108

Visualization
of molecular
dynamics

via ray-tracing
and animation
In a vectorized
environment

by G. N. Williams
E. L. Nelson
D. M. Barnett
K. Parmley

Scientific visualization methodologies are being
utilized increasingly in attempts to understand
physical phenomena via mathematical and
simulation model results. Presented herein are
the results of a visualization project which
produced a vectorized, high-resolution, ray-
traced animation of the dynamics of a protein
molecule. The resulting animation was recorded
on 35-mm film, with a resolution of 1024 x 1024
pixels with 24 color bits. Run-time statistics
were also collected which relate image
generation parameter ranges and
interdependencies.

Introduction
“The purpose of computing is insight, not numbers.”
Richard Hamming [1]

“The goal of visualization is to leverage existing scientific
methods by providing new scientific insight through visual
methods.” B. H. McCormick et al. [1]

The above quotations are truly relevant in today’s
world of scientific data. Current data acquisition
capabilities and supercomputational modeling
capabilities are generating data faster than contemporary
interpretative methodologies can manage. As a step
toward the solution of this problem, visualization
capabilities must be significantly enhanced, or the
scientific community will—sooner rather than later—be
buried by the mountains of numbers generated by its
own software.

The scientific visualization project reported in this
paper was initiated as an experiment to evaluate the

©Copyright 1991 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

G. N. WILLIAMS ET AL.

IBM I. RES. DEVELOP. VOL. 35 NO. 122 JANUARY/MARCH 1991

interpretative capabilities of the data/information
interface, and to investigate the computational efficiency
of specific imaging algorithms. In particular, the
objectives of this research were to utilize visualization
methodologies to enhance the understanding of
molecular dynamics, and to study the performance of
scalar and vector versions of ray-tracing image synthesis
software.

The results of the research include a film entitled A
Molecular Voyage. This animation sequence is composed
of ray-traced images which were recorded on 35-mm
film. Each image resolution is 1024 x 1024 pixels, with
24 color bits each.

The paper addresses the following topics:

o The enzyme, porcine pancreatic elastase.

o Choreography and animation techniques.

o Image generation via ray-tracing.

o Scalar/vector statistics for ray-tracing algorithms.

The enzyme

Enzymes are a class of proteins that regulate the chemical
activity in cells. Every enzyme serves as a catalyst for a
particular chemical reaction. The molecules that
participate in the reaction regulated by the enzyme are
called the enzyme’s substrates. The substrates can bind to
an area on the surface of the enzyme called the active
site. Once the substrates are bound to the active site,
chemical bonds can form or break within them. The
altered molecules are then released from the enzyme,
which remains chemically unchanged.

The specificity of an enzyme for a particular chemical
reaction is a result of the specificity of the active site in its
ability to bind with particular substrates. The three-
dimensional structure of the active site determines which
molecules may bind to it as substrates, in the same way
that a lock requires a specific key. Thus, an appreciation
of the structure of an enzyme is important in
understanding how it functions.

The dynamics of an enzyme are as important as its
structure. Enzymes undergo conformational changes that
alter the charge distribution at the active site, bringing
about the chemical changes that occur in the substrates.

Computer animation is a useful tool for studying
structure and change, in contexts ranging from chemistry
to cosmology. Processes occurring in picoseconds or
millennia, across nanometers or light years, can be scaled
into a size and time frame appreciable by the human
observer.

Working with biochemistry researchers at Texas A&M
University, we obtained results of atomic-level molecular
simulations that depict the structure and dynamics of the
enzyme porcine pancreatic elastase, With these data, the
two-part film A Molecular Voyage was created.

IBM J. RES. DEVELOP. VOL.35 NO. 172 JANUARY/MARCH 1991

¢ Still photograph of the active site of porcine pancreatic elastase,
% taken from Part 1 of A Molecular Voyage.

