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One of the most challenging problems in fluid
dynamics is understanding the properties of
turbulent flows. The advent of large
supercomputers permits the investigation of
turbulence with great accuracy in two
dimensions, but full three-dimensional problems
are physically more complex and their study is
currently limited to the case of simple flows. ltis
shown that the availability of a continuous time-
dependent representation of the dynamics of
fluid flows can quickly lead to more complete
understanding of the many concurrent physical
mechanisms ruling turbulence. Some significant
examples show how an analog videotape,
obtained from direct computer simulations of
fluid flows, suggests physical results that can
later be obtained through a mathematical
analysis of the numerical simulations.

Introduction

The word turbulence generally indicates the chaotic
behavior of a fluid. Far from being an exceptional
phenomenon, turbulent flows rule the behavior of many
fluids occurring in nature. It can easily be observed that
fluids frequently tend to behave chaotically rather than
regularly; the air flowing around a moving car and that
moving past a flying airplane are two examples of very
turbulent flows. It is worthwhile to note that many
phenomena occurring in geophysics, astrophysics, and
plasma physics are completely dominated by more or less
turbulent flows. An example is given by the motion of
the atmosphere, which is very turbulent over scales
ranging from many thousands of kilometers down to
millimeters. Consequently, the problems connected to
weather forecasts are among the most important
unresolved issues from both the scientific and the
computing points of view. Indeed, given a hypothetical,
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infinitely powerful computer, one of the open questions
in meteorology is the feasibility of reliable and long-time-
range weather forecasts.

The equation of motion of a fluid is the well-known
Navier-Stokes equation, first written approximately a
century ago. This equation derives from the principle of
conservation of momentum and includes the viscous
terms describing the conversion of mechanical energy
into heat. In the general case, this equation is

+ <§ + g)v(v - @) + forcing, (1)

where 7 is the velocity field, p is the pressure, p is the
density, n and ¢ are the viscosity coeflicients, and the
differential operators are defined according to standard
notation [1]. In addition to Equation (1), the mass-
conservation equation and an energy-transfer equation
are required in order to have a complete system of partial
differential equations with five scalar equations for the
five unknown fluid dynamic fields #, p, and p.

Although (1) is the equation to be used in the general
case, in the following we concentrate on the simple case
for which the density p is constant, so that only one
equation in addition to Equation (1) is needed to
complete the system. The required equation is the one
for conservation of mass, which here simply reduces to
¥ . @t = 0 so that no energy-transfer equation is needed.
Consequently, (1) simplifies to

- v .
- V)it = ~L2 4 aa+ forcing, 2)
at p
where v = 5/p is the kinematic viscosity (hereafter
referred to simply as viscosity). A further simplification
can be obtained by substituting the vector identity

(@ V==V - ax(Vxa) (3)

in (2) and taking the curl of the equation:

‘?9_‘: +(@ - Vo= (@ - V)i + vAc + forcing, “4)

where ¢ = curl # = V X i is the vorticity vector.
Equation (4) turns out to be particularly useful because it
contains only kinetic fields; moreover, the nonlinear term
has been usefully split into two parts: The left-hand side
describes the advection of vorticity due to the velocity
field, while the right-hand side describes the well-known
phenomenon of vortex stretching [2], typical of the three-
dimensional case and not occurring in two dimensions,
as we shall see in Section 2.
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In spite of their apparent simplicity, the nonlinear
terms contained in the equations of motion of a fluid are
a very challenging issue for both mathematicians and
physicists. Despite all the above simplifications, analytical
solutions of these equations are known only when the
flow is regular (i.e., when the velocities do not vary
rapidly inside the flow domain) and for very simple
boundary conditions: These solutions always represent a
fluid smoothly flowing around obstacles or inside a
container. When the velocity field is no longer smooth,
the fluid may begin to flow in a very complex and often
unpredictable way, depending on the time and length
scales of interest. There are many ways this can happen,
but the investigation of this important and complex
phenomenon, called transition to turbulence (see, e.g.,
[3)), is beyond the scope of this paper and is not analyzed
further,

Well beyond the point where transition to turbulence
takes place, one observes extremely rapid flow variations
in both space and time: This kind of flow is called
developed turbulence. The generally accepted belief is
that, in the limit of very highly turbulent flows, the
behavior of the fluid is ruled by general statistical laws
whose investigation and comprehension is a very
important fluid dynamics problem. Any attempt to
derive such laws must take into account some statistical
description of the problem as A. N. Kolmogorov did in
the first successful and, so far, substantially unsurpassed
work on three-dimensional turbulence [4].

The basic assumption of Kolmogorov’s theory is that,
in a turbulent flow, there is an approximate equilibrium
of energy transfer from large to small scales. More
precisely, this statistical theory states that energy is
injected on a large scale by some external force, and is
transferred through nonlinear instabilities to smaller and
smaller scales in a continuous fashion until a minimum
scale (the dissipation scale) is reached, where the flow
becomes smooth and viscosity converts the kinetic energy
into thermal energy. In particular, the theory assumes
that the nonlinear term is active on all scales except the
smallest ones and is responsible for the transfer (or
cascade) of energy from large to small scales, while the
dissipative operator »A is always negligible except on the
smallest scales, where it dominates. Among the most
successful results of the theory are the semi-quantitative
estimates of the energy spectrum E(k) ~ k= *and of
other measurable quantities, as a function of the
Reynolds number and energy injection scale only.' These
theoretical results are in good agreement with
experimental data for the three-dimensional case, while
in the simpler two-dimensional case new phenomena

! The Reynolds number is the nondimensional quantity defining an incompressible
flow Re = LU/», where L, U are respectively the characteristic length and the
characteristic velocity of the problem.
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tend to appear in the flow, as we shall see in the next
section.

In the course of time many authors have attempted to
refine Kolmogorov’s description by adding new physics
to the original theory (e.g., multifractals, as in [5] and
references therein). Although these new features do not
substantially change the original Kolmogorov scenario,
they refine remarkably the agreement with experimental
data in three dimensions [6].

In Section 2 we present some relevant results obtained
from a pair of high-resolution numerical simulations of
two-dimensional turbulence, for the first time with the
aid of an analog videotape recording; the same tool is
used in Section 3 to show how animation can enrich
present-day comprehension of simple three-dimensional
flows. Section 4 describes the details of the techniques
used to produce the visualization of our computations.

2. Two-dimensional decaying turbulence

It might seem that any study of two-dimensional flow
would be of academic interest only, since in nature all
fluids are fully three-dimensional. On the contrary, many
flows show properties that can be well approximated by a
two-dimensional approach. Among these we find the
remarkable example of the earth’s atmosphere when this
is studied over a large range of scales, from the planetary
scale down to scales of a few hundred kilometers; another
interesting example is the flow of fusion plasmas in
Tokamak machines, whose two-dimensional nonlinear
behavior has been successfully simulated in recent
numerical experiments [7].

