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One of the most challenging  problems in fluid 
dynamics is understanding  the  properties  of 
turbulent  flows. The  advent  of  large 
supercomputers  permits  the  investigation  of 
turbulence  with  great  accuracy in two 
dimensions, but full three-dimensional  problems 
are  physically  more  complex  and  their  study is 
currently limited to  the  case  of  simple  flows. It  is 
shown  that  the  availability of a  continuous  time- 
dependent  representation of the  dynamics of 
fluid flows  can  quickly lead to more  complete 
understanding of the  many  concurrent  physical 
mechanisms ruling turbulence. Some significant 
examples  show  how  an  analog  videotape, 
obtained  from direct computer  simulations of 
fluid flows,  suggests  physical results that  can 
later be obtained  through  a  mathematical 
analysis of the  numerical  simulations. 

Introduction 
The word turbu lence generz dly indicates the chaotic 
behavior of a fluid. Far from  being an exceptional 
phenomenon, turbulent flows rule the behavior of many 
fluids occurring in nature. It can easily  be  observed that 
fluids  frequently tend to behave  chaotically rather than 
regularly; the air flowing around a moving car and that 
moving  past a flying airplane are two examples of  very 
turbulent flows. It is  worthwhile to note that many 
phenomena occurring in geophysics,  astrophysics, and 
plasma  physics are completely dominated by more or less 
turbulent flows.  An example is given by the motion of 
the atmosphere, which  is  very turbulent over  scales 
ranging from many thousands of  kilometers  down to 
millimeters.  Consequently, the problems connected to 
weather  forecasts are among the most important 
unresolved  issues  from  both the scientific and the 
computing points of  view. Indeed, given a hypothetical, 
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infinitely powerful computer,  one of the  open questions 
in meteorology is the feasibility of reliable and long-time- 
range weather forecasts. 

The  equation of motion of a fluid is  the well-known 
Navier-Stokes equation, first written  approximately a 
century ago. This  equation derives from  the principle of 
conservation of momentum  and includes the viscous 
terms describing the conversion of mechanical energy 
into heat. In  the general case, this  equation is 

- + (fi . V)n = -- + q A 2  d o  V P  
d t  P 

where ic is the velocity field, p is  the pressure, p is the 
density, q and { are  the viscosity coefficients, and  the 
differential operators  are defined according to standard 
notation [I]. In  addition to Equation (l), the mass- 
conservation equation  and  an energy-transfer equation 
are  required in  order  to have a complete system of partial 
differential equations with five scalar equations for the 
five unknown fluid dynamic fields a, p, and p. 

Although (1) is the  equation  to be used in the general 
case, in  the following we concentrate  on  the simple case 
for which the density p is constant, so that only one 
equation  in addition to  Equation (1) is needed to 
complete the system. The required equation  is  the  one 
for conservation of mass, which here  simply reduces to 

Consequently, (1) simplifies to 
. li = 0 so that  no energy-transfer equation is needed. 

where u = q /p  is the  kinematic viscosity (hereafter 
referred to simply  as viscosity). A further simplification 
can be obtained by substituting the vector  identity 

in ( 2 )  and taking the  curl of the equation: 

dW - + (ii . 8) ;  = (W . 7)ii + uAW + forcing, 
d t  (4) 

where W = curl ic = 0 X z2 is the vorticity vector. 
Equation (4) turns  out  to be  particularly useful because it 
contains only  kinetic fields; moreover, the nonlinear term 
has been usefully split into two parts: The left-hand  side 
describes the advection of vorticity due to the velocity 
field, while the right-hand side describes the well-known 
phenomenon of vortex stretching [ 2 ] ,  typical of the three- 
dimensional case and  not  occumng  in two  dimensions, 
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In spite of their apparent simplicity, the  nonlinear 
terms  contained in the  equations of motion of a fluid are 
a very challenging issue for  both mathematicians  and 
physicists. Despite all the above simplifications, analytical 
solutions of these equations  are known  only when the 
flow is regular (i.e., when the velocities do not vary 
rapidly inside the flow domain)  and  for very simple 
boundary conditions:  These  solutions always represent a 
fluid smoothly flowing around obstacles or inside a 
container.  When the velocity field is no longer smooth, 
the fluid may begin to flow in a very complex and often 
unpredictable way, depending on  the  time  and length 
scales of interest. There  are  many ways this can  happen, 
but  the investigation of this important  and complex 
phenomenon, called transition to turbulence (see, e.g., 
[ 3]), is beyond the scope of this  paper and is not analyzed 
further. 

Well beyond the  point where transition to turbulence 
takes place, one observes extremely rapid flow variations 
in  both space and time:  This  kind of flow is called 
developed turbulence. The generally accepted belief  is 
that,  in  the limit of very highly turbulent flows, the 
behavior of the fluid is ruled by general statistical laws 
whose investigation and comprehension is a very 
important fluid dynamics  problem. Any attempt  to 
derive such laws must  take into  account some statistical 
description of the problem  as A. N. Kolmogorov  did in 
the first successful and, so far, substantially unsurpassed 
work on three-dimensional  turbulence (41. 

The basic assumption of Kolmogorov’s theory is that, 
in a turbulent flow, there is an  approximate equilibrium 
of energy transfer from large to small scales. More 
precisely, this statistical theory states that energy is 
injected on a large scale by some external force, and is 
transferred  through nonlinear instabilities to smaller and 
smaller scales in a continuous fashion until a minimum 
scale (the dissipation scale) is reached, where the flow 
becomes smooth  and viscosity converts the kinetic energy 
into  thermal energy. In particular, the theory  assumes 
that  the  nonlinear  term is active on all scales except the 
smallest ones and is responsible for the transfer (or 
cascade) of energy from large to small scales, while the 
dissipative operator U A  is always negligible except on  the 
smallest scales, where it dominates. Among the  most 
successful results of the theory  are the semi-quantitative 
estimates of the energy spectrum E(k )  - k-5’3 and of 
other  measurable  quantities,  as a function of the 
Reynolds number  and energy injection scale only.’  These 
theoretical  results are  in good agreement with 
experimental data for the three-dimensional case, while 
in  the simpler  two-dimensional case new phenomena 

flow Re = LC//”, where L, (i are respectively the characteristic  length  and the 
’ The Reynolds number is the nondimensional quantity defining an incompressible 
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tend to appear in the flow, as we shall see in the next 
section. 

refine  Kolmogorov’s  description by adding new  physics 
to the original  theory  (e.g.,  multifractals, as in [5] and 
references therein). Although  these new features do not 
substantially  change the original  Kolmogorov  scenario, 
they  refine  remarkably the agreement  with experimental 
data in three dimensions [6]. 

In  Section 2 we present  some  relevant  results obtained 
from a pair  of  high-resolution numerical simulations of 
two-dimensional turbulence, for the first time with the 
aid of an analog  videotape  recording; the same tool  is 
used in Section 3 to show  how animation can enrich 
present-day comprehension of simple three-dimensional 
flows. Section 4 describes the details of the techniques 
used to produce the visualization of our computations. 

In the course of time many authors have attempted to 

2. Two-dimensional  decaying  turbulence 
It  might  seem that any study of two-dimensional flow 
would  be of academic  interest  only,  since in nature all 
fluids are fully  three-dimensional. On the contrary, many 
flows  show properties that can be  well approximated by a 
two-dimensional approach. Among  these we find the 
remarkable  example of the earth’s atmosphere when this 
is studied over a large  range  of  scales,  from the planetary 
scale  down to scales  of a few hundred kilometers; another 
interesting  example  is the flow  of fusion  plasmas in 
Tokamak machines, whose two-dimensional nonlinear 
behavior  has  been  successfully simulated in recent 
numerical experiments [7]. 