Part 1 depicts the active site of the enzyme. The
camera flies around and through the atoms, which are
modeled as semitransparent spheres. The radius of each
sphere is determined by the van der Waals radius of the
atom it represents. Red spheres represent oxygen atoms,
blue spheres represent nitrogen, and black spheres
represent carbon. Figure 1 is a photograph of the active
site. Figure 2 identifies the amino acid residues depicted
in Figure [. Another view of the active site is shown in
Figure 3.

In Part 2, the whole enzyme is shown, without the
hydrogen atoms. In addition, the molecule is animated
using the results of the simulation of its conformational
changes. Figure 4 is a photograph of the entire molecule.

Choreography and animation

Animation is the creation of a sequence of images that
gives the illusion of motion or “life” by modeling the
changes in a set of objects over time. Any property of an
object can be animated: typically position and
orientation, but also color, reflectance, transparency,
texture, shape, etc. In addition, the position, color,
intensity, and other properties of a light source can be
animated.

The world depicted in 4 Molecular Voyage consists of
an elastase molecule, 600 randomly distributed
background spheres, the virtual camera (i.e., the view
reference point and the normal to the viewplane,

G. N. WILLIAMS ET AL.

109

110

/
0
\C/C\
Serine O~C
?
0 c—C
<':\C NN
X v Threonine |/
C
N 0 /
\7 o \C/IC o /C\N 'I'meinine
c\—'C Serine Oy / Serine
o ARy
Threonine 000

c —N

N\ ¢ O == Solhite (H,0)

e & N /\c o H,
ine

\((g \

I\{ [8}
(o S Aspartate
0™ TC=C . Giewedalong
axis of carbon
chain in photograph)

Schematic of the active site of porcine pancreatic elastase, as viewed
in Figure 1, showing amino acid residues.

Still photograph of the active site of porcine pancreatic elastase,
taken from Part 1 of A Molecular Voyage.

hereafter referred to as the viewpoint and view direction,
respectively), and three light sources: one above and one

G. N. WILLIAMS ET AL.

below the molecule and one that follows the camera, or
the “miner’s light.”

The main animation tasks in making 4 Molecular
Voyage were to realistically depict the conformational
changes of elastase and to move the camera smoothly
around and through the molecule.

Key-framing was used to animate the position and
orientation of the camera. The camera position was
interpolated by a combination of natural cubic splines
and interactive sketching, Camera orientation was
specified by selecting one of two functions: (1) tracking
the molecule or (2) looking forward along the camera
path. Interpolation was accomplished by blending the
two functions to ease the transition from one view
direction to the other. The techniques presented for
animating the camera could be applied to any object,
although a different representation of orientation may be
appropriate for objects other than cameras.

The camera position is specified in rectangular
coordinates. For each key-frame, the animator gives the
(x, v, z) coordinates of a control point and a frame
number. The interpolation software then calculates the
coordinate values for each frame between two key-
frames, so that the camera arrives at each control point at
the specified time.

Linear interpolation is not satisfactory here, because it
leaves discontinuities in the first derivative at each
control point, resulting in noticeable jerkiness of motion.
Commonly, spline functions are used to guarantee
second-order continuity (i.e., continuity of position,
velocity, and acceleration) throughout an object’s path.
Natural cubic splines [2] were used to interpolate the
camera position.

Splines are sensitive to changes in the spacing of
control points along the abscissa. Since key-frames are
not necessarily spaced evenly in time, splining position as
a function of time (or frame number) causes a vexing
problem: Changing the timing can change the camera
path. Changing the frame number of a key-frame so that
an object will arrive at the control point earlier or later
can cause the object to take a different path to the control
point. It is desirable to make the path geometry
independent of the timing of the motion, while ensuring
second-order continuity of both the path and the object’s
motion along the path.

A double-interpolation method [3] was used to
separate the path from the timing. First, the key-frames
are numbered K =0, 1, 2, - - - , n. The control point
positions P = (x, y, z) are then splined as functions of
key-frame numbers. Unless key-frames are added or
deleted, the shape of the path does not change.