In two dimensions, the equation of motion (2) holds
unchanged, while Equation (4) is substantially simplified
because the vorticity vector @ is always perpendicular to
the flow plane and can be described by a simple scalar w:

‘;—‘; + (@ - V)0 = vAw + forcing. (3)

One sees that the main physical content of this equation
is the advection of vorticity by the velocity field; it
follows that, in a nonviscous and nonforced flow,
vorticity is conserved along streamlines. We note
incidentally that these equations do not contain the
nonlinear vortex-stretching term contained in the right-
hand term of Equation (4). A further simplification of
Equation (5) comes from the definition of the stream
function y as

U =—-——, u =—, 6)

which automatically satisfies the incompressibility
condition (V - @ = 0); vorticity is simply obtained as
w = Ay. The general equation in two dimensions is thus
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%Afb- + J(, AY) = v, A"y + forcing, N
where J(a, b) = d,ad,b — 4 ad b is the Jacobian. Here
we have introduced a useful generalization of the
dissipative term, called superviscosity, that reduces to the
standard one for p = 1 (see, e.g., [8]). One may wonder
whether this apparent and somewhat arbitrary change in
the structure of the equations is likely to have an
important influence in any study of two-dimensional
developed turbulence. The generally accepted answer is
negative and is based on the fact that all statistical
theories confine the rule of the dissipative term to the
smallest scales, where dissipation really takes place (see,
e.g., [8-10]). In other words, by increasing p, one can
only change some details of the energy flow near the
smallest scales without altering significantly most of the
remaining large scales. Moreover, there is no laboratory
measure of the functional form of dissipation for large
Reynolds numbers, and the use of the classical (or
molecular, p = 1) form of dissipation for developed
turbulence is justified by no argument other than a
strictly conservative approach. On the other hand, the
use of superviscosity is of great importance in numerical
simulations, where one always has a limited number of
degrees of freedom; indeed, as a consequence of the form
of the differential operator, by increasing p one makes
more room for scales where the important and more
interesting nonlinear phenomena take place (see [11),
where p = 8 has usefully minimized the range of scales
for which dissipation occurs).

In two dimensions, Kolmogorov’s theory cannot be
applied straightforwardly. The energy is prevented from
being dissipated because of a well-known theorem that
guarantees the small-scale regularity of the solution of the
flow equations for any value of the viscosity coefficient
v,. This phenomenon is the basis for the proper
reformulation of Kolmogorov’s description in two
dimensions; this was done by Kraichnan [12] and
Batchelor [13] in another theory hereafter referred to as
KB. In this theory it is assumed that the energy
associated with a flow domain with area A4,

1
E=51

u*dv, (8
is substantially conserved and does not flow to small
scales because of the previous regularity theorem; the role
originally played by energy in the three-dimensional
Kolmogorov theory is here played by a new quantity, the
enstrophy, defined as

Q w’ dxdy. )

" 24

The enstrophy is an interesting integral quantity that 121
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indicates the amount of rotational activity inside the flow;
in fact, the enstrophy density 1/2w” is an important local
quantity that measures directly the local fluid spinning
velocity. The KB theory describes the equilibrium state of
a two-dimensional turbulent flow as a continuous
mechanism where enstrophy is injected at large scales,
then flows nonlinearly toward small scales and eventually
dissipates; this scenario turns out to be very similar to the
standard Kolmogorov theory except that enstrophy now
plays the role originally played by energy in three
dimensions. In analogy with Kolmogorov’s theory, the
KB theory predicts the energy spectrum that corresponds
to the enstrophy cascade: E(k) ~ k> (log k)™"/*; this is
approximately

E(k) ~ k. (10)

The theory also allows for an inverse energy cascade,
where the injected energy is transported to large scales, as
has been verified by numerical experiments.”

The possibility of testing the KB theory has intrigued
scientists for years, from the experimental as well as the
numerical point of view (see, e.g., [8-11, 14, 15]. Since
present-day supercomputers can treat two-dimensional
flows with great accuracy (up to 1024 x 1024 in [10]),
we present some physical results obtained from two
numerical experiments of decaying turbulence, with the
remarkable help of a color videotape animation.

Although no forced experiments are presented (these
can be found elsewhere [11]), we think that this
limitation is not severe, since decaying experiments do
show some of the peculiar features of two-dimensional
turbulence that make it so different from three-
dimensional turbulence. All our experiments aim at
comprehension of the dynamics of turbulence, and we
have confined the flow domain to a simple, doubly
periodic square with side 27 and a numerical resolution
of 512 X 512. All the experiments use the pseudospectral
technique to fully exploit the available degrees of
freedom [16]. The field is evolved in time using the so-
called wave-space, and the nonlinear terms are computed
using fast Fourier transforms (FFTs). In principle, this
method may show the well-known aliasing errors,
although these errors are not expected to have a
significant influence on any flows with a steep spectrum.
However, severe aliasing errors appear when the
spectrum flattens, as is observed in many simulations; for
this reason, in all our simulations we make use of well-
known de-aliasing procedures [17]. Time marching is
performed by using a leapfrog scheme, combined with a
Euler predictor-corrector scheme at regular intervals. All
computations were performed using double precision, but

R, Benzi, B. Legras, and P. Santangelo, IBM ECSEC, Rome, private communication.
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we have observed that single precision can safely be used
during the late stages of the numerical experiments to
speed up the computation.

The numerical parameters of the models are initial
energy E = 0.5, superviscosity with p = 2, and
v,=2X 10~°. Wave numbers are normalized according
toK,=2x/A,J=0,1,2,---,512. The time step is
At =6.25% 107", and a total of 64 000 time steps have
been performed to reach time 7' = 40. The
computer code comprises only two-dimensional FFTs
[18] and double DO-loops, so that the entire code can
easily be vectorized over inner loops and parallelized over
outer loops. The computations were performed on an
IBM 30903/600 Vector Multiprocessor using both
MTF (MultiTasking Facility [19]) under MVS/XA’ and
PF (Parallel FORTRAN [20]) under MVS/XA or
VM/XA’-SP2. The video recording equipment used an
IBM AT’ Personal Computer as a VM/CMS terminal to
run the numerical experiment and simultaneously
download each image onto a random-access laser
videodisk recorder; no intermediate storage of images
was used, because this would have required a
prohibitive amount of mass storage (see Section 4 for a
detailed description of the visualization techniques
used.

o An experiment with a self-similar spectrum
In this first simulation we start from the spectrum

E(k) ~ k[1 + (ko)™ 'T", (11)

where k, is a reference wavelength. This is approximately
a KB spectrum E(k) ~ k for our choice of v = 3 and
k, = 6; wave components with a given wavelength are
generated as complex numbers with random phases and
modulus obtained from a Gaussian random generator
having zero mean and variance obtained from (11). As
already indicated, superviscosity is used, with p = 2 and
v, =2 X 107", Similar experiments have been reported in
[9, 15, 21].

