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Visualization 
of molecular 
dynamics 
via ray-tracing 
and  animation 
in a vectorized 
environment 

by G. N.  Williams 
E. L. Nelson 
D. M. Barnett 
K. Parmley 

Scientific  visualization  methodologies  are being 
utilized increasingly in attempts to understand 
physical  phenomena  via  mathematical  and 
simulation  model  results.  Presented  herein  are 
the  results  of  a  visualization project which 
produced  a  vectorized,  high-resolution, ray- 
traced  animation  of  the  dynamics  of  a  protein 
molecule.  The resulting animation  was  recorded 
on  35-mm  film, with  a  resolution  of 1024 X 1024 
pixels with 24 color  bits.  Run-time statistics 
were  also collected which  relate  image 
generation  parameter  ranges  and 
interdependencies. 

Introduction 
“The purpose of computing is insight, not  numbers.” 

Richard Hamming [ 11 

“The goal of visualization is to leverage existing scientijic 
methods by providing  new  scientijic  insight  through visual 
methods.” B. H. McCormick et al. [ 11 

The above quotations are truly relevant in today’s 
world of scientific data. Current data acquisition 
capabilities and supercomputational modeling 
capabilities are generating data faster than contemporary 
interpretative methodologies can manage. As a step 
toward the solution of this problem, visualization 
capabilities  must be  significantly enhanced, or the 
scientific community will-sooner rather than later-be 
buried by the mountains of numbers generated by its 
own  software. 

The scientific  visualization project reported in this 
paper was initiated as an experiment to evaluate the 
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interpretative capabilities  of the data/information 
interface, and to investigate the computational efficiency 
of  specific  imaging  algorithms.  In particular, the 
objectives of this research  were to utilize  visualization 
methodologies to enhance the understanding of 
molecular  dynamics, and to study the performance of 
scalar and vector  versions  of  ray-tracing  image  synthesis 
software. 

The results of the research include a film entitled A 
Molecular  Voyage. This animation sequence is composed 
of ray-traced  images which  were recorded on 35-mm 
film.  Each  image  resolution  is  1024 x 1024  pixels,  with 
24 color  bits  each. 

The paper  addresses the following  topics: 

The enzyme, porcine  pancreatic  elastase. 
Choreography and animation techniques. 
Image  generation  via  ray-tracing. 

0 Scalar/vector  statistics for ray-tracing algorithms. 

The  enzyme 
Enzymes are a class of proteins that regulate the chemical 
activity in cells.  Every enzyme  serves  as a catalyst  for a 
particular chemical  reaction. The molecules that 
participate in the reaction  regulated by the enzyme are 
called the enzyme’s substrates. The substrates can bind to 
an area on the surface of the enzyme  called the active 
site. Once the substrates are bound to the active  site, 
chemical bonds can  form or break  within them. The 
altered  molecules are then released  from the enzyme, 
which remains  chemically  unchanged. 

The specificity  of an enzyme  for a particular chemical 
reaction  is a result of the specificity of the active  site in its 
ability to bind  with particular substrates. The three- 
dimensional structure of the active  site determines which 
molecules  may bind to it as substrates, in the same way 
that a lock  requires a specific  key. Thus, an appreciation 
of the structure of an enzyme is important in 
understanding how it functions. 

The dynamics of an enzyme are as important as its 
structure. Enzymes  undergo conformational changes that 
alter the charge distribution at  the active  site,  bringing 
about the chemical  changes that occur in the substrates. 

Computer animation is a useful tool for  studying 
structure and change, in contexts ranging  from  chemistry 
to cosmology.  Processes occumng  in picoseconds or 
millennia,  across nanometers or light  years,  can  be  scaled 
into a size and time frame  appreciable by the human 
observer. 

Working  with  biochemistry  researchers at Texas A&M 
University, we obtained results of atomic-level  molecular 
simulations that depict the structure and dynamics of the 
enzyme porcine  pancreatic  elastase. With  these data, the 
two-part film A Molecular Voyage was created. 

1 Still photograph of the active site of porcine  pancreatic  elastase, / taken from Part 1 of A Molecular Voyage. 

Part 1 depicts the active  site of the enzyme. The 
camera flies around and through the atoms, which  are 
modeled  as semitransparent spheres. The radius of each 
sphere  is determined by the van der Waals radius of the 
atom it represents.  Red  spheres  represent oxygen atoms, 
blue  spheres  represent  nitrogen, and black  spheres 
represent carbon. Figure 1 is a photograph of the active 
site. Figure 2 identifies the amino acid  residues  depicted 
in Figure I .  Another view  of the active  site  is  shown in 
Figure 3. 

