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Recent  advances in personal  computer 
workstations,  such as the IBM Personal 
System/2'  Model 80 with its increased  memory 
and CPU speed,  loosely  coupled  with  a  host IBM 
30902 Processor,  can provide considerable 
computing  advantages  for  executing  and 
visualizing  numerically  intensive  computing 
(NIC) applications. We have  developed  a,' 
prototype  visualization  environment  which 
demonstrates effective use  of this hardware. 
The  user interface for  the NIC application is 
written  using  Microsoft  Windows3  on  the  PS/2' 
Model 80 running DOS 3.3. The  PS/2  Model 80 is 
connected to a  host 3090 via  a PC network.  The 
user  enters  requests  which  are  application 
parameters  and  selects  graphic  views  for 
displaying  the  output results file.  The  entries  are 
made  through  user  dialog  screens  on  the 

' Personal  System/2 and PS/2 are registered trademarks of International Business 
Machines Corporation. 

' 3090 is a trademark of International Business Machines Corporation. 

'Windows is a trademark of  Microsoft Cornration. 

workstation IS. Th le user  view of the system is 
such  that it appears  that it is running  on  the 
workstation. To achieve this transparency, file 
caches  are  used  on  both  the  workstation  and 
the  host.  The  cache  on  the  host is  in the  form  of 
graphic  metafiles  and  numeric  data. The cache 
on  the  workstation  contains  metafiles.  Requests 
are  monitored  on  the  workstation to determine 
whether  the  results  are in the local cache.  When 
they  are  not,  a  request file is transferred to the 
host  and  checked  against  the  host cache.  The 
NIC application is run  only  when the requested 
result is not in either  cache. In order to reduce 
the file size, the results file is converted to a 
metafile before being  transferred to the 
workstation. 

Introduction 
The traditional IBM hardware  configuration  used  for 
numerically  intensive computing (NIC) consists of a 
mainframe or host CPU housed in a central computer 
facility often referred to as a glass house. Connected to 
the mainframe are a  mix of  IBM terminals which support 
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text  (3270) and graphic output (3279,  3179).  Special 
high-resolution  graphics  display  devices (e.g., the IBM 
6090 Graphics System)  may also be attached. The 
connection to the host  for  all of these  devices is primarily 
through coaxial  cable as terminals. The user interacts 
with the host-resident  NIC application using input files. 
The user interface is primitive, if it exists at all, and is 
text-oriented. Output, which can be  text or graphics, is 
viewed from files stored on  the host. The viewing of 
output is  based on computational demand. 

This paper presents an alternative design and 
implementation for a NIC  system  which  uses a 
workstation  loosely connected to a host. In  our system, 
program  editing and compiling are accomplished 
traditionally. The user  interface  is  graphically  presented 
on a workstation and is  organized around data viewing. 
Algorithmic as well as graphics-related computation is 
done on the host.  However, this computation is 
subordinated to viewing and occurs implicitly on a 
demand basis. The application is “preloaded” with 
enough  sample data and partial results that the user can 
postpone learning  how to  input  or edit parameters and 
manage  resources until familiarity  with the viewing 
interface  is attained and its relation to  the underlying 
mathematics and physics  of the problem is understood. 
By such a judicious splitting of application and user 
interface  between  workstation and host, an improved 
NIC  working environment is  achieved. 

0 Advantages of accessing NIC through a workstation 
The advent of the personal computer (PC) accompanied 
by an original  set  of applications capable of reaching a set 
of  new  users has  caused a revolution in the mix of 
software and hardware solutions available. The NIC user 
has  been  exposed to, and in many cases  has  become 
familiar  with, PCs and PC applications such as word 
processors and spreadsheet  programs. Thus, in terms of 
usage, the NIC  user  is  being  exposed to more responsive, 
better designed, and easier-to-use application interfaces 
on the workstation than was true on the 3270 terminal 
family. There is  also much greater application 
development  activity, and a larger number of 
productivity aids available  for workstations than for the 
3270  family. 

Workstation  user  interfaces tend to be more visually 
oriented  because data can  be  moved to the display  device 
at lower  expense. The application-specific control 
transactions have  much better response  times. As the 
workstation  technology  has  proceeded,  large  local 
memory,  high-resolution  displays, and special  graphics 
functions such as zoom, pan, and scroll  have made local 
interpretation of data more  efficient. 

workstation  has  greater  flexibility in the placement of 
The NIC  user  working  with the host through a 

IBM I. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991 

attachments, since the workstation requires a much lower 
connection bandwidth than a terminal. For example, a 
workstation can operate over a telephone line, 
compensating for the poor bandwidth by increasing 
amounts of  local  storage, computing power, and 
memory. In the extreme case, the computation may  be 
run completely on  the workstation for  scaled-down 
problems  suitable for testing of model assumptions and 
debugging. There also  exists a large  installed  base of both 
stand-alone and networked workstations running 
applications which are unavailable on a host. 

0 User interface and application function levels 
Structuring of applications on a workstation  stresses 
current user  interfaces.  If the user  must  directly confront 
the multitude of  files and file types  along  with the 
synchronization problems that NIC applications generate, 
he  is  likely to quickly abandon the effort. The application 
interface described  here is structured and presented in 
three levels of increasing  complexity. The user is 
encouraged to gain  familiarity  with  each  level  before 
proceeding to the next. Upon starting the application, the 
user  has the opportunity to explore  graphic output and 
geometric input  data of “previously run” instances of the 
problem. This is perceived as  data viewing and 
navigation. The major portion of this for the application 
we consider is a group of geometric and temporarily 
organized graphic views of computed data. Our prototype 
application produces contour plots of pollutant 
concentrations. 

of the problem by modifying the model and viewing 
parameter values. He can generate additional parameter 
sets, or he may establish new sets of initial conditions. 
After  any  of  these  changes, he can compare results. All  of 
this is  possible without the user  directly encountering the 
file management activity  being  carried out on his  behalf 
on both host and workstation. 

