140

A numerically
intensive
computing
environment:

IBM 3090 and the
PS/2 Model 80

by R. F. Arnold
P. Halpern
G. R. Hogsett
B. T. Straka
C. Arasmith
J. McElroy

Recent advances in personal computer
workstations, such as the IBM Personal
System/2" Model 80 with its increased memory
and CPU speed, loosely coupled with a host IBM
3090° Processor, can provide considerable
computing advantages for executing and
visualizing numerically intensive computing
(NIC) applications. We have developed a'
prototype visualization environment which
demonstrates effective use of this hardware.
The user interface for the NIC application is
written using Microsoft Windows® on the PS/2’
Model 80 running DOS 3.3. The PS/2 Model 80 is
connected to a host 3090 via a PC network. The
user enters requests which are application
parameters and selects graphic views for
displaying the output resuits file. The entries are
made through user dialog screens on the

' Personal System/2 and PS/2 are registered trademarks of International Business
Machines Corporation.

%3090 is a trademark of International Business Machines Corporation.

* Windows is a trademark of Microsoft Corporation.

workstations. The user view of the system is
such that it appears that it is running on the
workstation. To achieve this transparency, file
caches are used on both the workstation and
the host. The cache on the host is in the form of
graphic metafiles and numeric data. The cache
on the workstation contains metafiles. Requests
are monitored on the workstation to determine
whether the results are in the local cache. When
they are not, a request file is transferred to the
host and checked against the host cache. The
NIC application is run only when the requested
result is not in either cache. In order to reduce
the file size, the results file is converted to a
metafile before being transferred to the
workstation.

Introduction

The traditional IBM hardware configuration used for
numerically intensive computing (NIC) consists of a
mainframe or host CPU housed in a central computer
facility often referred to as a glass house. Connected to
the mainframe are a mix of IBM terminals which support

©Copyright 1991 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

R. F. ARNOLD ET AL.

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991

text (3270) and graphic output (3279, 3179). Special
high-resolution graphics display devices (e.g., the IBM
6090 Graphics System) may also be attached. The
connection to the host for all of these devices is primarily
through coaxial cable as terminals. The user interacts
with the host-resident NIC application using input files,
The user interface is primitive, if it exists at all, and is
text-oriented. Qutput, which can be text or graphics, is
viewed from files stored on the host. The viewing of
output is based on computational demand.

This paper presents an alternative design and
implementation for a NIC system which uses a
workstation loosely connected to a host. In our system,
program editing and compiling are accomplished
traditionally. The user interface is graphically presented
on a workstation and is organized around data viewing.
Algorithmic as well as graphics-related computation is
done on the host. However, this computation is
subordinated to viewing and occurs implicitly on a
demand basis. The application is “preloaded” with
enough sample data and partial results that the user can
postpone learning how to input or edit parameters and
manage resources until familiarity with the viewing
interface is attained and its relation to the underlying
mathematics and physics of the problem is understood.
By such a judicious splitting of application and user
interface between workstation and host, an improved
NIC working environment is achieved.

o Advantages of accessing NIC through a workstation
The advent of the personal computer (PC) accompanied
by an original set of applications capable of reaching a set
of new users has caused a revolution in the mix of
software and hardware solutions available. The NIC user
has been exposed to, and in many cases has become
familiar with, PCs and PC applications such as word
processors and spreadsheet programs. Thus, in terms of
usage, the NIC user is being exposed to more responsive,
better designed, and easier-to-use application interfaces
on the workstation than was true on the 3270 terminal
family. There is also much greater application
development activity, and a larger number of
productivity aids available for workstations than for the
3270 family.

Workstation user interfaces tend to be more visually
oriented because data can be moved to the display device
at lower expense. The application-specific control
transactions have much better response times. As the
workstation technology has proceeded, large local
memory, high-resolution displays, and special graphics
functions such as zoom, pan, and scroll have made local
interpretation of data more efficient.

The NIC user working with the host through a
workstation has greater flexibility in the placement of

IBM J. RES. DEVELOP. VOL. 35 NO. 172 JANUARY/MARCH 1991

attachments, since the workstation requires a much lower
connection bandwidth than a terminal. For example, a
workstation can operate over a telephone line,
compensating for the poor bandwidth by increasing
amounts of local storage, computing power, and
memory. In the extreme case, the computation may be
run completely on the workstation for scaled-down
problems suitable for testing of model assumptions and
debugging. There also exists a large installed base of both
stand-alone and networked workstations running
applications which are unavailable on a host.

e User interface and application function levels
Structuring of applications on a workstation stresses
current user interfaces. If the user must directly confront
the multitude of files and file types along with the
synchronization problems that NIC applications generate,
he is likely to quickly abandon the effort. The application
interface described here is structured and presented in
three levels of increasing complexity. The user is
encouraged to gain familiarity with each level before
proceeding to the next. Upon starting the application, the
user has the opportunity to explore graphic output and
geometric input data of “previously run” instances of the
problem. This is perceived as data viewing and
navigation. The major portion of this for the application
we consider is a group of geometric and temporarily
organized graphic views of computed data. Our prototype
application produces contour plots of pollutant
concentrations.

The user can then explore the mathematics and physics
of the problem by modifying the model and viewing
parameter values. He can generate additional parameter
sets, or he may establish new sets of initial conditions.
After any of these changes, he can compare resuits. All of
this is possible without the user directly encountering the
file management activity being carried out on his behalf
on both host and workstation.

