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An integrated  environment  for  simulation  and 
visualization  of  physics  and  engineering 
problems  of  industrial interest has  been  set  up 
at the  IBM  European  Center  for  Scientific  and 
Engineering  Computing (ECSEC). This  paper 
describes  the  environment, its components,  and 
some  experiments  carried  on  at ECSEC to 
represent 3D objects  displayed  with  the  shading 
technique  and  the  solution of fluid dynamics 
problems, all treated  with  the finite element 
method.  Moreover,  the  paper  describes the 
animation  experiments  developed to represent 
dynamics  phenomena (fluid flows)  and  presents 
a  videotape  showing  the  time  evolution  of  three 
fluid dynamics  study  cases. 

Computational  laboratory 
Current computer technology  allows  researchers to 
simulate  laboratory environments in which  physical 

phenomena are reconstructed  in  order to observe the 
behavior of the reproduced system and measure its 
physical  parameters. This activity  generally  serves as an 
experimental  check  of  mathematical  models  theoretically 
defined to forecast the evolution of phenomena in 
different  situations. 

The solution  of  physical phenomena means  knowing 
in advance  what will happen when boundary conditions 
are varied.  With  mathematical  models  a  physical 
problem  can be transformed into a  mathematical 
problem; it is  possible,  under  suitable  conditions, to 
assume that solution of the mathematical  problem, i.e. 
forecasting the behavior of the model,  is  equivalent to 
solving the physical  problem  itself.  Unfortunately, 
complex phenomena are described  by  systems  of  partial 
differential equations which  have no analytical solution, 
at least  in terms of elementary  functions.  Therefore 
another step  is  required to reach the solution. This step 
consists  of  employing  numerical  techniques to transform 
differential  problems into numerical  ones.  Once  again, 
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under suitable  conditions, it is  possible to assume that the 
solution of numerical  problems  is  equivalent to the 
solution of mathematical problems and, finally,  physical 
problems. 

To solve numerical  problems it is  necessary to solve 
systems  of  algebraic equations, a  task  well  suited to a 
computer.  Realistic  (i.e.,  complex and difficult to 
visualize)  problems  can  be  solved  if supercomputers and 
powerful  graphic  workstations are available. 

of  algebraic equations are involved: The computation 
time needed to solve an algebraic  system  depends 
strongly on the complexity of the problem. It is well 
known that numerical techniques can  subdivide the 
domain of a  problem into elements, so that physical 
parameter  values  need be determined only at the vertices 
(nodes) of the elements. If there are n unknowns for  each 
node and m nodes, the total number of unknowns  is k = 
n X m; k is a good indicator of the complexity of the 
problem and, for industrial problems, can be as large as 
50000. The computation time is  a function of k3 because 
the solution of a  dense  system  requires 0 ( k 3 )  operations. 
For  a  finite  element  matrix, computation time has been 
shown to vary as k times the square of the mean 
bandwidth  of the system, due  to “skyline  addressing” [ 11. 
The skyline  storage pattern stores and processes,  for  each 
row and column of the matrix, only  those  elements that 
lie  between the first  nonzero  element and the diagonal 
element. 

Powerful  graphic  workstations are required  for data 
preparation and postprocessing,  i.e.,  for the definition  of 
the numerical  problem and the representation of  results. 
The definition of numerical  problems  consists  of 1) 
geometrical  reproduction  (a structure, for  example  a car 
or a  plane,  must be reproduced in the correct  scale); 
2)  definition  of  physical parameters (for  materials 
constituting  objects,  etc.); 3) definition of boundary 
conditions needed  for the solution of a  differential 
problem; and 4) domain discretization, i.e., subdivision 
into elements  according to user  specifications. The set  of 
these  elements  constitutes the mesh  of the problem. 

Simulation  codes  produce  a  great amount of data 
consisting of node coordinates and the values  of  physical 
parameters (e.g.,  velocity components, pressure, 
temperature, stress  tensor components) that are assumed 
at the nodal  locations and, in transient analysis,  for  each 
time step.  These data, if they were presented  in  table 
form, would  be unreadable.  Viable solutions require 
some  kind  of  graphic  representation of the data so that 
the user  can  visualize the problem; this implies  a  need  for 
interactive  graphic  tools. 

In a  jcomputational  laboratory,  numerical simulations 
are pofsible, but these do not entirely eliminate the need 

Supercomputers are required  because  several thousands 

168 ding and testing  prototypes; their purpose is to 

reduce  considerably the number of prototype tests 
required, and to enhance the effectiveness  of  testing. 
Thus, computational simulations and laboratory 
experiments are complementary, not mutually 
exclusive,  approaches to a  physics or engineering 
problem. 

At the IBM European Center for  Scientific and 
Engineering Computing (ECSEC)  we set up an integrated 
supercomputing environment which constitutes our 
computational laboratory. We  use an IBM 30901/VF 
with  six  vector  processors  [2];  some  IBM 5080 Graphics 
System  workstations;  a few  IBM 6090  Graphics  System 
workstations (the 6090 is a  graphics  system  compatible 
with the 5080 but with  more  advanced  image-rendering 
capabilities and a  higher-resolution  display); and an IBM 
6 180 plotter. We also use some industrial packages  whose 
solvers  have  been  vectorized and parallelized at ECSEC 
for the 3090 and whose graphic  preprocessors and 
postprocessors,have  been  enabled  for the 5080 and the 
6090, and developed in some of their features by means 
of programs  written at ECSEC to take advantage of the 
IBM graPHIGS’  software  supporting the graphic 
capability  of both workstations. 