The underlying  driving  mechanism  for this system  is 
the data-viewing  facility. Computation is done only “on 
demand.” But  such  systems,  like  storage  hierarchies,  need 
tuning and guidance. The approach used to achieve this 
is part of the “resource management” component of the 
interface.  Extensive running of the program  results in 
increasing amounts of disk  storage  allocated on its behalf 
both on the host and workstation  machines.  Procedures 
must  be  available to determine what  is to be  saved and 
what should be  destroyed.  However, the user  can  wait to 
learn any of this until he  is  thoroughly  familiar  with the 
first  two  layers  of function. 

The user can then explore the mathematics and physics 

0 System/application interface split 
The user’s interface to the computer is traditionally split 
into a single operating system (OS) interface and some 
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number of application-specific  interfaces.  Examples of 
these OS interfaces include the VM/CMS and PC-DOS 
[ 11 command lines as well as the many  full-screen 
interfaces  such as Filelist and TopView [2]. The 
relationship between the system interface and the 
application interface can be quite straightforward. The 
application  typically  deals  with a single  file  of a specified 
type.  Its output is  also a file  of that same type. In the 
simplest  case, the application program  itself  consists  of a 
single  nonmodifiable file. Most of the information in full- 
screen OS interfaces  is a reflection  of the state of the file 
system and the names,  sizes, and dates of the files. 
However, the more sophisticated interface programs keep 
additional information, such as short command strings or 
affinity information, which  allow a program to be 
associated  with a specific  file  type. Additional complexity 
and function occur when the system interface allows for 
multitasking  with  user-controlled data sharing between 
tasks. In fact, few applications consist of a single  program 
file.  Even simple applications usually  have one  or more 
small files  which are used to perform  various 
configuration or personalization  tasks  when the 
application  is started. Unless the designer  is  careful, he 
can make the learning of a new application quite 
difficult. 

Applications  which  involve communications between 
operating  systems  increase the complexity by an order of 
magnitude or more. The number of file types introduced 
to manage function and performance is greatly expanded. 
Furthermore, the simple  operating-system interface with 
which the user  is  familiar is likely to be inadequate. 
“Dumb terminal” emulation programs such as 
PROCOMM-PLUS4 [3] or E-78 [4] allow the user to 
maintain his sanity by keeping almost all his data on  one 
system (the remote one) and using a mostly  stateless 
window to interact with that system.  Such a strategy  is 
practical,  however,  only  when the effective  screen 
bandwidth  required  by the application is not much larger 
than the bandwidth of the communications link. In this 
prototype,  where the interest is graphics or image output 
with  relatively  low-bandwidth communications, this 
strategy  doesn’t  work. We are faced  with a situation in 
which there may  be  user data  in several  different formats, 
residing  partially on one system and partially on another. 
Keeping track of  all this with  existing  system  interface 
tools is too difficult for the intended users of the 
prototype application. Operations which  become very 
confusing are version management, checkpoint, and 
recovery. The simple  file-management  strategies 
associated  with a text editor or a spreadsheet  program are 
not possible  when  all the files are directly  exposed to  the 
user  through the traditional file-management  interfaces. 

Datastorm Technologies, Inc., 1987/1988. 
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Our solution is to design the prototype application to 
look  like a completely  local application. Each instance of 
the application is  represented by a single  file. All other 
temporary or permanent files are subordinated to this 
one file.  All resources,  local or remote, are allocated on 
behalf  of this file. For example, in the prototype the 
diffusion  model  program  is  called “DIFFUSE.EXE.” It 
expects as an argument a control file  of type DFU, say 
“SANJOSE.DFU.” 

The approach is to define a .Dm-type file  which 
contains all the state information about a specific 
application instance. This includes information such as 
parameter sets, partial computation results,  host  server 
path information, and auxiliary data file names both on 
the workstation and  on the host  server. The point is to 
provide, in a single  file,  everything  necessary to initiate, 
save,  back up, or destroy an application instance. This 
strategy  results in an interface that is both easier to learn 
and easier to use. 

0 System concept and its implementation in NIC 
The system  organization underneath the proposed 
structure is  implicit in the description  of the user 
interface. The several  activities  involved in writing and 
running an application are ordered  with the hope of 
making the whole  process  easier  for both the application 
writer and  the user. For a user of the diffusion  program 
(the example described later in this paper), it might  be 
quite natural to start out with a three-dimensional 
visualization of what the pollutant concentrations might 
look  like. From the point of  view  of a computer 
programmer, this would  be  distinctly unnatural; the 
visualization, if any, comes at the end of the process, not 
the beginning. 

The two main successes in user  interfaces  for  personal 
computing, WYSIWYG (“What you  see  is  what  you 
get”)  word  processors and spreadsheets,  were  achieved by 
disturbing the “natural” order to put the end results up 
front in visual form. We intend here to pursue a similar 
strategy  for NIC problems. 

by several techniques was  VisiCalc’ [5].  Here  program 
editing, data entry, and  output viewing are integrated 
into a single  geometric  model. The program structuring 
was  greatly  simplified  by  providing a fixed initial screen 
and keyboard monitor and completely eliminating the 
primary role of loop control logic. Loops perform  two 
crucial  functions-saving  memory and permitting 
concise  program statements. How  spreadsheet  programs 
avoid the use  of  loops at the programming  interface 
requires a detailed explanation which  is  beyond the scope 
of this paper. A key  piece  of the solution, the “copy” 

A program which achieved a breakthrough in usability 
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command, moves the function done by loop control 
variables into the program edit function. Using  high-level 
computational primitives and subordinating computation 
to program  editing  also  reduces the burden of the 
program structure. 

the recognition that computing resources  devoted to 
program  editing, input, output, and other “support” 
functions far  outweigh  those required for  execution of the 
user’s algorithms. 