The underlying driving mechanism for this system is
the data-viewing facility. Computation is done only “on
demand.” But such systems, like storage hierarchies, need
tuning and guidance. The approach used to achieve this
is part of the “resource management” component of the
interface. Extensive running of the program results in
increasing amounts of disk storage allocated on its behalf
both on the host and workstation machines. Procedures
must be available to determine what is to be saved and
what should be destroyed. However, the user can wait to
learn any of this until he is thoroughly familiar with the
first two layers of function.

o System/application interface split
The user’s interface to the computer is traditionally split
into a single operating system (OS) interface and some 141

R. F. ARNOLD ET AL.

142

number of application-specific interfaces. Examples of
these OS interfaces include the VM/CMS and PC-DOS
[1] command lines as well as the many full-screen
interfaces such as Filelist and TopView [2]. The
relationship between the system interface and the
application interface can be quite straightforward. The
application typically deals with a single file of a specified
type. Its output is also a file of that same type. In the
simplest case, the application program itself consists of a
single nonmodifiable file. Most of the information in full-
screen OS interfaces is a reflection of the state of the file
system and the names, sizes, and dates of the files.
However, the more sophisticated interface programs keep
additional information, such as short command strings or
affinity information, which allow a program to be
associated with a specific file type. Additional complexity
and function occur when the system interface allows for
multitasking with user-controlled data sharing between
tasks. In fact, few applications consist of a single program
file. Even simple applications usually have one or more
small files which are used to perform various
configuration or personalization tasks when the
application is started. Unless the designer is careful, he
can make the learning of a new application quite
difficult.

Applications which involve communications between
operating systems increase the complexity by an order of
magnitude or more. The number of file types introduced
to manage function and performance is greatly expanded.
Furthermore, the simple operating-system interface with
which the user is familiar is likely to be inadequate.
“Dumb terminal” emulation programs such as
PROCOMM-PLUS" [3] or E-78 [4] allow the user to
maintain his sanity by keeping almost all his data on one
system (the remote one) and using a mostly stateless
window to interact with that system. Such a strategy is
practical, however, only when the effective screen
bandwidth required by the application is not much larger
than the bandwidth of the communications link. In this
prototype, where the interest is graphics or image output
with relatively low-bandwidth communications, this
strategy doesn’t work. We are faced with a situation in
which there may be user data in several different formats,
residing partially on one system and partially on another.
Keeping track of all this with existing system interface
tools is too difficult for the intended users of the
prototype application. Operations which become very
confusing are version management, checkpoint, and
recovery. The simple file-management strategies
associated with a text editor or a spreadsheet program are
not possible when all the files are directly exposed to the
user through the traditional file-management interfaces.

* Datastorm Technologies, Inc., 1987/1988.

R. F. ARNOLD ET AL.

Our solution is to design the prototype application to
look like a completely local application. Each instance of
the application is represented by a single file. All other
temporary or permanent files are subordinated to this
one file. All resources, local or remote, are allocated on
behalf of this file. For example, in the prototype the
diffusion model program is called “DIFFUSE.EXE.” It
expects as an argument a control file of type DFU, say
“SANJOSE.DFU.”

The approach is to define a .DFU-type file which
contains all the state information about a specific
application instance. This includes information such as
parameter sets, partial computation results, host server
path information, and auxiliary data file names both on
the workstation and on the host server. The point is to
provide, in a single file, everything necessary to initiate,
save, back up, or destroy an application instance. This
strategy results in an interface that is both easier to learn
and easier to use.

o System concept and its implementation in NIC

The system organization underneath the proposed
structure is implicit in the description of the user
interface. The several activities involved in writing and
running an application are ordered with the hope of
making the whole process easier for both the application
writer and the user. For a user of the diffusion program
(the example described later in this paper), it might be
quite natural to start out with a three-dimensional
visualization of what the pollutant concentrations might
look like. From the point of view of a computer
programmer, this would be distinctly unnatural; the
visualization, if any, comes at the end of the process, not
the beginning,.

The two main successes in user interfaces for personal
computing, WYSIWYG (“What you see is what you
get”) word processors and spreadsheets, were achieved by
disturbing the “natural” order to put the end results up
front in visual form. We intend here to pursue a similar
strategy for NIC problems.

A program which achieved a breakthrough in usability
by several techniques was VisiCalc’ [5]. Here program
editing, data entry, and output viewing are integrated
into a single geometric model. The program structuring
was greatly simplified by providing a fixed initial screen
and keyboard monitor and completely eliminating the
primary role of loop control logic. Loops perform two
crucial functions—saving memory and permitting
concise program statements. How spreadsheet programs
avoid the use of loops at the programming interface
requires a detailed explanation which is beyond the scope
of this paper. A key piece of the solution, the “copy”

3 VisiCale is a registered trademark of Personal Software, Inc. (VisiCorp.).

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991

command, moves the function done by loop control
variables into the program edit function. Using high-level
computational primitives and subordinating computation
to program editing also reduces the burden of the
program structure.

These changes from traditional organization require
the recognition that computing resources devoted to
program editing, input, output, and other “support”
functions far outweigh those required for execution of the
user’s algorithms.

For many NIC applications, the “support” functions
also greatly overshadow the MIPS (millions of
instructions per second) requirements for the algorithms.
In many NIC applications the main MIPS-consuming
item is visual output, which is the same as for
spreadsheets. Although the resource ratios of
these types of work may be similar to those for
spreadsheets, there are some important differences
that keep us from using the spreadsheet strategy
directly.

While a spreadsheet-like geometric model of input and
result data often exists, the complexity of the program at
each point is such that a procedural language rather than
just a collection of formulas is desirable for algorithm
expression. The total amount of computation for all
phases of the problem is much larger per user viewing
event, The algorithmic computation cannot be done at
edit time, and visual output computations seem too large
to be done at viewing time. However, these differences do
not make it less desirable to provide the friendly
development and execution environment of a
spreadsheet—they just make it more difficult. The
components of a solution for the NIC problem include
the use of decoupled MIP servers and exploitation of the
high-performance direct-access storage available with
them, along with the additional step of integrating the
control of graphic and image output with the early steps
of the process. Spreadsheets integrate data editing,
program editing, algorithm computation, and numerical
output viewing. Although they usually provide graphic
output, the control of this function is not integrated. In a
spreadsheet program, the user must selectively request all
visual output after the algorithmic computations are
completed. Each image is independently generated and
discarded. Little attempt is made to understand or exploit
the user’s image-reuse behavior in general. Once one
considers the integration of visual output with the
remainder of the process, it becomes obvious that the
user’s interface to visual output control should pace as
much of the entire process as possible. This is because it
is closest to the most computationally intensive portion
of the task, and it is also the point at which the greatest
intelligence exists about user intentions. Furthermore, the
user interface should be presented in a manner that

IBM J. RES. DEVELOP. VOL. 35 NO. 12 JANUARY/MARCH 1991

allows for multiple instances of the application to run.
This would at least include the possibility of multiple sets
of parameters, but might also include changes in the
algorithms themselves.