In  two  dimensions, the equation of motion (2) holds 
unchanged,  while Equation (4) is  substantially  simplified 
because the vorticity  vector G is always perpendicular to 
the flow plane and can be described by a simple scalar w :  

- + (a . V ) W  = v A w  + forcing. aw 
at ( 5 )  

One sees that the main physical content of this equation 
is the advection of vorticity by the velocity  field; it 
follows that, in a nonviscous and nonforced flow, 
vorticity is conserved  along  streamlines. We note 
incidentally that these equations do not contain the 
nonlinear vortex-stretching term contained in the right- 
hand term of Equation (4). A further simplification of 
Equation (5) comes  from the definition of the stream 
function + as 

which automatically satisfies the incompressibility 
condition (7 . z2 = 0); vorticity  is  simply obtained as 
w = A+. The general equation in two dimensions is thus 
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- + J(+,  A+) = V,AP+‘+ + forcing, 
af 

where J(a, b )  = a@,b - d,ad,b is the Jacobian. Here 
we have introduced a useful  generalization  of the 
dissipative term, called  superviscosity, that reduces to the 
standard one for p = 1 (see, e.g., [8]). One may  wonder 
whether this apparent and somewhat arbitrary change in 
the structure of the equations is likely to have an 
important influence in any study of two-dimensional 
developed turbulence. The generally  accepted  answer  is 
negative and is based on the fact that all  statistical 
theories  confine the rule of the dissipative term to the 
smallest  scales,  where  dissipation  really  takes  place  (see, 
e.g., [S-lo]). In other words, by increasingp, one can 
only  change  some details of the energy  flow  near the 
smallest  scales without altering significantly  most  of the 
remaining  large  scales.  Moreover, there is no laboratory 
measure of the functional form of dissipation  for  large 
Reynolds numbers, and the use  of the classical (or 
molecular, p = 1) form of dissipation  for  developed 
turbulence is  justified by no argument other than a 
strictly  conservative approach. On the other hand, the 
use  of superviscosity  is of great importance in numerical 
simulations, where one always  has a limited number of 
degrees  of  freedom;  indeed, as a consequence of the form 
of the differential operator, by increasing p one makes 
more room for  scales  where the important and more 
interesting nonlinear phenomena take place  (see [ 1 11, 
where p = 8 has  usefully minimized the range of  scales 
for which dissipation  occurs). 

In  two dimensions, Kolmogorov’s theory cannot be 
applied  straightforwardly. The energy  is  prevented  from 
being  dissipated  because of a well-known theorem that 
guarantees the small-scale  regularity  of the solution of the 
flow equations for  any  value of the viscosity  coefficient 
v,,. This phenomenon is the basis  for the proper 
reformulation of  Kolmogorov’s  description in two 
dimensions; this was done by Kraichnan [ 121 and 
Batchelor [ 131 in another theory hereafter  referred to as 
KB. In this theory it is  assumed that the energy 
associated with a flow domain with area A, 

E = q k f V ,  2A 

is substantially  conserved and does not flow to small 
scales  because of the previous  regularity theorem; the role 
originally  played by energy in the three-dimensional 
Kolmogorov  theory  is  here  played by a new quantity, the 
enstrophy, defined  as 

Q = - w 2  dxdy. 1 
2A 

The enstrophy is an interesting  integral quantity that 
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indicates the amount of rotational activity inside the flow; 
in fact, the enstrophy density 1/2w2 is an important local 
quantity that measures directly the local fluid spinning 
velocity. The KB theory describes the equilibrium state of 
a two-dimensional turbulent flow as a continuous 
mechanism where enstrophy is injected at large  scales, 
then flows nonlinearly toward small scales and eventually 
dissipates; this scenario turns  out to be  very similar to the 
standard Kolmogorov theory except that enstrophy now 
plays the role  originally  played by  energy in three 
dimensions. In analogy  with  Kolmogorov's theory, the 
KB theory predicts the energy spectrum that corresponds 
to the enstrophy cascade: E(k )  - k-3 (log k)-"3; this is 
approximately 

E(k )  - k-3. (10) 

The theory also allows for an inverse  energy  cascade, 
where the injected energy  is transported to large  scales,  as 
has  been  verified  by numerical experiments2 

The possibility of testing the KB theory has intrigued 
scientists  for  years, from the experimental as well as the 
numerical point of  view  (see,  e.g., [8-11, 14, 151. Since 
present-day supercomputers can treat two-dimensional 
flows  with  great  accuracy (up  to 1024 x 1024 in [lo]), 
we present some physical results obtained from two 
numerical experiments of  decaying turbulence, with the 
remarkable help of a color videotape animation. 

Although no forced experiments are presented (these 
can be found elsewhere [ 1 l]), we think that this 
limitation is not severe,  since  decaying experiments do 
show some of the peculiar features of two-dimensional 
turbulence that make it so different from three- 
dimensional turbulence. All our experiments aim at 
comprehension of the dynamics of turbulence, and we 
have  confined the flow domain to a simple, doubly 
periodic square with  side 27r and a numerical resolution 
of 5 12 X 5 12.  All the experiments use the pseudospectral 
technique to fully exploit the available  degrees  of 
freedom [ 161. The field  is  evolved in time using the so- 
called  wave-space, and  the nonlinear terms are computed 
using  fast Fourier transforms ( F I T S ) .  In principle, this 
method may show the well-known  aliasing errors, 
although these errors are  not expected to have a 
significant  influence on any flows  with a steep spectrum. 
However,  severe  aliasing errors appear when the 
spectrum flattens, as is  observed in many simulations; for 
this reason, in all our simulations we make use  of  well- 
known  de-aliasing procedures [ 171. Time marching is 
performed by using a leapfrog  scheme, combined with a 
Euler predictor-corrector scheme at regular  intervals. All 
computations were performed using double precision, but 
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we have  observed that single  precision can safely  be  used 
during the late stages  of the numerical experiments to 
speed up  the computation. 

The numerical parameters of the models are initial 
energy E = 0.5, superviscosity  with p = 2, and 
u2 = 2 X Wave numbers are normalized according 
to KJ = 27r/X J,  J = 0, 1,  2, . . . , 5 12. The time step is 
At = 6.25 X and a total of 64 000 time steps  have 
been  performed to reach time T = 40. The 
computer code comprises only two-dimensional FFTs 
[ 181 and double DO-loops, so that the entire code can 
easily  be  vectorized over inner loops and parallelized  over 
outer loops. The computations were performed on an 
IBM 30903/600 Vector Multiprocessor using both 
MTF (MultiTasking Facility [ 191) under MVS/XA3 and 
PF (Parallel FORTRAN [20]) under MVS/XA or 
VM/XA3-SP2. The video  recording equipment used an 
IBM AT3 Personal Computer as a VM/CMS terminal to 
run  the numerical experiment and simultaneously 
download each image onto a random-access laser 
videodisk  recorder; no intermediate storage of  images 
was  used,  because this would  have required a 
prohibitive amount of mass storage  (see Section 4 for a 
detailed description of the visualization techniques 
used. 

An experiment with a self-similar spectrum 
In this first simulation we start from the spectrum 

E(k )  - k[l + (k/k,)Y"]-l, (1  1) 

where k, is a reference  wavelength. This is approximately 
a KB spectrum E(k )  - k-3 for our choice of y = 3 and 
k, = 6;  wave components with a given  wavelength are 
generated  as  complex numbers with random phases and 
modulus obtained from a Gaussian random generator 
having  zero mean and variance obtained from (1 1). As 
already indicated, superviscosity is used,  with p = 2 and 
u2 = 2 X Similar experiments have  been reported in 
[9, 15,211. 

Figures l(a)-(f) show the most  significant  vorticity 
frames of the numerical evolution, and  the corresponding 
videotape animation clearly indicates the many 
concurrent physical mechanisms that take place. In 
particular, one observes that  the initial randomness is 
rapidly  lost, probably due to the observed intense 
enstrophy dissipation of the initial phase. Concurrently, 
some of the initial small-scale  vorticity  peaks  organize 
themselves into more and more regular structures that 
interact strongly  [Figure l(b), t = 51. With time, the size 
of the structures tends to increase, due to  an 
amalgamation process, up to a point where more or less 

' 3090, MVS/XA, and VM/XA are  trademarks, and AT is a registered  trademark, of 
lntemational Busineu Machines Corporation. 
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Decaying turbulence simulation of a Kraichnan-Batchelor initial spectrum. Instantaneous vorticity fields at times t = 0 (a). t = 5 (b). 
t = IO (c), t = 20 (d), t = 30 (e), and t = 40 (f). Blue and  red indicate clockwise and counterclockwise rotation. respectively. The  color 
table is designed to enhance low-vorticity features significantly, as discussed in detail in  Section 4: the maximom ahsolute wlue of vorticity 
is Iwl - 20. Starting from highly random initial conditions, the system forms vortices whose size increases with time.  The entire evolution 
shows several vortex collisions that usually lead to the merging of the two vorticcs if the encounter is close enough and the vortices have the 
same sign. The simulation is performed using a de-aliased pseudospcctral technique on a S I 2  X S I 2  grid of collocation points: supervis- 
cosity is used, with p = 2 and v z  = 2 X IO" as in Equation (7). 

