
Application
of visualization
tools in solid
mechanics

by S. Moini

With increasingly complex digital simulations
and computations, large volumes of numerical
output are generated, and users must select
more effective techniques for handling and
displaying such output in order to extract
relevant information. In this study, visualization
techniques such as animation, tracking, and
2D/3D color displays are imbedded in implicit
and explicit finite element codes for solving
complex solid-mechanics problems. With these
techniques, the investigator can more fully
utilize computer time and better understand the
results of long and costly computations. This
investigation demonstrates the effectiveness of
different visualization techniques and distributed
computing on an IBM platform.

Introduction
Digital simulation is an essential tool for design and
performance evaluation. The quantity of output data is
often very large, and extensive postsimulation operations
are required in order to produce visual images. The idea
of wanting to create visual output from a scientific
simulation is not new, but only recently have people
begun to investigate the process of visualization and
think about developing software and hardware with

scientific visualization requirements in mind. In a very
simple form, one can define visualization as the process
of aiding the scientist (investigator) in data analysis and
comprehension by transforming numbers (symbolic) into
images (geometric). For proper and successful
implementation of any visualization tool, one must
satisfy certain requirements. The ultimate visualization
requirements include 1) accurate representation,
2) unambiguous interpretation, 3) multivariable
interpretation, 4) volumetric display capability for three-
dimensional representation, 5) animation, and
6) interactive capability. There are several important
factors involved in data visualization. These include
format conversion, storage, retrieval, user interface,
visualization methods, and final result representation
(i.e., display and presentation format).

Visualization has always played an important role in
the study of structures and solid mechanics. Traditionally
this has been accomplished experimentally, with
visualization being part of the measurement process. For
example, extensive studies of crash analysis have been
carried out by means of very expensive physical impact
testing. Experimental visualization yields rich data sets of
very high resolution, but they are essentially images and
are well suited to conventional two-dimensional image
processing and analysis. More recently, both experiments

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of
QCopyright 1991 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

this Paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor. 156

S. MOlNl IBM I. RES. DEVELOP. VOL. 35 NO. 112 JANUARYIMARCH 1991

and numerical simulations have begun to yield high-
resolution multivariate data. These rich and complex
data sets can consist of up to six or more quantities
defined at each of thousands, sometimes millions, of
node points in a two-, three-, or perhaps four-
dimensional domain. Often the quantities of interest are
not directly in the data set, but must be derived from it
using information about the underlying physics and
mathematics. Given the large size of the data sets, this
requires a combination of high-performance simulation
with visualization, effectively utilizing both the large
bandwidth of the human visual system and the capacity
of supercomputers for processing large amounts of data.
Consequently, it is an extremely effective way to facilitate
the understanding of large and complex data sets.

One of the major problems that confronts anyone
attempting scientific visualization is that workstations
designed for interacting with users and producing visual
information do not typically have the processing power
to perform large computational simulations. On the other
hand, supercomputers designed for performing very large
and complex computational simulations do not typically
have methods of easily bringing the visual results of the
simulation to the desk of the investigator.

The traditional approach to addressing this problem
has been the use of preprocessors and postprocessors. In
that case, the computation-intensive part of the
simulation is handled by a supercomputer and binary
output transferred to a workstation for postprocessing
and visualization. Most often, when the problem size is
very large for a workstation to handle, or the
supercomputer CPU cycles are not fully utilized and can
be used freely, the postprocessing also is performed on
the host computer.

Another approach is to use distributed computing,
having different computers on the network perfoi-m
pieces of a large problem. During execution, the data
flow between program modules, any of which may reside
on a remote machine. The process of transforming the
results of a simulation into an image or a series of
animations can be thought of as a pipeline. The
information flows through a set of programs (gates)
which create the final image. Figure 1 shows a simplified
visualization pipeline model. The problem with this
simplified model is that all information (data) flows
between processes move only in one direction. This will
ultimately limit the flexibility and interactivity of the
system. The steps shown in Figure 1 can be distributed
among different CPUs connected by a network. The local
scientific workstation is used to prepare the input data
(preprocessing), set up the simulation, monitor progress
of the simulation, and prepare the final output for
viewing (postprocessing). The supercomputer is used
primarily for the computation-intensive calculations of

Input data

Simulation

Data mapping

Rendering

i Final image

Simplified visualization pipeline.

the simulation model, and in some cases for mapping
from simulation phase to image phase. Ideally the
intercomputer connection should be fairly transparent to
the scientist, and the overhead to set up such a task
should be minimal.

