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With  increasingly  complex  digital  simulations 
and  computations, large volumes  of  numerical 
output are  generated,  and  users must select 
more  effective  techniques  for  handling  and 
displaying  such  output  in  order  to  extract 
relevant  information.  In  this  study,  visualization 
techniques  such as animation,  tracking,  and 
2D/3D color  displays are imbedded  in  implicit 
and  explicit  finite  element  codes  for  solving 
complex  solid-mechanics  problems.  With  these 
techniques,  the  investigator  can  more  fully 
utilize  computer  time  and  better  understand  the 
results  of  long  and  costly  computations.  This 
investigation  demonstrates  the  effectiveness  of 
different  visualization  techniques  and  distributed 
computing  on an IBM platform. 

Introduction 
Digital simulation is an essential  tool for design and 
performance evaluation. The quantity of output  data is 
often very  large, and extensive postsimulation operations 
are required in order to produce visual  images. The idea 
of wanting to create  visual output from a  scientific 
simulation is not new, but only recently  have  people 
begun to investigate the process  of  visualization and 
think about developing  software and hardware with 

scientific  visualization requirements in mind. In a very 
simple form, one can define  visualization as the process 
of aiding the scientist  (investigator) in  data analysis and 
comprehension by transforming numbers (symbolic) into 
images  (geometric). For proper and successful 
implementation of any  visualization tool, one must 
satisfy certain requirements. The ultimate visualization 
requirements include 1) accurate representation, 
2) unambiguous interpretation, 3) multivariable 
interpretation, 4) volumetric display  capability for three- 
dimensional representation, 5 )  animation, and 
6 )  interactive capability. There are several important 
factors  involved in  data visualization. These include 
format conversion,  storage,  retrieval,  user  interface, 
visualization  methods, and final  result representation 
(i.e.,  display and presentation format). 

Visualization  has  always  played an important role in 
the study of structures and solid  mechanics. Traditionally 
this has  been  accomplished  experimentally,  with 
visualization  being part of the measurement process. For 
example,  extensive studies of crash  analysis  have  been 
carried out by means of  very  expensive  physical impact 
testing. Experimental visualization  yields  rich data sets of 
very  high  resolution, but they are essentially  images and 
are well suited to conventional two-dimensional  image 
processing and analysis. More recently,  both experiments 
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and numerical simulations have  begun to yield  high- 
resolution multivariate data. These  rich and complex 
data sets can consist of up to six or more quantities 
defined at each of thousands, sometimes millions, of 
node points in a two-,  three-, or perhaps four- 
dimensional domain. Often the quantities of interest are 
not directly in the data set, but must be  derived  from it 
using information about the underlying  physics and 
mathematics.  Given the large  size of the data sets, this 
requires a combination of high-performance simulation 
with  visualization, effectively utilizing  both the large 
bandwidth of the human visual  system and the capacity 
of supercomputers for processing  large amounts of data. 
Consequently, it is an extremely  effective way to facilitate 
the understanding of  large and complex data sets. 

One of the major problems that confronts anyone 
attempting scientific  visualization  is that workstations 
designed  for interacting with  users and producing visual 
information do not typically  have the processing  power 
to perform  large computational simulations. On the other 
hand, supercomputers designed  for  performing  very  large 
and complex computational simulations do not typically 
have methods of  easily  bringing the visual  results of the 
simulation to the desk of the investigator. 

The traditional approach to addressing this problem 
has  been the use  of  preprocessors and postprocessors. In 
that case, the computation-intensive part of the 
simulation is  handled by a supercomputer and binary 
output transferred to a workstation  for  postprocessing 
and visualization.  Most often, when the problem size  is 
very  large  for a workstation to handle, or the 
supercomputer CPU cycles are not fully  utilized and can 
be  used  freely, the postprocessing  also  is  performed on 
the host computer. 