. ..~. " . . . "" .. 

isolated structures, hereafter named vortices, appear 
increasingly  well  separated  from the rest  of the fluid, 
which is more chaotic and of  low absolute vorticity 
[Figures l(b)  and l(c), I =  5 and IO]. The process that 
most  evidently  leads to the increase in vortex  size is 
merging; this occurs  when  two  vortices  having the same 
sign approach each other closely enough to eventually 
combine into a  single  vortex. This phenomenon, shown 
in detail in Figure 2 for  a  large  vortex,  has  been studied 
theoretically in [22] (and references therein) and appears 
to be a  nearly  nondissipative  process. More generally, 
these  vortices appear to behave  like  a set of  charged 
particles,  as in electrostatics, but with an opposite 
interaction sign;  vortices  with the same sign attract each 
other, and eventually merge  if  they  collide. In the case  of 
collision of vortices  with  different signs, a temporary 
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dipolar structure (see Figure 3), well-known  as  a modon 
(see,  e.g.,  [2] and [23]),  may  form;  its  lifetime  is  generally 
short due  to the strong disrupting interference of the rest 
of the vortices. 

The phenomenon of  merging is dominant during the 
first  stages  of this decaying-turbulence experiment. With 
time, one sees that larger and larger  vortices  form by 
merging, at the expense of smaller ones [Figures l(c)-(f)], 
while  a  large fraction of  small-scale  vortices  survives 
because  of the increase in interparticle distance and the 
corresponding  increase in collision  mean  free time. The 
final  phases  of the simulation are characterized by a 
hierarchy of vortices: the smaller the vortex  size, the 
larger the corresponding number of vortices  [see  Figures 
I(e) and l(f)J. We note that all  vortices  have  roughly the 
same maximum vorticity  (same  color intensity) in spite 
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Detailed description of a merging event. Enlargement of Figure I(e) showing a pair of blue (clockwise) rotating vortices, immediately after 
the beginning of the collision. In (a) ( t  = 30) the vortices rotate in a low-vorticity background having a rough spiral pattern, and the circular I shape of the vortices already appears  elongated because of their mutual interaction. In (b) ( t  = 31) the vortices are  close to merging. 
In (c) ( t  = 32) merging has already occurred, and the newly formed vortex spins rapidly in an extended background; this is partly formed by 
the debris of the merging process and is dominated by filamentary components which will dissipate in a few time units (see Figure 7). 

Temporary modon. Around time t = 16, a close collision of two 
vortices  having  different  signs  gives  rise to the  formation of a 
dipolar  structure, or modon (see,  e.g., [2] and [8]). Isolated 
modons  may be shown  to be stable,  but  their  survival  in  a 
complex environment is closely related to the disrupting influence 
of  the  rest  of  the  field.  The  enlargement  shows  a  somewhat 
asymmetric and distorted modon which will decouple in few time 
units.  Among  the  many  temporary  modons  which  are  formed 
during the simulation, some may survive for many time units, as is 
shown in Figure 4. 
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of their very different sizes; in other words,  all  vortices 
rotate with  nearly the same angular velocity. 

During the last  phases of the experiment, one sees that 
the fluid can be  described more and more accurately  as a 
pair of different  systems. The first comprises  only the 
vortices and appears to behave rather regularly; the 
second,  comprising the rest  of the fluid,  shows a much 
more chaotic behavior and can be  effectively imagined as 
a separated  fluid  driven by the same  vortices. We discuss 
later some other results connected to this clear 
decoupling of the flow. 

Since the number of merging events tends to decrease 
at the end of the simulation, it is interesting to undertake 
a careful study of the trajectories of the isolated  vortices. 
Figure 4 indicates how, during this quiet phase,  all 
vortices  move rather smoothly over  very  long time scales 
(comparable to a crossing time, i.e., the time that a 
vortex  takes to cross the flow domain). It is  also 
interesting to simulate these  trajectories  with an inviscid 
Hamiltonian describing a few interacting point vortices 
to find a remarkable correspondence of the trajectories 
(see [ 151 for  details  of  such a comparison). 

The phenomenon of the smoothness of vortex 
trajectories,  shown in Figure 4, is a remarkable one 
because it shows  how the most important degrees  of 
freedom  of this turbulent flow, namely the vortices,  have 
a rather predictable motion over time scales  of many 
units. This result  is  strengthened by comparison with the 
time scales connected to the background  fluid 
component. These turn  out  to be much smaller, by more 
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than an order of magnitude, as is  shown in the more 
detailed  analysis found in [ 151. This statement is further 
strengthened by comparison with another small time 
scale, the vortex spinning time: Tspin = 27r/w,,, - 0.15. 
An important result  concerning the dynamics regards 

the time evolution of the energy  spectra. This shows that 
the initial spectrum E ( k )  - k-3 is not stationary, but 
soon  changes  toward  spectra  which  still retain a similar 
shape but show a much larger  steepness (Figure 5). 
Whether or not these  decaying (and not forced) 
experiments can be  fully compared with the KB scenario 
is an open question that requires more numerical 
resolution and computing power. A preliminary 
indication can be found in [ 1 11, where  all  high-resolution 
forced experiments show spectra significantly  steeper 
than k”. 

-2  0 0  \, -3  

’”. -4 

- *  t 
- 101 I I 

0 1 2 

Log wave number 

Vortex motion.  The  trajectories of the  centers of the  largest 25 
vortices for the time interval 30-40. Thick and thin lines are used 
for positive and negative vortices, respectively. Circle sizes and 
segment  lengths are proportional to vortex radii and  velocities, 
respectively.  The  vortices  are  defined  phenomenologically  as 
those connected domains where 101 _< athreshold, with w~~~~~~~~~ = 4 
and vortex area 2 0.01. During the represented time interval, two 
merging events take place, and the number of vortices decreases 
correspondingly.  Note  how  vortex  trajectories  appear  to  be 
relatively smooth  over long time scales, of the  order of  at least 
some time units; this is a remarkable phenomenon for  a turbulent 
system. These times are much larger than other time scales such as 
the vortex spinning  time, Tpin - 0.15; one also observes that small 
vortices tend to move faster than large  ones.  This representation 
shows a nice feature near the left side of the domain;  a small-scale 
dipole  forms  and  lasts  for  at  least  ten  time  units,  showing 
approximately no interference  due  to the rest of the  system;  the 
videotape shows this phenomenon in great detail. 

The most important clue that characterizes the 
deviation  from the classical KB description  is  definitely 
given  by the fact that an approximate relationship 
w = a($) is found for  each  vortex in the (+, w )  plane 
(Figure 6) ,  thus indicating that all  vortices are 
approximate solutions of the stationary nonviscous  two- 
dimensional  Navier-Stokes equation (7), J($, w )  = 0. 
Because of this important property, and since  vortices 
contain the bulk of the total enstrophy, they can only 
account for a small amount of the total dissipation.  In 
fact,  since  dissipation can act  quickly  only on small 
scales,  large-scale structures such  as  vortices cannot 
dissipate  appreciably.  In other words, it happens that 
most of the total enstrophy is trapped in vortices and 
cannot flow toward  small  scales, thus inhibiting the main 
flow mechanism  which is the basis  of the KB theory  (see 
Figure 7). On the other hand, the total enstrophy  appears 
to decay in Figure 7, thus indicating that a KB enstrophy 
transfer  mechanism  really  takes  place, but only  for the 
dynamically  negligible nonvortex component of the field. 
This phenomenon is further illustrated in Figure 8, where 
one sees that the nonvortex component (reasonably 
defined  as the domain where I w I 5 wthreshold) has a sharp 
k” spectrum, as  predicted by the KB theory. All these 
remarks further support the idea that the fluid  is  really 
decoupled into two components, where the vortices play 
the leading  role and drive the background component as 
if it were a passive  scalar  field [24]. 
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Coherent structures. Scatter plot of the stream function against the 
vorticity at time t = 40. Vortices are defined as in Figure 4; the 
stream function of each vortex is corrected for the velocity of the 
corresponding vortex center according to the simple relation +' = + + uy(x - x,,) - u,(y - yo). Each line corresponds to  a single 
vortex; the plot indicates that the vortices are coherent structures, 
i.e.,  that  they  are  solutions  of  the  stationary  nonviscous  two- 
dimensional Navier-Stokes equation (7), J(+,  o) = 0. Some of 
the largest vortices show thicker lines, primarily because they are 
strongly interacting with a neighboring one having the same sign, 
and the previous correcting term should be further modified to take 
rotation into account. 