When the user “manually” deals with his files using the
file management system under VM/SP® HPO [6] for
example, he is presented with an unstructured mess of
unclassified partial results and several different file types,
generally with no well-thought-out file-naming scheme.
Subordination of this detail was mentioned previously,
when we suggested collecting everything into one file as
seen from the user’s point of view. A second reason for
transparency relates to performance. It is only from a
sufficiently broad point of control that significant
computational repetition can be detected and avoided. A
principal technique in solving data-intensive performance
problems has been transparently managed staging.
Expensive data accesses are eliminated by providing for
easy reuse of data that have already been accessed. The
same idea can be applied to computation. In our work,
program editing and compiling are done traditionally.
The user interface is organized around data viewing.
Algorithmic as well as graphics-related computation is
subordinated to viewing and occurs implicitly on a
demand basis.

Representative NIC problem

The class of NIC problems which we chose to investigate
initially includes those which had previously been
developed and run in a batch or semi-batch mode. These
tended to be primarily FORTRAN programs written for
execution on a System/370’ class machine. The user
interacted with the host via a terminal (3277-3279) over
a coaxial cable. The FORTRAN module required input
and output files to be resident on the host, and the user
kept track of all the necessary files. File management was
primitive, often consisting of the user keeping notes as to
which files were being used for particular runs of the NIC
module and associating output files with parameters
used.

NIC FORTRAN problems traditionally have a number
of common characteristics. A large percentage of the
instructions in the computation kernel are floating-point.
Many computations require double-precision floating-
point as well. The NIC programs require significant input
data and produce vast amounts of output results.
However, only a small part of the output may ever be
reviewed, because the user is interested in obtaining some
specialized insight from a small segment of the output.
To obtain the desired information, the NIC computation

6 VM/SP is a trademark of International Business Machines Corporation.

’ System/370 is a trademark of International Business Machines Corporation.

R. F. ARNOLD ET AL.

143

144

Input files Input parameters Input programs

Model
parameters

Point-source
emission GENSOS
data
> Diffusion
model
o]

——

Data i
Output file

Meteorological
data

Diffusion model input/output flow.

is often executed repetitively until it reaches the state of
interest to the user. This implicitly demands that NIC
computations have access to large volumes of storage and
memory. Once the NIC application is initiated by the
user, there is little if any operating system interaction.
The output results are usually analyzed off-line via a set
of postprocessing programs, which perform the function
of presenting to the user a visualization of the output.
This usually takes the form of a graphic or pictorial
representation of the results. After this is done, only the
reviewed portion is retained, and any excess results can
be and usually are discarded.

o Atmospheric diffusion model

We have selected the atmospheric diffusion of pollutants
as our test application. The application mathematically
models the solution of the time-dependent mass-
conservation equation expressed in terms of
concentration density values and transport

variables.

Model formulation is based on numerical integration
of the concentration equation over time, for a specified
set of spatial mesh points which comprise a three-
dimensional grid. This enables the temporal and spatial
variation of meteorological variables and surface
conditions to be accounted for in the model. However,
local topographic features are not modeled.

R. F. ARNOLD ET AL.

& Diffusion model input/output

The values of concentration are obtained by numerically
solving the mass conservation equation using finite-
difference approximations. The model requires
meteorological input data, such as wind velocity, to be
supplied at each grid point of the three-dimensional
spatial grid. The meteorological values supplied can be
time-dependent, i.e., varying at each spatial grid point.
The numerical solution of the finite-difference equations
is obtained by marching in time steps of hundreds of
seconds. The concentration levels at hourly intervals are
saved to disk. This is done to permit comparisons of
computed values with hourly-averaged observed data.

The finite-difference spacing or mesh size is normally
fixed in the X (latitude), Y (longitude), and Z (vertical)
directions. The horizontal grid spacings in the X and Y
directions are normally uniform or fixed in size, and are
typically composed of 40 and 30 grid points, respectively.
The Z grid spacing can be variable and usually has 16
grid points. These values represent defaults which can be
increased or decreased as desired.

The diffusion model requires meteorological and
source emission data as input. Since the model is time-
dependent, both of these sets of data can also be
functions of time. The source data consist of point-source
data (e.g., power plants) and area-source data (e.g.,
residential sources). Our implementation considers only
point-source emissions. A most common format for the
input data is to vary the source data every hour. The
meteorological data are similarly required to vary every
hour. In addition, the meteorological parameters are
required at every grid point for every hour. The
concentration values are simulated every hour over all
the spatial grid points. Thus, the concentration data are
in the form of a cube, and one cube is produced per hour
of simulation. A typical model run would be for 24 hours
of simulation time,

As is typical of many numerically intensive
computations, the diffusion model has input in the form
of files or programs which create the input data. A
schematic representation of the input and output data
required for the diffusion model is shown in Figure 1.
The input for both meteorological and source emission
data can be either obtained from observational
information or created by executing the programs
GENMET or GENSOS. These programs, which were
written for this prototype study, simply create
hypothetical fields which are useful for sensitivity studies
of the model and for analyzing the effect of model
parameters on the computed results. A third source for
meteorological data is yet another model, which produces
meteorological data. Such a model attempts to represent
a dynamically consistent set of variables by solving the
equations of motion using numerical approximations.

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991

The output file from this model becomes the input to the
diffusion model.

Originally coded in 1974, the diffusion model [7], as
such, qualifies as a “dusty deck”—an application written
for systems no longer in common use but capable of
being run or emulated on current systems without
significant changes in the original code. It was executed
in batch mode under VM/CMS running on a
System/3608 Model 168. The model computed one data
cube for every hour of simulated time.

Each hour of concentration data was stored in
separate, sequential, formatted files. These were modified
so that any one simulation run was stored on a direct-
access unformatted file, thus reducing the number of
output files. These data files compose the results data
cache on the host.

The diffusion model currently runs on an IBM 3090
Model 300 Processor with Vector Facility {8]. The CPU
time for computing 24 cubes of data is two minutes. The
total size for these cubes is 4.7 megabytes of data.