The second interpolation step is to spline the key-
frame number K as a function of frame number ¢. This
curve determines the timing of the camera’s motion.

IBM J. RES. DEVELQP. VOL.35 NO. 1/2 JANUARY/MARCH 1991

Frame numbers can then be changed to speed up or slow
down the object without affecting the path taken.

Because P(K), which equals [x(K), ¥(K), z(K)], is a
set of natural cubic splines, the camera’s path has second-
order continuity. Furthermore, it is easy to show that the
composite function P[K{(¢)], defining the object’s motion
over time, also has second-order continuity. The result is
smooth, seamless animation.

One caution is that the timing curve K(¢) should be
nondecreasing. A decrease in K(¢) would cause the object
to move backward along its path.

Camera orientations can be specified by Euler angles
(pitch, roll, yaw), quaternions [4, 5], or axis angle and roll
angle. It has been demonstrated that quaternions have
many advantages for interpolating orientations of objects
when the main requirement is that rotations be done
smoothly, and the orientation at frames other than key-
frames is not particularly important. However, in
animating a camera, additional requirements may be
imposed. For instance, in A Molecular Voyage there are
two major modes of camera orientation: tracking the
molecule and looking forward along the camera’s path.

To impiement the tracking and forward-looking modes
of camera operation, the axis-angle and roll-angle
representation seems most natural. In the tracking mode,
the axis (or view vector) is the vector from the camera
position to the center of the enzyme. In the forward-
looking mode, the view vector is the tangent to the
camera path. This tangent vector was approximated by
taking the vector from the current position to the next
position. In both modes, the default roll angle is zero; i.e.,
the “up” direction for the camera is in the plane of the
view vector and the y-axis.

Rather than specifying an arbitrary orientation at each
key-frame, the user selects a mode of camera operation.
If a key-frame and its successor both specify tracking
mode, the normalized view vector at each point on that
segment of the path is

o) - C(t)

YO =Towy —cor

()
where ¢ is the frame number, O(¢) is the position of the
object of interest, and C(¢) is the position of the camera.

If a key-frame and its successor both specify forward-
looking mode, the normalized view vector for that
segment of the path is

Cit+1)— C(

O =Tcav n=cor

@)

where, again, ¢ is the frame number and C(¢) is the
camera position.

When the modes at successive key-frames differ, the
view vector must be interpolated from one mode to the
other. This interpolation is accomplished by a blending

IBM J. RES. DEVELOP. VOL.35 NO. 12 JANUARY/MARCH 1991

Still photograph of the complete molecule of porcine pancreatic
elastase, taken from Part 2 of A Molecular Voyage.

function, a. The blending function must be defined on
the interval [0, 1]. To interpolate from the vector

function V,(¢) at frame ¢, to the vector function V(1)
at frame ¢

> €ach frame number ¢ must be scaled into
the interval [0, 1], namely

t—1
t - .. st i (3)

scale
lend ts!an

Then the view vector at frame ¢, for¢, <1<t ., is

start — end?
V(Z) = a(tscale) * Vz(tscale) + [l - a(tscale)] * Vl([scale)‘ (4)
This equation assumes that |V, | = | V,| = 1.

A good blending function should range smoothly from
a(0) = 0 to «(1) = 1, and should be flat at 0 and 1 to
move smoothly from one camera orientation to the next.
Good results were obtained by using

a(t) = 0.5 + 0.5sin[x(t - 0.5)], O=s:=1 (5)

There is one major drawback to the axis-angle
representation, when the roll angle is defined so that the
camera is always “upright” relative to an arbitrary global
axis. There will be a discontinuity in the roll angle when
the camera points straight up. If the camera swings near
vertical, it will perform a disconcertingly rapid roll to
maintain its uprightness. This problem is actually
demonstrated after the third pass through the enzyme’s
active site in Part 1 of the film.

