 35 NO. 1/2 JANUARYiMARCH 1 9 9 1

that are recalibrated during the course of the
computation). In terms of the above description, this
means that the number of elements in the ordered sets
comprising the position keys has changed for a time step
or set of time steps. A dataset computed for multiple
time steps would be organized as an ordered collection of
“computational slices,” where each “slice” is a set of
computational objects and its map. For nonadaptive
grids, the indices of the map would be identical at each
time step. Adaptive grids could be accommodated with a
meta map which would “tag” the indices in a time slice
that comprised a subset of, or that had subsumed, other
indices.

ODE solution tool
In this section, we describe an interactive, numerical
differential equation solver, as an example of some of the
IQV ideas presented in this paper. This tool was designed
to allow a user to specify an ordinary differential
equation (ODE) and visualize the solution interactively,
while changing the boundary conditions and the equation
parameters. In keeping with the intent of the prototyping
environment, the solver is completely automatic, and the
working details are transparent to the user (although this
can be changed by providing a selection of different
solution methods, each of which is more appropriate to a
certain equation type). The user need only specify the
problem formulation: the equation in string format, the
boundary conditions, the discretization resolution, and
the solution domain. The parsing of the equation, finite-
difference formulation, construction of problem, and
solution are all handled by the system.

Numerical solution of ODES
Numerical solution methods for ODES are numerous and
very well established, and several variations exist. What is
needed in a prototyping environment, however, is a
robust and quick solution method to facilitate the
computational steering step of fine-tuning the design
parameters. For this tool, a relaxation method was
chosen because it involves computing solutions to large
matrix equations which can be implemented on a fast
machine in parallel with the user’s machine, and the
results downloaded, thus making full use of the
distributed computing environment. The following is an
overview of the steps required in the general relaxation
method.

In general, the nth-order differential equation

y(“) = f [x , y , y’”, . . . , y’“4’1

can be reduced to a set of n first-order equations

yi’ = g,(x, y , , .. , y,) i = 1, . . . , n (2)

by using some auxiliary functions [20].

This set of first-order equations is then rewritten as a
set of finite difference equations (FDEs) for each of the
interior points in the discretized domain. A forward-
differencing scheme,

1
u’ = x (up+, - up),

where ui is the value of the function at point i in the
discretized domain, can be used in this case. The FDEs
are linearized by rewriting them as a set of linear
equations in the highest derivatives, taking the nonlinear
terms from the previous iteration. The equations are then
expanded into first-order Taylor series with respect to
small changes Ay around each of the interior points in
the domain. The terms are arranged to form a matrix
equation in the correction terms from the series
expansion, and the boundary conditions are incorporated
to produce an equation of the form

A * x = b (3)

relating all the interior points in the discretized domain.
This equation is more accurately written as
A(k-1) x(k) - - b(k-1)

(4)

and solved several times in a loop, using the solution
from the previous iteration k - 1 to construct the matrix
and solve for the next iteration k. The solution is thus
relaxed until convergence is reached.

Numerical solutions with the ODE tool
In standard numerical methods, the equations are usually
reduced and prepared beforehand, and the computer is
only used in the final solution steps that require number-
crunching (matrix solutions and relaxation iterations).
The purpose of using our prototyping environment is to
automate the initial stages as well as the number-
crunching steps, so that an equation is processed from
string form to a solution plot.

Problem formulation
The most important user-system interface step is the
initial one, that of problem formulation. The problem
equation must be entered, parsed, and processed. An
algebraic manipulator (e.g., Maple [21]) can be used to
do this on a remote system, or, as we opted to do, the
processing can be done in Smalltalk.

Inheritance rules in Smalltalk allow a subclass to
understand the methods associated with its parent class.
As mentioned previously, this is very useful for designing
special-purpose classes that are very similar to existing
classes. By using Smalltalk syntax rules, a string 217

IBM J. RES. DEVELOP. VOL. 35 NO. I/Z JANUARYfMARCH 1991 R. L. PESKIN ET AL.

