Graphic
workstations and
supercomputers:
An integrated
environment

for simulation

of fluid dynamics
problems

by F. Piccolo
V. Zecca
A. Grimaudo
C. Loiodice

An integrated environment for simulation and
visualization of physics and engineering
problems of industrial interest has been set up
at the IBM European Center for Scientific and
Engineering Computing (ECSEC). This paper
describes the environment, its components, and
some experiments carried on at ECSEC to
represent 3D objects displayed with the shading
technique and the solution of fluid dynamics
problems, all treated with the finite element
method. Moreover, the paper describes the
animation experiments developed to represent
dynamics phenomena (fluid flows) and presents
a videotape showing the time evolution of three
fluid dynamics study cases.

Computational laboratory
Current computer technology allows researchers to
simulate laboratory environments in which physical

phenomena are reconstructed in order to observe the
behavior of the reproduced system and measure its
physical parameters. This activity generally serves as an
experimental check of mathematical models theoretically
defined to forecast the evolution of phenomena in
different situations.

The solution of physical phenomena means knowing
in advance what will happen when boundary conditions
are varied. With mathematical models a physical
problem can be transformed into a mathematical
problem; it is possible, under suitable conditions, to
assume that solution of the mathematical problem, i.e.
forecasting the behavior of the model, is equivalent to
solving the physical problem itself. Unfortunately,
complex phenomena are described by systems of partial
differential equations which have no analytical solution,
at least in terms of elementary functions. Therefore
another step is required to reach the solution. This step
consists of employing numerical techniques to transform
differential problems into numerical ones. Once again,

©Copyright 1991 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

1BM J. RES. DEVELOP. VOL.35 NO. 172 JANUARY/MARCH 1991

F. PICCOLO ET AL.

167

168

under suitable conditions, it is possible to assume that the
solution of numerical problems is equivalent to the
solution of mathematical problems and, finally, physical
problems.

To solve numerical problems it is necessary to solve
systems of algebraic equations, a task well suited to a
computer. Realistic (i.e., complex and difficult to
visualize) problems can be solved if supercomputers and
powerful graphic workstations are available.

Supercomputers are required because several thousands
of algebraic equations are involved: The computation
time needed to solve an algebraic system depends
strongly on the complexity of the problem. It is well
known that numerical techniques can subdivide the
domain of a problem into elements, so that physical
parameter values need be determined only at the vertices
(nodes) of the elements. If there are n unknowns for each
node and m nodes, the total number of unknowns is k =
n X m; k is a good indicator of the complexity of the
problem and, for industrial problems, can be as large as
50000. The computation time is a function of k, because
the solution of a dense system requires O(k’) operations.
For a finite element matrix, computation time has been
shown to vary as k times the square of the mean
bandwidth of the system, due to “skyline addressing” [1].
The skyline storage pattern stores and processes, for each
row and column of the matrix, only those elements that
lie between the first nonzero element and the diagonal
element.

Powerful graphic workstations are required for data
preparation and postprocessing, i.e., for the definition of
the numerical problem and the representation of results.
The definition of numerical problems consists of 1)
geometrical reproduction (a structure, for example a car
or a plane, must be reproduced in the correct scale);

2) definition of physical parameters (for materials
constituting objects, etc.); 3) definition of boundary
conditions needed for the solution of a differential
problem; and 4) domain discretization, i.e., subdivision
into elements according to user specifications. The set of
these elements constitutes the mesh of the problem.

Simulation codes produce a great amount of data
consisting of node coordinates and the values of physical
parameters (e.g., velocity components, pressure,
temperature, stress tensor components) that are assumed
at the nodal locations and, in transient analysis, for each
time step. These data, if they were presented in table
form, would be unreadable. Viable solutions require
some kind of graphic representation of the data so that
the user can visualize the problem; this implies a need for
interactive graphic tools.

In ajcomputational laboratory, numerical simulations
are possible, but these do not entirely eliminate the need
for building and testing prototypes; their purpose is to

F. PICCOLO ET AL.

reduce considerably the number of prototype tests
required, and to enhance the effectiveness of testing.
Thus, computational simulations and laboratory
experiments are complementary, not mutually
exclusive, approaches to a physics or engineering
problem,

At the IBM European Center for Scientific and
Engineering Computing (ECSEC) we set up an integrated
supercomputing environment which constitutes our
computational laboratory. We use an IBM 3090'/VF
with six vector processors [2]; some IBM 5080 Graphics
System workstations; a few IBM 6090 Graphics System
workstations (the 6090 is a graphics system compatible
with the 5080 but with more advanced image-rendering
capabilities and a higher-resolution display); and an IBM
6180 plotter. We also use some industrial packages whose
solvers have been vectorized and parallelized at ECSEC
for the 3090 and whose graphic preprocessors and
postprocessors have been enabled for the 5080 and the
6090, and developed in some of their features by means
of programs written at ECSEC to take advantage of the
IBM graPHIGS' software supporting the graphic
capability of both workstations.

Examples of such industrial packages are the
Automatic Dynamic Incremental Nonlinear Analysis
(ADINA®) computer programs and the DAISY graphic
postprocessor for PAM-CRASH.’

ADINA computer programs include

% ADINA for analysis of displacement and stress.

& ADINA-F {1] for analysis of 2D and 3D viscous
incompressible fluid flows with heat transfer.

e ADINA-T for analysis of heat transfer in solids and
structures and the solution of field problems.