For many NIC applications, the “support” functions 
also greatly  overshadow the MIPS (millions of 
instructions per second) requirements for the algorithms. 
In many  NIC applications the main MIPS-consuming 
item is visual output, which  is the same as for 
spreadsheets.  Although the resource ratios of 
these  types  of  work  may  be similar to those for 
spreadsheets, there are some important differences 
that keep us from  using the spreadsheet  strategy 
directly. 

While a spreadsheet-like  geometric  model of input  and 
result data often  exists, the complexity of the program at 
each point is  such that a procedural language rather than 
just a collection  of formulas is  desirable for algorithm 
expression. The total amount of computation for  all 
phases  of the problem is much larger per user  viewing 
event. The algorithmic computation cannot be done at 
edit time, and visual output computations seem too large 
to be done at viewing time. However,  these  differences do 
not make it less desirable to provide the friendly 
development and execution environment of a 
spreadsheet-they just make it more difficult. The 
components of a solution for the NIC problem include 
the use  of  decoupled MIP servers and exploitation of the 
high-performance  direct-access  storage  available  with 
them, along  with the additional step of integrating the 
control of graphic and image output with the early  steps 
of the process.  Spreadsheets integrate data editing, 
program  editing,  algorithm computation, and numerical 
output viewing. Although  they  usually  provide  graphic 
output, the control of this function is not integrated. In a 
spreadsheet  program, the user must selectively  request  all 
visual output after the algorithmic computations are 
completed.  Each  image is independently generated and 
discarded. Little attempt is made to understand or exploit 
the user’s  image-reuse  behavior in general.  Once one 
considers the integration of  visual output with the 
remainder of the process, it becomes  obvious that the 
user’s interface to visual output control should pace as 
much of the entire process  as  possible. This is  because it 
is  closest to the most computationally intensive portion 
of the task, and it is  also the point at which the greatest 
intelligence  exists about user intentions. Furthermore, the 
user  interface should be presented in a manner that 

These  changes  from traditional organization require 
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allows  for multiple instances of the application to run. 
This would at least include the possibility  of multiple sets 
of  parameters, but might  also include changes in the 
algorithms  themselves. 

file management system under VM/SP6 HPO [6] for 
example,  he  is  presented  with an unstructured mess  of 
unclassified partial results and several  different file types, 
generally  with no well-thought-out  file-naming  scheme. 
Subordination of  this detail was mentioned previously, 
when we suggested  collecting  everything into  one file  as 
seen  from the user’s point of  view. A second  reason for 
transparency relates to performance.  It  is  only  from a 
sufficiently broad point of control that significant 
computational repetition can be detected and avoided. A 
principal technique in solving data-intensive performance 
problems has been transparently managed  staging. 
Expensive data accesses are eliminated by providing  for 
easy  reuse  of data  that have  already  been  accessed. The 
same idea can be applied to computation. In our work, 
program editing and compiling are done traditionally. 
The user interface is  organized around data viewing. 
Algorithmic  as well as graphics-related computation is 
subordinated to viewing and occurs  implicitly on a 
demand basis. 

Representative NIC problem 
The class  of NIC problems  which we chose to investigate 
initially includes those which had  previously  been 
developed and run in a batch or semi-batch  mode.  These 
tended to be  primarily FORTRAN programs written  for 
execution on a System/3707  class machine. The user 
interacted with the host  via a terminal (3277-3279)  over 
a coaxial  cable. The FORTRAN module required input 
and output files to be  resident on the host, and the user 
kept  track  of  all the necessary  files.  File  management  was 
primitive, often consisting of the user  keeping  notes as to 
which  files  were being used for particular runs of the NIC 
module and associating output files  with parameters 
used. 

NIC FORTRAN problems traditionally have a number 
of common characteristics. A large  percentage of the 
instructions in the computation kernel are floating-point. 
Many computations require double-precision  floating- 
point as well. The NIC programs require significant input 
data and produce vast amounts of output results. 
However,  only a small part of the output may  ever  be 
reviewed,  because the user  is interested in obtaining some 
specialized  insight  from a small  segment of the output. 
To obtain the desired information, the NIC computation 

When the user “manually” deals  with  his files  using the 
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is  often  executed  repetitively until it reaches the state of 
interest to the user. This implicitly demands that NIC 
computations have  access to large  volumes  of  storage and 
memory.  Once the NIC application is initiated by the 
user, there is little if any operating system interaction. 
The output results are usually  analyzed  off-line  via  a  set 
of postprocessing  programs,  which  perform the function 
of presenting to the user  a  visualization of the output. 
This usually takes the form of a graphic or pictorial 
representation of the results.  After this is done, only the 
reviewed portion is retained, and any excess results can 
be and usually are discarded. 

Atmospheric diffusion model 
We have  selected the atmospheric diffusion  of pollutants 
as our test application. The application mathematically 
models the solution of the time-dependent mass- 
conservation equation expressed in terms of 
concentration density  values and transport 
variables. 

Model formulation is  based on numerical integration 
of the concentration equation over time, for  a  specified 
set  of spatial mesh points which  comprise  a three- 
dimensional grid. This enables the temporal and spatial 
variation of meteorological  variables and surface 
conditions to be accounted for in the model.  However, 
local  topographic  features are not modeled. 144 
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Diffusion model  inputloutput 
The values of concentration are obtained by numerically 
solving the mass conservation equation using  finite- 
difference approximations. The model requires 
meteorological input data, such as wind  velocity, to be 
supplied at each  grid point of the three-dimensional 
spatial grid. The meteorological  values  supplied can be 
time-dependent, i.e., varying at each spatial grid point. 
The numerical solution of the finite-difference equations 
is obtained by marching in time steps of hundreds of 
seconds. The concentration levels at hourly intervals are 
saved to disk. This is done to permit comparisons of 
computed values  with  hourly-averaged  observed data. 