The high numerical  resolution  of the simulation 
produces a large number of  vortices,  most of them small- 
scale; Figure 9 shows  statistics for vortex  radii. The main 
result is a quasi-self-similar  statistical distribution, with 

dN - R"'98dR. 

This empirical formula is obtained from numerical 
simulation and is very probably the result  of  merging 
mechanisms. Indeed, a simple evolution equation for 
vortex populations undergoing  merging events can be 
formulated and gives  results similar to Equation ( 12) 
under very broad conditions [ 151. These statistical results 
are of great importance because they cast a definitive 
light on the disagreement  between the spectral  slopes 
given by the KB theory and those found in numerical 
experiments.  Indeed, under the reasonable assumption 
(proven in [ 151) that all  vortices  have the same 
approximate radial  profile, one can show that a self- 

(12) 

126 similar statistical distribution dN - R-"dR for the 
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vortices  implies a self-similar  energy spectrum 
E(k)  - k-', with /3 = 6 - a [ 151. The application of this 
formula to our experiment gives /3 = 4.02, in 
reasonable  agreement  with the slope  of the total spectrum 
B = 4.34 as  in Figure 10; the same  figure  suggests a 
similar conclusion from a graphical point of  view. In fact, 
the total spectrum appears to be the envelope of the 
spectra of the single  vortices,  while the background 
component is  always  negligible and does not appear to 
play any significant  role in the total energy  balance.  In 
conclusion, the steep  slope of the energy  spectrum 
emerging  from the numerical simulation appears to be a 
simple  consequence of the statistical distribution of the 
vortex radii. 

simulation is the following  one: 

A hierarchy of coherent structures or vortices  emerges 
from the random KB-like initial conditions, mainly as 
the result of coagulation  processes  such as merging. 

0 The vortices, though covering  only a small  fraction of 
the total area, are the main dynamic component of the 
system. 

0 Each  vortex  is an approximate solution of the inviscid 
stationary Navier-Stokes equation and thus cannot 
dissipate  rapidly. 

0 The spectrum evolves  through a series  of  self-similar 
and increasingly  steeper stages. 
The statistical distribution of  vortex  sizes determines 
the slope of the energy spectrum and is, in turn, 
determined by simple  evolutionary  models  for  vortex 
populations which are based on merging. 

0 During the late stages  of the dynamic evolution, the 
trajectories of the vortices are rather smooth, over 
many time units, in spite  of the many small time scales 
that can easily be found in the system. 

The final picture emerging  from the numerical 

All  of these conclusions suggest that  the relevant dynamic 
variables of the system are the vortices and that the entire 
system can be  decoupled into two main parts: I )  the 
driving  mechanism,  formed by the vortices, and 2) the 
rest  of the field, which  is  passively advected by the 
vortices and shows a nearly  classical  KB-like  behavior. 

The  influence of initial  conditions  and  the  breaking of 
scale  invariance 
An important question arising  each time one tries to 
derive  physical  results  from  numerical solutions is the 
dependency of the obtained results on the initial 
conditions. A second experiment on decaying turbulence 
is  presented  here  in order to check  such a dependency; its 
initial configuration  is obtained from (1 1)  with y = 6 and 
ko = 6; this gives a steep spectrum, approximately 
E(k)  - k-6, and the corresponding  configuration 
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largest vortices (solid line) and for the total system (dashed line). 
The  arrows indicate approximately the only two merging events a that take place during the represented time interval. Each merging 

[ gives rise to a somewhat delayed enstrophy dissipation; this is a 
result of the dissipation of the filamentary structures arising from 
merging. Between merging events, vortex enstrophy tends to be 
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1 Spectrum of the background field. Energy spectrum of the vortices 
(solid line) and of the remaining part of the field (dotted line) at 3 time r = 40.  Note how the background component (defined by 
Iwl 5 4) shows a nearly Kraichnan-Batchelor spectrum and indi- 

1 cates  a  direct  enstrophy  cascade.  This  implies  a  corresponding 1 enstrophy dissipation, in agreement with the dissipation observed 1 for  the  nonvortex  component of the  field,  as in Figure 7. The 
B spectrum of the  vortex  component  is much steeper  and  always 
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Vortex  statistics:  Integral  of  the  vortex  radius  distribution 
function. Many plots are superimposed for different times in the 
range t = 30-40. Since the better-defined vortices are the large- 
scale ones, the  integral N ( R )  - J:mar r)(R')dR' is defined  from 
right to left.  The  slope  of  the  fit is approximately a = -0.98. 
One may wonder  whether  the  indicated  fitting  interval  and  the 
corresponding slope are the proper ones. In fact, there are several 
reasons to restrict the fitting interval. First, the interval should not 
include  the  large-scale  vortices,  because  a  small  number of 
vortices implies limited statistics. Second,  a small-scale threshold 
must be used to avoid the inclusion of filamentary  structures or 
spurious  vorticity  ripples.  The  lower  radius  threshold used for 
fitting  (radius 2 0.06)  corresponds  to  the  area  threshold 
(area 2 0.01)  used  to  define  vortices  in  all  previous  figures 
(see, e.&., Figure 4).  The slope obtained by this fitting is roughly 
similar to the statistical result found in [15], where a self-similar 
distribution function is more evident and probably corresponds to  a 
system which is dynamically much more evolved. 
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4 Spectra of single vortices. Energy spectra of the 15 largest single 
I vortices (thin solid curves)  and of the total vorticity field (thick 
f solid curve). It is readily seen that the vortices are the dominant 1 dynamic component. The vortices clearly determine the power-law 
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Decaying  turbulence  simulation with a  steep initial spectrum.  Instantaneous  vorticity  fields at times t = 0 (a). t = 2 (b). t = S ( c ) .  
t = I O  (d), t = IS (e), t = 20 (f) ,  and t = 40 (g). The  color  table is as in Figurc I .  Starting  from ;I steep  spectrum E ( k )  - ". despite the 
random  phases,  only few degrees  of  frccdom  arc rcally excited, and the initial statc (a) is much more regular than i n  Figure I(a). Over 
time, the initial large-scale vorticity patches  arc  strctchcd [(b)  and (c ) l  and the resulting vorticity filaments tend to break into  small-scale 
vortices,  mainly as the result  of inviscid instabilities [ (c)  and (d)l. Eventually, ( c )  and (1') follow  approximately  the  scenario  described 
by the late evolution of the  system  shown i n  Figurc I .  All thc paramclcrs o f  the simulation,  including  superviscosity.  are the same as 
in Figure I .  

[Figure 1 l(a)] appears to be a rather regular one with they are very  different from the ones studied previously; 
well-identified and large-scale  vorticity  patches. The moreover, the use of steep initial spectra has  been 
interest for such initial conditions is intrinsic because triggered  by the appearance of some numerical 128 
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experiments [25-271, indicating that this class  of initial 
conditions really  decays into a more classical  KB-like 
spectrum. 

To study the influence of steep initial spectra more 
extensively, a very high-resolution (1024 X 1024) 
experiment [ 101 was integrated  for a very long  time.  Here 
we present a similar experiment at lower  resolution 
( 5  12 x 5 12), in order to be comparable with the previous 
one,  again  with the aid of the videotape  recording 
technique. Similarly,  superviscosity  is  used,  with p = 2 
and v = 2 X The experiment confirms the scientific 
results  indicated in [ 101, namely that a spectrum 
E ( k )  - k-3 is  really  developed, but only as a transient 
stage  before a steeper asymptotic spectrum is obtained. 
This previously unreported experiment also  shows that 
it  is not necessary to use a huge spatial resolution to 
demonstrate the scientific contents shown in [lo]. The 
numerical parameters and the total integration time are 
the same as in the previous experiment. 