¢ ADINA-IN (graphic preprocessor) for preparation and
display of the input data.

& ADINA-PLOT (graphic postprocessor) for display of
solution results.

The DAISY program provides an interactive
environment for the graphic postprocessing of several
structural finite element codes such as PAM-CRASH,
which can be used to simulate the dynamic evolution of
structures under crash conditions.

Preprocessing and postprocessing for the finite
element method

Numerical techniques have been developed to simulate
many classes of problems. The best-known techniques

' 3090 and graPHIGS are trademarks of International Business Machines
Corporation.

ADINA Computer programs are registered trademarks of ADINA R&D, Inc.,
Watertown, MA.
* PAM-CRASH is a registered trademark of Engineering Systems International (ESI),
S.A. Rungis, France,

IBM J. RES. DEVELOP. VOL.35 NO. 12 JANUARY/MARCH 1991

are spectral methods, finite differences, and the finite
element method. We focus our attention on the finite
element method (FEM) to illustrate the integrated
supercomputing environment developed at ECSEC. This
numerical method is very useful for complex problems,
as shown convincingly by both academic research and
industrial practice [3].

In the finite element method, the problem domain is
subdivided into a number of elements which constitute
its mesh. The partial differential equations describing the
phenomena are replaced by ordinary differential or
algebraic equations in each element. The system of these
equations is then solved simultaneously to determine
values of the unknown quantities.

The primary advantages of FEM include

e Flexibility in treating arbitrarily complex domains and
boundary conditions,

o The ability to design unstructured grids without the
need for many grid points throughout the entire
domain.

¢ The ability to derive comprehensive error estimates.

¢ The ability to determine accurate solutions within user-
prescribed tolerances.

Hand-generating meshes is a very tedious task, and
generating complex three-dimensional meshes is
extremely difficult, if not impossible; moreover, a finite
element analysis of any problem of realistic size produces
a great quantity of numerical data which is difficult to
examine.

A preprocessor for a finite element solver must be
designed to generate and verify the input data, which
may consist of a large number of nodes, elements, and
parameters to specify the analysis to be carried out. The
preprocessor can require any (or all) of the following:

& Mesh generation to allow users to generate meshes
consisting of line, surface, or volume elements. Straight
or curved lines with equidistant nodes or with
gradually varying nodal distances should be available,
as well as automatic connection of different parts of a
mesh.

¢ Cartesian, cylindrical or spherical local coordinate
systems which are well suited for defining nodal points.
The coordinate values may then be automatically
transformed into global system reference coordinates.

& A single definition of the physical parameters of
materials, which should be generated only once for a
group of multiple elements: An identifying number
which can be referenced by several or all of the
elements groups must be assigned to each material.

& A definition of element loads, which makes it possible
for the user to specify the element number and the

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991

edge or surface to which the loading (pressure, heat
flow, etc.) is applied. It is also necessary to define the
degrees of freedom; the analysis type (steady-state or
transient); the equilibrium iteration method; the time-
function providing the time dependence of loads
applied to the model and the amount of information to
be recorded in the solver output file.

& Graphic display of the finite element model, to
represent it by plotting, zooming, and scaling the mesh;
changing the view direction; and displaying node and
element numbers. The boundary conditions must also
be available, as well as a means for hidden-line removal
and outline generation.

A postprocessor must be designed for the display and
analysis of output data from the solver. It must read the
analysis output and organize information into a specially
designed database for effective retrieval. The necessary
features of a postprocessor include the following:

& Visualization of a total or partial perspective view of
the model, eventually with hidden lines and surfaces
removed, or with shaded representation. The
visualization must also include plotting on the mesh of
contour lines; color filling of stresses, strains,
displacements, velocities, accelerations, temperatures,
etc.; and redefinition of the range of values for contour
lines or color filling in order to increase the resolution
within an area around peak values.

& Zoom, translation, x-y-z scaling, rotation, pivot, and
symmetrization.

¢ Plotting of quantities to compare the results of the
analysis with those obtained experimentally. For
example, a variable must be plotted as a function of
another variable to produce a time history graph.

& Provision for storage of each graphic display page, to
create a graphic database and allow for printing.

o Results listing and scanning within the entire model,
within selected regions, or along a predefined line.
Scanning allows the user to search for extreme results,
e.g., those exceeding a specified value.

& Animation, a new capability not generally provided by
programs. Animated representations are useful in
showing the evolution of simulated phenomena by
displaying, in quick succession, steps of the transient
analysis. Graphic workstations allow this
representation, which is very important for continuous
checking of dynamic phenomena; many aspects of the
analysis can be lost by observing a single frame
statically. In engineering problems, however, the
amount of output data can be a binding limit;
animation is possible only if the workstation buffer is
large enough to accept the graphic structures.

F. PICCOLO ET AL.

169

170

For the purposes of our work (enabling of the codes for
the IBM graphic workstations and their development), we
classify the code sections concerning the graphic data
organigation, manipulation, and visualization, into three
main groups:

o Graphic initialization routines. In this group we
include routines that are strictly workstation-
dependent, such as procedures for character font
selection, and color table and window dimension
setting. Particular caution is needed in the setting of
parameters for routines which perform the graphic
initialization, in order to correctly and effectively
utilize the software and hardware capabilities provided
by the graphic system.

o Basi¢ graphic primitive routines. This group includes
routrnes for plotting elementary graphic entities such as
lines, polygons, and character strings.