To obtain a visual representation of the output, the
NCAR graphics package [9] is used to produce two-
dimensional contours of concentration. The graphic
representation of XY, XZ, and YZ sections through the
data cube is converted to graphic metafiles. The total
CPU time for creating metafile contour plots for 24 hours
of data is 92 minutes. The total size of the files generated
is 8.6 megabytes of data. Thus, we conclude that the
main computational and storage requirement is
generated by graphics postprocessing. There are two main
problems associated with the host implementation: The
user has a significant file-management responsibility
forced on him, and the rapid interaction with simulation
output is infeasible even on a 3090 processor because of
severe performance limitations, even if all cross sections
in a particular cube of data are not computed.

Implementation of solution

o Host and workstation system overview

Figure 2 shows the overall flow for the system. The heart
of the design is the split between the user interface and
the computational portions of the application. The user
interface code is resident on the workstation. Its primary
function is to coliect user parameters for running
instances of the application and for viewing output. The
user-entered requests are of two basic types—model
parameters and viewing parameters.

The new user initially gravitates toward varying the
viewing parameters and displaying previously computed
results. Experienced users change both model parameters
and viewing parameters. The selected output is stored on

8 System/360 is a trademark of International Business Machines Corporation.

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991

Collect user |
parameters

Display request

Matching metafile | Yes Display
on workstation contour

R T

Workstation

Send request Yes o] Check for | Noj
to host host response
:)
LAN-to-host
communications
Y :
Does contour | YeS Send metafile

exist already?

to workstation
)
$N0 T W
Previous simulation| Yes Form contour
available? metafile

lNo

Run diffusion
model simulation

Host

Overall system diagram.

either the workstation or the host, depending on whether
the particular view has been previously displayed. Output
is created and stored on the host in raw data format and
in graphic metafiles. A metafile is a standardized file for
storing and transporting graphic data and control
information in device-independent form. We chose the
computer graphic metafile format [10] to transfer from
the host to the workstation because of the device-
independent output, small file size, and speed of
interpretation. Thus there is a cache of previously
displayed metafiles on the workstation. As shown in
Figure 2, the user’s display requests are compared against
a table describing the metafiles in the workstation cache.
When a match is found, the desired contour is displayed.
When no match is found, the request file is sent to the
host. The request file contains both viewing and model
parameters. The workstation-host connection is a local
area network. The file is received at the host and read
into a disconnected VM/CMS virtual machine. Once the
file has been read by the host, its data manager (DM) is
activated. The DM checks whether the requested view
already exists. If the view is in the metafile cache, it is

R. F. ARNOLD ET AL.

145

146

sent to the workstation. The workstation meanwhile is
polling for host response in the form of a sent metafile.
When the view does not exist in metafile form, the DM
searches the data cubes. When a match is found as to
model parameters, a metafile is created with the specified
view and sent to the workstation. If no match is found,
the application (in our case the diffusion model) is
executed, and a data cube and the requested metafile are
produced and sent to the workstation.

o Host virtual machine configuration

The current host for our test application is an IBM 3090
Model 300 Processor running VM/XA’ SP1 [11]and a
guest system, VM/SP HPO 4.2 [6]. The diffusion model
and all its associate input files are resident in a virtual
machine, which also contains the data cube and metafile
caches. The virtual machine runs in disconnected mode
using the GONE EXEC program, an IBM internal-use-
only facility which permits a virtual machine to be
disconnected from VM yet have messages trapped and
written to a log file. It also provides a user exit which is
called by GONE whenever a reader file is received. The
user exit is a function called PROCFILE EXEC written
in REXX. This user exit parses the file type of the
incoming file searching for a type which indicates that it
is a workstation request file. Upon finding a file of that
type, the user exit copies the file onto a designated disk.
The request file is now ready to be used by the DM. The
DM is executed using another EXEC called RUNG6. After
RUNE6 finishes, the user exit code sends the result
metafile to the requesting workstation. The user exit then
returns to GONE, which waits for the next reader file.
The identification of the sending workstation is included
in the request file and is used in returning the result
metafile. Thus, the host server may serve several
workstations in a serial manner.

e Data manager, data cube, and metafile cache

The function of the data manager (DM) is to act as the
file manager for the two sets of data caches on the host.
The DM is written in the C language. This choice was
made because of the availability of C on both the
workstation and host, and the need to replicate a large
portion of the DM on the workstation. The diffusion
model, when requested, produces a results file which
contains concentration data for each spatial grid point as
a function of time. This is a direct-access data file that
contains not only the concentration data but the set of
model parameters which produced the data. Such files
constitute the data cube cache. One file can contain
many cubes of data, each for a different time but with the
same model parameters. The metafile cache consists of

® VM/XA is a trademark of International Business Machines Corporation.

R. F. ARNOLD ET AL.

files each containing a view of a cube that has previously
been requested by the user via the request list. The views
are themselves functions of the geometric section of a
cube, for example an XY cross section.

o Workstation-to-host communications

The communication for the prototype takes place
“behind the scenes” so that the user has the impression
that the entire application is running on the workstation.
The workstation-host communication assumes the
availability of a narrow-bandwidth communication
mechanism. A telephone line or narrow-bandwidth
network is commonly what NIC users have available to
access a remote host.

In the prototype, the request files and metafiles are sent
and received over an IBM PC Network [12]. The
workstation program uses a library of routines,
WECOMM, which were developed to interface with an
internal package, PYMCOMM, that interfaces with
NETBIOS and the PC Network adapter. The
PVMCOMM program uses the PASSTHRU facility
(PVM) and the Inter-User Communication Vehicle
(IUCV) to communicate with a disconnected CMS
virtual machine named NET2LAN. The purpose of this
disconnected machine is to forward files between any
virtual machine on the host and any PC on the PC
Network. In the case of our prototype, the request files
from one or more workstations are forwarded to a
disconnected virtual machine, NICSERYV, which runs the
diffusion model simulation. NICSERYV then receives and
processes the requests and sends the results back to the
appropriate workstation.