Figure 1 1 shows the dynamic evolution of the system. 
As already  observed, the initial conditions of the 
experiment  exhibit  large  vorticity patches with sizes  close 
to the half-wavelength Io - r /k0 .  The dynamic evolution 
almost  immediately  shows the formation of elongated 
vorticity  sheets (as shown in [25] or [26]), mainly as the 
consequence of stretching  mechanisms; at the same time 
one  observes the formation of a full inertial range  similar 
to the one predicted by the KB theory [see Figures ll(b) 
and 121; this corresponds to a fast accumulation of  power 
at small  scales and, in turn, gives a direct enstrophy 
cascade,  again  according to the KB theory.  Successively, 
around time t = 5-10 [Figures ll(c) and ll(d)], the 
appearance of the field  begins to change, and a number 
of well-formed,  large-scale  vortices  with  size of order 1, 
appear to be embedded in a complex  background. The 
tape animation shows  how  each  large-scale  vortex can be 
traced  back to a vorticity  peak in the initial 
configuration, so that this system appears to maintain a 
remarkable  memory of the initial conditions. 

Around t = 10, Figure 1 l(d) shows that the previous 
filamentary  background now contains many small-scale 
vortices. The videotape  shows  these to be the result of 
multiple  breakings  of the vorticity  filaments or the 
outcome of complex  inviscid  instabilities. 

A global  measure of the turbulent activity of a two- 
dimensional system is considered to be the palinstrophy, 
defined  as 

P = ( O w y  dxdy = la k4E(k)  dk. (13) 2A 

Figure 13 shows the time evolution of the energy, 
enstrophy, and palinstrophy. The rapid  increase  of 
palinstrophy  clearly indicates how the evolution that 
takes  place during the first  five time units has a 
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Time  evolution of energy  spectra.  Energy  spectrum E(k)  of the 
flow at time t = 0 (thick solid line), t = 2 (dotted line), and t = 
10 (thin solid line). Note how the initial intense vortex-stretching 
activity  quickly  accumulates  power  at  small  scales. All energy 
spectra in the  range 2 C t 5 10 have  slopes  similar to the  one 
predicted by the  Kraichnan-Batchelor  theory,  but  the  corres- 
ponding  configurations  [shown  in  Figures l l ( b ) ,   l l ( c ) ,  and 
particularly 1 I(d)]  differ considerably. 

"""""" 
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Initial  increase  of  turbulent  activity.  Energy E (dotted  line), 1 enstrophy 0, (dashed  line):  and  palinstrophy  (solid  line)  as  a 

. . . . . . .  . . . . . . .  . . . . . .  

substantially  inviscid character, in agreement  with the 
observed formation of  small-scale structures. The final 
result is that the fluid  flow  is dominated by two 
populations of  vortices. The first comprises  all  large-scale 
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Non-scale-invariant  spectrum.  Energy  spectra  of  the  largest 
vortices  (thin  solid  curves)  and  of  the  time-averaged  energy 
spectrum of the  total  vorticity  field  for 25 C f I 35 (thick 
solid  curve).  Vortices  are  defined  as  in  Figure 4. Although 
vortices are still the dominant dyamic component of the system, as 
in  Figure 10, the  spectrum  is  no  longer  scale-invariant.  The 
vortices  clearly  belong  to  two  different  populations. The large- 
scale  population is a  remnant of the initial condition, while the 
small-scale one forms  during  the repeated fragmentations of the 
many vorticity filaments which develop almost immediately after 
the start of the simulation (see [lo]). 

vortices, and the second contains the remaining small- 
scale  vortices,  formed by the fragmentation of the 
vorticity  filaments.  Subsequently,  a more classical 
decaying  phase  begins and dominates the evolution; 
merging events are the only mechanism which is able to 
fill the gap  between the two populations of vortices,  while 
some  small-scale  vortices  may  be  dissipated on short 
(advective) time scales due  to the intense stretching fields 
of the large  vortices. 

The spectrum  resulting from the late time evolution 
steepens  increasingly  with time and is  shown in Figure 
14. The most  striking feature is the lack  of  scale 
invariance (see  Figure 10); the total spectrum again 
appears to be the envelope of the spectra of the single 
vortices,  which are here  recognizable as clearly  grouped 
into two separated populations. 

An important tool that can be  used to describe the 
"state" of a turbulent system is  due to Novikov [28] and 
is  given by the so-called centers of gravity, K,, and K , ,  for 
the velocity and vorticity  respectively;  they are easily 
defined by 

$," kE(k)dk 
K, = 

130 $; E(k)dk ' 

$," k3E(k)dk 

8," k2E(k)dk' 
K ,  = 

where KO is  a  conserved quantity for an inviscid flow. A 
system that evolves  according to a  classical KB scenario 
should contemporarily show  a direct cascade  for 
enstrophy and an inverse one for  energy; the 
correspondingly  Novikov centers of gravity should 
respectively  increase and decrease  with time. Figure 15(a) 
shows  a  clear direct enstrophy cascade, but only during 
the first  five time units, followed  by a more classical 
decay  phase; in Figure 15(b), which  shows the simulation 
that starts with the kW3 spectrum, no such initial transient 
appears. 

Summarizing the results of the two experiments on 
decaying turbulence, one sees that the initial conditions 
are very important and  that they  influence the full 
system, at least on time scales  like the ones we have 
investigated.  Moreover,  a steep spectrum induces a  new, 
nearly  classical,  --like transient phase that develops 
into a  non-self-similar asymptotic phase. This suggests 
that a  threshold  value should exist that separates the 
scale-invariant evolution observed  with initial flat  spectra 
[such  as E(k)  - k-3] from the more complex  behavior 
given by steep initial spectra. 

3. Three-dimensional flows 
The high-resolution simulation of three-dimensional 
flows  is the current challenge  for numerical fluid 
dynamics. From the theoretical point of  view, the 
difficulties of the problem are shown  by the same basic 
statistical theories which indicate that  the three- 
dimensional problem is much more complex than the 
two-dimensional one. In fact, the intrinsic number of 
turbulent degrees  of  freedom is much larger, not only as 
a consequence of the existence of the third dimension but 
also  because the dynamics are expected to be much more 
complex. The last point is clarified  by the fact that  the 
Kolmogorov spectrum [three dimensions, E(k)  - k-5/3] 
is unfortunately much flatter than  that described by 
Kraichnan and Batchelor (two dimensions, E(k)  - E 3 ] ;  

in other words, three-dimensional dynamics extend over 
a much wider  range  of  scales. 

The traditional and still  most  powerful  simplification 
of the problem  assumes that it is not possible to study 
numerically the many  small  scales of the system;  some 
physically reasonable theory  must  consequently be  used 
to simulate their behavior.  Among the various attempts, 
we cite eddy-viscosity models  (see, e.g., [29]) and subgrid- 
scale models  (see [30] for  a review),  which are used to 
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Initial inviscid behavior. Time evolution of Novikov's centers ofgravity K,  (velocity), K, (vorticity), and KO as defined in Equation (14). 1 (a) Initial inviscid behavior,  The flow that starts with a steep spectrum behaves like an inviscid flow during the first five time units. In fact, 
t the vorticity wave number increases during the first part of the simulation, thus suggesting an initial direct enstrophy cascade. No such 

behavior is shown in b the simulation that starts with a flatter s ectrum E k - k-' .  

simulate the nonlinear energy  transfer and dissipation 
that should take place on unresolved scales.  All these 
theories,  also  referred to as closure theories, have a strong 
phenomenological character and are generally  based 
upon  some  reasonable  assumptions. In any  case, it is 
clearly  difficult to compress into synthetic laws the 
detailed dynamics that should take place  over a very  wide 
range of  scales. One of the most  recent and promising 
theoretical  developments  is  given by the application of 
the renormalization group technique (proposed in [31]) 
as a new tool  with  which to approach the closure 
problem  for the Navier-Stokes equation (see also [32]). 

dimensional incompressible  viscous flows, particularly 
well suited  for the numerical integration, is  given by 

A formulation of the Navier-Stokes equation for  three- 

at 
+ VAG + forcing; (15 

this is obtained by simply substituting the vector identity 
(3) in (2) [ 161. As already  discussed in Section 1, the 
main  fluid-dynamic content of ( 15) is inside the 
nonlinear part, which is best  shown in Equation (4) 
where it clearly contains two  parts: a vorticity  advection 
component and a vortex stretching component (see, e.g., 
[2]), which is a mechanism that tends to elongate 
vorticity  tubes. 