¢ High-level graphic functions. In this group, routines
performing graphic functions such as shading,
trangparency, and hidden-line removal can be
inclyded. The code sections which perform these
functions use basic primitive graphic routines, but
thes¢ are complex from an algorithmic point of view
and (ifficult to manage because of their size.

A gdod example of the full potential of the IBM
graPH]GS application program interface is the 3D
graphi¢ environment [4] developed at ECSEC for
manipjplating objects built by means of finite element,
definitjon. This environment shows the powerful
capabilities of the IBM graphic systems. Performance and
interadtivity are certainly improved by utilizing
graPHIGS primitives on the IBM 5080 or 6090 graphic
system{ equipped with local processing capabilities. In the
problem under discussion, graPHIGS software, once it
has bujlt the structural configuration, sets the window
accordjng to the object dimensions; defines the point of
view; g4nd displays the object in a predefined reference
position. Then the operator can rotate the structure
around the three axes, zoom it, or cut it by means of two
clipping planes. These manipulations can be performed
in arbitrary succession, as many times as needed.
Moreover, the operator can center a point of the image
and zoom it to focus on a particular zone. These
operations are performed using the peripheral devices of
the workstation, the eight dials and the mouse. The
performance improvement obtained working in the 3D
environment is easily verified by the user in terms of
significant ease of use and response time. The user no
longer has to type commands to perform the
transformations; they are computed locally by the
graphic processor, which results in a noticeable reduction
in channel data-transfer requirements and host CPU

F. PICCOLO ET AL.

load. From the programmer’s point of view, a 3D graphic
environment provides a substantial reduction in the
complexity and quantity of graphic code.

Visualization enhancement: Shaded objects
For 3D objects the two most important requirements to
be met are realistic reproduction and reasonable
computational effort. The first requirement springs from
the natural desire to see an object displayed as it is in
nature; the second one derives from an operative need:
Visualization and analysis of results produced by a
simulation code must be carried out interactively;
therefore, the computation time required to produce a
representation must be compatible with reasonable
response time for interactive transactions.

The simplest representation of 3D objects is the
so-called “wire frame.” This representation is
straightforward and can be developed quickly for
structures analyzed with the finite element method. In
fact, an object defined, for example, by shell elements can
be represented by means of surface points (called nodes)
for which the connections, i.e., the paths that connect
nodes to form the elements, are established. In this case,
by using polylines to reconstruct elements, surfaces
can be represented by polygons, although these do
not give a very accurate approximation of surface
curvature.

It is not possible to refine the size of the elements
which constitute the mesh of an object to improve the
approximation, because the subdivision of structures to
be analyzed by simulation codes is determined by
numerical methods and not by a graphical scheme. A
realistic representation must, therefore, be carried out by
other techniques, which can reproduce objects without
requiring variations of the mesh. A good technique is
shading, which is preferred over ray-tracing to reduce the
computational effort.

The appearance of polyhedral approximations to
curved surfaces can be enhanced by shading them in such
a way that the shading varies smoothly across each
polygon. Gouraud [5] and Phong [6] have described two
methods for computing shading functions. The first one
is fast, but the renderings produced often show
pronounced light or dark lines (Mach bands) perceived
by the human eye where the spatial derivative of the
shading function is discontinuous. The human eye is
particularly sensitive to these discontinuities because it
naturally discriminates the edges of objects. Phong’s
method solves this problem by ensuring mathematical
continuity for the illumination function and its first-order
derivatives, but it is much more expensive
computationally. Many faster methods of computing
Phong’s shading have been proposed in the literature,
however, making this approach more useful [7].

IBM J. RES. DEVELOP. VOL.35 NO. 172 JANUARY/MARCH 1991

To briefly describe Gouraud’s method, we assume a
collection of polygons with shading values associated with
each vertex. These values can be simply computed,
assuming that for each vertex we know the vector normal
to the surface of the object and the direction of the light
rays. According to the Lambert lighting model, the
intensity perceived by an observer is independent of the
observer’s position and varies directly with the cosine of
the angle between the normal vector and the light
direction. Inside a polygon we can define scan lines
(horizontal or vertical) which intersect its edges. At these
intersection points, the shading value is computed by
linear interpolation of the shading values at the vertices.
Finally, shading inside a polygon is computed along the
scan lines by linear interpolation of the values which
were computed where the scan lines meet the edges of the
polygon.

Phong’s shading is similar, except that it interpolates
the normal at each vertex and then evaluates the
illumination function at each point. From a
computational point of view, this method, involving
three components to interpolate the vectors which are to
be normalized, is of course more difficult, but Phong’s
method avoids the Mach bands which appear in adjacent
Gouraud-shaded polygons.

Both of the above techniques require that the normal
vector at the polygon vertices be known. For an
unknown structure defined by means of flat elements,
which is typical in a FEM simulation, normal vectors at
the element vertices are not known. We have developed a
tool for shaded representation of objects defined by finite
elements [8], starting from the consideration that each
vertex is shared among more than one element.
Therefore, the normal vector at this vertex can be
computed by normalizing the averaged components of
the normal vectors belonging to the shared elements.
Knowledge of these normal vectors represents the basis
for computing the shading function. To avoid an
incorrect smoothing of the edge of an object, such as a
cube, the tool checks the angles # formed between the
normal vectors of the pairs of elements sharing a node. If
the angle # between two elements, for example two
contiguous faces of the cube, is greater than a predefined
angle 8, the algorithem does not perform the average of
these two normal vectors. In this case, where there is a
well-defined discontinuity of the spatial derivative of the
shading function, the resulting pronounced Mach band is
useful. In practice, 6 is conveniently set to /8.