Figures 1(a)—(f) show the most significant vorticity
frames of the numerical evolution, and the corresponding
videotape animation clearly indicates the many
concurrent physical mechanisms that take place. In
particular, one observes that the initial randomness is
rapidly lost, probably due to the observed intense
enstrophy dissipation of the initial phase. Concurrently,
some of the initial small-scale vorticity peaks organize
themselves into more and more regular structures that
interact strongly [Figure 1(b), ¢ = 5]. With time, the size
of the structures tends to increase, due to an
amalgamation process, up to a point where more or less

33090, MVS/XA, and VM/XA are trademarks, and AT is a registered trademark, of
International Business Machines Corporation.
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Decaying turbulence simulation of a Kraichnan—-Batchelor initial spectrum. Instantaneous vorticity fields at times r
= 10(c), t = 20(d), r = 30 (e), and t = 40 (f). Blue and red indicate clockwise and counterclockwise rotation. respectively. The color

0 (a). r 5 (b).

table is designed to enhance low-vorticity features significantly, as discussed in detail in Section 4; the maximum absolute value of vorticity
is lwl ~ 20. Starting from highly random initial conditions, the system forms vortices whose size increases with time. The entire evolution
shows several vortex collisions that usually lead to the merging of the two vortices if the encounter is close enough and the vortices have the
same sign. The simulation is performed using a de-aliased pscudospectral technique on a 512 X 512 grid of collocation points: supervis-

cosity is used, with p = 2 and v, = 2 X 10~ as in Equation (7).

isolated structures, hereafter named vortices, appear
increasingly well separated from the rest of the fluid,
which is more chaotic and of low absolute vorticity
[Figures 1(b) and 1(c), ¢ = 5 and 10]. The process that
most evidently leads to the increase in vortex size is
merging; this occurs when two vortices having the same
sign approach each other closely enough to eventually
combine into a single vortex. This phenomenon, shown
in detail in Figure 2 for a large vortex, has been studied
theoretically in [22] (and references therein) and appears
to be a nearly nondissipative process. More generally,
these vortices appear to behave like a set of charged
particles, as in electrostatics, but with an opposite
interaction sign; vortices with the same sign attract each
other, and eventually merge if they collide. In the case of
collision of vortices with different signs, a temporary
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dipolar structure (see Figure 3), well-known as a modon
(see, e.g., [2] and [23]), may form; its lifetime is generally
short due to the strong disrupting interference of the rest
of the vortices.

The phenomenon of merging is dominant during the
first stages of this decaying-turbulence experiment. With
time, one sees that larger and larger vortices form by
merging, at the expense of smaller ones [Figures 1(c)~(f)],
while a large fraction of small-scale vortices survives
because of the increase in interparticle distance and the
corresponding increase in collision mean free time. The
final phases of the simulation are characterized by a
hierarchy of vortices: the smaller the vortex size, the
larger the corresponding number of vortices [see Figures
1(e) and 1(f)]. We note that all vortices have roughly the
same maximum vorticity (same color intensity) in spite
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Detailed description of a merging event. Enlargement of Figure 1(e) showing a pair of blue (clockwise) rotating vortices, immediately after
the beginning of the collision. In (a) (r = 30) the vortices rotate in a low-vorticity background having a rough spiral pattern, and the circular
shape of the vortices already appears elongated because of their mutual interaction. In (b) (+ = 31) the vortices are close to merging.
In (c) (r = 32) merging has already occurred, and the newly formed vortex spins rapidly in an extended background; this is partly formed by
the debris of the merging process and is dominated by filamentary components which will dissipate in a few time units (see Figure 7).

Temporary modon. Around time ¢ = 16, a close collision of two
vortices having different signs gives rise to the formation of a
dipolar structure, or modon (see, e.g., [2] and [8]). Isolated
modons may be shown to be stable, but their survival in a
complex environment is closely related to the disrupting influence
of the rest of the field. The enlargement shows a somewhat
asymmetric and distorted modon which will decouple in few time
units. Among the many temporary modons which are formed
during the simulation, some may survive for many time units, as is
shown in Figure 4.
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of their very different sizes; in other words, all vortices
rotate with nearly the same angular velocity.

During the last phases of the experiment, one sees that
the fluid can be described more and more accurately as a
pair of different systems. The first comprises only the
vortices and appears to behave rather regularly; the
second, comprising the rest of the fluid, shows a much
more chaotic behavior and can be effectively imagined as
a separated fluid driven by the same vortices. We discuss
later some other results connected to this clear
decoupling of the flow.

Since the number of merging events tends to decrease
at the end of the simulation, it is interesting to undertake
a careful study of the trajectories of the isolated vortices.
Figure 4 indicates how, during this quiet phase, all
vortices move rather smoothly over very long time scales
(comparable to a crossing time, i.e., the time that a
vortex takes to cross the flow domain). It is also
interesting to simulate these trajectories with an inviscid
Hamiltonian describing a few interacting point vortices
to find a remarkable correspondence of the trajectories
(see [15] for details of such a comparison).

The phenomenon of the smoothness of vortex
trajectories, shown in Figure 4, is a remarkable one
because it shows how the most important degrees of
freedom of this turbulent flow, namely the vortices, have
a rather predictable motion over time scales of many
units.- This result is strengthened by comparison with the
time scales connected to the background fluid
component. These turn out to be much smaller, by more
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than an order of magnitude, as is shown in the more
detailed analysis found in [15]. This statement is further
strengthened by comparison with another small time
scale, the vortex spinning time: T, = 2n/w,,, ~ 0.15.

An important result concerning the dynamics regards
the time evolution of the energy spectra. This shows that
the initial spectrum E(k) ~ k™ is not stationary, but
soon changes toward spectra which still retain a similar
shape but show a much larger steepness (Figure 5).
Whether or not these decaying (and not forced)
experiments can be fully compared with the KB scenario
is an open question that requires more numerical
resolution and computing power. A preliminary
indication can be found in [11], where all high-resolution
forced e}xperiments show spectra significantly steeper
than k.

Vortex motion. The trajectories of the centers of the largest 25
vortices for the time interval 30-40. Thick and thin lines are used
for positive and negative vortices, respectively. Circle sizes and
segment lengths are proportional to vortex radii and velocities,
respectively. The vortices are defined phenomenologically as
those connected domains where |0l < w00, with @ 00 =
and vortex area = 0.01. During the represented time interval, two
merging events take place, and the number of vortices decreases
correspondingly. Note how vortex trajectories appear to be
relatively smooth over long time scales, of the order of at least
some time units; this is a remarkable phenomenon for a turbulent
system. These times are much larger than other time scales such as
the vortex spinning time, TSpin ~ 0.15; one also observes that small
vortices tend to move faster than large ones. This representation
shows a nice feature near the left side of the domain; a small-scale
dipole forms and lasts for at least ten time units, showing
approximately no interference due to the rest of the system; the
videotape shows this phenomenon in great detail.
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Log wave number

ik

Time evolution of energy spectra. The plot shows how a turbulent
flow, starting from a Kraichnan—Batchelor initial spectrum with
E(k) ~ k=3 and random phases, develops steeper and steeper
spectra over time. The thick solid line is time ¢ = 0, the dotted
line is r = 10, and the thin solid line is 7 = 40. The normalization
is 27E = f: E(k)dk.

;
:
g
|
i
:

The most important clue that characterizes the
deviation from the classical KB description is definitely
given by the fact that an approximate relationship
w = w(y) is found for each vortex in the (¥, w) plane
(Figure 6), thus indicating that all vortices are
approximate solutions of the stationary nonviscous two-
dimensional Navier-Stokes equation (7), J(y, w) = 0.
Because of this important property, and since vortices
contain the bulk of the total enstrophy, they can only
account for a small amount of the total dissipation. In
fact, since dissipation can act quickly only on small
scales, large-scale structures such as vortices cannot
dissipate appreciably. In other words, it happens that
most of the total enstrophy is trapped in vortices and
cannot flow toward small scales, thus inhibiting the main
flow mechanism which is the basis of the KB theory (see
Figure 7). On the other hand, the total enstrophy appears
to decay in Figure 7, thus indicating that a KB enstrophy
transfer mechanism really takes place, but only for the
dynamically negligible nonvortex component of the field.
This phenomenon is further illustrated in Figure 8, where
one sees that the nonvortex component (reasonably
defined as the domain where | | S @y eqniq) has a sharp
k™ spectrum, as predicted by the KB theory. All these
remarks further support the idea that the fluid is really
decoupled into two components, where the vortices play
the leading role and drive the background component as
if it were a passive scalar field [24].
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Stream function
=)
T

Vorticity

Coherent structures. Scatter plot of the stream function against the
vorticity at time ¢+ = 40. Vortices are defined as in Figure 4; the
stream function of each vortex is corrected for the velocity of the
corresponding vortex center according to the simple relation ' =

¥+ uy(x = X — u(y — yp). Each line corresponds to a single

vortex; the plot indicates that the vortices are coherent structures,
i.e., that they are solutions of the stationary nonviscous two-
dimensional Navier—Stokes equation (7), J(¢, ) = 0. Some of
the largest vortices show thicker lines, primarily because they are
strongly interacting with a neighboring one having the same sign,
and the previous correcting term should be further modified to take
rotation into account.