From the numerical point of view, the three- 
dimensional fluid dynamics problem  is at present 
severely limited, not only by traditional bounds on 

computer memory and computational power, but also by 
the graphical representation of the three-dimensional 
computer results,  because of the need  for  simple and fast 
tools to show the significant flow patterns. This is of 
particular importance, since it is  expected that three- 
dimensional as  well  as two-dimensional flows could  be 
dominated by easily  recognizable coherent structures (i.e., 
the inviscid solutions of the stationary Navier-Stokes 
equations), even though these  have not yet  been  defined 
nor  observed in detail (see [33] for an extensive review, 
and also [34] for a more critical  assessment).  Interest in 
the existence of coherent structures is dictated by their 
nature; in fact,  these  could  strongly inhibit the energy 
cascade, thus changing  substantially the global 
Kolmogorov  scenario.  Some  numerical and laboratory 
evidence, supporting the presence of coherent structures 
in three-dimensional flows,  has  been reported by many 
authors and is  based on the generally  accepted 
assumption that, although vortex stretching may tend to 
destroy  any initial large-scale  flow, the dynamic evolution 
continuously tends to produce a dynamic hierarchy of 
structures (see [35] for an extensive review). 

Equation ( 1  5 )  contains two nonlinear terms and thus 
shows the complexity of any attempt to classify the 
inviscid stationary solutions of the flow equations. On the 
other hand, it is  clear that a quantity such  as the 
alignment (cosine of the angle) between  velocity and 
vorticity  must  play a significant  role in such a 
classification. In fact, any significant  parallelism  or 
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Two orthogonal vortex tubes,  case 1. The initial condition of the 
experiment  is  represented  by  isovorticity  surfaces;  the  vorticity 
value is IwI = 12. The  two vorticity tubes are initially orthogonally 
offset  and  differ only in  their  radius, the foreground  tube  being 
slightly larger than the background one.  The observation direction 
is defined  in  terms  of  the  standard  Euler  angles: 4 = 45, 0 = 
-45, 5 = 0. The  computation  has  been  performed  using  a  de- 
aliased pseudospectral code; the side of the cubic box is 2n-, the 
grid size is 128 X 128 X 128; superviscosity is used, withp = 2 
and v2 = 2.625 X the time-step is At = 3.7 X and 
time  evolution  is  performed  for 700 time-steps.  The  three- 
dimensional rendering of the simulations is  obtained  on  an IBM 
6090 Graphics  System  with  the  aid  of  the IBM graPHIGS 
Programming  Interface  using  the Marching Cubes algorithm  to 
approximate the isovorticity surface; the software interface is the 
ECSEC visualization tool. The surface is colored according to the 
intensity  of  the  velocity  on  the  surface.  One  ambient  light  and 
three different directional lights are used to brighten the scene and 
cast shadows. 

antiparallelism between these vectors implies a negligible 
value  of the cross-product a X 6 and consequently 
indicates the existence  of a local approximate solution of 
the inviscid and stationary equation (1 5). 

Zabusky and Melander [36-381 have  recently proposed 
some numerical experiments that start from two 
orthogonally offset vorticity  tubes, in a simple cubic box 
with  periodic boundary conditions, to study how some 
interesting types  of three-dimensional instabilities 
develop from simple initial conditions. These 
simulations, though apparently simple, avoid the 
complexity  of starting from a more general initial 
configuration and still retain many of the  important  but 

132 poorly understood properties of three-dimensional flows. 
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They address the problem of initial tube stretching and 
the possibility of a later reconnection, and conclude that 
no real reconnection is to be  expected (at least on short 
time scales), but rather a complex entanglement of the 
initial vorticity tubes [36].  All  of  these experiments are a 
good example of the difficulties  of the numerical three- 
dimensional problem, since not only powerful computers 
are needed but also a sophisticated graphical output. 
Melander and Zabusky almost always  used three- 
dimensional isovorticity  surfaces to present the dynamic 
behavior, but it is clear that any advance in the field  of 
graphical representation must be considered as 
remarkable progress. Here we repeat and complement 
some of their experiments with the aid of a time- 
dependent videotape animation; different observation 
angles are used to enrich the spatial comprehension of 
the configurations. This turns  out to be considerable 
progress,  since it avoids the storage  of prohibitive 
amounts of three-dimensional data, but  the selection  of a 
given  type  of  field  (e.g.,  vorticity and not velocity) or of a 
given  value  of  isosurface  drawing  still  strongly constrains 
any further analysis  of the dynamics. 

Since we confine all our experiments to a simple cubic 
domain, the numerical integration method is  simply 
based on the well-known and efficient  pseudospectral 
technique; the evaluation of the right-hand side  of (1 5 )  
uses a two-step procedure consisting  of time evolution 
according to  the shortened equation 

an 
at 
- =  n X 6 + vpApW, ( 164 

(which  generally produces a non-divergence-free  flow) 
and removal of the compressible component of the field 
using 

A E -  
'divergence free - - n - - ( k  * d), k2 

(16b) 

where 6 is a Fourier component of zi; the entire 
procedure is  easily  shown to be  fully consistent with 
Equation ( 15) [ 161. Note how we generalize  for 
superviscosity as in Equation (7). De-aliasing  is obtained 
by averaging  over  two  half-mesh-shifted  grids and 
truncating inside a sphere defined by K2 5 8/9K1,, [ 161; 
time evolution is performed as for the two-dimensional 
case, and  the numerical code has been  fully  vectorized 
and parallelized under MVSIXA  using MTF 
(MultiTasking Facility [ 191). The side of the cubic box is 
27r, the numerical resolution is  128 X 128 X 128; the 
superviscosityparametersarep = 2, and v2 = 2.625 X 

the time-step is At = 3.7 x and time evolution is 
performed  for 700 time-steps. 

Here we present a couple of numerical experiments, 
case 1 and case 2, in which the initial condition, 
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Entanglement of vortex tubes, case I. Time T = I . S .  The time evolution of two initially orthogonally offset tubes produces the concurrent 
development of' many instabilities. The same configuration is shown from three different observation angles (a),  (b),  and  (c).  The  two 
original tubes, though highly distorted, appear to be  well isolated, particularly in (c), and show no sign of reconnection; the configuration 
shown here displays many small-scale secondary vortex tubes that bridge the gap between the main tubes. In reality, the terms isolation, 
recmmcrion, and secorrdor.r. vortex rube are highly misleading and are an artifact of the representation: in fact, no vortex reconnection takes 
place, but rather  a  complex  vortex  entanglement, as is clearly shown in a  previous  computation by Melander  and  Zabusky [22]. The 
observation angles are (a) 6 = 0, 0 = -90, 5 = 0, (b) 4 = 45, 0 = -45, 5 = 0, and (c) 4 = 135, 0 = 45, 5 = 0. Since the coloring is 
given by the intensity of the velocity field, one understands quickly the dynamic behavior of the system.  The blue parts of the vorticity 
isosurfaces  indicate a slow velocity and hence a correspondingly slow motion of the fluid, and are  generally  connected to secondary 
structures arising from the instabilities due to the nonlinearity of the equations. Conversely, the red surfaces indicate rapidly moving fluid 
components and are generally associated with the original main vorticity tubes. The maximum values of the vorticity and velocity fields are 
here lwi - 50 and I U I  - 6 ,  respectively. 

representing the orthogonally offset tubes of Melander 
and Zabusky,  is  given by 

W(P) = ool exp (-l:[(y - =/3l2 + z2 ] ]sx  

+ wo2 exp (-1:[x2 + y21)q ; (17) 

for case 1 the parameters are coo, = wo2 = 20, I ,  = 3-"*, 
and l2 = 0.5;  for  case 2, wo, = 20, oo2 = 5 ,  and 
1 = 1 = 3-"2. 