The reconstruction of the normal vector at a vertex,
averaging the components of the normal vectors of the
shared elements, is a particularly ticklish procedure;
errors in this process can alter the curvature of a surface
so that the shape of an object is changed. To check the
quality of the reconstruction, we consider a sphere

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991

defined by means of finite elements obtained by
subdividing the equatorial plane and the meridian planes
into 26 parts. The idea is to consider the sphere as an
unknown object produced by a preprocessor for finite
element analysis of structures but, at the same time, to
utilize the analytical expression of this surface to check
the vectors reconstructed in the vertices of the elements.
If we wish to study the structural behavior of a sphere,
for example a ball bearing, we define a model comprising
676 surface elements; this is a good number for structural
analysis but not as effective for a graphical representation
of the sphere. We must render the shaded sphere with
this small number of elements and no way to refine the
mesh.

Given z = f(x, y), the Cartesian expression of a
spherical surface, it is possible to compute the vectors

of . of .

ax b <’

therefore, the vector normal to the surface will be
ox- ay-
o £

oyl

Let n' = (n,, n,, n.) be the versor in the ith vertex, and
n,, = (n,,, n,,, n,,.) be the reconstructed versor in the
same node. A comparison of 7, and 7, in the element
vertices, is to be performed. We can define dx’ =

i i i i i i i i
|7, —nldy=|n,—nl|,dz =|n, —n,|,and the
average error for the three main directions as

N .
T

i=1 bl i=1

N .
S dx
i=1 _ —

x N> ™ N’ TF N~

t

where N is the number of nodes. In the case of the
sphere, we have

E _=0.005, E =0.003 E, =0.002.

The tool developed at ECSEC allows the user to render
objects by flat, Gouraud’s, and Phong’s shading
techniques. The choice depends on the user’s need; the
more sophisticated the shading, the greater the
computational cost. Figure 1 shows three shaded spheres,
each comprising 338 visible finite elements. The lower
left sphere is rendered by flat shading, the upper left one
by Gouraud’s shading, and the sphere on the right by
Phong’s technique. In the sphere rendered by flat
shading, the elements constituting the object are clearly
visible because the color does not vary inside the
elements. The curvature of the surface is not
reconstructed. The sphere rendered by Gouraud’s

technique has the same number of elements as the flat- 171

F. PICCOLO ET AL.

Three shaded spheres, each comprising 338 visible finite ele-
ments. The lower left sphere is rendered by flat shading, the up-
per left one by Gouraud’s shading, and the sphere on the right by
Phong’s technique.

Gaussian surface, spheres, and toruses represented by Phong’s
shading. The objects are defined by the finite element method.

172

F. PICCOLO ET AL.

shaded sphere, but now the curvature is better
represented. The best rendering is achieved by Phong’s
technique, which represents the spots due to reflection of
radiation and the room light as well. We wish to note
that the shaded representation in Figure 1 is created by
using only 32 different blue tones. We chose this number
to emphasize the quality of the rendering provided by the
tool; if good representation is achieved with only 32
colors, the method of averaging the normal vectors must
be considered satisfactory. Figures 2 and 3 show other
objects represented by Phong’s shading. All of these
objects are produced by the finite element method.
Before the shading is computed, it is important to
remove hidden surfaces to reduce the amount of virtual
or disk storage and computation time required. The
reduction of storage size is about 50%; the time reduction
is less than 50% because a hidden-line-removal algorithm
is involved.

The use of these algorithms requires a convenient way
of describing a polyhedron in terms of its vertices and
faces. The information needed for this description is
given by three coordinates for each vertex and by a string
of vertices identifying each face (the direction of travel
around a face must be defined previously). This
information is immediately available from the typical
output data of a finite element simulation, so no
reorganization of information is needed before applying
these algorithms.

Identification of internal points

In the previous section we pointed out that the shading
inside elements is computed by linear interpolation along
the scan lines. This means that we must know the
coordinates of the points at which the interpolation is to
be performed. A very similar situation occurs when we
deal with another kind of representation, scalar colored
fields. This representation is a useful feature of
postprocessing and is made by coloring the space region
occupied by an element with different colors selected
from a color table, according to the values assumed by a
physical parameter throughout the element. Inside an
element, the values of the quantities are unknown
because of the technique employed to solve these
problems, i.e., a numerical technique which solves the
problem at particular points (nodes). Data reconstruction
within the elements, by means of interpolation, is needed
to fill them with colors. For finite elements, with point
values known only at the nodes, interpolation requires
knowledge of the point coordinates where interpolation is
to be made. This can be difficult because the finite clement
method adapts the element shape to the geometry of the
problem. This means that 2D quadrilateral elements,

for example, have nonparallel edges and are placed

in the plane with arbitrary orientations.

IBM J. RES. DEVELOP. VOL. 35 NO.1/2 JANUARY/MARCH 1991

Composite of objects represented by Phong’s shading. The ob-
jects are defined by the finite element method.

This section describes the criterion applied by the
algorithm developed at the ECSEC to identify internal
points.

In the case of 2D or 3D finite elements projected onto
the screen, we have polygons which can be represented in
a finite and discrete space D’ (the display); therefore,
knowledge of the coordinates of a finite number of points
is needed. In a display of 1024 x 1024 pixels, each pixel
is referenced by a pair of integer numbers

1 =i=< 1024,
o, j)
1 =j=<1024.