G. N. WILLIAMS ET AL.

111

112

A photograph showing visualization effects that can be achieved by
using ray-tracing techniques.

The authors developed software written in the C
language for graphics workstations for key-framed
computer animation. To assist the user in producing the
key-frame data, there are programs for displaying and
editing the interpolation curves and for previewing the
animation using simplified rendering procedures. The
animation can be previewed in real time by displaying
only the connections between atoms, or more slowly
using z-buffered polyhedral models. Though these
programs form the core of a general-purpose animation
package, many of the interfaces were designed for the
particular requirements of 4 Molecular Voyage.

The animation of elastase in Part 2 was taken directly
from the molecular simulation data. The simulation of
the molecular dynamics of elastase resulted in sets of
coordinates for the atoms of the molecule, taken at
intervals of five picoseconds. Every third set of
coordinates was used to generate images of the molecule.
Shown in sequence at a rate of 12 frames per second, the
images become a movie of the molecular dynamics, with
one second of movie time corresponding to 180
picoseconds of real time.

Also in Part 2 of the animation sequence, the atoms of
the active site were grouped separately from the rest so
that they could be faded in first, emphasizing the location
of these important atoms.

After a sequence of frames had been created,
previewed, and modified until the animation was

G. N. WILLIAMS ET AL,

A photograph showing visualization effects that can be achieved by
using ray-tracing techniques.

satisfactory, the data for each frame were passed to the
renderer, developed in FORTRAN for the IBM 3090’
processor. The renderer produced ray-traced images
which were stored digitally and later recorded on film.

Image generation o
Since the appearance of Whitted’s [6] description of the
basic procedure, ray-tracing has become exceedingly
popular as a technique for image synthesis. Its many
advantages over other image synthesis techniques include
the ability to simultaneously model the effects of
reflections, refractions, and both multiple and variably
configured light sources. Figures 5 and 6 illustrate some
of the possible effects.

From the infinite set of rays emitted from a light
source, only those rays arriving at the viewpoint are
modeled. This is achieved by the “backward” tracing of
the light rays from the viewpoint through an image plane
1o intersection points. At each intersection point, a
reflectance ray, a refractance ray, and a shadow ray for
each light source are generated. The reflectance and
refractance rays are recursively treated identically as an
incoming ray. The shadow rays are different in that they
do not spawn reflection and refraction rays. Figure 7
illustrates the basic physical phenomena being modeled.

Many enhancements to ray-tracing have been
described [7-10]. Most of these modifications represent

' 3090 is a trademark of International Business Machines Corporation.

1BM J. RES. DEVELOP. VOL. 35 NO. 12 JANUARY/MARCH 1991

attempts to produce improved images, achieve additional
special effects, or compensate for ray-tracing’s few
shortcomings (e.g., aliasing). However, one very
fundamental problem still exists with all approaches to
ray-tracing: cost.

Prohibitive costs often preclude the use of ray-tracing
as a visualization tool. Mechanisms for reducing the cost
of the technique have been the subject of extensive
research [10, 11]. As part of this research, a ray-tracer was
developed for the IBM 3090 processor with a goal of
maximizing the use of the Vector Facility so that
execution time could be minimized.

The ray-tracer for this project is quite basic. Molecular
dynamics, the subject of this imagery, is modeled entirely
with spheres. While this geometry is simple, the actual
ray-tracing problem was nontrivial due to the number of
spheres being modeled and the nature of the desired
visual effects.

Light source

Object 2

/ Object 1
View = wwmme = Original ray
point = = = = = = = = Reflection ray
Refraction ray
—_— Shadow ray

The physical phenomenon being modeled consists of tracing light
rays backward from the view point. The ray arriving from any given
direction is the sum of all rays that reflected off or refracted
through an object. Shadow rays are cast from each intersection point
to each light source so that the amount of light arriving at the view
point can be determined.