The finite-difference  spacing or mesh size is normally 
fixed in the X (latitude), Y (longitude), and 2 (vertical) 
directions. The horizontal grid  spacings in the X and Y 
directions are normally uniform or fixed in size, and are 
typically  composed  of 40 and 30 grid  points,  respectively. 
The 2 grid  spacing can be  variable and usually  has 16 
grid  points.  These  values  represent defaults which can be 
increased or decreased as desired. 

The diffusion  model requires meteorological and 
source  emission data as input. Since the model is time- 
dependent, both of these  sets of data can also  be 
functions of time. The source data consist of point-source 
data (e.g.,  power plants) and area-source data (e.g., 
residential  sources). Our implementation considers  only 
point-source  emissions. A most common format for the 
input  data is to vary the source data every hour. The 
meteorological data are similarly required to vary  every 
hour. In addition, the meteorological parameters are 
required at every  grid point for every hour. The 
concentration values are simulated every hour over  all 
the spatial grid points. Thus, the concentration data are 
in the form of a  cube, and one cube is  produced per hour 
of simulation. A  typical model run would  be  for 24 hours 
of simulation time. 

computations, the diffusion  model has input in the form 
of  files or programs  which  create the input data. A 
schematic representation of the input and output  data 
required for the diffusion  model is shown in Figure 1. 
The input for both meteorological and source  emission 
data can be either obtained from  observational 
information or created by executing the programs 
GENMET or GENSOS.  These  programs,  which  were 
written for this prototype study, simply  create 
hypothetical  fields  which are useful for sensitivity studies 
of the model and for analyzing the effect  of model 
parameters on  the computed results. A third source  for 
meteorological data is yet another model,  which  produces 
meteorological data. Such  a  model attempts to represent 
a  dynamically consistent set  of  variables by solving the 
equations of motion using numerical approximations. 

As is  typical of many numerically  intensive 
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The output file from this model  becomes the input  to the 
diffusion  model. 

Originally  coded in 1974, the diffusion  model  [7],  as 
such,  qualifies  as a “dusty deck”-an application written 
for  systems no longer in common use but capable of 
being run or emulated on current systems without 
significant  changes in the original  code.  It was executed 
in batch mode under VM/CMS running on a 
System/3608  Model  168. The model computed one data 
cube  for every hour of simulated time. 

separate,  sequential, formatted files. These were modified 
so that any  one simulation run was stored on a direct- 
access unformatted file, thus reducing the number of 
output files. These data files compose the results data 
cache on the host. 

The diffusion  model currently runs on an IBM  3090 
Model 300 Processor with Vector  Facility [8]. The CPU 
time for computing 24 cubes of data is  two  minutes. The 
total size  for  these cubes is  4.7  megabytes  of data. 

To obtain a visual  representation of the output, the 
NCAR  graphics  package [9] is  used to produce  two- 
dimensional contours of concentration. The graphic 
representation of XY, X Z ,  and YZ sections through the 
data cube  is converted to graphic metafiles. The total 
CPU time for  creating  metafile contour plots  for 24 hours 
of data is  92 minutes. The total size  of the files generated 
is  8.6  megabytes  of data. Thus, we conclude that the 
main computational and storage requirement is 
generated by graphics  postprocessing. There are two main 
problems  associated  with the host implementation: The 
user  has a significant  file-management  responsibility 
forced on him, and the rapid interaction with simulation 
output is infeasible  even on a 3090  processor  because of 
severe  performance limitations, even  if  all  cross  sections 
in a particular cube of data are not computed. 

Implementation of solution 

0 Host and  workstation system overview 
Figure 2 shows the overall  flow for the system. The heart 
of the design  is the split  between the user interface and 
the computational portions of the application. The user 
interface  code is resident on the workstation. Its primary 
function is to collect  user parameters for running 
instances of the application and for viewing output. The 
user-entered  requests are of  two  basic  types-model 
parameters and viewing parameters. 

The new  user  initially  gravitates  toward  varying the 
viewing parameters and displaying  previously computed 
results.  Experienced users change both model parameters 
and viewing parameters. The selected output is stored on 

Each hour of concentration data was stored in 

’ System/360 is a trademark of International Business Machines Corporation. 

IBM I. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARYIMARCH 1 9 9 1  

T 
Collect user 
parameters 

I t 
Display 
contour 

t 

1 ’  ” ‘ t- Send request yes Check for 
to host host response 

f 
LAN-to-host :- communications -i 

T I 
1 

Send metafile 
to workstation 

No t 

Run diffusion I 
model simulation 

0 Disk 

f Overall system diagram. 

either the workstation or the host, depending on whether 
the particular view has  been  previously  displayed. Output 
is  created and stored on the host in raw data format and 
in graphic  metafiles. A metafile  is a standardized file for 
storing and transporting graphic data and control 
information in device-independent  form. We chose the 
computer graphic  metafile format [ 101 to transfer from 
the host to the workstation  because of the device- 
independent output, small file  size, and speed of 
interpretation. Thus there is a cache  of  previously 
displayed  metafiles on the workstation. As shown in 
Figure 2, the user’s display  requests are compared against 
a table  describing the metafiles in the workstation  cache. 
When a match is found, the desired contour is displayed. 
When no match  is found, the request file is sent to the 
host. The request file contains both viewing and model 
parameters. The workstation-host connection is a local 
area network. The file is received at the host and read 
into a disconnected  VM/CMS  virtual machine. Once the 
file has  been  read by the host, its data manager (DM) is 
activated. The DM checks  whether the requested view 
already  exists,  If the view is in  the metafile  cache, it is 
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sent to the workstation. The workstation  meanwhile  is 
polling  for  host  response in the form  of  a  sent  metafile. 
When the view does not exist in metafile form, the DM 
searches the data cubes.  When  a match is found as to 
model parameters, a  metafile  is  created  with the specified 
view and sent to the workstation. If no match is found, 
the application (in our case the diffusion model) is 
executed, and a data cube and the requested  metafile are 
produced and sent to the workstation. 