If we consider a polygon E, for example a 2D element
belonging to a mesh, we have to know that all the

(i, j) € E. The algorithm considers the smallest rectangle
R circumscribing the polygon E because

{p(i, j) € E} C {p(i, j) € R} C {pli, j) € D*}.
Let P\ = (x, y)), P, = (x,, ¥,), P, = (x5, ¥3), Py =(x,, 1)

be the vertices of the polygon E. It is well known that
three points

=, O,=0,p), O =0,

identify a triangle T whose area is

1
area(T) = 3 (ax, + bx, + cx)) | ,

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991

i

Combination of 20 Gaussians with o ranging between 3 and 6.

Relative error field of the interpolation of the 20 Gaussians shown
in Figure 4, represented by a chromatic scale. Blue indicates an
error less than 1%: cyan, 1-2%: cyan—green, 2-3%; green,
3-4%. The average error is 0.35%, and the maximum is 3.5%.

F. PICCOLO ET AL.

174

A time step related to the analysis of fluid flow past a flat plate
in a pipe.

Relative error registered on the five nodes of the 2D finite ele-
ments of Figure 6, where the interpolation is made. The average
error between the value computed by ADINA-F and the interpo-
lated value is 5.9%. In the color table the first ten colors are asso-
ciated with errors between 1% and 10%, respectively; the last
color denotes errors greater than 10%. Such an error occurs only
in 10% of the nodes.

where a = (y, — y,), b= (¥, — »,), ¢ = (¥, — ,). For each
point Q = (x,, y,) € R, four triangles are defined:
T,=PQP,T,=PQP,T,=PQP,T,=P,QP,. For
each of them the areas area(T),j=1,-.-,4are
computed. A point Q € E if

‘Z area(T}) = area(E),

where area(E) is the area of the polygon E.

F. PICCOLO ET AL.

Visualization enhancement: Scalar and vector
colored fields

For the representation of scalar fields, our tool performs a
linear interpolation in terms of scan lines. With reference
to the element E introduced in the previous section, let
1is > [1, be the values of the function f(x, y) in the nodes
P,P,P,P,andlet{y=y, . —kk=01-..,n}

be the family of scan lines where 7, is the number of
integers between y,, and y,_... The linesy_, and y_, are
respectively the minimum and maximum ordinates of
the rectangle R circumscribing E. If we choose a scan line
s, it intersects two edges of E at the points F = (x,, y,)
and G = (x5, y5)-

Our algorithm is divided into two steps. The value of
f(x, y) at F is computed with a linear interpolation
between the values £, and f,. If we indicate with d(F, P,)
and d(P,, P,) the distance between F and P, and the
distance between P, and P,, we have

fomti_ dFPY
f; - fs a(p 2 P3) '
The value of fat F is therefore

_dFE P dE P
d(P, P)|”* " d(P, P3)f2'

f}: 1
For the point G we have

d(G, P)] d(G, P)
T dP, P Lot d(p, P)

fo= fi-

Successively, the values of fon the scan line s between F
and G are computed. For a point P on s we have

fo—tr _ d(P, F)
Jo—Jr d(G, F)
and then

[_de R, dep
f"‘[l 4(G, F)]ff‘*d(c;, B le:

Once we have identified the values of the scalar field at
the pixels, we access the color table.

We chose linear interpolation for performance reasons.
We tested its accuracy in two ways. First we interpolated
on a field made up of a combination of 20 Gaussians, as
shown in Figure 4, with ¢ ranging between 3 and 6. The
average error is 0.35% and the maximum is 3.5%. Figure
5 shows the relative error field of the interpolation. We
then ran a test on a real ADINA-F output. The 2D
ADINA-F elements have nine nodes, with four of them
located on the vertices. We interpolate on these four
nodes, again for performance reasons. The other five
nodes are used to evaluate our interpolation algorithm on
a real problem. Figure 6 shows a time step related to the
analysis of the fluid flow past a flat plate in a pipe. This
simulation has been used as a study case for the fluid

IBM J. RES. DEVELOP. VOL. 35 NO. 12 JANUARY/MARCH 1991

()

g

Speed field for the fluid flow in a thermal cavity. The time-steps shown are (a) the 10th, (b) the 186th, and (c) the 372nd, and the mesh

is superimposed.

dynamics computational laboratory at ECSEC, and is
treated more extensively in the next section. The average
error between the value computed by ADINA-F and our
interpolated value is 5.9%. Figure 7 shows the relative
error registered on the five nodes mentioned above. We
believe it is very significant to know the number of the
points where the approximation is affected by a relative
error greater than 10%. For this study case, 10% of the
nodes exhibited such an error. Considering the low
degree of the interpolation polynomials and the fast
computation provided by the tool, the tests show
satisfactory behavior.

Our tool also represents vector fields. In particular,
velocity fields can be represented by arrows originating
from the nodes. The length of the arrows is a function of
the speed, and their color can be associated with the
speed or with any other scalar field, such as temperature.

When the mesh is thick, the density of nodes is such
that the human eye cannot resolve the arrows referring to
adjacent nodes. For this reason we select from four to
nine nodes for each element, depending on their density.