%
i
%
g
i

IBM J. RES. DEVELOP. VOL. 35 - NO. 1/2 JANUARY/MARCH 1991

Series of
reflection rays

Original ray

,ii Reflections are calculated as described in Whitted [6]. The number
g of levels of reflection is arbitrary; however, the existence of more
| than two or three levels is rare in nature.

The most important special effect desired was
transparency so that the viewer would not lose his
perspective when viewing the molecule at close range;
i.e., landmark atoms and structures would not be
obscured by intervening atoms. Also, atom radii were
kept proportional to the van der Waals standard so that
bonded atoms would intersect. Thus, the bonds could
still be visualized, and cylinders, which are generally used
to represent bonds, would not be needed.

The ray-tracer follows that of Whitted [6], and
comprises two phases. In the first phase, ray-sphere
intersections are computed by recursively generating
reflective and refractive rays to a specified depth. When
refractive rays are generated, the next intersection point is
the other side of the object that it just entered. At this
point, new reflective and refractive rays are again
generated—but it is the refractive ray that exits the
object. The reflective ray begins the generation of a series
of internal reflection rays that continues to the depth of
recursion. Figures 8, 9, and 10 illustrate this section of
the ray-tracer.

The second phase consists of casting a shadow ray
from each intersection point to each light source. The
shading model follows [6, 12, 13]. If a shadow ray

G. N. WILLIAMS ET AL.

113

Series of
refraction
1 rays
1
]
¥
]
1
]
/
7 Originat ray

Second-level refraction

First-level refraction

First of internal
reflection series

Reftactions are calculated as described in Whitted [6]. Each object | "
in the world may have a unique index of refraction. As with reflec- % Once a refraction ray is produced, a series of internal reflection rays

tions, the number of levels of refraction is arbitrary. is begun. The series ends at the maximum level of reflection.

114

intersects a transparent sphere, the shadow ray is cast
again toward the light source, with the intermediate
intersection point as a new origin for the shadow ray.
The total contribution by the given light source is the
product of all transparency factors from all objects
intersected by the shadow ray. This recasting of shadow
rays continues until either the light source is reached or
an intersection with an opaque object occurs. Figure 11
illustrates this ray-tracing phase.

Many refinements can be made to the basic algorithm
stated above, which in themselves would make no visual
difference but would reduce cost. For example, the
recasting of shadow rays through multiple objects may
seem pointless, since the final contribution is likely to be
very small. Similarly, the continued generation of
internal reflection rays down to the maximum level of
recursion could be wasteful. However, with the intent of
comparing different approaches to minimize the cost of
the ray-tracer, the basic problem, i.e., the generation and
management of rays, still exists. All of the refinements

G. N. WILLIAMS ET AL.

that are commonly used and that do significantly reduce
computer time can be incorporated in all of the
approaches and will reduce cost equally, but do not aid
in illustrating the benefits of one approach over another.

Three unique approaches were taken to implement the
ray-tracer. The first is designed to execute on a scalar
processor and contains no vectorized loops. It employs
parallelepiped extents stored in an octree structure.
Execution cost is reduced by first traversing the octree
structure until an octant contains a single object. At this
point, the intersection between the ray and the object is
computed. This method delays the expensive ray-object
intersection calculations by eliminating regions of space
where intersections will not occur.

The two other techniques are intended to execute on a
vector processor. The first computes the vector
intersections of a single ray with all objects in the scene.
The second takes a single object and computes its vector
intersections with V7 rays, where ¥ has been set to a
multiple of the hardware vector length; for the IBM 3090

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991

generate a ray from vp to Pixel (x,y)
c
c—> Generate intersection tree first

for level i of intersection tree
for node j of level i
search octree for closest octant with intersection
calculate intersection points
generate reflective and refractive rays
c
c—> Compute shading components for each intersection point

for each level i of intersection tree
for each node j of level i that contains an intersection

for light source k

generate ray from intersection node(i,j) to light source k
while ray intersects objects

search octree for closest octant with intersection
calculate shading component

endwhile

Scalar octree.