Parallel to the idea of distributed visualization and the
ultimate goal of scientific visualization is the concept of
“pseudo” real-time visualization (tracking and steering).
Since the real-time events happen very rapidly (anywhere
from picoseconds to microseconds), real-time
visualization of these events is not practical. On the other
hand, simulation of these events takes minutes or
perhaps hours. Therefore, the terminology “pseudo” real
time is used to reflect the simulation time rather than
actual event time. A successful computing and
visualization environment should allow the investigator
to display the output of each time step of the simulation
as soon as it is available, perhaps during the following
time step, while the simulation is in process. This
technique lends itself to a fully interactive simulation and
visualization. If there is a problem with simulation, the
user can realize that there is an error and correct it
immediately. This method has drastically lower
debugging and postprocessing time requirements and
associated costs than other methods. It can be
implemented in two ways. The easier method is tracking;
visualization is done during simulation but it is not

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARYIMARCH 1991 S. MOlNl

interactive. The better method, though it is extremely
complex, is steering [1, 21. In this case visualization is
accomplished during simulation, but analysis involves
modifying the simulation interactively during the
simulation.

Advances in hardware and software technology permit
a wide range of new techniques for examining the global
characteristics of each output variable and its
interrelationship with other variables. With effective tools
and appropriate methods for examining the entire

158 output, there is a possibility of improved problem

understanding and the discovery of physical results that
may not be observed in a limited review of selected
output variables. The investigator can also confirm that
the model is physically correct, that the numerical
computation is free of error, and that the iterative
computation converges rapidly to reasonable
results.

simulations become more complex, resulting in large
volumes of numerical data. Most commonly used
graphical methods limit the investigator to looking at a

As computational resources become more powerful,

S. MOlNl IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARYMARCH 1 9 9 1

few critical output variables rather than examining the
complete set of output data. Graphical methods range
from simple x-y plots to three-dimensional displays.
These methods can also be used to obtain quantitative
information such as, e.g., position, stress, strain,
pressure, and temperature values at selected nodal
points. In a research and development laboratory,
both simulation and visualization can be at a premium.
For this reason, an efficient method of utilizing
both computational and graphical networks is
required.

Applications in solid mechanics
The application of finite element spatial discretization to
the equations of solid and structural mechanics leads to a
system of semi-discrete and, in general, nonlinear
equations. The methodologies for time integrating such
systems may be divided into two classes, implicit and
explicit, the essential difference being that the former
requires the solution for a nontrivial system of equations.
Each of these methods can be used in Lagrangian finite
element programs for large-scale solid and structural
dynamic calculations. The explicit codes, while restricted 159

IBM J. RES. DEVELOP. VOL. 35 NO. 112 JANUARYIMARCH 1991 S. MOINl

Fringes of pressure Fringe Fringes of pressure Fringe Fringes of pressure Fringe
levels
0.5 x IOx -
1.0 x IOX

2.1 x I O X

1.5 x 10:
1111

111

1111
2.6 x IOx

Fringes of pressure Fringe Fringes of pressure Fringe
levels

Fringes of pressure
levels
1.6 x IO'

Fringe - 0.53 X IO'
4.9 x IOY 3.5 x IOY

5.4 x IOY

-
n 9.3 x IOY

1.4 x 10") &X IOY

&X IO'

111 - - 1.8 x 10")

Time = 0.89 x 10" s

by stability conditions, can attain efficient solutions to a
wide class of large-deformation, contact-impact problems.
The implicit codes, using an unconditionally stable
time-integration scheme, can be more efficient when
the physically relevant time-step size is several orders
of magnitude larger than that permitted by explicit
codes.