Visualization enhancement: Animation of scalar
and vector fields

The solution of fluid dynamics problems is generally
carried on in time steps that follow the temporal behavior
of the phenomenon to be studied. Our tool is able to
represent the output data of ADINA-F for both static and
transient analysis. For the transient case, a sequence of
images corresponding to the time steps is generated. Such
a sequence can be shown at a fast rate on an IBM 5080
or 6090 Graphics System to provide an animation of the
problem evolution. To obtain good animation, however,
all the images must reside in the local buffer of the

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991

workstation, and the most binding constraint is the buffer
size. The buffer size of the 5080 is 4.5 MB, and to
represent scalar fields it is possible to allocate only 13
byte maps of 320000 pixels, displayable with a refresh
rate of four pictures per second. The 6090 allows a more
realistic animation because of its buffer size of 32 MB,
within which 100 byte maps can be allocated. The 6090
has a higher refresh rate, thus increasing the quality of
the animation because more frames are available and
screen updating is faster. For vector fields, with reference
to a buffer size of 4.5 MB, it is possible to animate
sequences consisting of 100 frames, each of them dealing
with 1000 arrows. More frames are available in this case
because an arrow can be drawn by specifying five points
by means of a polyline. In this case, each frame requires
1000 polylines plus the graphic attributes. On the 6090 it
is possible to store seven hundred frames of the same
complexity.

Current graphic workstations can generate longer and
more accurate animations, but the representation of a
prolonged dynamic phenomenon still requires videotape
recording. We have analyzed three fluid dynamics
problems extending over several hundreds of time steps,
and their animated representations are thus only possible
on videotape. In the videotape sequence that supports
this paper, we show animations of the behavior of a fluid
flow in a thermal cavity, past a plate in a pipe, and past a
nozzle. For the cavity, the velocity field is represented
twice by means of arrows located at the nodal points.
The color of the arrows is associated with the speed and
then with the temperature value computed at the nodes.
Scalar fields representing speed and temperature
complete the first part of the sequence. The velocity field

and the velocity module are represented for flow past a 175

F. PICCOLO ET AL.

176

Velocity field for the fluid flow in a thermal cavity. The time-steps shown are (a) the 10th, (b) the 186th, and (c) the 372nd. The color is
associated with the speed and is selected from a palette of 256 colors, as shown in the related videotape.

Velocity field for the fluid flow in a thermal cavity. The time-steps shown are (a) the 10th, (b) the 186th, and (c) the 372nd. The color is

associated with the temperature.

plate as well as for flow past a nozzle with the addition of
the pressure field. The videotape contains about 3500
24-bit images, amounting to five gigabytes. The images
were recorded on videotape at the IBM UK Scientific
Center at Winchester.

The fluid dynamics computational laboratory at
ECSEC

The solution of fluid dynamics problems of industrial
interest by means of simulation codes often requires huge
computation times even on powerful computers. Better
performance can be obtained with supercomputers such
as the IBM 3090 multiprocessor with Vector Facility if
the simulation codes are optimized for these machines,
i.e., if the I/O handling and the algorithm structure are

F. PICCOLO ET AL.

organized to achieve concurrent execution on the
available processors (parallelization) and, for each
processor, to exploit pipelined hardware (vectorization).
In an early phase of our research project, we proved that
a code such as ADINA-F, not originally written for a
supercomputer, could easily be adapted to a
supercomputer if efficient vectorization and
parallelization software tools were available [9]. In the
case under consideration, a great increase in performance
has been achieved, although the code remains written
entirely in FORTRAN and the basic algorithms have not
been modified.

Recent developments in computer technology such as
vector processing, multitasking, powerful channels, and
high-performance memory, which are peculiar to modern

IBM J. RES. DEVELOP. VOL. 35 NO. 12 JANUARY/MARCH 1991

Temperature ficld for the fluid flow in a thermal cavity. The time-steps shown are (a) the 10th, (b) the 186th, and (c) the 372nd.

supercomputers such as the IBM 3090 vector
multiprocessor, contribute to the dramatic decrease of
computation time for industrial problems. The
optimization of ADINA-F exploited the supercomputing
features of the 3090. Original 1/O activity has been
optimized by moving files into central storage; the finite
element assembly process and the solver have been
modified to take advantage of the Vector Facility and the
multiprocessing feature of the 3090. Performance results
confirm that tools such as the IBM Parallel FORTRAN
vectorizing and parallelizing compiler are very effective in
supercomputer exploitation. Satisfactory performance
was achieved without modifying algorithms or changing
the paths of the original source.

The use of Parallel FORTRAN made possible a
doubling of global speed for vectorization, an increase of
up to three times for parallelization and vectorization on
two processors, and an increase of up to four times for
four processors. Further increases have been derived from
I/O optimization.

ADINA-F is supported by the graphic preprocessor
ADINA-IN and the graphic postprocessor ADINA-
PLOT, as well as the previously described graphic tools
developed at ECSEC; these, together with the 3090 vector
multiprocessor and the graphic systems, make up our
fluid dynamics computational laboratory.

Simulated fluid dynamics problems

The analysis of three 2D fluid dynamics problems has
been carried on at ECSEC in our computational
laboratory. The first case simulates 300 seconds of
natural convection in a square cavity with vertical walls
heated so as to create a free convective flow. The number
of nodal points in the mesh is 2401, and there are 372

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991

time steps amounting to a total of 11 hours of CPU time.
The second problem studies 300 seconds of flow past a
flat plate placed in a channel; 3858 nodal points
constitute the mesh, and 372 time steps are simulated for
a total of three hours of CPU time. The last case
reproduces 200 seconds of flow around a nozzle. The
mesh consists of 3761 nodal points, and 250 time steps
are simulated for a total of six hours of CPU time. In all
these cases the fluid is incompressible and viscous; results
are shown in the videotape sequence and in the figures
cited in the following discussion.