Table 1 The factors that contribute to the cost of computing
and imaging via ray-tracing.

Factor Description
a Number of objects
8 Number of light sources
6 Image resolution
Y Depth of reflection/refraction
¢ Object surface characteristics, e.g., reflectivity,

transparency, and index of refraction

0] Scene geometry
P Number of rays generated
A Number of pixels composing the image

processor this is 64 for double precision and 128 for
single precision.

The algorithms for each approach are given below. All
versions of the software run on an IBM 3090, under
MVS/XA,’ using Version 2.3 of the vectorizing compiler.

Scalar/vector statistics for ray-tracing
algorithms
In comparing the run-time characteristics of each
approach, it is necessary to minimize the individual
variances of each factor that contributes to the total cost
of execution.

The calculation of a single metric as a function of the
factors described in Table 1 is very difficult. For example,
by varying the relative positions of the objects and

*MVS/XA is a trademark of International Business Machines Corporation.

IBM J. RES. DEVELOP. VOL.35 NO. 1/2 JANUARY/MARCH 1991

generate a ray from vp to Pixel (x,y)
c—> Generate intersection tree first

for level i of intersection tree
for node j of level i
for each object
calculate intersection points
for each object that intersects
find closest
generate reflective and refractive rays

c¢—> Compute shading components for each intersection point

for each level i of intersection tree
for each node j of level i that contains an intersection
for light source k

generate ray from intersection node(i,j) to light
source k

while ray intersects objects

for each object
calculate shading component
endwhile

§ Vector on objects.

while pixels are left to ray trace
generate MAX_Q_SIZE - Q_SIZE rays from vp to pixels

while V rays are available for intersection
for object i
intersect N rays with object i
keep closest intersection points

for each shadow ray
if ray intersects then
generate new origin
else
compute shading component

for each non-shadow ray that intersects an object
generate reflective, refractive, and
shadow rays
endwhile
endwhile

T—

Vector on rays.

keeping all other factors constant, run-time execution can
vary by orders of magnitude. This is explained by the
following. First, the number of rays generated can
change, since the number of pixels having rays which

G. N. WILLIAMS ET AL.

115

116

Series of
shadow rays

At each intersection point, a ray is cast to each light source. The
transparency value for each object lying between the light source and
intersection point is multiplied to compute the magnitude of light
arriving at the intersection point.

intersect objects can vary. Second, the relative position of
the objects also affects the quantity of reflective and
refractive rays that are generated. Thus, there is no
simple direct method—short of ray-tracing—that wilt
compute the effect of the placement of objects on run-
time execution.

However, in demonstrating the differences among the
three approaches, an empirical study was made to
determine a measure of the complexity of the scene
definition input. The effect on cost by variances in
scene geometry (©) is approximated by Equation (6).
The metric scene complexity (C) is computed using
Equation (7):

G. N. WILLIAMS ET AL,

125 Scalar mode
algorithm 3
100
Scalar mode
algorithm 2
= 75
~ Vector mode
E algorithm 3
]
g
g
d s
Vector mode
algorithm 2
25

Scene complexity

Scalar and vector execution times as a function of scene complex-
ity for the vector on objects algorithm (2) and the vector on rays
algorithm (3).

I1G, v, p,) = 6, (6)

116, o, By — C. M

The scene complexity of an input file comprises both
user-defined characteristics and run-time statistics. This
metric was computed for 12 separate cases for all three
algorithms. In this analysis, 3, 8, ¥ were held constant;
surface characteristics and scene geometry were
uniformly distributed; and the number of objects was
varied from 8 to 256. Figure 12 illustrates the
relationship between execution time and scene
complexity.