Examples  of  such industrial packages are the 
Automatic Dynamic Incremental Nonlinear Analysis 
(ADINA’) computer programs and the DAISY graphic 
postprocessor  for  PAM-CRASH.3 

ADINA computer programs  include 

ADINA for  analysis of displacement and stress. 
ADINA-F [ 11 for  analysis of 2D and 3D viscous 
incompressible  fluid flows  with heat  transfer. 

0 ADINA-T  for  analysis  of  heat  transfer  in  solids and 
structures and the solution of  field  problems. 

0 ADINA-IN  (graphic  preprocessor)  for  preparation and 
display  of the input data. 
ADINA-PLOT  (graphic  postprocessor)  for  display  of 
solution  results. 

The DAISY program  provides an interactive 
environment for the graphic  postprocessing  of  several 
structural finite  element  codes  such as PAM-CRASH, 
which can  be  used to simulate the dynamic evolution of 
structures under crash  conditions. 

Preprocessing  and  postprocessing  for  the  finite 
element  method 
Numerical techniques have  been  developed to simulate 
many classes  of problems. The best-known  techniques 
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are spectral  methods,  finite  differences, and the finite 
element method. We focus our attention on the finite 
element method (FEM) to illustrate the integrated 
supercomputing environment developed at ECSEC. This 
numerical method is very  useful  for  complex  problems, 
as  shown  convincingly by both academic research and 
industrial practice [ 31. 

In the finite element method, the problem domain is 
subdivided into a number of elements which constitute 
its mesh. The partial differential equations describing the 
phenomena are replaced by ordinary differential or 
algebraic equations in each element. The system  of  these 
equations is then solved simultaneously to determine 
values of the unknown quantities. 

The primary advantages of FEM include 

0 Flexibility in treating arbitrarily complex domains and 
boundary conditions. 

0 The ability to design unstructured grids without the 
need  for many grid points throughout the entire 
domain. 

0 The ability to derive  comprehensive error estimates. 
0 The ability to determine accurate solutions within  user- 

prescribed  tolerances. 

Hand-generating  meshes is a very tedious task, and 
generating  complex  three-dimensional  meshes  is 
extremely  difficult,  if not impossible;  moreover, a finite 
element analysis of any  problem of realistic  size produces 
a great quantity of numerical data which is difficult to 
examine. 

A preprocessor for a finite element solver  must  be 
designed to generate and verify the input data, which 
may  consist of a large number of nodes,  elements, and 
parameters to specify the analysis to be camed out. The 
preprocessor can require any (or all) of the following: 

Mesh  generation to allow  users to generate  meshes 
consisting of line,  surface, or volume elements. Straight 
or curved  lines  with equidistant nodes or with 
gradually  varying  nodal  distances should be  available, 
as  well as automatic connection of different parts of a 
mesh. 

0 Cartesian,  cylindrical or spherical  local coordinate 
systems  which are well suited for defining nodal points. 
The coordinate values may then be automatically 
transformed into global  system  reference coordinates. 

materials,  which should be  generated only once  for a 
group of multiple elements: An identifying number 
which can be referenced by several or all of the 
elements groups must be assigned to each material. 
A definition of element loads,  which  makes it possible 
for the user to specify the element number and the 

A single  definition of the physical parameters of 
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edge or surface to which the loading  (pressure,  heat 
flow, etc.)  is applied. It  is  also  necessary to define the 
degrees  of  freedom; the analysis  type  (steady-state or 
transient); the equilibrium iteration method; the time- 
function providing the time dependence of loads 
applied to the model and the  amount of information to 
be  recorded in the solver output file. 

represent it by plotting,  zooming, and scaling the mesh; 
changing the view direction; and displaying  node and 
element numbers. The boundary conditions must  also 
be  available, as well as a means for  hidden-line  removal 
and outline generation. 

Graphic display of the finite element model, to 

A postprocessor must be  designed  for the display and 
analysis of output data from the solver. It must  read the 
analysis output and organize information into a specially 
designed database for  effective  retrieval. The necessary 
features of a postprocessor include the following: 

Visualization of a total or partial perspective view  of 
the model,  eventually  with  hidden  lines and surfaces 
removed, or with  shaded representation. The 
visualization must also include plotting on the mesh  of 
contour lines;  color  filling  of  stresses, strains, 
displacements,  velocities,  accelerations, temperatures, 
etc.; and redefinition of the range of values  for contour 
lines or color  filling in order to increase the resolution 
within an area around peak  values. 
Zoom, translation, x-y-z scaling, rotation, pivot, and 
symmetrization. 

0 Plotting of quantities to compare the results of the 
analysis  with  those obtained experimentally. For 
example, a variable must be plotted as a function of 
another variable to produce a time history graph. 
Provision for storage of each  graphic  display page, to 
create a graphic database and allow  for printing. 