When a request file is sent, a timer interrupt process is
initiated on the workstation. The timer process
periodically causes the user interface to query the
network for results. Upon receipt of a metafile, the user
interface updates the local cache. The metafile is
displayed if the viewing window is still active. If the user
is currently analyzing other views, the new metafile is
placed in the cache but not displayed.

o User interface development and components
The system concepts and rationale for using a graphically
based interface have previously been discussed. We have
chosen Microsoft Windows [13] as the facility to create
the user interface on the workstation. The user interface
is a set of screens which contain text and data fields
defining the input parameters for the diffusion model.
Through these screens the user interacts with the model,
requesting model runs, results, and views of these results.
Windows is a facility which runs as a shell around
PC-DOS [1]. User interfaces written in Windows are
multitasking. The user can display and run several
Windows programs or multiple instances of the same

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991

program simultaneously. The Windows screen, because it
is a graphic interface, permits a user interface to have
both text and graphic representation. Windows programs
will run on any of the standard displays for which there is
a Windows device driver available, and such a driver is
device-independent.

The structure of Windows is such that, while it runs as
a shell around PC-DOS [1], it shares with DOS the
managing of hardware resources. It controls the display,
keyboard, mouse, printer, and serial ports. From the
software aspect, it directs the memory management,
execution, and scheduling of the application. The
interface itself is a Windows application. It is written
using some of the more than 450 function calls which
comprise the Windows programming facility.

The user interface for the prototype uses the
recommended directory substructure of Microsoft C [14]
and Windows Development System [15]. There are four
subdirectories, BIN, INCLUDE, LIB, and WINDOWS,
within the root directory, along with the expected
contents. The LIB and INCLUDE directories each have
an additional subdirectory, APP, which holds
application-specific library and “include” code. In our
case, other application-specific code and data are stored
in the METAPOOL, WINUTIL, DIFF, and DIFFCOM
directories.

It has been our intent to make the code as application-
independent as possible. Code judged to be completely
application-independent is placed in the subdirectory
WINUTIL and managed as a library. Application-specific
code is divided into two main file sets, DIFFCOMM and
DIFF. DIFFCOMM contains the host communications,
as well as the staging code for the workstation metafile
cache. A goal is to make this code increasingly
independent of the specific details of the diffusion model,
so that it can eventually be shared by different models, all
of which use, however, the same host/workstation staging
strategy. The second application code, DIFF, contains
code and data files specific to the diffusion model itself.
The DIFF and DIFFCOMM programs define and use
two additional data resources, one for the support of the
Data Entry Dialog (DEDialog) facility (described below)
and a second for “Help” text. The METAPOOL
directory contains the metafile cache on the workstation.

The WINUTIL library is composed of a DEDialog fiie
interface and metafile interpreter modules. The normal
Windows development procedure involves writing a
separate message-handling “window procedure” for each
screen. To simplify the development effort, we have built
a general screen-handling facility which is data-driven
and allows the developer to substitute a relatively small
data structure for those procedures in which the screens
are mostly for parameter entry. The code to support this
is called “DEDialog.” For situations where the function

IBM J. RES. DEVELOP. VOL. 35 NO. 12 JANUARY/MARCH 1991

provided by DEDialog is inadequate, it is still possible to
use the applicable portion of it by “piggybacking” one’s
own message handler on the default one.

The interface to the user session files (DFMs) consists
of code which is common to several of the sample
Windows programs. It involves picking a file from a list
to load, directory navigation, etc. A version of this code
has been packaged as a modular unit.

The current state of our system downloads and “plays”
(interprets and displays the images from) Computer
Graphics Metafiles (CGM, an ANSI standard). The
metafiles are created on the host using a CGM driver
from the NCAR graphics package [9]. The host driver
creates a binary encoded form of the CGM standard. The
interpreter on the workstation translates the graphic
orders into Windows GDI calls. This code is independent
of the diffusion model. The speed of interpretation, file
size, and device independence of the CGM have
suggested this to be a reasonable approach to providing
the filled contour graphs.

The Windows development system provides a powerful
general-purpose method for the development, linking,
and use of static data. The tool that provides this
capability is the resource compiler. It makes use of static
data of many kinds, which usually include dialog box
definitions, icon bit maps, menu definitions, and ASCII
text, at the minimum. The DIFF system uses this
mechanism to establish dialog box definitions, icons, bit
map symbols, menu definitions, and text.

The program data start out in many small files. The
resource compiler is called to process an ASCII source
resource file which consists of lists of external data files,
their resource type, and the internal symbols by which
they will be identified. The resource file may also contain
definitions for some number of the built-in Windows
resources. The result is a single binary file which consists
of all of the data resources along with an internal
directory. After the normal link-edit step, the resource
compiler is called again with a special parameter which
causes this binary resource file to be appended to the
normal .EXE file.

At execution time, library routines will dynamically
load and locate these data resources on an as-needed
basis. The space occupied by the resource data can be
shared and recovered in a largely transparent manner.
This results in much smaller actual memory
requirements than if the same data were statically linked
with the program, and much better performance than
would be possible if the data were accessed from a
separate disk file every time they were needed.

o User’s view of the diffusion model environment
In order to run the diffusion model the user must have,
in addition to an installed version of Microsoft Windows

R. F. ARNOLD ET AL.

147

148

Contour:List

File name T
D:\MINAPPAHASHY

saved

FENZ

i Contours displayed from a sclected session file.

|

IBM J. RES. DEVELOP. VOL. 35 NO. 12 JANUARY/MARCH 1991

R. F. ARNOLD ET AL.

[13], the two executable files DIFF.EXE and
DIFFCOMM.EXE and a metafile cache. The first
execution of the program DIFF.EXE starts the auxiliary
program DIFFCOMM.EXE, which runs in parallel with
DIFF.EXE and handles host communications. A second
concurrent invocation of DIFF does not start a second
DIFFCOMM. DIFFCOMM coordinates the use of the
stage table and metafile cache by multiple instances of
DIFF.

During the execution of DIFF, the user has the
opportunity to load and save named files of type .DFM.
These are session “state” files and consist of one complete
set of diffusion model parameters plus some number of
“view” definitions of the output data for those parameter
values.