As shown in Figure 13, vectorization provides little
performance enhancement for very simple scenes.
However, for more complex scenes, the use of the IBM
3090 Vector Facility cuts the execution time by 50
percent.

Conclusion

Visualization methodologies such as computer animation
and ray-tracing have significantly contributed to the

IBM J. RES. DEVELOP. VOL. 35 NO. 12 JANUARY/MARCH 1991

understanding of the structure and change of scientific
processes.

A software system using computer animation and ray-
tracing visualization methodologies has been developed.
Working with biochemists at Texas A&M University, we
used this system to animate the structure and dynamics
of the enzyme porcine pancreatic elastase.

Prohibitive costs often preclude the use of ray-tracing
as a visualization tool by researchers. Three approaches
to ray-tracing were implemented to investigate vector
processing performance. The results indicate that
vectorizing on objects is a more cost-effective approach to
ray-tracing than either vectorizing on rays or using an
optimized scalar approach.

Acknowledgments

The authors wish to express their gratitude to the IBM
Corporation, which sponsored this research project as a
part of the Research Support Program at the IBM Palo
Alto Scientific Center. The Program Coordinator was
Barbara Straka. The authors also wish to thank Franz
Krager, Music Director and Conductor of the Brazos
Valley Symphony, for his choice of Gustav Holst’s “The
Planets” as background music for the video.

References

1. B. H. McCormick, T. De Fanti, and M. D. Brown,
“Visualization in Scientific Computing,” ACM Computer Graph.
21, 3 (November 1987).

2. John G. Herriot, “Procedures for Natural Spline Interpolation,”
Commun. ACM 16, 763-768 (December 1973).

3. Scott N. Steketee and Norman 1. Badler, “Parametric Key-
Frame Interpolation Incorporating Kinetic Adjustment and
Phrasing Control,” ACM Computer Graph. 19, 255-262 (July
19853).

4. Ken Shoemake, “Animating Rotation with Quaternion Curves,”
ACM Computer Graph. 19, 245-254 (July 1985).

5. Ken Shoemake, “Quaternion Calculus and Fast Animation,”
SIGGRAPH 1987 Tutorial Computer Animation: 3-D Motion
Specification and Control, ACM Press, New York, 1987.

6. Turner Whitted, “An Improved Illumination Model for Shaded
Display,” Commun. ACM 23, 343-349 (June 1980).

7. Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear,
“A Ray Tracing Solution for Diffuse Interreflection,” ACM
Computer Graph. 22, 85-92 (August 1988).

8. John Amanatides, “Ray Tracing with Cones,” ACM Computer
Graph. 18, 129-135 (July 1984).

9. Robert L. Cook, Thomas Porter, and Loren Christopher,
“Distributed Ray Tracing,” ACM Computer Graph. 18, 137-145
(July 1984).

10. Andrew S. Glassner, An Introduction to Ray Tracing, Academic
Press Ltd., London, 1989.

11. A. S. Glassner, “Space Subdivision for Fast Ray Tracing,” IEEE
Comput. Graph. & Appl. 4, 15-22 (October 1984).

12. Bui Tuong Phong, “Illumination for Computer Generated
Pictures,” Commun. ACM 18, 311-317 (June 1975).

13. Henri Gouraud, “Continuous Shading of Curved Surfaces,”
IEEE Trans. Computers C-20, 623-629 (June 1971).

3

Received November 16, 1989, accepted for publication July
18, 1990

IBM J. RES. DEVELOP. VOL.35 NO. 12 JANUARY/MARCH 1991

o
E=~3
g
s | "e .
2 n ®
8 05
s o ¢
2
g
k|
3
@ Vector on rays
B Vector on objects
0 1 !
0 0.5 1

Scene complexity

Use of the IBM 3090 Vector Facility halves the execution time for
both of the vectorizable algorithms.