I 2  

Discussion of the numerical experiments 
The dynamic evolution of  case 1 is the more interesting 
of the two  presented  experiments,  because  initially the 
two tubes are approximately equivalent (Figure 16) and 
their time evolution  is  expected to affect both of them 
strongly. At the beginning of the simulation, a highly 
symmetric and nonlinear deformation appears near the 
point of maximum closeness; this quickly  develops into a 
much  more  complex  configuration. At the same time 
many  well-detached thick curvilinear vorticity tubes show 
up near the center of the cubic domain, bridging the gap 
between them (Figure 17). These structures tend to 
increase in size and, in turn, give rise to other smaller 
structures. The literature contains many names to 
indicate structures such  as  those  observed: vortex 
filaments, vortex  rings, hairpins, rolls,  bridges, or ribs, 
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and different terms for the possible dynamic phenomena 
such as reconnection, entanglement, threading, cross- 
linking, or cut-and-reconnection (see,  e.g., [36-391). The 
wide taxonomy of these terms reflects the great 
complexity of the three-dimensional  problems and also 
indicates that much progress  has  yet to take place in the 
comprehension of the dynamics as  well  as the graphical 
representation of the data. 

The most  interesting  phase of this simulation occurs 
approximately  between times 1.5 and 2.5.  During this 
interval, it appears that the secondary structures that roll 
up the two  main tubes tend to squeeze them and to grow 
thicker, so that around time t = 2.5 an apparent cross- 
reconnection happens (compare Figure 17 with Figure 18 
and observe in detail the tape animation); this raises a 
justifiable concern about the possible  development of a 
flow singularity and about the consequent accuracy  of the 
numerical model.  Melander and Zabusky [36] have 
discussed this problem in detail and have  reached the 
reasonable  conclusion that simulations such as the one 
reported  here are numerically accurate enough, but that 
no reconnection and no singularity  really take place on 
these time scales. Rather, an increasingly  complex  vortex 
entanglement is  seen.  They  argue that, even  though 
unresolved  small  scales  could in principle  be  excited 
during the apparent reconnection, there is no time for 133 
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Three views of the “reconnection” of vortex tubes,  case 1 .  Time T = 2.6.  The  same simulation as in Figure 17 but at a later time, when the 
apparent tube reconnection has already taken place. 

Cosine 

Cosine distribution, case  1. Normalized probability distribution of 
the cosine of the angle between velocity and vorticity for all cells 
where IwI I 12. The maximum of the distribution tends to shift to 
the left with time, up to the apparent tube reconnection, indicating 
how the  tubes tend to become more  and more antiparallel. After 
“reconnection”  the  distribution  flattens.  The  numerical  pa- 
rameters are the same  as indicated in Figure 16. 

. .  

any  feedback on the tubes,  which are large-scale 
structures.  Note how the ultimate evolution of the flow 
loses  any  trace  of the initial order and tends to show an 
increasingly chaotic behavior. 

The only attempt to analyze the flow mathematically is 
done here in terms of the cosine  diagnostics that we have 

134 discussed  previously to identify a possible  degree  of 
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coherency  inside the flow.  Each initial vorticity tube is 
clearly a coherent structure, at least  from the pictorial 
point of  view, but is unfortunately characterized by the 
orthogonality of the velocity and vorticity  vectors, thus 
eluding the cosine  diagnostics itself; nevertheless, during 
the dynamic evolution, a temporary helical  negative 
correlation of  velocity and vorticity  shows up (Figure 
19), indicating an antiparallel phase and the presence  of 
some  degree of coherence  inside the flow. This coherence 
fades  away after the “reconnection.” 

The initial conditions of  case 2 are very different, 
because the secondary tube is much fainter than the 
primary one (Figure 20). The dynamic evolution  is 
correspondingly  simpler  because the main tube is only 
slightly perturbed during the entire run of the 
experiment. The only  rapidly  evolving component is the 
secondary one, which  is in turn continuously dragged 
and stretched around the primary tube (Figure 21). 
Later, the secondary  vortex continues to circulate around 
the main one while extending its  influence further and 
further from the central symmetry plane of the main 
tube. Near the end of the simulation, two  small- 
amplitude ridges appear to travel in opposite directions 
on the surface of the main tube; these are located on the 
lateral edges  of the complex formed by the circulating 
secondary tube and are excited by its  squeezing action 
(see the tape animation). 

4. Visualization  techniques  and the animation 
tool 
We have  used  two  different  visualization techniques for 
our two  examples; the difference is due  to differences in 
the dynamic phenomena of interest. The visualization 
effort  is  also  very  different for two- and three-dimensional 
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calculations  because of the different quantities of data 
produced  for the two  cases and the different  techniques 
adopted to display the dynamic quantities. 

In  numerical experiments on two-dimensional 
turbulence, it is  widely  accepted that the vorticity field  is 
the most informative quantity to investigate  (see  for 
example [2] and [3]); this is not surprising also because 
the vorticity  is a conserved quantity along the stream 
lines of an inviscid  two-dimensional flow. Many papers 
report the results of computations using  isovorticity 
contours, which  work  well in identifying the formation 
and evolution of coherent structures having a rather 
regular and clear appearance, even  for  high-resolution 
numerical computations. 

On the other hand, contours are difficult to use  while 
investigating the properties of noncoherent structures 
such  as the background field,  which  has a low vorticity 
value, or the vorticity  filaments that are observed  when 
starting with smooth initial conditions. This happens 
because of the extremely  complex nature of the low- 
vorticity structures; in these  cases, contour plots are not 
sufficiently informative, or are blurred by many small- 
scale  features. 

use of a color lookup table,  which  equally  renders low- 
and high-vorticity  areas of the field and leaves the 
evaluation of the picture to the strong capabilities of the 
human eye. The lookup table translates vorticity 
intensities into three 8-bit numbers for the three different 
intensities of the red,  green, and blue components so that 
an RGB  image can easily  be  displayed. Our lookup table 

A much more useful technique in the latter case  is the 

Two orthogonal vortex tubes, case 2. Isovorticity representation of 
. the  initial  condition of the  experiment.  The  parameters of the 
f numerical  experiment  are  here  identical  to  those  indicated in 
[ Figures 16, 17, and 18. The  secondary  background tube is not 
j visible  here  because  its  maximum  vorticity  is  below  the 
I represented  vorticity  level, I W I  = 6. The  standard  Euler  angles 
i definin the observation direction are + = 45, 0 = -45, = 0. 

1 

is managed by the same FORTRAN program that 
handles the numerical experiments and writes three RGB 
files; the pictures are displayed  using the IBM  Image 

Entanglement of vortices, case 2. Time T = 1.5.  The small vortex tube is now visible above the vorticity threshold io( = 6 because its 
strength has been increased by the continuous circular dragging due to the large tube; at variance with case I ,  here the large vortex is only 
slightly perturbed by the secondary one.  The videotape shows tube stretching and compression of the large tube. The three observation 
angles are (a) 4 = 0, 0 = -90, 5 = 0,  (b) = 45, 0 = -45, 5 = 0 ,  and (c) 4 = 135, 0 = 45, 5 = 0. Note how the slowly flowing 
green and blue parts of the isovorticity surface are generally connected to the secondary tube, which continuously generates more and more 
complex structures. 
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Access Executive (IAX) [40] with a variety of methods 
and devices, including the IBM 5080 Graphics System 
for  photographic acquisition, and standard terminals 
such  as the 3 179 for monitoring the numerical 
calculations. 

We have found very  useful a “standard” lookup table 
for  vorticity,  where  blue and red indicate clockwise and 
counterclockwise rotation respectively,  while  low- 
vorticity features are strongly enhanced empirically by 
using  light-blue7  green, and white. This has  proven to be 
particularly  effective  because the observer can focus  his 
attention on the desired structures by selecting the color. 
Figures 1, 2,  3, and 1 1 were obtained with this lookup 
table and are full-resolution reproductions of the original 
simulation. 