The high numerical resolution of the simulation
produces a large number of vortices, most of them small-
scale; Figure 9 shows statistics for vortex radii. The main
result is a quasi-self-similar statistical distribution, with

dN ~ R™"*dR. (12)

This empirical formula is obtained from numerical
simulation and is very probably the result of merging
mechanisms. Indeed, a simple evolution equation for
vortex populations undergoing merging events can be
formulated and gives results similar to Equation (12)
under very broad conditions [15]. These statistical results
are of great importance because they cast a definitive
light on the disagreement between the spectral slopes
given by the KB theory and those found in numerical
experiments. Indeed, under the reasonable assumption
(proven in [15]) that all vortices have the same
approximate radial profile, one can show that a self-
similar statistical distribution dN ~ R~ dR for the
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vortices implies a self-similar energy spectrum
E(k)~ k™, with =6 — « [15]. The application of this
formula to our experiment gives 8 = 4.02, in
reasonable agreement with the slope of the total spectrum
8 = 4.34 as in Figure 10; the same figure suggests a
similar conclusion from a graphical point of view. In fact,
the total spectrum appears to be the envelope of the
spectra of the single vortices, while the background
component is always negligible and does not appear to
play any significant role in the total energy balance. In
conclusion, the steep slope of the energy spectrum
emerging from the numerical simulation appears to be a
simple consequence of the statistical distribution of the
vortex radii.

The final picture emerging from the numerical
simulation is the following one:

¢ A hierarchy of coherent structures or vortices emerges
from the random KB-like initial conditions, mainly as
the result of coagulation processes such as merging.

¢ The vortices, though covering only a small fraction of
the total area, are the main dynamic component of the
system.

e Each vortex is an approximate solution of the inviscid
stationary Navier-Stokes equation and thus cannot
dissipate rapidly.

¢ The spectrum evolves through a series of self-similar
and increasingly steeper stages.

¢ The statistical distribution of vortex sizes determines
the slope of the energy spectrum and is, in turn,
determined by simple evolutionary models for vortex
populations which are based on merging.

» During the late stages of the dynamic evolution, the
trajectories of the vortices are rather smooth, over
many time units, in spite of the many small time scales
that can easily be found in the system.

All of these conclusions suggest that the relevant dynamic
variables of the system are the vortices and that the entire
system can be decoupled into two main parts: 1) the
driving mechanism, formed by the vortices, and 2) the
rest of the field, which is passively advected by the
vortices and shows a nearly classical KB-like behavior.

o The influence of initial conditions and the breaking of
scale invariance

An important question arising each time one tries to
derive physical results from numerical solutions is the
dependency of the obtained results on the initial
conditions. A second experiment on decaying turbulence
is presented here in order to check such a dependency; its
initial configuration is obtained from (11) with v = 6 and
k, = 6; this gives a steep spectrum, approximately

E(k) ~ k™%, and the corresponding configuration
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Enstrophy conservation. Enstrophy against time for the eight
largest vortices (solid line) and for the total system (dashed line).
The arrows indicate approximately the only two merging events
that take place during the represented time interval. Each merging
gives rise to a somewhat delayed enstrophy dissipation; this is a
result of the dissipation of the filamentary structures arising from
merging. Between merging events, vortex enstrophy tends to be
conserved, while total enstrophy (dashed line) decreases mon-
otonically.

Log energy

Log wave number

Spectrum of the background field. Energy spectrum of the vortices
(solid line) and of the remaining part of the field (dotted line) at
time + = 40. Note how the background component (defined by
lwl < 4) shows a nearly Kraichnan—Batchelor spectrum and indi-
cates a direct enstrophy cascade. This implies a corresponding
enstrophy dissipation, in agreement with the dissipation observed
for the nonvortex component of the field, as in Figure 7. The
spectrum of the vortex component is much steeper and always
dominates the background one.

Total number
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Vortex radius

Vortex statistics: Integral of the vortex radius distribution
function. Many plots are superimposed for different times in the
range ¢ = 30-40. Since the better-defined vortices are the large-
scale ones, the integral N(R) ~ f:mx n(R')dR’' is defined from
right to left. The slope of the fit is approximately & = -0.98.
One may wonder whether the indicated fitting interval and the
corresponding slope are the proper ones. In fact, there are several
reasons to restrict the fitting interval. First, the interval should not
include the large-scale vortices, because a small number of
vortices implies limited statistics. Second, a small-scale threshold
must be used to avoid the inclusion of filamentary structures or
spurious vorticity ripples. The lower radius threshold used for
fitting (radius = 0.06) corresponds to the area threshold
(area > 0.01) used to define vortices in all previous figures
(see, e.g., Figure 4). The slope obtained by this fitting is roughly
similar to the statistical result found in [15], where a self-similar
distribution function is more evident and probably corresponds to a
system which is dynamically much more evolved.

Log energy

-10 L
0 1 2 3

Log wave number

S R

Spectra of single vortices. Energy spectra of the 15 largest single
vortices (thin solid curves) and of the total vorticity field (thick
solid curve). It is readily seen that the vortices are the dominant
dynamic component. The vortices clearly determine the power-law
index 8 = 4.34 of the total energy spectrum.
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(@ (b) ©

Decaying turbulence simulation with a steep initial spectrum. Instantancous vorticity fields at times r = 0 (a), r = 2 (b), + = 5 (c).
t =10(d), t = 15(e), t = 20 (f), and 1 = 40 (g). The color table is as in Figure 1. Starting from a steep spectrum E(k) ~ &k~ °. despite the
random phases, only few degrees of freedom are really excited, and the initial state (a) is much more regular than in Figure 1(a). Over
time, the initial large-scale vorticity patches are stretched [(b) and (¢)| and the resulting vorticity filaments tend to break into small-scale
vortices, mainly as the result of inviscid instabilitics [(¢) and (d)|. Eventually, (¢) and () follow approximately the scenario described
by the late evolution of the system shown in Figure [. All the parameters of the simulation, including superviscosity, are the same as
in Figure I.

[Figure 11(a)] appears to be a rather regular one with they are very different from the ones studied previously;
well-identified and large-scale vorticity patches. The moreover, the use of steep initial spectra has been
interest for such initial conditions is intrinsic because triggered by the appearance of some numerical
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experiments [25-27], indicating that this class of initial
conditions really decays into a more classical KB-like
spectrum.