0 Results  listing and scanning within the entire model, 
within  selected  regions, or along a predefined  line. 
Scanning allows the user to search for extreme results, 
e.g., those  exceeding a specified  value. 
Animation, a new capability not generally  provided by 
programs. Animated representations are useful in 
showing the evolution of simulated phenomena by 
displaying, in quick succession,  steps of the transient 
analysis. Graphic workstations allow this 
representation, which  is  very important for continuous 
checking of dynamic phenomena; many aspects of the 
analysis can be  lost by observing a single frame 
statically. In engineering  problems,  however, the 
amount of output data can be a binding limit; 
animation is  possible  only if the workstation buffer is 
large  enough to accept the graphic structures. 
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For the purposes of our work (enabling of the codes  for 

0 Graphic initialization routines. In this group we 
include routines that are strictly  workstation- 
dependent, such as procedures for character font 
selection, and color  table and window dimension 
setting. Particular caution is  needed in  the setting of 
parameters for routines which  perform the graphic 
initialization, in order to correctly and effectively 
utilize the software and hardware  capabilities  provided 
by the graphic  system. 

rout f nes  for plotting elementary graphic entities such as 
lines,  polygons, and character strings. 

0 Basi graphic primitive routines. This group includes 

0 High-level graphic functions. In this group, routines 

of the full potential of the IBM 
ion program interface is the 3D 

ating objects  built by means of finite  element. 

y are certainly improved by utilizing 
primitives on  the IBM 5080 or 6090 graphic 

clipping  planes.  These manipulations can be  performed 
in arbitrary succession, as many times as needed. 
Moreover, the operator can center a point of the image 
and zoom it to focus on a particular zone.  These 
operations are performed  using the peripheral  devices of 
the workstation, the eight  dials and the mouse. The 
performance improvement obtained working in  the 3D 
environment is easily  verified by the user in terms of 
significant  ease  of  use and response time. The user no 
longer  has to type commands to perform the 
transformations; they are computed locally  by the 
graphic  processor,  which  results in a noticeable reduction 
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load. From the programmer’s point of  view, a 3D graphic 
environment provides a substantial reduction in the 
complexity and quantity of graphic  code. 

Visualization  enhancement:  Shaded  objects 
For 3D objects the two  most important requirements to 
be met are realistic reproduction and reasonable 
computational effort. The first requirement springs  from 
the natural desire to see an object  displayed as it is in 
nature; the second one derives  from an operative  need: 
Visualization and analysis of results  produced by a 
simulation code must be camed out interactively; 
therefore, the computation time required to produce a 
representation must be compatible with  reasonable 
response time for interactive transactions. 

The simplest representation of 3D objects is the 
so-called  “wire  frame.” This representation is 
straightforward and can be  developed  quickly  for 
structures analyzed  with the finite element method. In 
fact, an object  defined,  for  example, by  shell elements can 
be  represented by means of surface points (called  nodes) 
for  which the connections, i.e., the paths that connect 
nodes to form the elements, are established. In this case, 
by using  polylines to reconstruct elements,  surfaces 
can be represented by polygons, although these do 
not give a very accurate approximation of surface 
curvature. 

It  is not possible to refine the size  of the elements 
which constitute the mesh  of an object to improve the 
approximation, because the subdivision of structures to 
be analyzed by simulation codes  is determined by 
numerical methods and not by a graphical  scheme. A 
realistic representation must, therefore,  be camed  out by 
other techniques,  which can reproduce objects without 
requiring variations of the mesh. A good technique is 
shading,  which is preferred  over  ray-tracing to reduce the 
computational effort. 

The appearance of polyhedral approximations to 
curved  surfaces can be enhanced by shading them in such 
a way that the shading  varies smoothly across  each 
polygon. Gouraud [ 5 ]  and Phong [6] have  described  two 
methods for computing shading functions. The first one 
is  fast, but the renderings  produced often show 
pronounced light or dark lines  (Mach bands) perceived 
by the human eye  where the spatial  derivative of the 
shading function is discontinuous. The  human eye  is 
particularly  sensitive to these discontinuities because it 
naturally discriminates the edges  of  objects.  Phong’s 
method solves this problem by ensuring mathematical 
continuity for the illumination function and its  first-order 
derivatives, but it is much more expensive 
computationally. Many  faster methods of computing 
Phong’s shading have  been  proposed in the literature, 
however,  making this approach more useful [7]. 
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To briefly describe Gouraud's method, we assume a 
collection of  polygons  with shading values  associated  with 
each  vertex. These values can be  simply computed, 
assuming that for each  vertex we know the vector normal 
to the surface of the object and the direction of the light 
rays.  According to the Lambert lighting  model, the 
intensity perceived by an observer  is independent of the 
observer's position and varies  directly  with the cosine  of 
the angle  between the normal vector and  the light 
direction. Inside a polygon we can define  scan  lines 
(horizontal or vertical)  which  intersect its edges.  At these 
intersection points, the shading  value  is computed by 
linear interpolation of the shading values at the vertices. 
Finally, shading inside a polygon  is computed along the 
scan  lines by linear interpolation of the values  which 
were computed where the scan  lines meet the edges  of the 
polygon. 