Host virtual machine configuration 
The current host  for our test application is an IBM 3090 
Model 300 Processor running VM/XA9 SP1 [ 1 11 and a 
guest  system,  VM/SP HPO 4.2  [6]. The diffusion  model 
and all  its  associate input files are resident in a virtual 
machine,  which  also contains the data cube and metafile 
caches. The virtual machine runs in disconnected mode 
using the GONE EXEC program, an IBM internal-use- 
only  facility  which permits a virtual machine to be 
disconnected  from VM  yet have messages trapped and 
written to a  log  file.  It  also  provides  a  user  exit  which  is 
called by GONE whenever  a  reader  file is received. The 
user  exit is a function called  PROCFILE EXEC written 
in REXX. This user  exit  parses the file type of the 
incoming file searching for a  type  which indicates that  it 
is  a  workstation  request file. Upon finding  a file  of that 
type, the user  exit  copies the file onto a  designated  disk. 
The request file is now  ready to be used  by the DM. The 
DM is  executed  using another EXEC  called RUN6. After 
RUN6 finishes, the user  exit  code  sends the result 
metafile to the requesting  workstation. The user  exit then 
returns to GONE, which waits for the next  reader file. 
The identification of the sending  workstation is included 
in the request file and is  used in returning the result 
metafile. Thus, the host  server  may  serve  several 
workstations in a  serial manner. 

e Data manager, data cube, and metafile cache 
The function of the  data manager (DM) is to act as the 
file manager  for the two  sets of data caches on the host. 
The DM  is  written in the C  language. This choice was 
made  because  of the availability of C on both the 
workstation and host, and the need to replicate  a  large 
portion of the DM on the workstation. The diffision 
model,  when  requested, produces a  results  file  which 
contains concentration data for  each spatial grid point as 
a function of time. This is  a  direct-access data file that 
contains not only the concentration data but the set  of 
model parameters which produced the data. Such files 
constitute the data cube  cache. One file can contain 
many  cubes of data, each for a  different time but with the 
same  model parameters. The metafile  cache  consists  of 
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files  each containing a view  of a cube that has  previously 
been  requested by the user  via the request  list. The views 
are themselves functions of the geometric  section of a 
cube,  for  example an XY cross  section. 

Workstation-to-host communications 
The communication for the prototype takes  place 
“behind the scenes” so that  the user  has the impression 
that the entire application is running on the workstation. 
The workstation-host communication assumes the 
availability of a  narrow-bandwidth communication 
mechanism. A telephone line or narrow-bandwidth 
network is commonly what NIC users  have  available to 
access  a remote host. 

and received  over an IBM  PC  Network [ 121. The 
workstation  program uses a  library of routines, 
WECOMM,  which were developed to interface  with an 
internal package,  PVMCOMM, that interfaces  with 
NETBIOS and the PC  Network adapter. The 
PVMCOMM  program  uses the PASSTHRU  facility 
(PVM) and the Inter-User Communication Vehicle 
(IUCV) to communicate with  a  disconnected  CMS 
virtual machine named NET2LAN. The purpose of this 
disconnected machine is to forward files between  any 
virtual machine on the host and any PC on the PC 
Network. In the case  of our prototype, the request files 
from one or more workstations are forwarded to a 
disconnected virtual machine, NICSERV,  which runs the 
diffusion model simulation. NICSERV then receives and 
processes the requests and sends the results  back to the 
appropriate workstation. 

initiated on the workstation. The timer process 
periodically  causes the user  interface to query the 
network  for  results. Upon receipt of a  metafile, the user 
interface updates the local  cache. The metafile  is 
displayed if the viewing  window  is  still  active.  If the user 
is currently analyzing other views, the new  metafile  is 
placed in the cache but not displayed. 

User interface development and components 
The system concepts and rationale for using  a  graphically 
based  interface  have  previously  been  discussed. We have 
chosen  Microsoft  Windows [ 131 as the facility to create 
the user  interface on  the workstation. The user  interface 
is a  set of screens  which contain text and data fields 
defining the input parameters for the diffusion  model. 
Through  these  screens the user interacts with the model, 
requesting  model runs, results, and views  of these  results. 

Windows  is  a  facility  which runs as  a  shell around 
PC-DOS [ 11. User  interfaces  written in Windows are 
multitasking. The user can display and run several 
Windows programs or multiple instances of the same 

In the prototype, the request files and metafiles are sent 

When  a  request  file  is sent, a timer interrupt process is 
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program  simultaneously.  The  Windows  screen, because it 
is a  graphic  interface,  permits  a user interface to have 
both  text  and  graphic  representation.  Windows  programs 
will run on any of the standard  displays  for  which  there  is 
a Windows  device  driver  available, and such  a  driver  is 
device-independent. 

a shell around PC-DOS [ 11, it  shares with  DOS the 
managing of hardware  resources. It controls the display, 
keyboard,  mouse,  printer, and serial  ports.  From the 
software  aspect,  it  directs the memory  management, 
execution, and scheduling of the application.  The 
interface  itself  is  a  Windows  application. It is  written 
using some of the more than 450 function  calls which 
comprise the Windows  programming  facility. 