A number of control files are required in order to
execute DIFF. The DIFFCOMM program, when started,
looks for a subdirectory called METAPOOL in the root
of the default drive. If the subdirectory is not found, it is
created. Normally the METAPOOL directory contains a
cache of one metafile (default view) of a data cube
generated previously by the diffusion model. This
directory contains two special files, DIFF.SYS and
METAPQOL.TAB, as well as a large number of contour
metafiles from the host, recognizable by the extension
.MTB. The DIFF.SYS file contains communications
parameters specific to the user and installation. The
METAPOOL.TAB file is a directory of the currently
downloaded metafiles and their parameter sets.

o Integration of user interface and visualization
The Windows-created main user interface screen for the
diffusion model application is shown in Figure 3. On the
right is a default contour display of a section of the data
cube. The current hour and viewing plane number are
displayed in the data areas in the lower left portion of the
screen. The viewing orientation is shown by the filled
circle (“radio button™) and the icon directly above. The
list box window below the Insert and Delete push buttons
can be scrolled, and contains the names of contour views
currently being displayed. The push buttons are for
adding to or deleting from the list displayed in the
window. A user can store views as a group and redisplay
these instances at a later session. At the top of the screen
are the labels for additional pull-down menus. The state
of the connection to the host is shown by the icon and
message in the top right corner of the screen. At this
time, the host is disconnected from the workstation. The
icon of the diskette at the bottom of the screen represents
Windows DOS Executive. The location of the mouse is
represented by the arrow icon.

To activate the DOS Executive application, the push or
radio buttons and the pull-down menus, or to enter data,
the mouse (icon) must be placed on the appropriate area

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991

Deftunyon

Contour-List

. (Tosert) (Deletd

Drientation ONW@NZ OV B

Hour U=y [T
Plane Couasey [T

Collected contour windows.

of the screen and one or more buttons pressed. For
example, the data entry areas are activated by placing the
mouse icon in the data area and clicking the mouse
button. Data can now be written into the area. The data
are verified for type, magnitude, and form. When
incompatible data are found, a message appears on the
screen showing the acceptable type, form, and maximum
and minimum values permitted.

Figure 4 shows the screen obtained when the File pull-
down menu is selected and the Open item is chosen. The
window on the left can be scrolled, and contains the file
names which were previously saved with different
instances of the output from the diffusion model. The
Open and Cancel push buttons are for opening or
canceling the selected file. The file is selected by placing
the mouse on the file name and clicking the mouse
button. The file name is displayed in the File name data
area. A double mouse click results in the contents of the
file being displayed on the screen, as shown in Figure 5.
In this case, the HIDIFFXZ file was chosen; it contains
six metafiles. These views are in the XZ orientation of six
different planes (4, 6, 8, 10, 12, 14).

The Option pull-down menu contains several
selectable items. Collect Item arranges the metafiles, as
shown in Figure 6. Color Palette permits changes to the
contour or color relationship of the view selected.
Selection of Text On causes the metafile interpreter to
paint textual information with the contour. The Scale On
selection causes a labeled scale to be placed around the
contour window. When it is desirable to spread the
contour out across the entire screen, as in Figure 5, the
Tile Contours item is selected. The Common View item,

R. F. ARNOLD ET AL.

149

All six contours displayed using Tile Contours menu item.

150

R. F. ARNOLD ET AL. IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991

when selected, causes all contour views to be zoomed or
not zoomed at the same coordinate, by the same amount.
The currently selected contour is used as the base
coordinate. The Common Size item is similar to
Common View, but deals with the size of the window in
which the contour is drawn. The title bar from each view
can be removed by selecting Contour Titles, thereby
permitting easier comparisons among views.

Figure 7 shows six contour views using the Tile
Contours selection. The pull-down menu in the upper
left corner displays the eight options available to control
the contour views in the windows. The last three options
were added to the standard Windows functions. The
Scroll option permits a zoomed contour to be moved
within a window. The Zoom In option allows the user to
mark an area in the view for zooming. The view can be
redrawn to its initial size by selecting the Restore item.
Comparing two views using the Zoom In and Scroll
options is shown in Figure 8. View HIDIFFXZ-4 has
been zoomed and scrolled, while view HIDIFFXZ-6
remains in its initial form. The remaining views have had
their windows closed. Reopening the views is done by
double clicking on the list entry in the Contour List
window.

Figure 9 shows the zoomed single-contour view, with
the window resized to cover a large portion of the screen.
The zoom icon is shown above the view. The user can
zoom on an area within the contour view by moving the
mouse to the desired location, pressing the mouse button,
and moving across the selected area. Releasing the button
defines the area for zooming, and the chosen area is
redrawn in zoomed mode.

Up to this point, the manipulation of results
concentrated on showing views that were saved during
previous work sessions (.DFM files) or individual
metafiles that were resident in the workstation metafile
cache due to prior requests. In the case where the
requested view is not part of the workstation cache
(Figure 10), the request file containing the model
parameters is transferred to the host. The message in the
lower window indicates that the request was sent, and the
metafile name is displayed. The message in the middle
window indicates that the window has already been
repainted after the initial request, or the metafile has
been requested a second time because of the time elapsed
since the previous request.

There are four selections on the pull-down menu item
Parameters: Physical, Algorithmic, Geometric, and Point
Source. The screen containing the physical parameters is
shown in Figure 11. The user is also presented with
acceptable ranges and units for his input. In addition to
the input fields and radio buttons, push buttons labeled
Ok, Cancel, and Info are present. When the user has
completed his choices, the Ok button is selected, and if

IBM J. RES. DEVELOP. VOL. 35 NO. /2 JANUARY/MARCH 1991

Contours requested from host.

I

Physical parameters window for the diffusion model.

the input values are within the acceptable range, the user
is returned to the main screen. When the inputs are
outside the specified range or an incorrect type is entered,
a window containing a message to that effect appears, as
shown in Figure 12. The window also contains a push
button for canceling the input and returning to the
currently active screen with the input reset to its previous
value.

Two types of help are available for the user. The first
type describes how to navigate through the various

R. F. ARNOLD ET AL.

152

Invalid data window.