To study the influence of steep initial spectra more
extensively, a very high-resolution (1024 X 1024)
experiment [10] was integrated for a very long time. Here
we present a similar experiment at lower resolution
(512 X 512), in order to be comparable with the previous
one, again with the aid of the videotape recording
technique. Similarly, superviscosity is used, with p = 2
and » = 2 X 10~. The experiment confirms the scientific
results indicated in [10], namely that a spectrum
E(k) ~ k™ is really developed, but only as a transient
stage before a steeper asymptotic spectrum is obtained.
This previously unreported experiment also shows that
it is not necessary to use a huge spatial resolution to
demonstrate the scientific contents shown in [10]. The
numerical parameters and the total integration time are
the same as in the previous experiment.

Figure 11 shows the dynamic evolution of the system.
As already observed, the initial conditions of the
experiment exhibit large vorticity patches with sizes close
to the half-wavelength [, ~ =/k,. The dynamic evolution
almost immediately shows the formation of elongated
vorticity sheets (as shown in [25] or [26]), mainly as the
consequence of stretching mechanisms; at the same time
one observes the formation of a full inertial range similar
to the one predicted by the KB theory [see Figures 11(b)

and 12]; this corresponds to a fast accumulation of power

at small scales and, in turn, gives a direct enstrophy
cascade, again according to the KB theory. Successively,
around time ¢ = 5-10 [Figures 11(c) and 11(d}], the
appearance of the field begins to change, and a number
of well-formed, large-scale vortices with size of order /;
appear to be embedded in a complex background. The
tape animation shows how each large-scale vortex can be
traced back to a vorticity peak in the initial
configuration, so that this system appears to maintain a
remarkable memory of the initial conditions.

Around ¢ = 10, Figure 11(d) shows that the previous
filamentary background now contains many small-scale
vortices. The videotape shows these to be the result of
multiple breakings of the vorticity filaments or the
outcome of complex inviscid instabilities.

A global measure of the turbulent activity of a two-
dimensional system is considered to be the palinstrophy,
defined as

_ 1 > (7.
P_ZAf(vw) dxdy—J; k™ E(k) dk. (13)

Figure 13 shows the time evolution of the energy,
enstrophy, and palinstrophy. The rapid increase of
palinstrophy clearly indicates how the evolution that
takes place during the first five time units has a
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Log wave number

Time evolution of energy spectra. Energy spectrum E(k) of the
flow at time ¢ = O (thick solid line), r = 2 (dotted line), and ¢t =
10 (thin solid line). Note how the initial intense vortex-stretching
activity quickly accumulates power at small scales. All energy
spectra in the range 2 < r < 10 have slopes similar to the one
predicted by the Kraichnan-Batchelor theory, but the corres-
ponding configurations [shown in Figures 11(b), 11(c), and
particularly 11(d)] differ considerably.
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Palinstrophy
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Initial increase of turbulent activity. Energy E (dotted line),
enstrophy Q (dashed line), and palinstrophy P (solid line) as a
function of time for the entire run of the experiment.

i
i

substantially inviscid character, in agreement with the
observed formation of small-scale structures. The final
result is that the fluid flow is dominated by two
populations of vortices. The first comprises all large-scale
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Log wave number

Non-scale-invariant spectrum. Energy spectra of the largest
vortices (thin solid curves) and of the time-averaged energy
spectrum of the total vorticity field for 25 < ¢ < 35 (thick
solid curve). Vortices are defined as in Figure 4. Although
vortices are still the dominant dyamic component of the system, as
in Figure 10, the spectrum is no longer scale-invariant. The
vortices clearly belong to two different populations. The large-
scale population is a remnant of the initial condition, while the
small-scale one forms during the repeated fragmentations of the
many vorticity filaments which develop almost immediately after
the start of the simulation (see [10]).

vortices, and the second contains the remaining small-
scale vortices, formed by the fragmentation of the
vorticity filaments. Subsequently, a more classical
decaying phase begins and dominates the evolution;
merging events are the only mechanism which is able to
fill the gap between the two populations of vortices, while
some small-scale vortices may be dissipated on short
(advective) time scales due to the intense stretching fields
of the large vortices.

The spectrum resulting from the late time evolution
steepens increasingly with time and is shown in Figure
14. The most striking feature is the lack of scale
invariance (see Figure 10); the total spectrum again
appears to be the envelope of the spectra of the single
vortices, which are here recognizable as clearly grouped
into two separated populations.

An important tool that can be used to describe the
“state” of a turbulent system is due to Novikov {28] and
is given by the so-called centers of gravity, K, and K, for
the velocity and vorticity respectively; they are easily
defined by

o _ L0 KBk
Jg E(odk
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_J; K E(k)dk
2 KE(dk

Q

, o KE(k)dk

® ¥ E(kydk i
where K is a conserved quantity for an inviscid flow. A
system that evolves according to a classical KB scenario
should contemporarily show a direct cascade for
enstrophy and an inverse one for energy; the
correspondingly Novikov centers of gravity should
respectively increase and decrease with time. Figure 15(a)
shows a clear direct enstrophy cascade, but only during
the first five time units, followed by a more classical
decay phase; in Figure 15(b), which shows the simulation
that starts with the K~ spectrum, no such initial transient
appears.

Summarizing the results of the two experiments on
decaying turbulence, one sees that the initial conditions
are very important and that they influence the full
system, at least on time scales like the ones we have
investigated. Moreover, a steep spectrum induces a new,
nearly classical, KB-like transient phase that develops
into a non-self-similar asymptotic phase. This suggests
that a threshold value should exist that separates the
scale-invariant evolution observed with initial flat spectra
[such as E(k) ~ k] from the more complex behavior
given by steep initial spectra.

3. Three-dimensional flows

The high-resolution simulation of three-dimensional
flows is the current challenge for numerical fluid
dynamics. From the theoretical point of view, the
difficulties of the problem are shown by the same basic
statistical theories which indicate that the three-
dimensional problem is much more complex than the
two-dimensional one. In fact, the intrinsic number of
turbulent degrees of freedom is much larger, not only as
a consequence of the existence of the third dimension but
also because the dynamics are expected to be much more
complex. The last point is clarified by the fact that the
Kolmogorov spectrum [three dimensions, E(k) ~ kY 3]
is unfortunately much flatter than that described by
Kraichnan and Batchelor (two dimensions, E(k) ~ k]
in other words, three-dimensional dynamics extend over
a much wider range of scales.

The traditional and still most powerful simplification
of the problem assumes that it is not possible to study
numerically the many small scales of the system; some
physically reasonable theory must consequently be used
to simulate their behavior. Among the various attempts,
we cite eddy-viscosity models (see, e.g., [29]) and subgrid-
scale models (see [30] for a review), which are used to
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Initial inviscid behavior. Time evolution of Novikov’s centers of gravity K, (velocity), K, (vorticity), and K, as defined in Equation (14).
(a) Initial inviscid behavior. The flow that starts with a steep spectrum behaves like an inviscid flow during the first five time units. In fact,
the vorticity wave number increases during the first part of the simulation, thus suggesting an initial direct enstrophy cascade. No such
behavior is shown in (b), the simulation that starts with a flatter spectrum E(k) ~ k7.

simulate the nonlinear energy transfer and dissipation
that should take place on unresolved scales. All these
theories, also referred to as closure theories, have a strong
phenomenological character and are generally based
upon some reasonable assumptions. In any case, it is
clearly difficult to compress into synthetic laws the
detailed dynamics that should take place over a very wide
range of scales. One of the most recent and promising
theoretical developments is given by the application of
the renormalization group technique (proposed in [31])
as a new tool with which to approach the closure
problem for the Navier-Stokes equation (see also [32]).