In the first simulation the fluid is contained in a square
of side L = 1. With reference to a coordinate system
(xOy) with the origin in the lower left corner of the
cavity, the boundary conditions describing the physical
situation are as follows: “

o Horizontal walls insulated.

e Heating of the vertical walls givenby T'= T, at x=0
and T = f(¢) at x = L, where ¢ is the time and f(¢) a
linearly increasing function.

o No-slip conditions imposed on the walls.

The initial conditions are 7= T}, and », = », = 0 all over
the fluid domain. If f(t) > T,,, it can be expected that
fluid near x = L will become hotter due to conduction
from the heated wall, and thus less and less dense. It will
therefore rise because of a buoyancy force acting upward.
On the contrary, the fluid near x = 0 is always colder
than the surrounding fluid, and hence more dense, so it
will move downward. In this way a counterclockwise
circulation pattern will result. Characteristic parameters
of these phenomena are the Rayleigh number,

_ pgB(T — TYL’

Rqg = ——7—,
pa

F. PICCOLO ET AL.

177

Velocity field for the fluid flow past a flat plate in a pipe. The time-steps shown are (a) the 10th, (b) the 120th, (c) the 240th, and (d) the
372nd. The color is associated with the speed and is selected from a palette of 256 colors.

and the Prandtl number, Pr = »/a, where

= density,
gravity acceleration,
volume expansion coefficient,
temperature,
viscosity,

F. PICCOLO ET AL.

= diffusivity, and

ent their values are T, =0, p = 37.5,
B=1u=1,a=26.625 and

f(t)=1—??><t for 0=t = 300.

IBM J. RES. DEVELOP. VOL.35 NO. 12 JANUARY/MARCH 1991

372nd. The mesh is superimposed on the first frame.

Speed field for the fluid flow past a flat plate in a pipe. The time-steps shown are (a) the 10th, (b) the 120th, (c) the 240th, and (d) the

These values give Pr=0.71, Ra= (T - T,) X 10°, ie.,
Ra_, = 10°.

To follow the boundary layer developing on the walls,
it was necessary to increase the number of nodes near
walls and corners relative to the number near the center

of the cavity. The mesh utilized is shown in Figure 8.

IBM J. RES. DEVELOP. VOL. 35 NO. 172 JANUARY/MARCH 1991

The results are shown in Figures 9-11. It can be noted

that after an initial transient, a central core with

secondary recirculation eddies begins to develop.

Moreover, velocity fields in the corners begin to be more

relevant, together with a significant horizontal gradient of
temperature. 179

F. PICCOLO ET AL.

180

Velocity field for the fluid flow past a nozzle. The time-steps shown are (a) the 10th. (b) the 80th. (c) the 125th, (d) the 160th, and (e) the
250th. The color is associated with the speed and is selected from a palette of 256 colors.

In the second study case the fluid flows in a pipe whose
geometrical dimensions are L= 7 and Ly = 1.8; for the
plate the dimensions are /, = 0.04 and [, = 0.36 (= L,/5).
Because of the entry length of the phenomenon, the plate
is placed far enough from the channel entrance to permit
the flow to develop a parabolic velocity profile. The rest
state has been taken as initial condition. The transient
analysis has been carried out with the following boundary
conditions:

e Inlet pressure field p = f(¢) and », = 0.
¢ No-slip conditions on the plate surface and on the
lower and upper boundaries of the pipe.

Values for the physical parameters and for the imposed
loadsare p = 1, 4 = 0.9, f(¢) = 50¢ for 0 = ¢ < 300. The
characteristic parameter in this case is the Reynolds
number

F. PICCOLO ET AL.

where / and U are the characteristic length and velocity,
respectively. In this case /=L /2 = 0.9 and Re = U, so at
most Re will be Re_,, = »_,. = 267. The results are
shown in Figures 12 and 13; we can see that the
parabolic front of the flow in the channel is broken by
the plate, and two new fronts will result downstream,
together with a vorticity region that grows with the
velocity. Asymptotically, the parabolic front is
reestablished.

In the third case we have two plates d = 0.5 apart and
tilted at « = 30° from the horizontal line, thus forming a
nozzle. Each plate has a length L = 2d = 1. The field
dimensions are L, = 26 and L, = 14. The dynamic
analysis was carried out with rest as the initial condition
and with the following boundary conditions:

e Input field », = f(t) and », =0 on x = 0.

® v = f(), »,= 0 on the problem domain frontier y = 0
and y = L.

¢ No-slip conditions on the plate surface.

IBM J. RES. DEVELOP. VOL. 35 NO. 12 JANUARY/MARCH 1991

250th. The mesh is superimposed on the first frame.

For this simulation p = 1, u = 0.01, f(¢) = /20 for
0 = t = 200, so that

Re = ﬁ U = 50U,

having taken / = d = 0.5 as the characteristic length. The
results for this case are shown in Figures 14-16 and on
the videotape. An unsteady vorticity downstream from
the nozzle increases in intensity and extension with an
increase in velocity load.