Another approach is to use distributed computing, 
having  different computers on  the network perfoi-m 
pieces of a large  problem. During execution, the data 
flow between  program  modules,  any  of  which  may  reside 
on a remote machine. The process  of transforming the 
results of a simulation into  an image or a series of 
animations can be thought of as a pipeline. The 
information flows through a set  of  programs  (gates) 
which create the final  image. Figure 1 shows a simplified 
visualization  pipeline  model. The problem with this 
simplified model is that all information (data) flows 
between  processes  move  only in one direction. This will 
ultimately limit the flexibility and interactivity of the 
system. The steps  shown in Figure 1 can be distributed 
among different CPUs connected by a network. The local 
scientific  workstation  is  used to prepare the  input data 
(preprocessing),  set up the simulation, monitor progress 
of the simulation, and prepare the final output for 
viewing (postprocessing). The supercomputer is  used 
primarily  for the computation-intensive calculations of 
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Simplified visualization pipeline. 

the simulation model, and in some  cases  for  mapping 
from simulation phase to image  phase.  Ideally the 
intercomputer connection should be  fairly transparent to 
the scientist, and the overhead to set up such a task 
should be minimal. 

Parallel to the idea of distributed visualization and the 
ultimate goal  of  scientific  visualization is the concept of 
“pseudo” real-time  visualization (tracking and steering). 
Since the real-time  events happen very rapidly  (anywhere 
from  picoseconds to microseconds),  real-time 
visualization of these events is not practical. On the other 
hand, simulation of these events takes minutes or 
perhaps hours. Therefore, the terminology “pseudo” real 
time is  used to reflect the simulation time rather than 
actual event time. A successful computing and 
visualization environment should allow the investigator 
to display the output of each time step of the simulation 
as soon as it is available,  perhaps during the following 
time step,  while the simulation is in process. This 
technique lends itself to a fully  interactive simulation and 
visualization. If there is a problem  with simulation, the 
user can realize that there is an error and correct it 
immediately. This method has  drastically  lower 
debugging and postprocessing time requirements and 
associated  costs than other methods.  It can be 
implemented in two  ways. The easier method is  tracking; 
visualization  is done during simulation but  it is not 
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interactive. The better method, though it is extremely 
complex,  is  steering [ 1, 21. In this case visualization  is 
accomplished during simulation, but  analysis  involves 
modifying the simulation interactively during the 
simulation. 

Advances in hardware and software  technology permit 
a wide range of  new techniques for examining the global 
characteristics of each output variable and its 
interrelationship with other variables. With effective tools 
and appropriate methods for examining the entire 

158 output, there is a possibility  of improved problem 

understanding and the discovery  of  physical  results that 
may not be  observed in a limited review  of  selected 
output variables. The investigator can also  confirm that 
the model is  physically  correct, that the numerical 
computation is  free  of error, and that the iterative 
computation converges  rapidly to reasonable 
results. 

simulations become more complex,  resulting in large 
volumes of numerical data. Most commonly used 
graphical methods limit the investigator to looking at a 

As computational resources  become more powerful, 
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few critical output variables rather than examining the 
complete  set of output data. Graphical methods range 
from  simple x-y plots to three-dimensional displays. 
These methods can also be  used to obtain quantitative 
information such  as, e.g., position, stress, strain, 
pressure, and temperature values at selected nodal 
points.  In a research and development laboratory, 
both simulation and visualization can be at a premium. 
For this reason, an efficient method of utilizing 
both computational and graphical  networks  is 
required. 

Applications  in  solid  mechanics 
The application of finite element spatial  discretization to 
the equations of solid and structural mechanics  leads to a 
system  of  semi-discrete and, in general, nonlinear 
equations. The methodologies  for time integrating  such 
systems  may  be  divided into two  classes,  implicit and 
explicit, the essential  difference  being that  the former 
requires the solution for a nontrivial system  of equations. 
Each of these methods can be  used in Lagrangian  finite 
element programs for large-scale  solid and structural 
dynamic calculations. The explicit  codes,  while  restricted 159 
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by stability conditions, can attain efficient solutions to a 
wide  class  of  large-deformation, contact-impact problems. 
The implicit  codes,  using an unconditionally stable 
time-integration  scheme, can be more efficient  when 
the physically  relevant  time-step  size is several orders 
of magnitude larger than that permitted by explicit 
codes. 