recommended  directory  substructure of Microsoft  C [ 141 
and Windows  Development  System [ 151. There  are  four 
subdirectories,  BIN,  INCLUDE,  LIB, and WINDOWS, 
within the root  directory,  along with the expected 
contents.  The LIB and INCLUDE  directories  each have 
an additional  subdirectory,  APP, which  holds 
application-specific  library and “include”  code.  In our 
case, other  application-specific  code and data are  stored 
in the METAPOOL,  WINUTIL,  DIFF, and DIFFCOM 
directories. 

independent  as possible.  Code  judged to be completely 
application-independent is  placed  in the subdirectory 
WINUTIL and managed as a  library.  Application-specific 
code  is  divided into two  main  file  sets,  DIFFCOMM and 
DIFF.  DIFFCOMM  contains the host communications, 
as well as  the  staging  code  for the workstation  metafile 
cache. A goal is to make  this  code  increasingly 
independent  of the specific details of the diffusion  model, 
so that it can  eventually be shared by different  models,  all 
of which use, however, the same  host/workstation staging 
strategy.  The  second  application  code,  DIFF,  contains 
code and data files  specific to the diffusion  model  itself. 
The DIFF and DIFFCOMM  programs  define and use 
two additional data resources, one for the support of the 
Data  Entry  Dialog  (DEDialog)  facility  (described  below) 
and a second for “Help” text.  The  METAPOOL 
directory  contains the metafile  cache on the workstation. 

The  WINUTIL  library  is  composed of a  DEDialog  file 
interface and metafile interpreter modules. The normal 
Windows  development  procedure  involves  writing  a 
separate  message-handling  “window  procedure”  for  each 
screen. To simplify the development  effort, we  have built 
a  general  screen-handling  facility  which  is  data-driven 
and allows the developer to substitute  a  relatively  small 
data structure for  those  procedures in which the screens 
are mostly  for  parameter  entry. The code to support this 
is  called  “DEDialog.”  For  situations  where the function 

The  structure of Windows  is  such that, while it runs as 

P 
The user interface  for the prototype uses the 

1 

It  has  been our intent to make the code  as  application- 

b 

1 
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provided by DEDialog  is  inadequate, it is  still  possible to 
use the applicable  portion  of  it by  “piggybacking”  one’s 
own  message handler on the default  one. 

The  interface to the user  session  files (DFMs) consists 
of code  which is common to several of the sample 
Windows  programs. It involves  picking  a  file  from  a  list 
to load,  directory  navigation,  etc. A version  of this  code 
has  been  packaged  as  a  modular  unit. 

(interprets and displays the images  from) Computer 
Graphics Metafiles (CGM, an ANSI standard). The 
metafiles are created on the host  using  a  CGM  driver 
from  the  NCAR  graphics  package [9]. The host  driver 
creates  a  binary  encoded  form  of the CGM  standard.  The 
interpreter on the workstation  translates the graphic 
orders into Windows GDI calls. This  code is independent 
of the diffusion  model.  The  speed of interpretation, file 
size, and device independence of the CGM  have 
suggested this to be a  reasonable  approach to providing 
the filled contour graphs. 

general-purpose  method  for the development,  linking, 
and use of static  data.  The  tool that provides this 
capability is the resource  compiler. It makes use of static 
data of many  kinds, which  usually  include  dialog  box 
definitions,  icon  bit  maps,  menu  definitions, and ASCII 
text, at the minimum. The DIFF system uses this 
mechanism to establish  dialog  box  definitions,  icons,  bit 
map  symbols,  menu  definitions, and text. 

The  program data start out in many  small  files. The 
resource  compiler  is  called to process an ASCII  source 
resource  file  which  consists  of  lists  of  external data files, 
their resource  type, and the internal symbols by  which 
they will be identified.  The  resource  file  may  also  contain 
definitions  for  some  number of the built-in  Windows 
resources. The result  is  a  single  binary  file  which  consists 
of all of the data resources  along  with an internal 
directory.  After the normal  link-edit  step, the resource 
compiler is called  again  with  a  special  parameter  which 
causes this binary  resource  file to be appended to the 
normal .EXE  file. 

At execution  time,  library  routines will dynamically 
load and locate  these data resources on an as-needed 
basis. The  space  occupied by the resource data can be 
shared and recovered in a largely transparent manner. 
This  results in much  smaller  actual  memory 
requirements than if the same data were  statically  linked 
with the program, and much  better  performance than 
would  be  possible  if the data were  accessed from  a 
separate  disk file  every time they were  needed. 

The current state of our system  downloads and “plays” 

The Windows development system  provides  a  powerful 

User’s  view of the diffusion model  environment 
In  order to run the diffusion  model the user  must  have, 
in addition to an installed  version  of  Microsoft  Windows 
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[ 131, the two executable files DIFF.EXE and 
DIFFCOMM.EXE and a metafile  cache. The first 
execution of the program  DIFF.EXE starts the auxiliary 
program  DIFFCOMM.EXE, which runs  in parallel  with 
DIFF.EXE and handles host communications. A second 
concurrent invocation of DIFF does not start a second 
DIFFCOMM.  DIFFCOMM coordinates the use  of the 
stage  table and metafile  cache by multiple instances of 
DIFF. 

opportunity to load and save named files  of type .DFM. 
These are session “state” files and consist of one complete 
set  of  diffusion model parameters plus  some number of 
“view”  definitions of the output data for  those parameter 
values. 