218

expression can easily be converted into an equation by
using a scanner. The equation u,, = u, for example, is
entered as 'uxx - u', and when scanned produces a new
instance of Array having the value (uxx - u). By analogy,
a new subclass of the Smalltalk Scanner class,
BVPScanner, was created, and the conversion methods of
Scanner were modified for BVPScanner to produce
instances of EquationList, a subclass of Array which
understands the methods associated with Array (e.g.,
accessing, adding, removing, testing, etc.), along with all
the new methods for algebraic manipulations that have
been implemented.

A subclass of the Smalltalk Dictionary class was used to
perform this conversion. A set of higher-order derivative
variables a, b, c, e . .) are defined such that

du/dx = ux = a

da/dx = ax = b

The EquationList instance representing the nth-order
equation is recursively scanned and the above
substitutions applied, producing n first-order equations.
The FDEs are then produced by performing the following
substitutions:

ux + (l/deltaX)*((u at : (p + 1)) - (u at : p))

u + 0.5*((u at : (p + 1)) + (u at : p))

ax + (l/deltaX)*((a at : (p + 1)) - (a at : p))

a + 0.5*((a at : (p + 1)) + (a at : p))

The above chain of translations and substitutions
produces equations whose structure may be quite
complex, since each substitution adds a level of
complexity. As a result, it is necessary to apply a series of
expansion and simplification rules to the equations to
reduce the equations to a manageable form.

The resulting set of difference equations must be
linearized and written in the form given by Equation (4).
For this purpose, the variables in the equations must be
isolated from their coefficients in the main body of the
equations. In a general equation, the highest derivative
term in each factor is taken to be the equation variable
for step k, while the nonlinear terms are substituted from
iteration k - 1.

The final result is a template for producing one block
in the block-diagonal matrix A relating points p and
(p + 1). This block is filled in by interpreting it at each
interior point on the discretized domain, while the
boundary conditions are interpreted at the two
boundaries. The resulting equation can be solved through
a number of solution schemes in a relaxation loop. We

invoke distributed computations at this point and effect
the relaxation on a faster remote computer.

Example problem
As an example, the equation cuxx - uux + u = 0 with
c = 0.05 is processed. The equation is entered in string
form as

(O.O5*uxx) - (u*ux) + u

The first set of transformations produces two first-order
equations and the auxiliary function a:

(ux - a)

((0.05ax) - (u*a) + u)

Introducing the forward-differentiation scheme produces
the following equations:

(((1 .O/dX)*(uaO - usl)) - (0.5*(aaO + asl)))

((0.05*((1 .O/dXj*(aaO - asl))) -
((0.5*(uaO + usl))*(0.5 (aa0 + asl))) +
(0.5*(ua0 + usl)))

In the notation used, the a0 and sl suffixes denote the
function at the points k and k - 1, respectively, so that
uaO = (u at: k) and us1 = (u at: (k - 1)). Finally, after
expansion and simplification,

(((1 .O/dX)*uaO) - ((1 .O/dX)*usl) -

05aaO) - (0.5easl))

((0.05*(1 .O/dX)*aaO) - (0.05*(1 .O/dX)*asl) -

(0.25.uaO*aaO) - (0.25*uaO*asl) -

(0.25*usl *aaO) - (0.25*usl *asl) +
(0.5*ua0) + (0.5eusl))

Figure 9 shows the matrix block to be interpreted at
each point, along with the structure of the final matrix
equation. The complete matrix can then be constructed,
and the right-hand-side vector b determined by
evaluating each row in the matrix.

The BVP as a computational object
Although the ODE tool can be used for initial- and final-
value problems, the main emphasis is on the two-point
boundary-value problem (BVP). A BVP computational
object is viewed as a model at the heart of the ODE tool.
The object instance variables are listed below:

0 bcs contains a definition of the boundary conditions.
This consists of two lists, one for each boundary. Each
list might be nil, or might contain more than one
value, corresponding to higher-order boundary

R. L. PESKIN ET AL. IBM J . RES. DEVELOP. VOL. 35 NO. 112 JANUARYIMARCH 1 9 9 1

conditions. The order of each value in the list
corresponds to the order of the boundary condition it
sets.
delta is the discretization resolution of the equation
domain.
equationList contains the set of reduced first-order
equations.
equationstring is the equation as entered in string
form.
Jacobian holds the equation template used to build the
block-diagonal equation matrix.
range is the discretization domain.
resolution is the discretization resolution.