In two-dimensional  problems, the computational cost 
of both implicit and explicit  schemes is dominated by the 
evaluation of nonlinear constitutive relationships. This 
leads to a natural breakdown in the way they are used. 
Explicit  schemes are used for wave propagation, 
hydrodynamics, and high-frequency  dynamics, and 
implicit  schemes for statics,  quasi-statics, and low- 
frequency  dynamics. Traditionally, the vast majority of 
three-dimensional  problems  have  been  solved  with 
explicit  codes,  even for low-frequency  response,  because 
the computational burden in both storage and CPU 
entailed in implicit codes by repeatedly  factorizing  a  large 

160 system  of equations overwhelms  available  resources. 

Visualization techniques are applied to implicit and 
explicit  finite element codes  for  solving  complex  solid- 
mechanics  problems. In these  codes, automated step-size 
control is used to eliminate termination due to 
divergence. If convergence  fails, it automatically backs up 
to the last  converged state, restarts  with  a new step size, 
and continues to iterate. This procedure continues until 
convergence  is  achieved. During the execution, the user 
can monitor (track) the status of the program. The 
solution-tracking capability imbedded in these  codes 
allows the investigator to see the results of each 
simulation time step as it is advancing. The user  may  halt 
execution at any time step by terminal sense-switch 
controls and enter into  an interactive graphics and 
rezoning  phase.  Rezoning implementation consists of 
three parts.  First, nodal values are generated on the old 
mesh for all variables to be remapped. Then, the user can 
rezone one  or more materials either interactively or 
automatically with  a command lile. In this phase, current 
results can be  interactively  displayed.  Finally, the re- 

S. MOINI IBM J .  RES.  DEVELOP. VOL. 35 NO. 112 JANUARYIMARCH 1991 



Vector  plots of displacement Vector  plots of displacement Vector plots of displacement Vector 
levels 

. . . . . . . . . . . .  I . . .  

Vector 
levels 
1.67 X IO” 
G I  x 10-3 
~ 3 4  X  IO-^ 
1.17 X 10” 
3 

Vector dots of disdacement vector 

~. ~~~ 

2.7 X 10” 
3.6 X 

0.67 X IO” 
1.3 X 
- - 
n 

Vector  plots of displacement Vector 
level$ 

.............. ............ .............. 

x 
x 
x lo-* 

X IO” 
x lo-* 

Time = 0.19 X s 

lo-* 
lo-* 
lo-: 
lo-;, 

.( 10- 

lime = 0.37 X 10-4s 

(C) 

Shaped charge, vector plots of displacements (m) corresponding to simulation times of (a) 2.5 to 4.5, (b) 6.5 to 8.5, and (c) 19 to 37 p s .  

meshed  regions are initialized by interpolating from 
nodal point values  of the old  mesh, and execution 
continues. In an interactive  display  phase,  binary  files 
generated at the time execution  halted are read, and 
contours, time histories, and deformed  shapes are 
plotted. If desired,  they  can  be  colored  for better two- and 
three-dimensional visualization. Contours and fringes  of 
nearly 100 different quantities may  be plotted. A variety 
of strain, stress,  pressure, displacement, and velocity 
measures can be computed and displayed. Momentum 
can  be computed from material and interface  pressure, 
and shear profiles can be plotted along  slidelines. 
(Slidelines are interface  lines  between  two  meshes, on 
which  sliding,  voids, and friction are permitted.) The 
tracking part is menu-driven, and the investigator can 
select  any  of the nearly 100 different quantities to be 
displayed. The user can switch  from tracking one 
quantity to another at any time step by selecting that 
item on the menu. These  features  reduce  debugging time, 
increase users’  knowledge  of the simulation process, 
reduce human error, and increase productivity [3]. 