Selection of *‘Info’” displays a poster window.

windows and how to initiate actions using the mouse or
keyboard. A second category of help is associated with
the mathematical and physical approximations used in
developing the diffusion model. This second type of help
is called poster windows. Figure 13 has a poster window
overlying the physical parameter window. Each input
field or button on a window has associated with it a
poster window. The user first points to the field in
question, then presses the Info button, and the poster
window is displayed. In addition, each parameter screen
has an additional poster window which describes, in

R. F. ARNOLD ET AL.

Point sources parameter window.

general terms, the function performed by each parameter
window. These poster windows are activated by placing
the mouse on the upper left-hand corner of the currently
active window and selecting Info. The poster windows
can be created or modified during execution of the
application. The next linkage of the application code
results in the new text being incorporated. In the case of
the diffusion model, the accompanying technical
reference manual [7] was decomposed into its
components and made into poster windows. The
prototype code contains a detailed discussion of that
procedure.

A second parameter window containing both data
input areas and a list box is displayed in Figure 14, The
Point Sources window permits the user, through the list
box, to enter or delete the name of a pollutant source and
some character information about the source. This is
accomplished by using the Insert and Delete push
buttons above the list box. The data entry areas are
similar to those on other screens.

After the user has made all his changes to parameter
screens, the updated views are requested by selecting the
Refresh Contours option on the main window. The local
cache is searched for matches; if any are not found,
requests are sent to the host.

The final pair of screens shown in Figures 15 and 16
concern communications between the workstation and
host. These are accessed by selecting the Help pull-down
menu on the main screen. There are four selections on
that menu; Help, About, Install, and Manual. The Help
menu provides a general overview of the diffusion model
designed for the application specialist. It reviews the

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991

mathematical and physical theory and approximations
made in developing the model. The Install menu item
causes the User Profile window to be displayed, as in
Figure 15. It shows the communication parameters. The
significant area is that for the Communication modes.
The default is the push button for Automatic, which
shields the user from the underlying staging. Figure 16
displays a portion of the Manual Communications
screen, which permits the user to manually connect,
disconnect, and query the input queue on the network
machine. In the figure, the Query has been selected and is
displayed as a separate window. The queue has two
metafiles (MTB) which have been sent from the host in
response to requests initiated at the workstation. It also
contains one file not related to the diffusion model
application. The DIFFCOM code ignores the unrelated
file, reads the .MTB files, and updates the corresponding
contour windows at the workstation. In the case where
the user has saved a DFM file and exited the DIFF
program with a pending request, the DFM file will either
be read at the next instance of a DFM request, or purged
if another DFM has been selected.

Conclusions

We have presented a novel approach for carrying out
NIC using the IBM 3090 Processor and a workstation.
The major thrust of our approach is making it easier for
the NIC application user to compute and display visual
representations of his output results. To achieve this, the
application was structured so that the user interface is on
the workstation, and the application, with its associated
visualization of results, is computed on the host and
displayed on the workstation. Such a split of the
application leads to the need to cache the results both on
the host and the workstation. Caching is necessary in
order to achieve the traditional interactive response
associated with using a workstation. As a result, the
actual computations are done only on demand, i.e., when
the result requested is not either in the workstation or on
the host cache. The results are staged at the workstation
in the form of metafiles, thus reducing file storage and
transmission time from the host. On the host, both data
and metafiles are available. As a consequence of our
system design, the application looks to the user like a
completely local application. In addition, the system
design is such that the user is shielded from the complex
file structure and his files are managed for him on both
the host and workstation.

Our structuring of the application stresses the current
trend in user interfaces, namely that of using graphics
screens. The user interface has several levels of increasing
complexity. The NIC application user is encouraged to
begin by using the system at the least complex level, and
is then naturally led toward gaining familiarity with the

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991

Communications parameter window.

Manual ‘communications window.

most difficult level. He initially navigates visually through
previously computed results, becoming accustomed to
views of existing instances of the problem. Once this base
has been established, he edits existing model parameters
resulting in execution of the NIC problem, and views
results based on his previously acquired knowledge. At
this level, he can make use of poster help screens which
provide detailed descriptions of the physical and
mathematical approximations used in the model. Poster
panels can serve as documentation for developing papers
written for professional journals. The most complex level

R. F. ARNOLD ET AL.

153

involves application performance and file management
and need not be used.

We have attempted to define an environment in which
the NIC user is encouraged through a careful design of
the user interface to execute his “dusty-deck” application
in the traditional host environment. Considerable host
computation in the form of visualization is also carried
out on the host. The additional data storage resulting
from the visualization is also maintained on the host
DASD. The rapid response of a graphic user interface is
placed on the workstation, where it can best be realized.

References and note

1. Disk Operating System Version 3.3 IBM Personal Computer
Software, 1985; IBM Product No. 5871-AAA.

2. Top View, IBM Personal Computer Software, 1984; IBM Part
No. 6024131, Feature Code 4131.

3. PROCOMM-PLUS, Datastorm Technologies, Inc., Columbia,
MO 65201, 1987/1988.

4. 1BM 3278/3279 Emulation Adaptor, 1984; IBM Part No.
53F6425, Feature No. 5050.

5. Visicalc Guide, 1982; VisiCorp, 2895 Zanker Rd., San Jose, CA
95134,

6. IBM Virtual Machine/System Product Release 4, Product
Introduction Manual, 1984; Order No. GC19-6200; available
through IBM branch offices.

7. C. C. Shir and L. J. Shieh, “A Generalized Air Pollution Model
and Its Application to the Study of SO, Distributions in the St.
Louis Metropolitan Area,” J. Appl. Meteorol. 13, No. 2, 185-
204 (1974).

8. W. Buchholz, “The IBM System/370 Vector Architecture,” IBM
Syst. J. 25, No. 1, 51-62 (1986).

9. F. Clare, L. Henderson, S. Henderson, B. Horner-Miller, J.
Humbreet, and D. Kennison, “The NCAR GKS-Compatible
Graphics System,” NCAR/TN 267-1A, Technical Note, 1986;
available from the National Center for Atmospheric Research,
Boulder, CO 80306.

10. The Computer Graphic Metafile (CGM) format is defined by the
American National Standards Institute (ANSI) in its publication
ANSI X3,122-1986; American National Standard for
Information Systems—Computer Graphics—Metafile for the
Storage and Transfer of Picture Description Information (1986).