Using the powerful MVC paradigm, a view and a view
controller are associated with this object. These are
subclasses of the DataView and DataViewController
classes described elsewhere in this paper. Figure 10 shows
the global organization of the tool. As shown in the
figure, the BVP model, its view and view controller are
maintained by Smalltalk, and the user interfaces with it
through the view. Smalltalk, in turn, and independently
of the user, can interact with several possible distributed
processes to perform any tasks needed by the
computations. These can include number-crunching on
MATLAB [22] (an interactive version of LINPACK
[22]), algebraic manipulation on Maple [21], and
database management for providing accurate initial
guesses for the solution. These data paths are not
necessary, however, if all the processing is done in the
Smalltalk environment.

Creating the BVP model
The model is created either by explicitly stating all the
parameters, then opening the view,

aBVP := TwoPointBVP
newFromEquation:
withBCs:
resolution:
range:

aBVP openview.

or by opening a view on a nil model

TwoPointBVP start.

and using the newBVP option to fill the model's
parameters. When creating the object, Smalltalk also
opens data paths to MATLAB, Maple, and any other
remote system, and initializes the problem on these
systems.

Viewing the BVP solution
The BVP view (an instance of TwoPointBVPView) is
shown in Figure 11. As shown, there are three option lists
and two slide gauges. The option lists allow the user to
send computation messages to the model, while the slide

IBM I. RES. DEVELOP. VOL. 35 NO, 1/2 JANUARYMARCH 1991

Jacobian:
j(1,l) = - l/dX j(2,l) = 1/2
j(1,2) = - 1/2 j(2,2) = (-0.05/& - us1/4)
j(1-3) = I/& j(2,3) = (112 - as1/4)
j(1,4) = - 112 j(2.4) = (0.0YdX - m0/4 - us1/4)

Boundary conditions at point 1

L

L

Jacobian I
1' Boundary conditions at point 2

Equation matrix A

Building the equation matrix A. The Jacobian obtained from the
Taylor expansion of the finite difference equations is used as a
building block to relate points k and k + 1 in the internal discreti-
zation of the solution domain. The boundary conditions are han-
dled separately.

User
A

Smalltalk I
aBvP 1

\/
Algebraic
manipulation

BVP

object
computational View

Global organization of the ODE tool. The BVP object is main-
tained as the model of an MVC structure in Smalltalk. The user
interacts with this model through its view and view controller.
The algebraic manipulator and any other Smalltalk applications
send messages directly to the model, whereas Smalltalk interacts
with remote applications as needed through separate data paths,
independently of the user.

219

R. L. PESKIN ET AL.

gauges are used to modify the boundary conditions. The
first option list is concerned with setting the various
parameters of the equation. The possible options are
listed below:

newBVP Start up another problem. The user is led
through the steps of specifying the complete problem.
This is one of the two possible ways to create a BVP.
resetsolution The displayed solution is reset to the
initial guess, which is usually a line between the
boundary conditions, unless an initial guess has been
obtained from a knowledge base [23].
changeBCs Change the boundary conditions. This
option can be used in addition to the slide gauges.
changeEquation Change only the equation for the

220 problem. All the other specifications (boundary

conditions, resolution, range) are kept. The user can
also specify that the displayed solution be kept as an
initial guess for the next problem. This feature is
extremely useful when successive approximations for
an equation parameter are investigated. The equation
can be solved with the first parameter, the parameter
changed while keeping the last obtained solution, and
the process repeated.
changeDomain Change the problem domain, keeping
the same resolution.
changeResolution Change the discretization resolution.
acceptGauges Accept the input from the sliding gauges.
The gauges are used to enter the boundary conditions
for the TwoPointBVP.

window on the model.
selflnspect Instruct Smalltalk to open an Inspector

R. L. PESKIN ET AL. IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991

The options in the second window handle the
visualization process. The options are the following:

e remoteSolve Send the ‘solve’ command to the remote
system. The command activates a command file that
repeats the iteration step until convergence to a
tolerance set by the user is reached. The solution is
then displayed and previous results erased.

remote system. This option allows the user to perform
a limited number of iteration steps and display the
intermediary results. Previous results are‘displayed
superimposed on the same plot.

erased.

remotelterate Send the ‘iterate’ command to the

e keepLastSolution All the results except the last one are

redraw The plot is redrawn.