In two-dimensional problems, the computational cost
of both implicit and explicit schemes is dominated by the
evaluation of nonlinear constitutive relationships. This
leads to a natural breakdown in the way they are used.
Explicit schemes are used for wave propagation,
hydrodynamics, and high-frequency dynamics, and
implicit schemes for statics, quasi-statics, and low-
frequency dynamics. Traditionally, the vast majority of
three-dimensional problems have been solved with
explicit codes, even for low-frequency response, because
the computational burden in both storage and CPU
entailed in implicit codes by repeatedly factorizing a large

160 system of equations overwhelms available resources.

Visualization techniques are applied to implicit and
explicit finite element codes for solving complex solid-
mechanics problems. In these codes, automated step-size
control is used to eliminate termination due to
divergence. If convergence fails, it automatically backs up
to the last converged state, restarts with a new step size,
and continues to iterate. This procedure continues until
convergence is achieved. During the execution, the user
can monitor (track) the status of the program. The
solution-tracking capability imbedded in these codes
allows the investigator to see the results of each
simulation time step as it is advancing. The user may halt
execution at any time step by terminal sense-switch
controls and enter into an interactive graphics and
rezoning phase. Rezoning implementation consists of
three parts. First, nodal values are generated on the old
mesh for all variables to be remapped. Then, the user can
rezone one or more materials either interactively or
automatically with a command lile. In this phase, current
results can be interactively displayed. Finally, the re-

S. MOINI IBM J . RES. DEVELOP. VOL. 35 NO. 112 JANUARYIMARCH 1991

Vector plots of displacement Vector plots of displacement Vector plots of displacement Vector
levels

. I . . .

Vector
levels
1.67 X IO”
G I x 10-3
~ 3 4 X IO-^
1.17 X 10”
3

Vector dots of disdacement vector

~. ~~~

2.7 X 10”
3.6 X

0.67 X IO”
1.3 X
- -
n

Vector plots of displacement Vector
level$

..............

x
x
x lo-*

X IO”
x lo-*

Time = 0.19 X s

lo-*
lo-*
lo-:
lo-;,

.(10-

lime = 0.37 X 10-4s

(C)

Shaped charge, vector plots of displacements (m) corresponding to simulation times of (a) 2.5 to 4.5, (b) 6.5 to 8.5, and (c) 19 to 37 p s .

meshed regions are initialized by interpolating from
nodal point values of the old mesh, and execution
continues. In an interactive display phase, binary files
generated at the time execution halted are read, and
contours, time histories, and deformed shapes are
plotted. If desired, they can be colored for better two- and
three-dimensional visualization. Contours and fringes of
nearly 100 different quantities may be plotted. A variety
of strain, stress, pressure, displacement, and velocity
measures can be computed and displayed. Momentum
can be computed from material and interface pressure,
and shear profiles can be plotted along slidelines.
(Slidelines are interface lines between two meshes, on
which sliding, voids, and friction are permitted.) The
tracking part is menu-driven, and the investigator can
select any of the nearly 100 different quantities to be
displayed. The user can switch from tracking one
quantity to another at any time step by selecting that
item on the menu. These features reduce debugging time,
increase users’ knowledge of the simulation process,
reduce human error, and increase productivity [3].

Data from solid-mechanics simulations
The visualization tools were imbedded in two- and three-
dimensional implicit and explicit finite element codes
developed at the Lawrence Livermore National
Laboratory [4-61 and used in the following experiments.