A formulation of the Navier-Stokes equation for three-
dimensional incompressible viscous flows, particularly
well suited for the numerical integration, is given by

il .
M ixe—F 1—)+lu2 + vA& + forcing; (15)
ot p 2

this is obtained by simply substituting the vector identity
(3) in (2) [16]. As already discussed in Section 1, the
main fluid-dynamic content of (15) is inside the
nonlinear part, which is best shown in Equation (4)
where it clearly contains two parts: a vorticity advection
component and a vortex stretching component (see, e.g.,
[2]), which is a mechanism that tends to elongate
vorticity tubes.

From the numerical point of view, the three-
dimensional fluid dynamics problem is at present
severely limited, not only by traditional bounds on
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computer memory and computational power, but also by
the graphical representation of the three-dimensional
computer results, because of the need for simple and fast
tools to show the significant flow patterns. This is of
particular importance, since it is expected that three-
dimensional as well as two-dimensional flows could be
dominated by easily recognizable coherent structures (i.e.,
the inviscid solutions of the stationary Navier-Stokes
equations), even though these have not yet been defined
nor observed in detail (see [33] for an extensive review,
and also [34] for a more critical assessment). Interest in
the existence of coherent structures is dictated by their
nature; in fact, these could strongly inhibit the energy
cascade, thus changing substantially the global
Kolmogorov scenario. Some numerical and laboratory
evidence, supporting the presence of coherent structures
in three-dimensional flows, has been reported by many
authors and is based on the generally accepted
assumption that, although vortex stretching may tend to
destroy any initial large-scale flow, the dynamic evolution
continuously tends to produce a dynamic hierarchy of
structures (see [35] for an extensive review).

Equation (15) contains two nonlinear terms and thus
shows the complexity of any attempt to classify the
inviscid stationary solutions of the flow equations. On the
other hand, it is clear that a quantity such as the
alignment (cosine of the angle) between velocity and
vorticity must play a significant role in such a
classification. In fact, any significant parallelism or
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Two orthogonal vortex tubes, case 1. The initial condition of the
experiment is represented by isovorticity surfaces; the vorticity
value is o) = 12. The two vorticity tubes are initially orthogonally
offset and differ only in their radius, the foreground tube being
slightly larger than the background one. The observation direction
is defined in terms of the standard Euler-angles: ¢ = 45, 6§ =
-45, ¢ = 0. The computation has been performed using a de-
aliased pseudospectral code; the side of the cubic box is 2, the
grid size is 128 X 128 x 128; superviscosity is used, withp = 2
and v, = 2.625 x 1073; the time-step is At = 3.7 x 1073 and
time evolution is performed for 700 time-steps. The three-
dimensional rendering of the simulations is obtained on an IBM
6090 Graphics System with the aid of the IBM graPHIGS
Programming Interface using the Marching Cubes algorithm to
approximate the isovorticity surface; the software interface is the
ECSEC visualization tool. The surface is colored according to the
intensity of the velocity on the surface. One ambient light and
three different directional lights are used to brighten the scene and
cast shadows.

antiparallelism between these vectors implies a negligible
value of the cross-product # X @ and consequently
indicates the existence of a local approximate solution of
the inviscid and stationary equation (15).

Zabusky and Melander [36-38] have recently proposed
some numerical experiments that start from two
orthogonally offset vorticity tubes, in a simple cubic box
with periodic boundary conditions, to study how some
interesting types of three-dimensional instabilities
develop from simple initial conditions. These
simulations, though apparently simple, avoid the
complexity of starting from a more general initial
configuration and still retain many of the important but
poorly understood properties of three-dimensional flows.
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They address the problem of initial tube stretching and
the possibility of a later reconnection, and conclude that
no real reconnection is to be expected (at least on short
time scales), but rather a complex entanglement of the
initial vorticity tubes [36]. All of these experiments are a
good example of the difficulties of the numerical three-
dimensional problem, since not only powerful computers
are needed but also a sophisticated graphical output.
Melander and Zabusky almost always used three-
dimensional isovorticity surfaces to present the dynamic
behavior, but it is clear that any advance in the field of
graphical representation must be considered as
remarkable progress. Here we repeat and complement
some of their experiments with the aid of a time-
dependent videotape animation; different observation
angles are used to enrich the spatial comprehension of
the configurations. This turns out to be considerable
progress, since it avoids the storage of prohibitive
amounts of three-dimensional data, but the selection of a
given type of field (e.g., vorticity and not velocity) or of a
given value of isosurface drawing still strongly constrains
any further analysis of the dynamics.

Since we confine all our experiments to a simple cubic
domain, the numerical integration method is simply
based on the well-known and efficient pseudospectral
technique; the evaluation of the right-hand side of (15)
uses a two-step procedure consisting of time evolution
according to the shortened equation

DB
=

=aXx&+v,A%, (16a)

D
~

(which generally produces a non-divergence-free flow)
and removal of the compressible component of the field
using

A

=ﬁ—§(/?. i), (16b)

udivergence free

where i is a Fourier component of i; the entire
procedure is easily shown to be fully consistent with
Equation (15) [16]. Note how we generalize for
superviscosity as in Equation (7). De-aliasing is obtained
by averaging over two half-mesh-shifted grids and
truncating inside a sphere defined by K ’< 8/9K,2m [16];
time evolution is performed as for the two-dimensional
case, and the numerical code has been fully vectorized
and parallelized under MVS/XA using MTF
(MultiTasking Facility [19]). The side of the cubic box is
2=, the numerical resolution is 128 X 128 x 128; the
superviscosity parameters are p = 2, and v, = 2.625 X 107
the time-step is A = 3.7 X 10~, and time evolution is
performed for 700 time-steps.

Here we present a couple of numerical experiments,
case 1 and case 2, in which the initial condition,
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Entanglement of vortex tubes, case 1. Time 7 = 1.5. The time evolution of two initially orthogonally offset tubes produces the concurrent
development of many instabilities. The same configuration is shown from three different observation angles (a), (b), and (c). The two
original tubes, though highly distorted, appear to be well isolated, particularly in (c), and show no sign of reconnection; the configuration
shown here displays many small-scale secondary vortex tubes that bridge the gap between the main tubes. In reality, the terms isolation,
reconnection, and secondary vortex tube are highly misleading and are an artifact of the representation; in fact, no vortex reconnection takes
place, but rather a complex vortex entanglement, as is clearly shown in a previous computation by Melander and Zabusky [22]. The
observation angles are (a) ¢ = 0, 8 = -90, £ = 0, (b) ¢ = 45, 6 = 45, £ = 0, and (¢) ¢ = 135, 6 = 45, £ = 0. Since the coloring is
given by the intensity of the velocity field, one understands quickly the dynamic behavior of the system. The blue parts of the vorticity
isosurfaces indicate a slow velocity and hence a correspondingly slow motion of the fluid, and are generally connected to secondary
structures arising from the instabilities due to the nonlinearity of the equations. Conversely, the red surfaces indicate rapidly moving fluid
components and are generally associated with the original main vorticity tubes. The maximum values of the vorticity and velocity fields are

here wi ~ S0 and || ~ 6, respectively.