In Part 2, the whole  enzyme  is  shown, without the 
hydrogen atoms. In addition, the molecule  is animated 
using the results of the simulation of its conformational 
changes. Figure 4 is a photograph of the entire molecule. 

Choreography  and  animation 
Animation is the creation of a sequence of images that 
gives the illusion  of motion or “life” by modeling the 
changes in a set  of  objects  over time. Any property of an 
object can be animated: typically  position and 
orientation, but also  color,  reflectance, transparency, 
texture,  shape, etc. In addition, the position, color, 
intensity, and other properties of a light  source  can  be 
animated. 

an elastase  molecule, 600 randomly distributed 
background  spheres, the virtual camera (i.e., the view 
reference point and the normal to the viewplane, 

The world  depicted in A Molecular Voyage consists of 
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Schematic of the active site ofporcinepancreatic elastase, as viewed 
in  Figure 1, showing amino  acid residues. 

Still photograph of the active site of porcine pancreatic elastase, 
taken from Part 1 of A Molecular  Voyage. 

hereafter  referred to as the viewpoint and view direction, 
respectively), and three light  sources: one above and one 
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below the molecule and one that follows the camera, or 
the “miner’s  light.” 

The main animation tasks in making A Molecular 
Voyage were to realistically  depict the conformational 
changes of  elastase and to move the camera smoothly 
around and through the molecule. 

Key-framing was  used to animate the position and 
orientation of the camera. The camera position was 
interpolated by a combination of natural cubic  splines 
and interactive sketching. Camera orientation was 
specified by selecting one of  two  functions: (1) tracking 
the molecule or ( 2 )  looking  forward  along the camera 
path. Interpolation was accomplished by blending the 
two functions to ease the transition from one view 
direction to the other. The techniques presented  for 
animating the camera could be applied to any  object, 
although a different representation of orientation may  be 
appropriate for  objects other than cameras. 

The camera position  is  specified in rectangular 
coordinates. For each  key-frame, the animator gives the 
(x ,  y,  z )  coordinates of a control point and a frame 
number. The interpolation software then calculates the 
coordinate values  for  each  frame  between  two  key- 
frames, so that the camera arrives at each control point at 
the specified  time. 

Linear interpolation is not satisfactory  here,  because it 
leaves discontinuities in the first derivative at each 
control point, resulting in noticeable jerkiness of motion. 
Commonly, spline functions are used to guarantee 
second-order continuity (i.e., continuity of position, 
velocity, and acceleration) throughout an object’s path. 
Natural cubic  splines [2]  were  used to interpolate the 
camera position. 

Splines are sensitive to changes in the spacing of 
control points along the abscissa.  Since  key-frames are 
not necessarily  spaced  evenly in time, splining position as 
a function of time (or frame number) causes a vexing 
problem:  Changing the timing can change the camera 
path. Changing the frame number of a key-frame so that 
an object will arrive at the control point earlier or later 
can  cause the object to take a different path to the control 
point. It is  desirable to make the path geometry 
independent of the timing of the motion, while ensuring 
second-order continuity of both the path and the object’s 
motion along the path. 

A double-interpolation method [3] was  used to 
separate the path from the timing.  First, the key-frames 
are numbered K = 0, 1, 2, , n. The control point 
positions P = (x, y, z )  are then splined as functions of 
key-frame numbers. Unless  key-frames are added or 
deleted, the shape of the path does not change. 

The second interpolation step is to spline the key- 
frame number K as a function of frame number 2. This 
curve determines the timing of the camera’s motion. 
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Frame numbers can then be changed  to  speed  up or slow 
down the object  without  affecting the path taken. 

Because P(K) ,  which  equals [ x ( K ) ,  y ( K ) ,  z(K)], is a 
set of natural cubic  splines, the camera’s path has  second- 
order continuity. Furthermore, it is  easy to show that the 
composite function P[K( t ) ] ,  defining the object’s motion 
over time, also  has  second-order continuity. The result  is 
smooth, seamless animation. 

One caution is that the timing curve K( t )  should be 
nondecreasing. A decrease in K( t )  would  cause the object 
to move  backward  along its path. 