The other window is concerned with the visual
presentation of the x and y axes, ticks and grids on the
plots. They are inherited from the DataView class.

Example application
The ODE tool was found to be very useful in exploring
the behavior of differential equations, especially
nonlinear equations, by allowing the rapid visualization
of the solutions as the parameters and boundary
conditions were changed. To illustrate this process of
creating and solving an equation, we go through the steps
for the equation shown in Figure 12. The problem
specification is entered from the workspace as

aBVP := TwoPointBVP
newFromEquation: (0.1 wxx) - (UWX) + u
withBCs: ((1 .O) (-1 .O))
resolution: 40
range: (-1.0 1.0).

aBVP openview.

From the view, remotelterate is first selected for two
iteration steps to check for the stability of the solution,
then remoteSolve to proceed with the solution [Figure
12(a)]. The parameter is changed now from 0.1 to 0.05
by selecting changeEquation and choosing to keep the old
solution as a starting guess for the new one, thereby
reducing the computation time [Figure 12(b)]. Now, the
parameter is further reduced to 0.0 1 with
changeEquation. This time, however, the iterations from
remotelterate show some instability in the solution
[Figure 12(c)], which leads us to increase the
discretization resolution by selecting changeResolution
from 40 to 200. This again results in a stable solution
[Figure 12(d)].

Flag simulation
The applicability of the Smalltalk-80 IQV environment
to the development of numerically intensive models was

IBM J. RES. DEVELOP. VOL. 35 NO. 112 JANUARYIMARCH 1991

tested on a flag-simulation model. This problem was
chosen because of its complexity of implementation and
computation, particularly as a means of testing the
SmalltalkjIQV paradigm; the motion of the flag occurs in
three dimensions and requires three-dimensional vector
algebra for the computation. In addition, the appearance
of a flag moving in the wind is familiar to most people.
The flag model essentially consists of a grid of mass
points connected by a set of springs. This sheet of masses
and springs is fixed in space at two points, P1 and P2, as
depicted in Figure 13. The flag is subject to a net force,
F,,,, which is made up of four forces:

‘net = Fspnng + ’friction + Fgrw + ’wind

The four forces are the spring, frictional, gravitational,
and wind forces. These forces on an arbitrary mass point
are given by the vector relations

F, = k A x i ,
8

i= 1

F, = rv , ,

F, = ge,, ,

F, = w[(v, - v,) . %I”, *

In the equations above, boldface denotes vectors, Ax,
represents a vector to the ith neighbor, v, represents a
velocity vector, e,, represents the unit y-direction vector,
and n, represents the unit normal to the flag at a given
mass point. The relative strengths of the forces are given
by the parameters k, r, g, and w. The position and
velocity vectors, and v,, at each mass point are
computed at time t + At from time t by applying the
following kinematic relations:

x&t + At) = xo(t) + v,(t) At + 0.5 . a At’,

v,(t + At) = vo(t) + a At,

where

a = FJm.

The flag simulation consists of multiple repetitions of
update and display, using the velocity and position
update formulas above.

Flag IQV computational objects
The definition of usable objects in the IQV environment
led to quick prototyping of the flag simulation. Code
development consisted of creating structures which
encapsulated much of the computational detail, thus
allowing a higher-level “language” for programming. New
classes were built incrementally from existing classes;
each new class addressed the flag simulation at a higher
level of abstraction. The ease of visual display at any level 22 1

R. L. PESKIN ET AL

A session with the ODE tool. The BVP computational object for the jame shock equation with E = 0. I was created in a workspace (\cc
text). The parameter E is varied to determine its effect on the final solution:
(a) For a value of E = 0.1 and a resolution of 40, remoteSolve yields a stable jolution.
(b) Changing E to 0.05 still yields a similar solution.
(c) When E is further changed to 0.01, the coarse resolution causes instabilities in the solution, shown by performing onc iteration with

(d) Changing the resolution to 200 points with changeResnlution leads to a stable solution again.
remotelierate.

of abstraction contributed greatly to the programming
efficiency. This section demonstrates this idea.