A number of control files are required in order to 
execute  DIFF. The DIFFCOMM  program, when started, 
looks  for a subdirectory  called  METAPOOL in the root 
of the default  drive. If the subdirectory is not found, it is 
created.  Normally the METAPOOL  directory contains a 
cache  of one metafile  (default  view) of a data cube 
generated  previously by the diffusion  model. This 
directory contains two  special  files,  DIFF.SYS and 
METAPOOL.TAB,  as  well as a large number of contour 
metafiles  from the host,  recognizable by the extension 
.MTB. The DIFF.SYS file contains communications 
parameters specific to the user and installation. The 
METAPOOL.TAB  file  is a directory of the currently 
downloaded  metafiles and their parameter sets. 

During the execution of DIFF, the user has the 

e Integration of user interface and visualization 
The Windows-created  main  user  interface  screen  for the 
diffusion  model application is  shown in Figure 3. On the 
right is a default contour display of a section of the data 
cube. The current hour and viewing plane number are 
displayed in the data areas in the lower  left portion of the 
screen. The viewing orientation is shown by the filled 
circle (“radio button”) and the icon directly  above. The 
list  box  window  below the Insert and Delete  push buttons 
can be  scrolled, and contains the names of contour views 
currently being  displayed. The push buttons are for 
adding to or deleting  from the list  displayed in the 
window. A user can store views  as a group and redisplay 
these  instances at a later session. At the top of the screen 
are the labels  for additional pull-down menus. The state 
of the connection to the host is shown by the icon and 
message in the top right corner of the screen. At this 
time, the host is disconnected  from the workstation. The 
icon of the diskette at the bottom of the screen  represents 
Windows  DOS  Executive. The location of the mouse is 
represented by the arrow icon. 

To activate the DOS  Executive application, the push or 
radio buttons and the pull-down menus, or to enter data, 
the mouse (icon) must be placed on the appropriate area 
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of the screen and one  or more buttons pressed. For 
example, the data entry areas are activated by placing the 
mouse  icon in the data area and clicking the mouse 
button. Data can now  be written into the area. The data 
are verified  for  type,  magnitude, and form.  When 
incompatible data are found, a message appears on the 
screen  showing the acceptable  type, form, and maximum 
and minimum values permitted. 

Figure 4 shows the screen obtained when the File  pull- 
down menu is  selected and the Open item is  chosen. The 
window on the left can be  scrolled, and contains the file 
names which  were  previously  saved  with  different 
instances of the output from the diffusion  model. The 
Open and Cancel  push buttons are for opening or 
canceling the selected  file. The file  is  selected  by  placing 
the mouse on the file name and clicking the mouse 
button. The file name is displayed in the File name data 
area. A double mouse  click  results in the contents of the 
file  being  displayed on the screen, as shown in Figure 5. 
In this case, the HIDIFFXZ file  was  chosen; it contains 
six  metafiles. These views are in the X2 orientation of  six 
different  planes (4, 6, 8, 10, 12, 14). 

selectable  items.  Collect Item arranges the metafiles, as 
shown in Figure 6. Color Palette permits changes to the 
contour or color relationship of the view selected. 
Selection of Text On causes the metafile interpreter to 
paint textual information with the contour. The Scale On 
selection  causes a labeled  scale to be  placed around the 
contour window.  When it is  desirable to spread the 
contour out across the entire screen, as in Figure 5 ,  the 
Tile Contours item is selected. The Common View item, 

The Option pull-down menu contains several 
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when  selected,  causes  all contour views to be zoomed or 
not zoomed at the same coordinate, by the same amount. 
The currently selected contour is  used  as the base 
coordinate. The Common Size item is similar to 
Common View, but deals  with the size  of the window in 
which the contour is  drawn. The title bar from each view 

permitting easier comparisons among views. 

Contours selection. The pull-down menu in the upper 
left comer displays the eight options available to control 
the contour views in the windows. The last three options 
were added to the standard Windows functions. The 
Scroll option permits a zoomed contour to be  moved 

mark an area in the view for  zooming. The view can be 
redrawn to its initial size  by  selecting the Restore  item. 
Comparing two  views  using the Zoom  In and Scroll 
options is  shown in Figure 8. View HIDIFFXZ-4 has 
been  zoomed and scrolled,  while  view HIDIFFXZ-6 
remains in its initial form. The remaining views have had 
their windows  closed.  Reopening the views is done by 
double clicking on the list entry in the Contour List 
window. 

Figure 9 shows the zoomed  single-contour view,  with 
the window  resized to cover a large portion of the screen. 
The zoom  icon  is  shown  above the view. The user can 
zoom on an area within the contour view  by moving the 
mouse to the desired location, pressing the mouse button, 
and moving  across the selected  area.  Releasing the button 
defines the area for  zooming, and the chosen area is 
redrawn in zoomed mode. 

Up  to this point, the manipulation of results 
concentrated on showing  views that were  saved during 
previous  work  sessions ( . D M  files)  or individual 
metafiles that were  resident in the workstation  metafile 
cache due to prior requests. In the case  where the 
requested view  is not part of the workstation  cache 
(Figure lo), the request file containing the model 
parameters is transferred to the host. The message in the 
lower  window indicates that the request was sent, and the 
metafile name is  displayed. The message in the middle 
window indicates that the window has already  been 
repainted after the initial request, or the metafile  has 
been  requested a second time because  of the time elapsed 
since the previous  request. 

There are four selections on  the pull-down menu item 
Parameters:  Physical,  Algorithmic, Geometric, and Point 
Source. The screen containing the physical parameters is 
shown in Figure 11. The user  is  also  presented  with 
acceptable  ranges and units for his input. In addition to 
the input fields and radio buttons, push buttons labeled 
Ok,  Cancel, and Info are present.  When the user has 
completed  his  choices, the Ok button is selected, and if 

I can be removed by selecting Contour Titles,  thereby 

Figure 7 shows  six contour views  using the Tile 

I within a window. The Zoom In option allows the user to 
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/ Contours requested from host. 