Conclusions

A computational fluid dynamics laboratory such as the
one established at ECSEC allows researchers and
engineers to solve large problems and to analyze results
by taking advantage of the animation technique.
Animation is a very powerful tool for the visualization of
transient phenomena because with the advent of the IBM
6090 Graphics System it is now possible to employ
workstations with local buffers large enough to

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991

Speed field for the fluid flow past a nozzle. The time-steps shown are (a) the 10th, (b) the 80th, (c) the 125th, (d) the 160th. and (e) the

accommodate the byte maps necessary to represent
several hundred time steps. Animated visualization is of
great importance for the comprehension of complex
problems because of the large volumes of data generally
involved. As the problems to be solved become more
complex, the need for computational power increases,
and only powerful supercomputers can satisfy that
requirement. Vector processors can be usefully exploited
as well as parallel processors, thanks to the vector and
parallel nature of the finite element method. An example
of the implementation of FEM to solve Navier-Stokes
equations is the ADINA-F industrial program for fluid
dynamics simulation. This code benefits from the
supercomputing environment set up at ECSEC

because it was optimized for the IBM 3090 Vector
Facility multiprocessors with Extended Architecture.

Acknowledgments
We wish to thank Marina Russo and Fabio Matta for
their support. The collaboration of William Ricketts

F. PICCOLO ET AL.

181

182

(b)

g

Pressure field for the fluid flow past a nozzle. The time-steps shown are (a) the 10th, (b) the 80th, (c) the 125th, (d) the 160th, and
(e) the 250th.

from the IBM United Kingdom Scientific Center is also 9. F. Piccolo and V. Zecca, “Vectorization and Parallelization of an
atefully acknowledged. Industrial Fluid-Dynamical Finite Element Code on the IBM

gr yac g0 3090/VE,” Applications of Supercomputers in Engineering: Fluid

Flow and Stress Analysis Applications, Elsevier Publishing Co.,

References New York, 1989, pp. 121-131.

1. K. J. Bathe, Finite Element Procedures in Engineering Analysis,
Prentice-Hall Inc., Englewood Cliffs, NJ, 1961. : . t ot
2. S. G. Tucker, “The IBM 3090 System: An Overview,” IBM Syst. gﬁfg})"e‘;‘i 17;’ 0;2’9"(5’” 15, 1989; accepted for publication
J. 25, 4-19 (1986). ’
3. K. J. Bathe and J. Dong, “Solution of Incompressible Viscous
Fluid Flow with Heat Transfer,” Comput. & Struct. 26, 17-31
(1987).
4. P. Angeleri, D. F. Lozupone, F. Piccolo, and J. Clinckemaillie,
“PAM-CRASH on the IBM 3090/VF: An Integrated
Environment for Crash Analysis,” IBM Syst. J. 27, 541-560
(1988).
5. H. Gouraud, “Continuous Shading of Curved Surfaces,” IEEE
Trans. Computers 20, 623-628 (1971).
6. B. T. Phong, “Illumination for Computer Generated Images,”
Commun. ACM 18, 311-317 (1975).
7. G. Bishop and D. M. Weimer, “Fast Phong Shading,” Computer
Graph. 20, 103-106 (1986).
8. F. Piccolo and D. F. Lozupone, “Evoluzione della Tecnica delle
Ombre per la Sintesi di Oggetti Tridimensionali,” Note di
Informatica 22, 38-45 (1990).

F. PICCOLO ET AL. IBM J. RES. DEVELOP. VOL.35 NO. 12 JANUARY/MARCH 1991

Fabrizio Piccolo IBM Italy, European Center for Scientific and
Engineering Computing (ECSEC), via Giorgione 159, 00147 Rome,
Italy. Dr. Piccolo obtained his degree in physics from the University
of Rome in 1986. From 1986 to 1987 he worked as an aerospace
engineer on the ESA-Remote Sensing Satellite-1. In 1987 he joined
IBM at ECSEC, where he has been working on finite element
method applications and on visualization of engineering code results.
For his contribution to this area, Dr. Piccolo has received an
Outstanding Technical Achievement Award.

Vittorio Zecca /BM Italy, European Center for Scientific and
Engineering Computing (ECSEC), via Giorgione 159, 00147 Rome,
Italy. Dr. Zecca obtained his degree in electronic engineering from
Rome University in 1980. From 1982 to 1985 he worked in the
aerospace field, with responsibility for data management for the San
Marco project. In 1985 he joined the Rome Scientific Center and
was one of the initiators of ECSEC; for his contribution to the area
of parallel processing Dr. Zecca has received an Outstanding
Technical Achievement Award. His current interest is in exploiting
features of supercomputers for scientific/industrial applications,
particularly vectorization, parallelization, and data in memory.

Annamaria Grimaudo School for Advanced Studies in Industrial
and Applied Mathematics (SASIAM), 70010 Valenzano-Bari, Italy.
Dr. Grimaudo obtained her degree in physics from the University of
Bari in 1985. From 1986 to 1988 she attended the SASIAM, where
she received the Certificate of Expertise in Applied Mathematics.
During 1989, she was at ECSEC as a visiting scientist, working on
the visualization of engineering code results. Dr. Grimaudo
subsequently obtained the Certificate of Expertise in Industrial
Mathematics from the SASIAM.

Claudia Loiodice University of Rome “La Sapienza,” P. le Aldo
Moro 5, 00185 Rome, Italy. Dr. Loiodice obtained her degree in
mathematics from the University of Rome in 1989; her thesis,
developed at ECSEC, was on the visualization of fluid dynamics field
quantities. She is currently working in the field of numerically
intensive computing applications.

IBM J. RES. DEVELOP. VOL. 35 NO. 172 JANUARY/MARCH 1991

F. PICCOLO ET AL.

183