Phong's shading is  similar,  except that it interpolates 
the normal at each  vertex and then evaluates the 
illumination function at each point. From a 
computational point of  view, this method, involving 
three components to interpolate the vectors  which are to 
be  normalized,  is of course more difficult, but Phong's 
method avoids the Mach bands which appear in adjacent 
Gouraud-shaded polygons. 

Both of the above techniques require that the normal 
vector at the polygon  vertices  be  known. For an 
unknown structure defined by means of  flat  elements, 
which  is  typical in a FEM simulation, normal vectors at 
the element vertices are not known. We have  developed a 
tool for shaded representation of objects  defined by finite 
elements [8], starting from the consideration that each 
vertex  is  shared among more than one element. 
Therefore, the normal vector at this vertex can be 
computed by normalizing the averaged components of 
the normal vectors  belonging to the shared  elements. 
Knowledge  of  these normal vectors  represents the basis 
for computing the shading function. To avoid an 
incorrect smoothing of the edge  of an object,  such as a 
cube, the tool  checks the angles 0 formed between the 
normal vectors  of the pairs  of elements sharing a node. If 
the angle 0 between  two  elements,  for  example  two 
contiguous faces  of the cube,  is  greater than a predefined 
angle 8, the algorithem does not perform the average of 
these  two normal vectors. In this case,  where there is a 
well-defined discontinuity of the spatial  derivative of the 
shading function, the resulting pronounced Mach band is 
useful.  In  practice, 8 is  conveniently  set to a/8.  

The reconstruction of the normal vector at a vertex, 
averaging the components of the normal vectors of the 
shared  elements,  is a particularly  ticklish procedure; 
errors in this process  can alter the curvature of a surface 
so that the shape of an object  is  changed. To check the 
quality of the reconstruction, we consider a sphere 
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defined by means of finite elements obtained by 
subdividing the equatorial plane and the meridian planes 
into 26 parts. The idea  is to consider the sphere as an 
unknown object  produced by a preprocessor  for  finite 
element analysis of structures but, at the same time, to 
utilize the analytical expression of this surface to check 
the vectors reconstructed in the vertices  of the elements. 
If  we  wish to study the structural behavior  of a sphere, 
for  example a ball  bearing, we define a model comprising 
676  surface elements; this is a good number for structural 
analysis but not as effective  for a graphical representation 
of the sphere. We must render the shaded sphere  with 
this small number of elements and no way to refine the 
mesh. 

Given z = f (x ,  y), the Cartesian  expression of a 
spherical  surface, it is  possible to compute the vectors 

therefore, the vector normal to the surface will  be 

Let n' = (nl, n:, ni) be the versor in the ith vertex, and 
rzf, = ( n L ,  nky, nkz)  be the reconstructed  versor in the 
same node. A comparison of n and E, in the element 
vertices,  is to be  performed. We can define dx' = 
Inf,,-n;I,dy'= In f , y -n i I , d z '=  Inf,,-n:I,andthe 
average error for the three main directions as 

N 

c dx' c dy' dz' 
N N 

EY = - 
- 

N '  

where N is the number of nodes. In the case  of the 
sphere, we have 

E, = 0.005, EY = 0.003, = 0.002. 

The tool developed at ECSEC  allows the user to render 
objects by flat, Gouraud's, and Phong's shading 
techniques. The choice depends on the user's  need; the 
more sophisticated the shading, the greater the 
computational cost. Figure 1 shows three shaded  spheres, 
each  comprising 338 visible  finite  elements. The lower 
left  sphere  is rendered by flat  shading, the upper left one 
by Gouraud's  shading, and the sphere on  the right  by 
Phong's technique. In the sphere  rendered by flat 
shading, the elements constituting the object are clearly 
visible because the color  does not vary  inside the 
elements. The curvature of the surface  is not 
reconstructed. The sphere  rendered by Gouraud's 
technique has the same number of elements as the flat- 
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Three  shaded  spheres,  each  comprising 338 visible  finite  ele- 
ments. The lower left sphere is rendered by flat shading, the up- 
per left one by Gouraud’s shading, and the sphere on the right by 
Phong’s technique. 

Gaussian  surface,  spheres,  and  toruses  represented by Phong’s 
shading.  The objects are defined by the finite element method. 
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shaded  sphere, but now the curvature is better 
represented. The best  rendering  is  achieved by  Phong’s 
technique, which  represents the spots due  to reflection  of 
radiation and the room light as well.  We  wish to note 
that the shaded representation in Figure 1 is  created by 
using  only  32  different  blue  tones. We chose this number 
to emphasize the quality of the rendering  provided by the 
tool; if good representation is achieved  with  only 32 
colors, the method of averaging the normal vectors must 
be  considered  satisfactory. Figures 2 and 3 show other 
objects  represented by  Phong’s  shading.  All  of  these 
objects are produced by the finite element method. 
Before the shading is computed, it is important to 
remove hidden surfaces to reduce the amount of virtual 
or disk  storage and computation time required. The 
reduction of storage  size  is about 50%; the time reduction 
is  less than 50% because a hidden-line-removal  algorithm 
is  involved. 