The two-dimensional explicit finite element program
DYNA2D is used to simulate the behavior of a type of
shaped charge called a self-forging fragment. Calculations
were camed out to the formation of the fragment. A
finite element mesh consisting of 1 1 12 elements is used
in the shaped-charge simulation model. Slidelines are
initially placed between the plate-high-explosive (HE),
cylinder-HE, and plate-cylinder interfaces. By 10 ms the
HE has burned, and by 30 ms the pressure in the HE has
dropped to negligible levels. At 30 ms the cylinder and all
the slidelines are removed, and only the plate calculations
are continued to the termination time of 90 ms. The first
attempt at this experiment produced the error “element
number 548 of material number 1 has a negative area,” a
restart file was written, and execution stopped after
approximately 2 1 ms of simulation. (Material number 1

IBM I. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991 S. MOlNl

'Fur

Time = 0.0 s

T i e = 0.10 x s

(a)

Time = 0.22 x lo-* s

Time = 0.95 x 10-2s

(C)

Pipe whip, contours of effective stress (GPa) corresponding to simulation times of (a) 0 to 1.0, (b) 2 . 2 to 5.5, and (c) 9.0 to 9.5 ms.
. ""

Time = 0.0 s

Time = 0.80 x 10"s

(a)

Time = 0.44 x s Time = 0.84 x s

Time = 0.94 X s

(C)

S. MOlNl IBM I. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1 9 9 1

Fringes of effective plastic strain Fringes ofeffective plastic strain
""
'"c
-? ~ "" ". ..
r-*

Fringes of effective plastic strain ~~i~~~
4 levels

*-+ i

Fringe
levels
0.072
0.14

i 0.22
: I I

&*

Fringes of effective plastic strain Fringe
levels

""r "_ ."l w *- ,

Fringes of effective plastic strain Fringe
L ' s ~ ." " ~ levels

Fringe
levels
0.037
0.074
0.1 I
0.15
0.19

-
I

II

Fringes of effective plastic strain

..... "_l.. - -_ ._

Time = 0.31 s Time = 0.067 s

-La+ L "i

O-ring test, contours of plastic strain (m/m). (a) Initial condition, 0 to 0.067 s; (b) onset of plastic strain, 0.10 to 0.31 s; (c) maximum
strain, 1 . 1 1 s, and residual strain (load removed).

is the HE.) Reviewing the time history plots revealed that
the first few nodes of the HE were being pushed right
through the cylinder. The program detected the error
when the element boundaries crossed and produced a
negative net element area. Figure 2 shows a few frames of
this error condition. The error was caused by the very
simple mistake of not defining the last interface node
between cylinder and HE as a slideline node. As soon as
this simple input error was corrected, the program ran to
completion without any error. Figure 3 displays a few
snapshots of error-free simulation results. Without the
pseudo-real-time visualization method used in this
experiment, finding and correcting the error would have
been a difficult task. Figures 4(a), 4(b), and 4(c) illustrate
an animation of contours of pressure for cylinder and
plate, and Figures 5(a), 5(b), and 5(c) display an
animation of displacement vectors. The motion of the

wavefront is clearly visible throughout Figures 4
and 5.

In another experiment, the three-dimensional explicit
finite element program DYNA3D is used to simulate the
behavior of two colliding pipes. It is postulated that in
the event of a pipe break, the highly pressurized fluid in
the pipe could cause the pipe to swing and strike other
pipes. From 1680 shell elements, a three-dimensional
model is developed which consists of two steel pipes,
both having a length of 250 cm, O.D. of 8.5 cm, and
thickness of 1 .O cm. One pipe is oriented horizontally
and fixed at both ends; the other pipe swings about one
end in a plane normal to the horizontal pipe. The
angular velocity of the swinging pipe at the time of
impact is assumed to be 50 radians per second. Two
hundred steps were used, with a termination time of
10 ms. The results of animated pressure contours are

I

1
IBM I. RES, DEVELOP. VOL. 35 NO. 112 JANUARYIMARCH 1991

163

S. MOlNl

shown in Figures 6(a), 6(b), and 6(c). The pipe begins to
rebound at approximately 7 ms, which is in good
agreement with experimental results [4].

In the third experiment, DYNA3D is used to simulate
the behavior of a self-forging fragment similar to that of
the two-dimensional example. Calculations were
performed on the formation of the fragment produced by
the plate. A finite element mesh consisting of 5200
elements and 68 16 nodes is used in the shaped-charge
simulation model. Slidelines are placed between the
plate-HE, cylinder-HE, and plate-cylinder interfaces.
Fifty time steps were used, with a termination time of
10 ms. The animated sequence of contours of pressure
produced by the three-dimensional shaped-charge model
is shown in Figures 7(a), 7(b), and 7(c).