1. Virtual Machine/Extended Architecture System Product, General
Information, 1987; Order No. GC23-0362, available through
IBM branch offices.

12. IBM PC Network Program, IBM Personal Computer Software,
1984; IBM Product No. 6361559.

13. Microsoft Windows, Software Development Kit 1.03, Microsoft
Corporation, Redmond, WA, 1987.

14. Microsoft C Compiler, Microsoft Corporation, Redmond, WA,
1986.

15. Microsoft Windows Operating Environment 1.03, Microsoft
Corporation, Redmond, WA, 1987,

f;ceivgd October 18, 1989; accepted for publication January
, 1991

154

R. F. ARNOLD ET AL.

Richard F. Amold IBM Palo Alto Scientific Center, 1530 Page
Mill Road, Palo Alto, California 94304. Dr. Arnold holds a Ph.D. in
computer science from the University of Michigan, and served on
the faculty of the Electrical Engineering Department there. He
joined the IBM Thomas J. Watson Research Center in Yorktown
Heights, New York, in 1965 after a series of temporary assignments
at IBM in Poughkeepsie, New York, and San Jose, California,
starting in 1958. He worked in the systems architecture areas in
Poughkeepsie, Yorktown Heights, and Menlo Park, California, and
was manager of storage architecture in San Jose for disk products. In
recent years Dr. Arnold has done work in experimental data
organizations at the Palo Alto Scientific Center; he is currently
working on tools for integrating traditional host applications with
current workstation technology.

Paul Halpern IBM Palo Alto Scientific Center, 1530 Page Mill
Road, Palo Alto, California 94304. Dr. Halpern has been with IBM
since 1968, and is currently a staff member in Technical Computing
Systems at the Palo Alto Scientific Center. He received his B.S.
degree from the City College of New York in 1961, an M.S. degree
from New York University in 1963, and a Ph.D. in atmospheric
science from the University of California, Davis, in 1975. He has
authored more than thirty reports and scientific publications in the
fields of numerical weather prediction, air pollution meteorology,
radiative transfer, solar energy harvesting, real-time data acquisition,
digital image processing, and graphics user interfaces. He is currently
working in the area of numerically intensive computing and
visualization. Dr. Halpern is a member of the American
Meteorology Society and the American Geophysical Union and an
Associate Editor of Environmental Sofiware.

Gerald R. Hogsett /BM Palo Alto Scientific Center, 1530 Page
Mill Road, Palo Alto, California 94304. Mr. Hogsett is a member of
the technical staff at the Palo Alto Scientific Center. He received his
B.S. in electrical engineering from Stanford University, Stanford,
California, in 1962, and was a Project Engineer at the NASA/
CalTech Jet Propulsion Laboratory, Pasadena, California, from 1962
to 1963. In 1963 he joined IBM, where his work assignments have
included the IBM Electronic Circuit Analysis Program, a joint effort
with Lockheed Aircraft Corporation in the development of
CADAM, and the IBM Electronic Circuit Analysis Program II. In
1974, Mr. Hogsett joined the IBM Scientific Center in Palo Alto,
and participated in a large database development project. In 1985,
he accepted a temporary assignment to the IBM Development
Laboratory in Hursley, England, where he developed the GDDM-
REXX Program Product. Returning to Palo Alto in 1987, Mr.
Hogsett joined the Visualization Systems Group of the Numerically
Intensive Computing Department of the Scientific Center. Mr.
Hogsett’s emphasis and expertise lie on both sides of application
programs (interfaces to systems and interfaces to the user), and in
system integration. He has concentrated his efforts in extending the
availability of graphics and graphics display support systems.

Barbara T. Straka IBM Palo Alto Scientific Center, 1530 Page
Mill Road, Palo Alto, California 94304. Ms. Straka is a scientific
center staff member in the Visual System group, Numerically
Intensive Computing Department, of the Palo Alto Scientific Center.
She joined IBM in 1984 to work on scientific programming
environments and graphics and is now involved in scientific and
distributed visualization and user interfaces. Ms. Straka received her
B.A. in mathematics for UCLA in 1966 and her M.S. in computer
science from American University in 1979. From 1966 to 1970 she
was an engineer/scientist at McDonnell Douglas Corporation, and
from 1970 to 1974 she was a member of the technical staff at MIT
Lincoln Laboratory. From 1974 to 1978 she was a systems analyst in
the Computer Center at Jackson State University, Jackson,
Mississippi, and from 1980 to 1984 she was an assistant professor in
the Computer Science Department at Jackson State. In the summers
of 1982 and 1983 she participated in the NASA/ASEE Faculty

IBM J. RES. DEVELOP. VOL.35 NO. 12 JANUARY/MARCH 1991

Fellowship Program at the NASA Goddard Space Flight Center in
New York. During the summer of 1984 she participated in the
Summer Institute at Lawrence Livermore National Laboratory,
University of California, Livermore. She is a member of the
Association for Computing Machinery (ACM) and the Association
for Women in Computing (AWC), and an affiliate member of the
IEEE Computer Society. She was president of the Mid-South
regional affiliate of the International Association for Computing in
Education (IACE/AEDS) from 1982 to 1984.

Connie Arasmith Lockheed Missiles & Space Co., Inc., Palo Alto,
California 94304. Ms. Arasmith held a supplemental position at the
Palo Alto Scientific Center from 1987 to 1988; since 1989 she has
been located at the Lockheed Missiles & Space Company, Inc., in
Palo Alto. She received her M.S. in computer science and
engineering from Santa Clara University, Santa Clara, California, in
1988, and her B.S. in industrial engineering and operations research
from Virginia Polytechnic Institute and State University in 1978.

J. McElroy Tredennick, Inc., 4040 Moorpark Blvd., San Jose,
California 95150. Mr. McElroy worked as a supplemental employee
at the IBM Palo Alto Scientific Center from 1986 to 1989; he now
works at Tredennick, Inc., San Jose. He received his B.S. in
computer engineering from San Jose State University in 1989.

IBM J. RES. DEVELOP. VOL. 35 NO. 112 JANUARY/MARCH 1991

R. F. ARNOLD ET AL.

155