The first task consisted of defining a vector class in
order to deal with the vector algebra. This stage of
programming led to the programmer’s ability to perform
the following types of operations:

a := Vector3D new. “Create a new 3D vector.”

b cross: a. “Vector cross product.”

c*(1 /2). “Multiplying vector by scalar.”

222 d norm. “Length of vector d.”

As is evident from this code, there was no need to deal
with the details of vector operations from that point
onward.

Next, the classes Flag and FlagPoint were developed.
These classes allowed the forces to be dealt with at a very
high level. For instance, the four flag forces described
above were each applied to all the mass points (FlagPoint
objects) in the model. The classes provided easy access to
the flag data, as well as a logical, simple command
syntax. For example, an instance of Flag could be
invoked and displayed by the following series of
Smalltalk commands:

R. L. PESKIN ET AL. IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARYMARCH 1991

FlagTool simulation cnvironmcnt

flag := Flag new. “Create a flag model.”

flag initialize. “Initialize the flag position.”

flag openFlag. “Open the IQV environment.”

Immediate visualization of the modified forces could
be obtained in this fashion. Figure 14 depicts the Hag
environment and the current version of the frictional
force component procedure. The flag could be made to
flap for several iterations, then visually debugged in the
Flag environment. The appropriate force terms could
then easily be edited. The flag would, thereafter, resume
its motion with the corrected force term applied.

Several parameters required subtle modifications in
order to ensure that the flag model was visually realistic.
For instance, the wind velocity, the spring constant, the
frictional coefficient, and the downward pull on the flag
all required adjustment. This portion of code
development is called physical debugging. If, for example,

the frictional coefficient was made too low, the flag
motion appeared much too random. The IQV
environment allowed the feedback process between the
numerical model and the programmer to proceed quickly
enough that a change could be incorporated into the flag
environment in just a few seconds. The resulting model
(Figure 15) would then proceed to flap, this time with a
higher frictional coefficient, and in a more realistic visual
manner.

The IQV environment certainly enabled a manyfold
increase in programming speed in this instance. The
rapid feedback to the user was particularly useful in the
physical debugging stage of simulation.

Conclusions and future resdarch
In this paper we have described strategies to effect
interactive graphical support for the quantitative
requirements associated with prototyping of scientific and 223

IBM J . RES. DEVELOP. VOL. 35 NO. 112 JANUARYNARCH 1 9 9 1 R. L. PESKIN ET AL.

FlagTool showing simulated flag. This vicw shows erratic flag motion duc t o improper wtting of friction. spring. and time-step yaramcters.

engineering computer simulations. Object-oriented
software and access to distributed computing resources
are important features of our system. Flexible graphics
tools which emphasize quantitative connection with the
underlying computational data are essential. The user’s
ability to recover his computed data from any arbitrary
graphical view depends on a dictionary-based data
structure which serves as a link between the graphical
visualization and the real data. With this
implementation, the user can interactively query any
visual point for its associated datasets.

supports our concept of computational steering. The
system constructed for nonlinear boundary-value
problem solution also illustrates how distributed
computer resources, accessible to the user in a
transparent manner, are employed to improve

In the examples presented, we have shown how IQV

224 performance, which itself is an important aspect of the

interactive environment. Both the differential equation
solver system and the flag model show how IQV is used
to support incremental in situ changes to the
mathematical model. In our system, the implementation
of computational steering depends on Smalltalk‘s
incremental compilation capability.

We have established the feasibility of new forms of
computer environments for the scientist and engineer; it
is no longer necessary for these professionals to be
constrained to old edit-compile-link-run environments
with only postprocessing graphics as an option. The
scientific professional needs the same modern interfaces
we now afford businessmen who use small computers.
Much remains to be done before these new scientific
environments will be accepted into widespread use.