In the fourth experiment, the two-dimensional implicit
finite element program NIKE2D is used to simulate the
behavior of an O-ring subjected to static forces. An
axisymmetric finite element model of a metal O-ring seal
in a steel flange, shown in Figure 8(a), is used to
investigate the interface pressure between the seals and
flanges. The mesh consists of 1 126 nodes and three
material types, steel flanges, an Inconel X-750 inner ring,
and a silver O-ring. Slidelines are placed between the
O-ring and flange interfaces. Loads are imposed by
specifying the displacement of the nodal points along the
top of the flange such that the final displaced state of
0.83 mm is reached after 14 increments. Eight additional
increments are used to unload from the peak
deformation. A total of 22 solution steps are used, with
the termination time of 3.0 seconds. The animated
sequence of contours of plastic strain in Inconel and
silver is shown in Figures 8(a), 8(b), and 8(c). The last
picture in the sequence shows the residual deformation
after unloading.

In the last experiment, NIKE2D is used to simulate the
behavior of a contact interface in a metal-forming test. A
finite element model of a stainless steel sleeve and elastic
die, shown in Figure 9(a), is used to investigate the
pressures required to collapse the sleeve into the die with
a large amount of sliding along the interface. The mesh
consists of 583 nodes and two material types. A pressure
loading is applied in 50 equal increments to a peak value
of 0.5 GPa and is removed in two increments, for a total
of 52 solution steps. When the pressure reaches 0.48 GPa,
the sleeve is completely collapsed. An animated sequence
of deformed shapes with contours of plastic strains and
displacement vectors superimposed on them is shown
in Figures 9(a)-9(e), respectively. The simulation
results are in good agreement with experiment [6].

Discussion
At present, most investigators interact with data either in

164 a very quantitative way, using a single contour or a line

S. MOlNl

mesh plot, or in a very global way, by studying the
deformation and displacement behavior of the model.
Distributed computing methods combined with tracking
and limited steering capability provide two- and three-
dimensional display, animation, and multiple-window
imaging capabilities as options for the investigator. In the
course of this study, the tracking capabilities were used
with distributed computing methods. A combination of
an IBM 30901, an RT' system, and a PS/2' connected by
a local area network were used. The main programs
resided on the 3090 or RT, and results were displayed on
an IBM 5080, 3279 display, or RT display in a native
mode, or on an RT display, PSI2 display, or other
equipment manufacturers' machines by means of the
X-Window2 interface. The interface among the IBM
3090, RT, and PSI2 is transparent to the user.

complex data in three-dimensional space are very
important tools for researchers. Representation of 3D
data as 3D images instead of a set of 2D slices is
invaluable for the interpretation and understanding of
such data. Figures 6 and 7 demonstrate the ease with
which such complex physical processes modeled in three
dimensions can be studied. Although the simulation itself
is a well-known and well-established process, the
tracking, partial steering, and visualization techniques
described are not yet used by most researchers and are
shown here to be of paramount importance in debugging,
understanding, and interpretation of such complex 3D
simulation processes and data.

window imaging techniques described in this paper are
imbedded in three specific solid mechanics simulation
codes. However, these methods can be used in a wide
range of applications. In complex simulation models, the
entire output can be examined for all parameter values,
not just a few well-known output variables. With detailed
results displayed for evaluation, the simulation process
can be better understood, and new design criteria may be
formulated. Without these tools, a scientist or a design
engineer may spend hundreds of hours of CPU time and
take weeks to find and correct a design error. The
inclusion of visualization tools in large and complex
programs helps users to monitor every state of the
execution and obtain and correct results in the shortest
time with minimum expense.

The techniques discussed here for viewing multivariate

The tracking, animation, 2D-3D display and multiple-

Acknowledgment
I take this opportunity to express my sincere thanks to
B. H. Armstrong for carefully reading the first draft of
this manuscript and making very helpful comments.