Physical parameters window for the diffusion  model 

the input values are within the acceptable  range, the user 
is returned to the main screen.  When the inputs are 
outside the specified  range or  an incorrect type  is entered, 
a window containing a message to  that effect appears,  as 
shown in Figure 12. The window  also contains a push 
button for canceling the  input and returning to  the 
currently active  screen  with the input reset to its previous 
value. 

Two  types of help are available  for the user. The first 
type  describes  how to navigate through the various 
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Invalid data window. 

Selection of “Info” displays a poster window. 

windows and how to initiate actions using the mouse or 
keyboard. A second  category  of  help  is  associated  with 
the mathematical and physical approximations used in 
developing the diffusion  model. This second  type of help 
is  called  poster  windows.  Figure 13 has  a  poster  window 
overlying the physical parameter window.  Each input 
field or button on a  window  has  associated  with it a 
poster  window. The user  first points to the field in 
question, then presses the Info button, and the poster 
window  is  displayed. In addition, each parameter screen 

152 has an additional poster  window  which  describes, in 

general terms, the function performed by each parameter 
window.  These  poster  windows are activated by placing 
the mouse on the upper left-hand comer of the currently 
active  window and selecting  Info. The poster  windows 
can be  created or modified during execution of the 
application. The next  linkage of the application code 
results in the new text  being incorporated. In the case of 
the diffusion  model, the accompanying  technical 
reference manual [7] was decomposed into its 
components and made into poster  windows. The 
prototype code contains a  detailed  discussion of that 
procedure. 

A  second parameter window containing both data 
input areas and a  list  box  is  displayed in Figure 14. The 
Point Sources  window permits the user, through the list 
box, to enter or delete the name of a pollutant source and 
some character information about the source. This is 
accomplished by  using the Insert and Delete  push 
buttons above the list box. The data entry areas are 
similar to those on other screens. 

After the user  has made all  his  changes to parameter 
screens, the updated views are requested by  selecting the 
Refresh Contours option on the main window. The local 
cache  is  searched  for  matches; if any are not found, 
requests are sent to  the host. 

The final pair of screens  shown in Figures 15 and 16 
concern communications between the workstation and 
host.  These are accessed  by  selecting the Help  pull-down 
menu on the main screen. There are four selections on 
that menu; Help, About, Install, and Manual. The Help 
menu provides  a  general  overview of the diffusion model 
designed  for the application specialist.  It reviews the 
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mathematical and physical theory and approximations 
made in developing the model. The Install menu item 
causes the User Profile  window to be  displayed,  as in 
Figure 15. It shows the communication parameters. The 
significant area is that for the Communication modes. 
The default is the push button for Automatic, which 
shields the user from the underlying staging.  Figure 16 
displays a portion of the Manual Communications 
screen,  which permits the user to manually connect, 
disconnect, and query the input queue on  the network 
machine. In the figure, the Query has been  selected and is 
displayed as a separate window. The queue has two 
metafiles  (.MTB)  which  have  been sent from the host in 
response to requests initiated at  the workstation. It also 
contains one file not related to the diffusion model 
application. The DIFFCOM code ignores the unrelated 
file, reads the .MTB files, and updates the corresponding 
contour windows at  the workstation. In the case  where 
the user  has  saved a DFM file and exited the  DIFF 
program  with a pending request, the DFM file  will either 
be read at  the next instance of a DFM request, or purged 
if another DFM has been  selected. 

Conclusions 
We have  presented a novel approach for carrying out 
NIC  using the IBM 3090 Processor and a workstation. 
The major thrust of our approach is making it easier  for 
the NIC application user to compute and display  visual 
representations of his output results. To achieve this, the 
application was structured so that  the user interface is on 
the workstation, and the application, with its associated 
visualization  of  results, is computed on  the host and 
displayed on  the workstation. Such a split of the 
application leads to the need to cache the results both on 
the host and the workstation. Caching is  necessary in 
order to achieve the traditional interactive response 
associated  with  using a workstation. As a result, the 
actual computations are done only on demand, i.e., when 
the result  requested  is not either in the workstation or  on 
the host  cache. The results are staged at  the workstation 
in the form of  metafiles, thus reducing file storage and 
transmission time from the host. On  the host, both data 
and metafiles are available. As a consequence of our 
system  design, the application looks to the user  like a 
completely  local application. In addition, the system 
design  is  such that  the user is shielded from the complex 
file structure and his files are managed for him on both 
the host and workstation. 

Our structuring of the application stresses the current 
trend in user  interfaces, namely that of using  graphics 
screens. The user interface has  several  levels  of  increasing 
complexity. The NIC application user is encouraged to 
begin  by  using the system at  the least  complex  level, and 
is then naturally led toward gaining familiarity with the 
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f Manual  communications window. 

most  difficult  level. He initially navigates  visually through 
previously computed results, becoming accustomed to 
views  of  existing instances of the problem. Once this base 
has been  established,  he edits existing model parameters 
resulting in execution of the NIC problem, and views 
results  based on his  previously acquired knowledge.  At 
this level,  he can make use  of  poster help screens  which 
provide detailed descriptions of the physical and 
mathematical approximations used in the model. Poster 
panels can serve as documentation for developing  papers 
written for  professional journals. The most complex  level 
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involves application performance and file management 
and need not be  used. 

We have attempted to define an environment in which 
the NIC  user  is encouraged through a careful design of 
the user interface to execute his “dusty-deck’’ application 
in the traditional host environment. Considerable host 
computation in the form of visualization is also carried 
out  on the host. The additional data storage resulting 
from the visualization is also maintained on  the host 
DASD. The rapid response of a graphic user interface is 
placed on the workstation, where it can best  be  realized. 
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