representing the orthogonally offset tubes of Melander
and Zabusky, is given by

&(F) = wy, exp {=L[(y — 7/3) + Z°}jé,
+ w,, exp (=L [x" + y’le_; (17)

for case 1 the parameters are w,, = wp, = 20, /, = 377,
and [, = 0.5; for case 2, w;, = 20, w, = 5, and
I =1=3"

o Discussion of the numerical experiments

The dynamic evolution of case 1 is the more interesting
of the two presented experiments, because initially the
two tubes are approximately equivalent (Figure 16) and
their time evolution is expected to affect both of them
strongly. At the beginning of the simulation, a highly
symmetric and nonlinear deformation appears near the
point of maximum closeness; this quickly develops into a
much more complex configuration. At the same time
many well-detached thick curvilinear vorticity tubes show
up near the center of the cubic domain, bridging the gap
between them (Figure 17). These structures tend to
increase in size and, in turn, give rise to other smaller
structures. The literature contains many names to
indicate structures such as those observed: vortex
filaments, vortex rings, hairpins, rolls, bridges, or ribs,
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and different terms for the possible dynamic phenomena
such as reconnection, entanglement, threading, cross-
linking, or cut-and-reconnection (see, e.g., [36-39]). The
wide taxonomy of these terms reflects the great
complexity of the three-dimensional problems and also
indicates that much progress has yet to take place in the
comprehension of the dynamics as well as the graphical
representation of the data.

The most interesting phase of this simulation occurs
approximately between times 1.5 and 2.5. During this
interval, it appears that the secondary structures that roll
up the two main tubes tend to squeeze them and to grow
thicker, so that around time ¢ = 2.5 an apparent cross-
reconnection happens (compare Figure 17 with Figure 18
and observe in detail the tape animation); this raises a
justifiable concern about the possible development of a
flow singularity and about the consequent accuracy of the
numerical model. Melander and Zabusky [36] have
discussed this problem in detail and have reached the
reasonable conclusion that simulations such as the one
reported here are numerically accurate enough, but that
no reconnection and no singularity really take place on
these time scales. Rather, an increasingly complex vortex
entanglement is seen. They argue that, even though
unresolved small scales could in principle be excited
during the apparent reconnection, there is no time for
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Three views of the ‘‘reconnection’” of vortex tubes, case 1. Time T = 2.6. The same simulation as in Figure 17 but at a later time, when the

apparent tube reconnection has already taken place.

1.50

5

Distribution

0.50

Cosine distribution, case 1. Normalized probability distribution of
the cosine of the angle between velocity and vorticity for all cells
where |w| < 12. The maximum of the distribution tends to shift to
the left with time, up to the apparent tube reconnection, indicating
how the tubes tend to become more and more antiparallel. After
‘“‘reconnection’’ the distribution flattens. The numerical pa-
rameters are the same as indicated in Figure 16.

any feedback on the tubes, which are large-scale
structures. Note how the ultimate evolution of the flow
loses any trace of the initial order and tends to show an
increasingly chaotic behavior.

The only attempt to analyze the flow mathematically is
done here in terms of the cosine diagnostics that we have
discussed previously to identify a possible degree of
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coherency inside the flow. Each initial vorticity tube is
clearly a coherent structure, at least from the pictorial
point of view, but is unfortunately characterized by the
orthogonality of the velocity and vorticity vectors, thus
eluding the cosine diagnostics itself; nevertheless, during
the dynamic evolution, a temporary helical negative
correlation of velocity and vorticity shows up (Figure
19), indicating an antiparallel phase and the presence of
some degree of coherence inside the flow. This coherence
fades away after the “reconnection.”

The initial conditions of case 2 are very different,
because the secondary tube i1s much fainter than the
primary one (Figure 20). The dynamic evolution is
correspondingly simpler because the main tube is only
slightly perturbed during the entire run of the
experiment. The only rapidly evolving component is the
secondary one, which is in turn continuously dragged
and stretched around the primary tube (Figure 21).
Later, the secondary vortex continues to circulate around
the main one while extending its influence further and
further from the central symmetry plane of the main
tube. Near the end of the simulation, two small-
amplitude ridges appear to travel in opposite directions
on the surface of the main tube; these are located on the
lateral edges of the complex formed by the circulating
secondary tube and are excited by its squeezing action
(see the tape animation).

4. Visualization techniques and the animation
tool

We have used two different visualization techniques for
our two examples; the difference is due to differences in
the dynamic phenomena of interest. The visualization
effort is also very different for two- and three-dimensional
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calculations because of the different quantities of data
produced for the two cases and the different techniques
adopted to display the dynamic quantities.

In numerical experiments on two-dimensional
turbulence, it is widely accepted that the vorticity field is
the most informative quantity to investigate (see for
example [2] and [3]); this is not surprising also because
the vorticity is a conserved quantity along the stream
lines of an inviscid two-dimensional flow. Many papers
report the results of computations using isovorticity
contours, which work well in identifying the formation
and evolution of coherent structures having a rather
regular and clear appearance, even for high-resolution
numerical computations.

On the other hand, contours are difficult to use while
investigating the properties of noncoherent structures
such as the background field, which has a low vorticity
value, or the vorticity filaments that are observed when
starting with smooth initial conditions. This happens
because of the extremely complex nature of the low-
vorticity structures; in these cases, contour plots are not
sufficiently informative, or are blurred by many small-
scale features.

A much more useful technique in the latter case is the
use of a color lookup table, which equally renders low-
and high-vorticity areas of the field and leaves the
evaluation of the picture to the strong capabilities of the
human eye. The lookup table translates vorticity
intensities into three 8-bit numbers for the three different
intensities of the red, green, and blue components so that
an RGB image can easily be displayed. Our lookup table

Two orthogonal vortex tubes, case 2. Isovorticity representation of
the initial condition of the experiment. The parameters of the
numerical experiment are here identical to those indicated in
Figures 16, 17, and 18. The secondary background tube is not
visible here because its maximum vorticity is below the
represented vorticity level, lwi = 6. The standard Euler angles
defining the observation direction are ¢ = 45, 8 = -45, £ = 0.

S O

is managed by the same FORTRAN program that
handles the numerical experiments and writes three RGB
files; the pictures are displayed using the IBM Image

complex structures.
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Entanglement of vortices, case 2. Time 7 = 1.5. The small vortex tube is now visible above the vorticity threshold (@l = 6 because its
strength has been increased by the continuous circular dragging due to the large tube; at variance with case 1, here the large vortex is only
slightly perturbed by the secondary one. The videotape shows tube stretching and compression of the large tube. The three observation
anglesare (a) ¢ = 0,0 = -90, £ =0,(b) p = 45,0 = 45, £ = 0, and (c) ¢ = 135, § = 45, £ = 0. Note how the slowly flowing
green and blue parts of the isovorticity surface are generally connected to the secondary tube, which continuously generates more and more
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Access Executive (JAX) [40] with a variety of methods
and devices, including the IBM 5080 Graphics System
for photographic acquisition, and standard terminals
such as the 3179 for monitoring the numerical
calculations.

We have found very useful a “standard” lookup table
for vorticity, where blue and red indicate clockwise and
counterclockwise rotation respectively, while low-
vorticity features are strongly enhanced empirically by
using light-blue, green, and white. This has proven to be
particularly effective because the observer can focus his
attention on the desired structures by selecting the color.
Figures 1, 2, 3, and 11 were obtained with this lookup
table and are full-resolution reproductions of the original
simulation.