There is a need to replace the “string” format used for
equation input with the capability for input expression in
mathematical symbols; this is a nontrivial task in

R. L. PESKIN ET AL. IBM I. RES. DEVELOP. VOL. 35 NO. 112 JANUARYIMARCH 1991

contextual pattern recognition. Intelligent databases (e.&
expert systems) need to be added to tools like our
boundary-value problem solver, so that these tools can
have access to theoretical information such as methods
for high-order approximations. Inclusion of such access
will allow faster and more accurate prototype solutions.
While we use distributed computing, there is a need to
develop internal system “intelligence” so that the most
appropriate resource is used. Additionally, parallel and
concurrent computation must become a more integral
part of the overall environment, particularly the parts
that support interactive graphics. As our graphical
requests become more complex, parallel computation
will be required to implement database access, perform
transformations, and service user requests in a
deterministic manner. Perhaps the most challenging task
is to integrate visual “realism,” with all of its complex
rendering, and IQV so that users can have access to as

complex and dynamic graphical representation as they
need, without losing interactive connection to their
physical model and its data.

Acknowledgments
This research was supported in part by the National
Science Foundation under NSF Grant ECS-8814937, and
by the Computational Engineering Systems Laboratory of
the Center for Computer Aids for Industrial Productivity
(CAIP). CAIP is supported by the New Jersey
Commission on Science and Technology, Rutgers-the
State University of New Jersey, and the CAIP Industrial
Members.

References
1. B. McCormick, T. DeFanti, and M. Brown, “Visualization in

Scientific Computing,” NSF Grant ASC-871223 1, National
Science Foundation, July 1987. 225

IBM I. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991 R. L. PESKIN ET AL.

2. Products Catalog, Tektronix Corporation, Beaverton, OR, 1989.
3. R. A. Dory, “Wing as a Scientific Aid,” Computers in Phys. 3,

4. F. J. Bitz and N. J. Zabusky, “David and ‘Visiometrics’:
NO. 4,93-I00 (1989).

Visualizing and Quantifying Evolving Amorphous Objects,”
Computers in Phys. 4, No. 6, 603-6 13 (1990).

5. B. Bacon, “Visualization at SIGGRAPH,” Computers in Phys.
3, No. 5, I I (1989).

6. T. Diede. C. F. Hagenmaier, G. S. Miranker, J. R. Rubenstein,
and W. S. Worley, “The Titan Graphics Supercomputer
Architecture,” IEEE Computer 21, No. 9, 13-30 (1989).

7. D. Rapaport, “Visualizing Physics,” Computers in Phys. 3, No.

8. J. Bourne, J. Cantwell, A. Brodersen, B. Antao, A. Koussis, and
Y. Huang, “Intelligent Hypertutoring in Engineering,” Academ.
Computing 4, No. 1, 18 (1 989).

9. S. Walther, “Strategies for Interactive Graphing of Numeric
Results,” Proceedings of the International Symposium on AI,
Expert Systems and Languages in Modelling and Simulation
(IMACS), Barcelona, Spain, June 1987, pp. 379-384.

10. R. L. Peskin, S. S. Walther, and A. M. Froncioni, “Smalltalk-
The Next Generation Scientific Computing Interface?” Math. &
Computers in Simulation 31, No. 4, 5, 371-381 (1989).

1 1. S. S. Walther and R. L. Peskin, “Strategies for Scientific
Prototyping in Smalltalk,” Proceedings of the Fourth Annual
Conference on Object Oriented Programming Systems,
Languages, and Applications (OOPSLAIACM), October 1989;
24, No. 10, 159-169 (1989).

12. S. Knaster, Macintosh Programming Secrets, Addison-Wesley
Publishing Co., Reading, MA, 1988.

13. A. Goldberg and D. Robson, Smalltalk-80, Addison-Wesley
Publishing Co., Reading, MA, 1983.

14. C. Chambers, D. M. Ungar, and E. Lee, “An Efficient
Implementation of SELF, a Dynamically Typed Object-Oriented
Language Based on Prototypes,” Proc. OOPSLAIACM 24, No.