Glen N. Williams Department of Computer Science. Texas A&M
University, College Station, Texas 77843. Dr. Williams, Professor of
Computer Science, holds a Ph.D., M.E., and B.S. in civil engineering
from Texas A&M University (1965, 1961, and 1960). His primary
research interests are in the areas of computer graphics, numerical
methods, and scientific/engineering computer applications. He has
served as advisor and graduate advisory committee chairman for
numerous doctoral and Master’s students. Dr. Williams has been the
principal investigator for more than ten research grants, including a
grant by the IBM Palo Alto Scientific Center to support the
production of the computer-animated film 4 Molecular Voyage,
which depicts the molecular dynamics of an enzyme. He is currently
the project director for the Intelligent Control Systems for
Autonomous Underwater Vehicles Project, a multi-year hardware/
software development effort funded by the U.S. Department of the
Navy. In addition to his extensive research and consulting activities,
Dr. Williams has chaired numerous sessions for the Oceans
Conference and the IEEE Ocean Engineering Society (OES),
including the technical progam for the IEEE/OES 1990 Symposium
on Autonomous Underwater Vehicle Technology. He has also
served on the Board of Directors for the Offshore Technology
Conference since 1985.

Eric L. Nelson Department of Computer Science, Texas A&M
University, College Station, Texas 77843. Mr. Nelson is a Research
Associate for the Intelligent Control Systems for Autonomous
Underwater Vehicles Project in the Computer Science Department

G. N. WILLIAMS ET AL.

117

118

at Texas A&M University. He received B.S. and M.C.S. degrees in
computer science from Texas A&M University in 1981 and 1985,
respectively, and is currently pursuing a Ph.D in computer science.
He was a Research Assistant in the Department of Plant Pathology
at Texas A&M University from 1984 to 1986. Mr Nelson was a
Research Assistant from 1986 to 1987 and a Lecturer from 1987 to
1988 in the Department of Computer Science at Texas A&M
University. He has been involved in several research projects,
including Scientific Visualization of Molecular Dynamics (1987-
1989), sponsored by the IBM Research Support Program, and
Parallel Methods for Ray-tracing Bi-cubic Patches on a Cray (1988-
1989), sponsored by General Dynamics Corporation. Mr. Nelson is a
member of the Association for Computing Machinery and the
Institute of Electrical and Electronics Engineers.

David M. Barnett Department of Computer Science, Texas A&M
University, College Station, Texas 77843. Mr. Barnett is a Research
Associate for the Intelligent Control Systems for Autonomous
Underwater Vehicles Project in the Computer Science Department
at Texas A&M University. He received a B.S. in computer science
from Texas A&M University in 1983 and is currently pursuing a
Master of Computer Science degree. He was a Research Assistant in
the Department of Computer Science at Texas A&M University
from 1986 to 1989. Mr. Barnett was a computer programmer for the
Academic Programs Office in the College of Engineering at Texas
A&M University from 1987 to 1989. He was involved in the
research project “Scientific Visualization of Molecular Dynamics”
(1987-1989), sponsored by the IBM Research Support Program.

Kelly Parmley Department of Computer Science, Texas A&M
University, College Station, Texas 77843. Ms. Parmley is a Graduate
Assistant (Teaching) in the Computer Science Department at Texas
A&M University. She was a Texas Engineering Experiment Station
Fellow in 1989 and received a Bachelor’s degree in computer science
from Texas A&M University in 1988. Ms. Parmley is currently
pursuing a Master of Computer Science degree. From 1985 to 1987,
she was Systems Manager at Sterling E. Evans Library, Texas A&M
University. She was a student technician in the Department of
Computer Science at Texas A&M University from 1987 to 1988 and
a Research Assistant in the same department in 1989. Ms. Parmley
is a member of the Association for Computing Machinery.

G. N. WILLIAMS ET AL.

IBM J. RES. DEVELOP. VOL.35 NO. 12 JANUARY/MARCH 1991