The use  of  these algorithms requires a convenient way 
of describing a polyhedron in terms of its vertices and 
faces. The information needed  for this description  is 
given  by three coordinates for  each  vertex and by a string 
of vertices  identifying  each  face (the direction of travel 
around a face must be  defined  previously). This 
information is immediately available  from the typical 
output data of a finite element simulation, so no 
reorganization of information is needed  before  applying 
these algorithms. 

Identification of internal  points 
In the previous  section we pointed out  that the shading 
inside elements is computed by linear interpolation along 
the scan  lines. This means that we must know the 
coordinates of the points at which the interpolation is to 
be  performed. A very similar situation occurs  when we 
deal  with another kind of representation, scalar  colored 
fields. This representation is a useful feature of 
postprocessing and is made by coloring the space  region 
occupied by an element with  different  colors  selected 
from a color  table,  according to the values  assumed by a 
physical parameter throughout the element. Inside an 
element, the values of the quantities are unknown 
because of the technique employed to solve  these 
problems, i.e., a numerical technique which  solves the 
problem at particular points (nodes). Data reconstruction 
within the elements, by means of interpolation, is  needed 
to fill them with  colors. For finite  elements,  with point 
values  known  only at the nodes, interpolation requires 
knowledge  of the point coordinates where interpolation is 
to be made.  This  can be difficult because the finite  element 
method adapts the element shape to the geometry of the 
problem. This means that  2D quadrilateral elements, 
for  example,  have nonparallel edges and are placed 
in the plane with arbitrary orientations. 
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Composite of objects  represented by Phong’s  shading.  The  ob- 
jects are defined by the finite element method. 

This section  describes the criterion applied by the 
algorithm  developed at the ECSEC to identify internal 
points. 

In the case  of 2D or 3D finite elements projected onto 
the screen, we have  polygons  which can be  represented in 
a finite and discrete  space D 2  (the display);  therefore, 
knowledge  of the coordinates of a finite number of points 
is  needed. In a display of 1024 X 1024  pixels,  each  pixel 
is  referenced by a pair of integer numbers 

c 1 5 i 5 1024. 

If  we consider a polygon E, for example a 2D element 
belonging to a mesh, we have to know that all the 
p(i, j )  E E. The algorithm  considers the smallest  rectangle 
R circumscribing the polygon E because 

E EJ c {P(i ,Jl  E R I  c M J )  E 0’1. 

Let PI = (XI? Y J ?  p2 = (x23 Y2), p3 = ( X j ,  Y,), P4 = (x4, Y4) 
be the vertices  of the polygon E. It is  well known that 
three points 

identify a triangle T whose area is 

(ax, + bx2 + cx,) , 
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1 Combination of 20 Gaussians with cr ranging between 3 and 6 .  

‘ Relative error field of the interpolation of the 20 Gaussians shown 1 in Figure 4. represented by a chromatic scale. Blue indicates an 
error  less  than 1%: cyan,  1-2%:  cyan-green, 2-3%; green, 

[ 3-4%. The average error is 0.35%. and the maximum is 3.5%. 
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A time step related to the analysis of fluid flow past a flat plate 
in a pipe. 

Relative  error  registered  on  the  five nodes of  the 2D finite  ele- 
ments of Figure 6, where the interpolation is made. The average 
error between the value computed by ADINA-F and the interpo- 
lated value is 5.9%. In the color table the first ten colors are asso- 
ciated  with  errors  between 1% and IO%,  respectively; the last 
color denotes errors greater than 10%. Such an error occurs only 
in 10% of the nodes. 

where a = (y2 - y3), b = (y,  - y l ) ,  c = ( y ,  - y2). For each 
point Q = (x,,, yq) E R, four triangles are defined: 
T, = P,  QP2, T2 = P2QP3, T, = P,QP4, T4 = P4QPl .  For 
each  of them the areas area( q), j = 1, . . . , 4 are 
computed. A point Q E E if 

2 area(?) = area(E), 
4 

J= I 

174 where area(E) is the area of the polygon E. 

Visualization  enhancement:  Scalar  and  vector 
colored  fields 
For the representation of scalar  fields, our tool performs a 
linear interpolation in terms of  scan  lines.  With  reference 
to the element E introduced in the previous  section, let 
f ;  , fi, f,, f ,  be the values  of the function f (x ,  y )  in the nodes 
P,,P2,P3,P4,andlet(y=ym,,-k;k=0,  1,. .,n,) 
be the family of  scan  lines  where ny is the number of 
integers  between ymin and y,,,,,. The lines ymin and y,,, are 
respectively the minimum and maximum ordinates of 
the rectangle R circumscribing E. If we choose a scan  line 
s, it intersects  two edges  of E at the points F = (xF, yF)  
and G = (x,, yG).  