15. B. Foote and R. E. Johnson, “Reflective Facilities in Smalltalk-
80,” Proc. OOPSLA/ACM24, No. 10,321-337 (1989).

16. N. Camero and D. Gelernter, “Linda in Context,” Commun.
ACM 32, No. 4, 444 (1989).

17. S. S. Walther, “Interactive Visualization and Control of Parallel
Computations,” Proceedings of the Third Annual User-System
Interface Conference (USICON), Austin, TX, February 1988, pp.

5, 18-29 (1989).

10,49-70 (1989).

52-59.
18. P. Berge, V. Pomean, and C. Vidal, Order Within Chaos,

19. S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S.
Hermann, Paris, France, 1984.

Quarterman, The Design and Implementation of the 4.3BSD
UNIX Operating System, Addison-Wesley Publishing Co.,
Reading, MA, 1989.

20. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterlirig, Numerical Recipes: The Art of Scientific Computing,
Cambridge University Press, Cambridge, England, 1986.

2 1. Maple Reference Manual, 5th Ed., Department of Computer
Science, University of Waterloo, Waterloo, Ontario, Canada,
1988.

Computations, Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1988.

23. Mark F. R u m , “Automatic Generation of Parallel Programs
Using Nonlinear Perturbation Theory,” Ph.D. Dissertation,
Rutgers, The State University of New Jersey, New Brunswick,
NJ, 1989.

22. T. F. Coleman and C. V. Loan, Handbook for Matrix

Richard L. Peskin Center for Computer Aids for Industrial
Productivity (CAIP), P.O. Box 1390, Rutgers University, Piscataway,
New Jersey 08855. Dr. Peskin is Professor of Mechanical and
Aerospace Engineering and Director of the Computational
Engineering Systems Laboratory of the Center for Computer Aids
for Industrial Productivity (CAIP) at Rutgers University. He holds a
B.S. from the Massachusetts Institute of Technology and an M.S.E.,
an M.A., and a Ph.D. from Princeton. He is a member of IMACS,
ASME, APS, and other professional societies. Dr. Peskin has
published extensively in the fields of computational fluid dynamics,
combustion, atmospheric science, and computer applications. His
current research interests include parallel computing, symbolic
computing, interactive interfaces for scientific computation, and
nonlinear dynamics.

Sandra S. Walther Center for Computer Aids for Industrial
Productivity (CAIP), P.O. Box 1390, Rutgers University, Piscataway,
New Jersey 08855. Dr. Walther is Project Leader of the Graphical
Interfaces and Data Management group in the Computational
Engineering Systems Laboratory of the Center for Computer Aids
for Industrial Productivity (CAIP) at Rutgers University. She
received her B.A. in general studies in the humanities from the
University of Chicago and her M.A. and Ph.D. in philosophy from
Yale University, with concentration in logic and philosophy of
science. Dr. Walther’s current research centers on object-oriented
interfaces to parallel and distributed scientific computations and has
resulted in prototype software systems in use by academic and
industrial researchers.

Andy M. Froncioni Department of Mechanical and Aerospnce
Engineering, Rutgers University, Piscataway, New Jersey 08855. Mr.
Froncioni holds B.Sc. (physics), B.Eng. (electrical), and M.Eng.
(electrical) degrees from McGill University. He is currently a Ph.D.
student in the Mechanical and Aerospace Engineering Department
at Rutgers University. Mr. Froncioni has published in the fields of
numerical analysis and object-oriented programming. His current
interests include computational fluid dynamics and automatic
parallel code generation.

Toufic 1. Boubez Biomedical Engineering Department, Rutgers
University, Piscataway, New Jersey 08855. Mr. Boubez holds B.Eng.
and M.Eng. degrees from McGill University and is currently a Ph.D.
student in the Biomedical Engineering Department at Rutgers
University. He has published in the fields of automatic mesh
generation, numerical methods, and object-oriented programming.
His current research interests include neural networks, object-
oriented programming, parallel computing, and scientific
visualization.

Received November 16, 1989; accepted for publication
September 17, 1990