An important component for the comprehension of 
the dynamic phenomena is time. This can be included if 
a video animation is  produced; it is our opinion that this 
new and attractive way  of presenting the results of the 
numerical computations will gain more and more 
momentum because  of its intrinsic ability to display the 
results  quickly. This opinion is  validated by the fact that 
an increasing number of journals offer  videocassettes in 
addition to the technical  papers. This issue of the IBM 
Journal of Research  and  Development is an example of 
this new publishing technique; we can also  cite [41] as 
another example  where  scientific  results  have  been 
complemented by videos. 

The video animations of the numerical simulations 
were obtained through the use  of the two-dimensional- 
turbulence FORTRAN simulation program that 
periodically dumps on mass  storage a temporary copy  of 
the three RGB components of the vorticity field and 
sends them to a VM virtual service machine that 
manages the recording of the analog color video  images. 
This virtual machine receives the data and sends them to 
an IBM  AT Personal Computer running a program that 
contemporarily manages the RS-232C command 
interface to a S O W  LVR6000/LVS60004  laser  videodisk 
recorder and a VISTA’ card that provides the translation 
of the RGB components into a video  signal.  Since the 
laser  videodisk is a random-access  device, it is worthwhile 
to note that this method easily  allows  for the video 
recording of data coming  from  different numerical 
experiments. In fact, the virtual service machine makes 
no distinction as to the sender of the data, which  may  be 
any user on any operating system  (e.g., another remote 
VM,  MVS, or AIX6) connected to the network,  provided 
that a unique network data format is  used.  Besides 
recording, a useful  set  of  general commands can be sent 
to the VM service  machine:  These include a request for a 

SONY LVR6000/LVS6000 is a trademark of SOW Corporation. ’ VISTA is a trademark of Truevision Inc. 
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listing of the recorded  frames or a request  for a playback 
of some animations for the observation or the reversal  of 
a standard videotape  recorder. Our multi-user  videodisk 
recording  complex will  be reported in more detail 
elsewhere  [42]. 

available  visualization  techniques; one can safely state 
that no conclusive method is yet known.  Three- 
dimensional scalar  fields are manageable,  since the two- 
dimensional concept of iso-intensity contours can be 
extended to three-dimensional iso-intensity  surfaces, at 
least from the conceptual point of  view.  However, three- 
dimensional vector  fields cannot be  represented  easily, 
unless  they are sufficiently smooth or are described by a 
low number of effective degrees  of  freedom.  In the 
general  case, a sufficiently  accepted way  of representing a 
three-dimensional  vector field consists in plotting the iso- 
intensity surfaces  of the modulus of the field together 
with a color that represents the local intensity of a second 
three-dimensional  scalar  field. This is a relatively  viable 
procedure  because two related quantities, out of the three 
components of the required  vector  field, are represented 
concurrently. On the other hand, there exist  much more 
imaginative solutions, such as those  presented in the well- 
known  video on the numerical simulation of tornadoes, 
produced by the NCSA Visualization Production Team 
of the University of Illinois at Urbana (see, e.g., [41]). 

All visualizations of the three-dimensional flows 
presented in this paper are based on  the representation of 
iso-intensity  surfaces of the modulus of the vorticity field 
and are colored  according to the value  of the modulus of 
the velocity  field on the surface. The color  table  used ta 
represent the velocity  was  chosen  according to the 
rainbow rule. This shows  blue and red  for  low and high 
velocity  respectively;  correspondingly, the green and all 
the other intermediate rainbow  colors  refer to 
intermediate velocity  values.  In three dimensions it may 
certainly  be  argued that isovorticity  surfaces are not the 
best candidates to represent the results.  Nevertheless, this 
is the solution used  most  often to date, at least in the case 
of incompressible flows.  See  also [43] for another 
example of representation of a similar numerical 
experiment. 

The construction of the isovorticity  surface  is done at 
run time by a FORTRAN subroutine that builds a set  of 
triangles approximating the desired  surface  according to 
the Marching  Cubes algorithm [44]. This algorithm  has 
the advantage  of  being very simple and effective, since it 
analyzes the computational lattice on a cell-by-cell basis 
and is  parallelizable.  Moreover, it is  very  fast  because it is 
based on a simple lookup table that directly determines 
the number and the intersections of the triangles 
contained in each computational cell. 

The production of the final rendition of the three- 
dimensional flow  is  based on the three-dimensional 

Three-dimensional flows are a challenge  for currently 
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graphical  capabilities of the IBM 6090 Graphics Systems. 
These are exploited using the graPHIGS’  2.1 
Programming  Interface [45,46], which  allows the user to 
easily exploit the hardware of the IBM 6090 Graphics 
System  for  complex functions such  as  hidden-line 
removal,  hidden-surface  removal,  lighting and shading 
effects,  surface transparency, and depth cueing, in 
addition to simpler functions such as rotations and 
translations. 

A user-friendly interactive environment that exploits 
graPHIGS 2.1 has  been  developed at ECSEC to fully 
analyze  any combination of many-colored  scalar  fields 
over  different and generally unconnected grids. The 
three-dimensional numerical simulation program  has 
produced three different  videos, corresponding to three 
different  observation directions, using  a FORTRAN 
interface to the above-mentioned ECSEC Visualization 
Environment. The three-dimensional  videos were 
produced by reading the IBM 6090 frame buffer, using 
graPHIGS, and sending the red,  green, and blue 
components directly to the videodisk  service machine 
while the computational program continues its execution. 

5. Conclusions 
This paper  is intended to show  how  videotape animation 
can enrich the comprehension of numerical simulations 
of two-dimensional turbulence and three-dimensional 
flows. 

The scientific  results obtained for  two-dimensional 
turbulence are supported by a  large  body  of  graphical 
data, derived  mainly  from a sophisticated mathematical 
analysis of the numerical simulations (see [5 ,  8-10, 151). 
On the other hand, the newly adopted method of analog 
color  video  recording appears to be  a breakthrough, 
because  many of those  results can be perceived at a 
glance, just by playing the videotape. This is particularly 
evident not only  for  simple understanding of the time- 
dependent formation of the vortices (and the related 
merging  events) but even for the more complex 
comprehension of the segregation  of the time scales. In 
fact, the videotape easily  shows  how the motion of the 
vortices  is quite regular, at least during the last  phases of 
the dynamic evolution; in any case, it involves time 
scales  much  larger than any other time scales.  Vortex 
circulation time, for  example, can be  very  well 
appreciated  from the videotape,  especially during the 
many  merging  events. 

Conversely, in the field  of three-dimensional flows, 
mathematical analysis  has  never  been able to provide  any 
synthetic description of the behavior of the system, 
except  for  some  limited  results;  a  graphical representation 
of the three-dimensional  fields  still appears to be the only 

’ graPHIGS is a trademark of International  Business  Machines  Corporation. 
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useful  tool.  Now time-dependent animations, such as the 
ones presented  here for different  observation  directions, 
appear to cast more light on the dynamic evolution and, 
while  confirming  some  of the previously  published  results 
( [36] ) ,  will probably  become  a standard in the near 
future. 
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Tape caption 
The tape contains the video animation of the two  high- 
resolution ( 5  12 X 5 12)  numerical experiments of 
decaying turbulence described in Section 2. The first 
one starts from a Kraichnan-Batchelor  spectrum 
[ E @ )  - k-3,  Figure 11; the second one starts from a steep 
spectrum [E(k )  - k-6, Figure 111. In both cases  we show 
the evolution of the vorticity field for 40 time units; the 
colors are the same for Figures I and 11. Successively, we 
present animations of the dynamic evolutions of  two 
initially  orthogonally offset vorticity tubes with  numerical 
spatial  resolution 128 x 128 x 128 as  described in 
Section 3. An isovorticity  surface representation is used 
to show the evolution. The first three pieces  show the 
same  system,  namely  case 1, composed by two  initially 
approximately equal vorticity  tubes, as seen  from three 
different  observation  directions; the isovorticity  value and 
the Euler  angles are as  in Figure 16. The second three 
pieces  show the dynamic evolution of  case 2; here, the 
secondary  vortex is initially  much fainter than the 
primary one. The dynamic evolution  makes the 
secondary  vortex tube visible  above the chosen  vorticity 
threshold as a consequence of its continuous stretching, 
resulting  from circular dragging around the main tube. 
The isovorticity  value and  the Euler  angles are as in 
Figure  20. 
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