Our algorithm is  divided into two  steps. The value  of 
f (x ,  y )  at F is computed with a linear interpolation 
between the valuesf, andf,. If  we indicate with d(F,  PJ 
and d(  P2,  P3) the distance between F and P3 and the 
distance  between P2 and P3, we have 

The value offat F is therefore 

For the point G we have 

Successively, the values off on the scan  line s between F 
and G are computed. For a point P on s we have 

and then 

Once we have  identified the values  of the scalar field at 
the pixels, we access the color  table. 

We chose linear interpolation for  performance  reasons. 
We tested its accuracy in two  ways. First we interpolated 
on a field made up of a combination of  20 Gaussians, as 
shown in Figure 4, with u ranging  between 3 and 6. The 
average error is 0.35% and the maximum is 3.5%. Figure 
5 shows the relative error field  of the interpolation. We 
then ran a test on a real  ADINA-F output. The 2D 
ADINA-F elements have nine nodes,  with four of them 
located on the vertices. We interpolate on these four 
nodes,  again  for  performance  reasons. The other five 
nodes are used to evaluate our interpolation algorithm on 
a real  problem. Figure 6 shows a time step related to the 
analysis of the fluid flow past a flat  plate in a pipe. This 
simulation has  been  used as a study case for the fluid 
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Speed field for the tluid flow in  a thermal cavity.  The  time-steps  shown  are (a) the 10th. (b) the 186th, and (c )  the  372nd.  and  the mesh 
is superimposed. 

dynamics computational laboratory at ECSEC, and is 
treated  more  extensively in the next  section. The average 
error between the value computed by ADINA-F and our 
interpolated value  is 5.9%. Figure 7 shows the relative 
error registered on the five nodes mentioned above. We 
believe it is  very  significant to know the number of the 
points where the approximation is affected  by  a  relative 
error greater than 10%. For this study case, 10% of the 
nodes  exhibited  such an error. Considering the low 
degree  of the interpolation polynomials and the fast 
computation provided by the tool, the tests  show 
satisfactory  behavior. 

Our tool  also  represents  vector  fields. In particular, 
velocity  fields can be represented by arrows  originating 
from the nodes. The length of the arrows is a function of 
the speed, and their color can be associated  with the 
speed or with any other scalar  field,  such as temperature. 

When the mesh  is  thick, the density of nodes is such 
that the human eye cannot resolve the arrows referring to 
adjacent nodes. For this reason we select from four to 
nine nodes  for  each element, depending on their density. 

Visualization  enhancement:  Animation of scalar 
and  vector  fields 
The solution of  fluid dynamics problems is generally 
carried on in time steps that follow the temporal behavior 
of the phenomenon to be studied. Our tool is able to 
represent the output  data of ADINA-F for both static and 
transient analysis. For the transient case,  a sequence of 
images  corresponding to the  time steps is generated. Such 
a  sequence can be shown at a  fast rate on an IBM 5080 
or 6090 Graphics System to provide an animation of the 
problem  evolution. To obtain good animation, however, 
all the images must reside in the local  buffer  of the 
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workstation, and the most  binding constraint is the buffer 
size. The buffer  size  of the 5080 is 4.5 MB, and  to 
represent  scalar  fields it is  possible to allocate  only  13 
byte maps of 320000 pixels,  displayable  with  a  refresh 
rate of four pictures per  second. The 6090 allows  a more 
realistic animation because  of its buffer  size  of 32 MB, 
within  which  100  byte maps can be  allocated. The 6090 
has  a  higher  refresh  rate, thus increasing the quality of 
the animation because more frames are available and 
screen updating is faster. For vector  fields,  with  reference 
to a  buffer  size  of 4.5 MB, it is  possible to animate 
sequences  consisting of 100 frames,  each of them dealing 
with 1000 arrows.  More frames are available in this  case 
because an arrow can be drawn by specifying  five points 
by means of a  polyline. In this case,  each frame requires 
1000 polylines plus the graphic attributes. On  the 6090 it 
is possible to store seven hundred frames of the same 
complexity. 

Current graphic workstations can generate  longer and 
more accurate animations, but  the representation of a 
prolonged dynamic phenomenon still  requires  videotape 
recording. We have  analyzed three fluid dynamics 
problems extending over  several hundreds of time steps, 
and their animated representations are thus only  possible 
on videotape. In the videotape  sequence that supports 
this paper, we show animations of the behavior of a  fluid 
flow in a thermal cavity,  past  a  plate in a  pipe, and past  a 
nozzle. For  the cavity, the velocity  field is represented 
twice by means of arrows located at the nodal points. 
The color of the arrows is associated  with the speed and 
then with the temperature value computed at the nodes. 
Scalar  fields  representing  speed and temperature 
complete the first part of the sequence. The velocity  field 
and the velocity module are represented  for flow past  a 175 
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Velocity  field for the  fluid flow in a thermal cavity. The  time-steps  shown  are (a) the  10th. (b) the  186th,  and (c) the 372nd.  The  color  is 
associated with  the  speed  and  is  selected from a palette of 256 colors, as shown in the  related  videotape. 

Velocity  field for the fluid flow in a thermal cavity. The time-steps  shown are (a) the  10th. (b) the  186th.  and (c) the 372nd. The  color  is 
associated  with  the  temperature. 

plate as well as for flow past  a  nozzle  with the addition of 
the pressure field. The videotape contains about 3500 
24-bit  images, amounting to five  gigabytes. The images 
were recorded on videotape at  the IBM UK Scientific 
Center at Winchester. 