' 3090 is a trademark, and RT and PS/2 are registered trademarks, of International
Business Machines Corporation.

The X-Window System is a trademark of MIT.

IBM I. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991

Fringes of effective plastic strain ~~i~~~
IC\,PIE

Fringes of effective plastic strain ~~i~~~
levels
0.052
0.10
0.15
0.21
0.26

.II - -
I

Load = 0.20 GPa

".

.-._...
0.027
arms
%?
E

Load = 0.07 GPa 1 .oad = 0.0 GW

._ . _*

i i i i i i i i i i f i i i i i i i i i L i i i
Fringes of effective plastic strain Fringe Fringes ofeffective plastic strain Fringe Fringes of effective Dlastic strain FrinEe

~

levels

%%
Hi:
E 4 7 .

+-f

Load = 0.01 GPa

"f .- ."_....I_

levels w
E 0.20

Load = 0.28 GPa

0.038
levels

w 1 7

m 0.12

E
l

Load = 0.14 GPa

i i r i i i i i

Vector levels Vector plots of displacement Vector levels Vector plots of displacement .. . 2.n x IO"
L5 x 10::

a21 x IO"

LLlx 10-
0.51 x 10"

Load = 0.20 GPa

" "

i i

lA9. x IO"
L4 x IO"
a96 x IO"
0.48 x IO"
Q.20 x IOd

. t '
I... -

Vector plots of displacement Vector levels Vector plots of displacemen
. ____ Vector levels

La x l o ;
u x lo-:,

24 x 10::

0.61 X 10-
Q.30 x IO"

Load = 0.28 GPa

L_

t - L.3 x lo-?
~ W6 x IO-?

0.32 x 10.'
064 x

!

.
1 a.90 x IO"

. , :
. .

i

. I Metal forming: (a x) contours of plastic strain (m/m); (d, e) displacement vectors.

165

IBM I. RES. DEVELOP. VOL. 35 NO. 112 JANUARYIMARCH 1 9 9 1 S. MOlNl

References
1. W. E. Robbins and S. S. Fisher, Eds., “Three-Dimensional

Visualization and Display Technologies,” SPIE Proc. 1083,
144-180 (January 1989).

Applications,” Proceedings of Supercomputing 88, IEEE
Computer Society Press, Piscataway, NJ, 1988, pp. 14-230.

3. Edward J. Farrell, Steven E. Laux, Phillip L. Corson, and Edward
M. Buturla, “Animation and 3D Color Display of Multiple-
Variable Data: Application to Semiconductor Design,” IBM J.
Res. Develop. 29, No. 3, 302-315 (1985).

Lawrence Livennore National Laboratory, Livermore, CA, 1987.

National Laboratory, Livermore, CA, 1988.

National Laboratory, Livermore, CA, 1986.

2. J. L. Martin and S. F. Lundstrom, Eds., “Science and

4. J. 0. Hallquist and D. J. Benson, DYNA3D Users’Manual,

5 . J. 0. Hallquist, DYNAZD Users’Manual, Lawrence Livermore

6. J. 0. Hallquist, NIKEZD Users’Manual, Lawrence Livermore

Received November 10, 1989; accepted for publication
January 3, 1991

166

s. I

Samad Moini IBM Scientific Center, 1530 Page Mill Road, Palo
Alto, Calqornia 94304. Dr. Moini is a scientific staff member in the
Numerically Intensive Computing Applications group. His interests
include semiconductor process, device, and circuit simulation, stress
analysis by finite element methods, and scientific visualization.
Before joining IBM, he was the lead engineer of a real-time hardware
design team at the Advanced Product Division of Link Flight
Simulation. Dr. Moini received his M.S. and Ph.D. degrees from the
University of California at Davis. He has taught undergraduate
engineering at UC Davis and at the California State University at
Chico, and VLSI design at Santa Clara University. Dr. Moini is a
member of the Institute of Electrical and Electronics Engineers and
Sigma Xi.

vlOINl IBM J . RES. DEVELOP. VOL. 35 NO. 1/2 JANUARYMARCH 1991