Data from  solid-mechanics  simulations 
The visualization tools were  imbedded in two- and three- 
dimensional implicit and explicit  finite element codes 
developed at the Lawrence  Livermore National 
Laboratory [4-61 and used in the following experiments. 

The two-dimensional  explicit  finite element program 
DYNA2D is  used to simulate the behavior of a type of 
shaped  charge  called a self-forging  fragment. Calculations 
were camed  out  to the formation of the fragment. A 
finite element mesh  consisting of 1 1 12 elements is  used 
in the shaped-charge simulation model.  Slidelines are 
initially  placed  between the plate-high-explosive (HE), 
cylinder-HE, and plate-cylinder  interfaces. By 10 ms the 
HE has burned, and by 30 ms the pressure in the HE has 
dropped to negligible  levels.  At 30 ms the cylinder and all 
the slidelines are removed, and only the plate calculations 
are continued to the termination time of 90 ms. The first 
attempt at this experiment produced the error “element 
number 548 of material number 1 has a negative area,” a 
restart file  was written, and execution stopped after 
approximately 2 1 ms of simulation. (Material number 1 
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is the HE.)  Reviewing the time history  plots  revealed that 
the first  few nodes of the HE were  being  pushed  right 
through the cylinder. The program detected the error 
when the element boundaries crossed and produced  a 
negative  net element area. Figure 2 shows  a  few frames of 
this error condition. The error was caused by the very 
simple  mistake of not defining the last interface node 
between  cylinder and HE as a  slideline node. As soon as 
this simple input error was corrected, the program ran to 
completion without any error. Figure 3 displays  a few 
snapshots of error-free simulation results. Without the 
pseudo-real-time  visualization method used in this 
experiment, finding and correcting the error would  have 
been  a  difficult  task. Figures 4(a),  4(b), and 4(c) illustrate 
an animation of contours of pressure  for  cylinder and 
plate, and Figures 5(a), 5(b), and 5(c) display an 
animation of  displacement  vectors. The motion of the 

wavefront is clearly  visible throughout Figures 4 
and 5. 

In another experiment, the three-dimensional explicit 
finite element program DYNA3D is  used to simulate the 
behavior of two  colliding  pipes. It is  postulated that  in 
the event of a  pipe  break, the highly pressurized  fluid in 
the pipe could cause the pipe to swing and strike other 
pipes. From 1680  shell  elements,  a three-dimensional 
model  is  developed  which  consists of  two  steel  pipes, 
both having  a  length of 250 cm, O.D. of 8.5 cm, and 
thickness of 1 .O cm. One pipe  is oriented horizontally 
and fixed at both ends; the other pipe swings about one 
end in a plane normal to the horizontal pipe. The 
angular velocity  of the swinging  pipe at the time of 
impact is  assumed to be 50 radians per  second.  Two 
hundred steps were  used,  with  a termination time of 
10 ms. The results of animated pressure contours are 

I 
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shown in Figures 6(a),  6(b), and 6(c). The pipe  begins to 
rebound at approximately 7 ms,  which  is in good 
agreement  with experimental results  [4]. 

In the third experiment, DYNA3D  is  used to simulate 
the behavior of a self-forging fragment similar to  that of 
the two-dimensional  example. Calculations were 
performed on the formation of the fragment produced by 
the plate. A finite element mesh  consisting of 5200 
elements and 68 16 nodes is used in the shaped-charge 
simulation model.  Slidelines are placed  between the 
plate-HE,  cylinder-HE, and plate-cylinder  interfaces. 
Fifty time steps were  used,  with a termination time of 
10 ms. The animated sequence of contours of pressure 
produced by the three-dimensional shaped-charge  model 
is  shown in Figures 7(a),  7(b), and 7(c). 