The fluid  dynamics  computational  laboratory  at 
ECSEC 
The solution of  fluid dynamics problems of industrial 
interest by means of simulation codes often requires  huge 
computation times even on powerful computers. Better 
performance can be obtained with supercomputers such 
as the IBM 3090 multiprocessor  with  Vector  Facility if 
the simulation codes are optimized for  these machines, 

176 i.e.,  if the 1/0 handling and  the algorithm structure are 

F. PICCOLO ET AL. 

organized to achieve concurrent execution on the 
available  processors (parallelization) and, for  each 
processor, to exploit  pipelined  hardware (vectorization). 
In an early  phase  of our research  project, we proved that 
a  code  such as ADINA-F, not originally  written  for  a 
supercomputer, could  easily be adapted to a 
supercomputer if efficient  vectorization and 
parallelization  software  tools were available [9] .  In the 
case under consideration, a  great  increase in performance 
has  been  achieved, although the code remains written 
entirely in FORTRAN and the basic  algorithms  have not 
been  modified. 

Recent developments in computer technology  such as 
vector  processing,  multitasking,  powerful  channels, and 
high-performance memory, which are peculiar to modern 
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supercomputers such as the IBM  3090  vector 
multiprocessor, contribute to the dramatic decrease of 
computation time for industrial problems. The 
optimization of ADINA-F  exploited the supercomputing 
features of the 3090.  Original 1/0 activity  has  been 
optimized by moving files into central storage; the finite 
element assembly  process and  the solver  have  been 
modified to take advantage  of the Vector  Facility and the 
multiprocessing feature of the 3090. Performance results 
confirm that tools such  as the IBM Parallel FORTRAN 
vectorizing and parallelizing compiler are very  effective in 
supercomputer exploitation.  Satisfactory performance 
was achieved without modifying algorithms or changing 
the paths of the original  source. 

doubling of global  speed  for  vectorization, an increase of 
up to three times for  parallelization and vectorization on 
two  processors, and an increase of up to four times for 
four processors. Further increases  have  been  derived  from 
1/0 optimization. 

ADINA-F  is supported by the graphic  preprocessor 
ADINA-IN and the graphic  postprocessor  ADINA- 
PLOT, as well as the previously  described graphic tools 
developed at ECSEC, these,  together  with the 3090  vector 
multiprocessor and the graphic  systems, make up  our 
fluid dynamics computational laboratory. 

The use  of Parallel FORTRAN made  possible a 

Simulated  fluid  dynamics problems 
The analysis  of three 2D fluid dynamics problems  has 
been camed  on  at ECSEC in our computational 
laboratory. The first  case simulates 300 seconds of 
natural convection in a square cavity  with  vertical  walls 

time steps amounting to a total of 11 hours of CPU time. 
The second  problem studies 300 seconds of  flow  past a 
flat  plate  placed in a channel; 3858 nodal points 
constitute the mesh, and 372 time steps are simulated for 
a total of three hours of CPU time. The last case 
reproduces  200  seconds  of flow around a nozzle. The 
mesh  consists of  376 1 nodal points, and 250 time steps 
are simulated for a total of  six hours of CPU time. In all 
these  cases the fluid  is  incompressible and viscous;  results 
are shown in the videotape  sequence and  in the figures 
cited in the following  discussion. 

of side L = 1. With  reference to a coordinate system 
(x@) with the origin in the lower  left corner of the 
cavity, the boundary conditions describing the physical 
situation are as follows: 

Horizontal walls  insulated. 
0 Heating of the vertical walls  given  by T = To at x = 0 

and T =f( t )  at x = L, where t is the time andf(t) a 
linearly  increasing function. 

In the first simulation the fluid  is contained in a square 

No-slip conditions imposed on the walls. 

The initial conditions are T = To and ux = vy = 0 all  over 
the fluid domain. Iff(t) > To, it can  be  expected that 
fluid near x = L will become hotter due to conduction 
from the heated wall, and thus less and less  dense. It will 
therefore  rise  because of a buoyancy  force acting upward. 
On the contrary, the fluid near x = 0 is always  colder 
than the surrounding fluid, and hence more dense, so it 
will move  downward.  In this way a counterclockwise 
circulation pattern will rpult. Characteristic parameters 
of these phenomena are the Rayleigh number, 

heated so as to create a free  convective flow. The number psP( T - T,)L~ 
of nodal points in the mesh  is  2401, and there are 372 Ra = 2 

uff  177 
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Velocity field for the fluid flow past a flat plate  in a pipe. The time-steps shown axe (a) the loth, (b) the 120th, (c) the 240th, and (d) the 
372nd. The color is associated with  the speed and is selected from a palette of 256 colors. 

and  the  F’randtl  number, Pr = v f a ,  where 

p = density, 
g = gravity  acceleration, 
p = volume  expansion  coefficient, 
T = temperature, 

178 p = viscosity, 
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(Y = diffusivity,  and 
v = P I P .  