An important component for the comprehension of
the dynamic phenomena is time. This can be included if
a video animation is produced; it is our opinion that this
new and attractive way of presenting the results of the
numerical computations will gain more and more
momentum because of its intrinsic ability to display the
results quickly. This opinion is validated by the fact that
an increasing number of journals offer videocassettes in
addition to the technical papers. This issue of the /BM
Journal of Research and Development is an example of
this new publishing technique; we can also cite [41] as
another example where scientific results have been
complemented by videos.

The video animations of the numerical simulations
were obtained through the use of the two-dimensional-
turbulence FORTRAN simulation program that
periodically dumps on mass storage a temporary copy of
the three RGB components of the vorticity field and
sends them to a VM virtual service machine that
manages the recording of the analog color video images.
This virtual machine receives the data and sends them to
an IBM AT Personal Computer running a program that
contemporarily manages the RS-232C command
interface to a SONY LVR6000/LVS6000* laser videodisk
recorder and a VISTA® card that provides the translation
of the RGB components into a video signal. Since the
laser videodisk is a random-access device, it is worthwhile
to note that this method easily allows for the video
recording of data coming from different numerical
experiments. In fact, the virtual service machine makes
no distinction as to the sender of the data, which may be
any user on any operating system (e.g., another remote
VM, MVS, or AIXG) connected to the network, provided
that a unique network data format is used. Besides
recording, a useful set of general commands can be sent
to the VM service machine: These include a request for a

; SONY LVR&E000/LVS6000 is a trademark of SONY Corporation.

VISTA is a trademark of TrueVision Inc.
AIX is a registered trademark of International Business Machines Corporation.
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listing of the recorded frames or a request for a playback
of some animations for the observation or the reversal of
a standard videotape recorder. Our multi-user videodisk
recording complex will be reported in more detail
elsewhere [42].

Three-dimensional flows are a challenge for currently
available visualization techniques; one can safely state
that no conclusive method is yet known. Three-
dimensional scalar fields are manageable, since the two-
dimensional concept of iso-intensity contours can be
extended to three-dimensional iso-intensity surfaces, at
least from the conceptual point of view. However, three-
dimensional vector fields cannot be represented easily,
unless they are sufficiently smooth or are described by a
low number of effective degrees of freedom. In the
general case, a sufficiently accepted way of representing a
three-dimensional vector field consists in plotting the iso-
intensity surfaces of the modulus of the field together
with a color that represents the local intensity of a second
three-dimensional scalar field. This is a relatively viable
procedure because two related quantities, out of the three
components of the required vector field, are represented
concurrently. On the other hand, there exist much more
imaginative solutions, such as those presented in the well-
known video on the numerical simulation of tornadoes,
produced by the NCSA Visualization Production Team
of the University of Illinois at Urbana (see, e.g., [41]).

All visualizations of the three-dimensional flows
presented in this paper are based on the representation of
iso-intensity surfaces of the modulus of the vorticity field
and are colored according to the value of the modulus of
the velocity field on the surface. The color table used to
represent the velocity was chosen according to the
rainbow rule. This shows blue and red for low and high
velocity respectively; correspondingly, the green and all
the other intermediate rainbow colors refer to
intermediate velocity values. In three dimensions it may
certainly be argued that isovorticity surfaces are not the
best candidates to represent the resuits. Nevertheless, this
is the solution used most often to date, at least in the case
of incompressible flows. See also [43] for another
example of representation of a similar numerical
experiment.

The construction of the isovorticity surface is done at
run time by a FORTRAN subroutine that builds a set of
triangles approximating the desired surface according to
the Marching Cubes algorithm [44]. This algorithm has
the advantage of being very simple and effective, since it
analyzes the computational lattice on a cell-by-cell basis
and is parallelizable. Moreover, it is very fast because it is
based on a simple lookup table that directly determines
the number and the intersections of the triangles
contained in each computational cell.

The production of the final rendition of the three-
dimensional flow is based on the three-dimensional
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graphical capabilities of the IBM 6090 Graphics Systems.
These are exploited using the graPHIGS’ 2.1
Programming Interface [45, 46], which allows the user to
easily exploit the hardware of the IBM 6090 Graphics
System for complex functions such as hidden-line
removal, hidden-surface removal, lighting and shading
effects, surface transparency, and depth cueing, in
addition to simpler functions such as rotations and
translations.

A user-friendly interactive environment that exploits
graPHIGS 2.1 has been developed at ECSEC to fully
analyze any combination of many-colored scalar fields
over different and generally unconnected grids. The
three-dimensional numerical simulation program has
produced three different videos, corresponding to three
different observation directions, using a FORTRAN
interface to the above-mentioned ECSEC Visualization
Environment. The three-dimensional videos were
produced by reading the IBM 6090 frame buffer, using
graPHIGS, and sending the red, green, and blue
components directly to the videodisk service machine
while the computational program continues its execution.

5. Conclusions

This paper is intended to show how videotape animation
can enrich the comprehension of numerical simulations
of two-dimensional turbulence and three-dimensional
flows.

The scientific results obtained for two-dimensional
turbulence are supported by a large body of graphical
data, derived mainly from a sophisticated mathematical
analysis of the numerical simulations (see [5, 8-10, 15]).
On the other hand, the newly adopted method of analog
color video recording appears to be a breakthrough,
because many of those results can be perceived at a
glance, just by playing the videotape. This is particularly
evident not only for simple understanding of the time-
dependent formation of the vortices (and the related
merging events) but even for the more complex
comprehension of the segregation of the time scales. In
fact, the videotape easily shows how the motion of the
vortices is quite regular, at least during the last phases of
the dynamic evolution; in any case, it involves time
scales much larger than any other time scales. Vortex
circulation time, for example, can be very well
appreciated from the videotape, especially during the
many merging events.

Conversely, in the field of three-dimensional flows,
mathematical analysis has never been able to provide any
synthetic description of the behavior of the system,
except for some limited results; a graphical representation
of the three-dimensional fields still appears to be the only

! graPHIGS is a trademark of International Business Machines Corporation.
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useful tool. Now time-dependent animations, such as the
ones presented here for different observation directions,
appear to cast more light on the dynamic evolution and,
while confirming some of the previously published results
([36]), will probably become a standard in the near
future.
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Tape caption

The tape contains the video animation of the two high-
resolution (512 X 512) numerical experiments of
decaying turbulence described in Section 2. The first

one starts from a Kraichnan-Batchelor spectrum

[E(k) ~ kK, Figure 1]; the second one starts from a steep
spectrum [E(k) ~ k~°, Figure 11]. In both cases we show
the evolution of the vorticity field for 40 time units; the
colors are the same for Figures 1 and 11. Successively, we
present animations of the dynamic evolutions of two
initially orthogonally offset vorticity tubes with numerical
spatial resolution 128 X 128 x 128 as described in
Section 3. An isovorticity surface representation is used
to show the evolution. The first three pieces show the
same system, namely case 1, composed by two initially
approximately equal vorticity tubes, as seen from three
different observation directions; the isovorticity value and
the Euler angles are as in Figure 16. The second three
pieces show the dynamic evolution of case 2; here, the
secondary vortex is initially much fainter than the
primary one. The dynamic evolution makes the
secondary vortex tube visible above the chosen vorticity
threshold as a consequence of its continuous stretching,
resulting from circular dragging around the main tube.
The isovorticity value and the Euler angles are as in
Figure 20.
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