In the fourth experiment, the two-dimensional implicit 
finite element program NIKE2D is  used to simulate the 
behavior of an O-ring  subjected to static forces.  An 
axisymmetric  finite element model of a metal O-ring  seal 
in a steel  flange,  shown in Figure 8(a), is  used to 
investigate the interface  pressure  between the seals and 
flanges. The mesh  consists of 1 126 nodes and three 
material  types,  steel flanges, an Inconel X-750 inner ring, 
and a silver  O-ring.  Slidelines are placed  between the 
O-ring and flange interfaces.  Loads are imposed by 
specifying the displacement of the nodal points along the 
top of the flange  such that the final  displaced state of 
0.83 mm is  reached after 14 increments. Eight additional 
increments are used to unload from the peak 
deformation. A total of 22 solution steps are used,  with 
the termination time of 3.0  seconds. The animated 
sequence of contours of plastic strain in Inconel and 
silver  is  shown in Figures 8(a), 8(b), and 8(c). The last 
picture in the sequence  shows the residual deformation 
after unloading. 

In the last experiment, NIKE2D is  used to simulate the 
behavior of a contact interface in a metal-forming  test. A 
finite element model of a stainless  steel  sleeve and elastic 
die,  shown in Figure  9(a),  is  used to investigate the 
pressures required to collapse the sleeve into the die with 
a large amount of sliding  along the interface. The mesh 
consists of 583 nodes and two material types. A pressure 
loading  is  applied in 50 equal increments to a peak  value 
of 0.5 GPa and is removed in two increments, for a total 
of  52 solution steps.  When the pressure  reaches 0.48 GPa, 
the sleeve is completely  collapsed. An animated sequence 
of deformed  shapes  with contours of plastic strains and 
displacement  vectors  superimposed on them is  shown 
in Figures 9(a)-9(e), respectively. The simulation 
results are in good  agreement  with experiment [6]. 

Discussion 
At present,  most  investigators interact with data either in 

164 a very quantitative way,  using a single contour or a line 
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mesh plot, or in a very  global  way,  by  studying the 
deformation and displacement behavior of the model. 
Distributed computing methods combined with tracking 
and limited steering  capability  provide  two- and three- 
dimensional display, animation, and multiple-window 
imaging  capabilities as options for the investigator.  In the 
course of this study, the tracking  capabilities were  used 
with distributed computing methods. A combination of 
an IBM 30901, an  RT' system, and a PS/2' connected by 
a local area network were  used. The main programs 
resided on the 3090 or RT, and results  were  displayed on 
an IBM 5080,  3279  display, or RT display in a native 
mode, or on  an RT display,  PSI2  display, or other 
equipment manufacturers' machines by means of the 
X-Window2  interface. The interface among the IBM 
3090, RT, and PSI2 is transparent to  the user. 

complex data  in three-dimensional space are very 
important tools for  researchers. Representation of 3D 
data as 3D images  instead  of a set  of 2D slices  is 
invaluable  for the interpretation and understanding of 
such data. Figures 6 and 7 demonstrate the ease  with 
which  such  complex  physical  processes  modeled in three 
dimensions can be  studied.  Although the simulation itself 
is a well-known and well-established  process, the 
tracking, partial steering, and visualization techniques 
described are not yet  used  by  most  researchers and are 
shown  here to be  of paramount importance in debugging, 
understanding, and interpretation of such  complex 3D 
simulation processes and data. 

window  imaging techniques described in this paper are 
imbedded in three specific  solid  mechanics simulation 
codes.  However,  these methods can be  used in a wide 
range  of  applications.  In  complex simulation models, the 
entire output can be examined for all parameter values, 
not just a few  well-known output variables.  With  detailed 
results  displayed  for evaluation, the simulation process 
can be better understood, and new  design  criteria  may  be 
formulated. Without these  tools, a scientist or a design 
engineer  may  spend hundreds of hours of CPU time and 
take weeks to find and correct a design error. The 
inclusion of visualization tools in large and complex 
programs  helps  users to monitor every state of the 
execution and obtain and correct  results in the shortest 
time with minimum expense. 

The techniques discussed  here  for  viewing multivariate 

The tracking, animation, 2D-3D  display and multiple- 
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