In this  experiment  their  values  are To = 0, p = 37.5, 
p = 1, ,.L = 1, (Y = 26.625, and 

f(t) = - X t for 0 5 t 5 300. 10 
3 
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Speed  field for the  fluid  flow past a flat plate in a  pipe.  The  time-steps  shown are (a)  the IOth, (b) the 120th. (c) the 240th, and (d) the 
372nd. The  mesh is superimposed on the first frame. 

These  values  give Pr = 0.7 1, Ra = ( T - To) x lo3, i.e., The results are shown in Figures 9-11. It can be  noted 
Ramax = lo6. that after an initial transient, a central core  with 

To follow the boundary layer  developing on the walls, secondary recirculation eddies  begins to develop. 
it was  necessary to increase the number of nodes  near Moreover,  velocity  fields in the corners begin to be more 
walls and corners relative to the number near the center relevant,  together  with a significant horizontal gradient of 
of the cavity. The mesh  utilized  is  shown in Figure 8. temperature. 
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Velocity field for the tluid tlow past a nozzle. The time-steps shown are (a) the 10th. (b) the 80th. ( c )  the 125th. (d) the 160th. and (e )  the 
250th. The color is associated with the speed and  is selected fro111 a palette of 256 colors. 

In the  second  study  case the fluid  flows in a pipe  whose 
geometrical  dimensions are L, = 7 and L, = 1.8; for the 
plate  the  dimensions  are I, = 0.04 and I, = 0.36 (= L,/5). 
Because  of the entry  length of the phenomenon, the plate 
is placed  far  enough  from the channel entrance to permit 
the flow to develop a parabolic  velocity  profile.  The  rest 
state  has been taken  as  initial  condition. The transient 
analysis  has  been camed out with the following boundary 
conditions: 

Inlet  pressure  field p = f(t) and vy = 0. 
0 No-slip  conditions on the plate  surface and on the 

lower and upper  boundaries of the pipe. 

Values  for the physical parameters and for the imposed 
loads  are p = 1, p = 0.9,f(t) = 50t for 0 5 t 5 300. The 
characteristic  parameter in this case is the Reynolds 
number 

Re = - IU, P 
180 P 
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where 1 and U are the characteristic  length and velocity, 
respectively. In  this case I = L, 12 = 0.9 and Re = U, so at 
most Re will  be Re,,, = v,,, = 267. The results  are 
shown  in Figures 12 and 13; we can  see that the 
parabolic  front of the flow in the channel is  broken  by 
the  plate, and two  new fronts will result  downstream, 
together  with a vorticity  region that grows  with the 
velocity.  Asymptotically, the parabolic  front  is 
reestablished. 

In the third case  we  have  two plates d = 0.5 apart and 
tilted at LY = 30" from the horizontal  line, thus forming a 
nozzle.  Each plate  has a length L = 2d = 1. The field 
dimensions are L, = 26 and L, = 14. The  dynamic 
analysis was carried out with  rest  as the initial  condition 
and with the following boundary  conditions: 

Input field vx = f(t) and v, = 0 on x = 0. 
v, = f(t), v, = 0 on the problem domain frontier y = 0 

0 No-slip  conditions on the plate  surface. 
and y = L. 
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Speed field for the fluid flow past a nozzle. The time-steps shown are (a) the loth,  (b) the 80th. (c)  the 125th. (d) the 160th. and (e) the 1 250th.  The mesh is superimposed on the first frame. 

For this simulation p = 1, p = O.Ol,f(t)  = t/20'for 
0 5 t 5 200, so that 

Re = 1U = SOU, 
P 

having taken 1 = d = 0.5 as the characteristic length. The 
results  for this case are shown in Figures 14-16 and  on 
the videotape. An unsteady  vorticity downstream from 
the nozzle  increases in intensity and extension  with an 
increase in velocity  load. 

Conclusions 
A computational fluid dynamics laboratory such as the 
one established at ECSEC allows  researchers and 
engineers to solve  large problems and  to analyze  results 
by taking advantage of the animation technique. 
Animation is a very  powerful tool for the visualization of 
transient phenomena because  with the advent of the IBM 
6090 Graphics System it is now  possible to employ 
workstations  with  local  buffers  large  enough to 
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accommodate the byte maps necessary to represent 
several hundred time steps.  Animated  visualization is of 
great importance for the comprehension of complex 
problems  because of the large  volumes of data generally 
involved. As the problems to be  solved  become more 
complex, the need  for computational power  increases, 
and only  powerful supercomputers can satisfy that 
requirement. Vector  processors can be  usefully  exploited 
as  well as parallel  processors, thanks to the vector and 
parallel nature of the finite element method. An example 
of the implementation of FEM to solve  Navier-Stokes 
equations is the ADINA-F industrial program  for  fluid 
dynamics simulation. This code benefits from the 
supercomputing environment set up at ECSEC 
because it was optimized for the IBM 3090 Vector 
Facility  multiprocessors  with  Extended  Architecture. 
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Pressure field for the  fluid flow past a nozzle. The  time-steps  shown  are (a) the  10th. (b) the 80th. (c) the  125th. (d) the 160th. and 
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