Camera orientations can  be  specified by Euler  angles 
(pitch, roll,  yaw), quaternions [4, 51, or axis  angle and roll 
angle.  It  has  been demonstrated that quaternions have 
many  advantages  for interpolating orientations of objects 
when the main requirement is that rotations be done 
smoothly, and the orientation at frames other than key- 
frames  is  not  particularly important. However, in 
animating a camera, additional requirements may  be 
imposed. For instance, in A Molecular Voyage there are 
two major modes of camera orientation: tracking the 
molecule and looking  forward  along the camera’s path. 

To implement the tracking and forward-looking  modes 
of camera operation, the axis-angle and roll-angle 
representation  seems  most natural. In the tracking mode, 
the axis (or view vector) is the vector  from the camera 
position to the center of the enzyme.  In the forward- 
looking  mode, the view vector  is the tangent to the 
camera path. This tangent vector was approximated by 
taking the vector  from the current position to  the next 
position.  In both modes, the default  roll  angle  is  zero;  i.e., 
the “up” direction for the camera is in the plane of the 
view vector and the y-axis. 

key-frame, the user  selects a mode of camera operation. 
If a key-frame and its successor both specify tracking 
mode, the normalized view vector at each point on  that 
segment of the path is 

Rather than specifying an arbitrary orientation at each 

where t is the frame number, O( t )  is the position of the 
object of interest, and C ( t )  is the position of the camera. 

If a key-frame and its successor both specify  fonvard- 
looking  mode, the normalized view vector  for that 
segment  of the path is 

V(t )  = 
C(t + 1) - C(t) 

I C(t + 1) - C(t) I ’ 

where,  again, t is the frame number and C ( t )  is the 
camera position. 

When the modes at successive  key-frames differ, the 
view  vector must be interpolated from one mode to the 
other. This interpolation is accomplished by a blending 
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’ Still photograph of the complete molecule of porcine  pancreatic 1 elastase, taken from Part 2 of A Molecular Voyage. 

function, a. The blending function must be  defined on 
the interval [0, I]. To interpolate from the vector 
function V, ( t )  at frame tsla, to the vector function V2(t) 
at frame tend, each frame number t must be  scaled into 
the interval [0, I], namely 

Then the view vector at frame t ,  for t,,, 5 t 5 tend, is 

This equation assumes that I V,  I = I V, 1 = 1. 
A good  blending function should range  smoothly  from 

a(0) = 0 to a( 1) = 1, and should be  flat at 0 and 1 to 
move smoothly from one camera orientation to the next. 
Good results were obtained by using 

a(t) = 0.5 + 0.5sin[~(t  - O S ) ] ,  0 5 t 5 1. ( 5 )  

There is one major drawback to the axis-angle 
representation, when the roll  angle is defined so that the 
camera is  always “upright” relative to an arbitrary global 
axis. There will  be a discontinuity in the roll  angle  when 
the camera points straight  up. If the camera swings near 
vertical, it will perform a disconcertingly  rapid  roll to 
maintain its  uprightness.  This  problem  is  actually 
demonstrated after the third pass through the enzyme’s 
active  site in Part 1 of the film. 111 
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A photograph showing visualization effects that can be achieved by 
using ray-tracing techniques. 

A photograph showing visualization effects that can be achieved by 
using ray-tracing techniques. 

The authors developed  software  written in the C 
language  for  graphics workstations for  key-framed 
computer animation. To assist the user in producing the 
key-frame data, there are programs  for  displaying and 
editing the interpolation curves and for  previewing the 
animation using  simplified  rendering  procedures. The 
animation can be  previewed in real time by displaying 
only the connections between atoms, or more slowly 
using  z-buffered  polyhedral  models. Though these 
programs form the core of a general-purpose animation 
package,  many  of the interfaces were  designed for the 
particular requirements of A Molecular Voyage. 

from the molecular simulation data. The simulation of 
the molecular dynamics of  elastase  resulted in sets of 
coordinates for the atoms of the molecule, taken at 
intervals of  five  picoseconds.  Every third set  of 
coordinates was  used to generate  images of the molecule. 
Shown in sequence at a rate of 12 frames  per  second, the 
images  become a movie  of the molecular  dynamics,  with 
one second of movie time corresponding to 180 
picoseconds of  real time. 

Also in Part 2 of the animation sequence, the atoms of 
the active  site were grouped  separately  from the rest so 
that they  could  be  faded in first,  emphasizing the location 
of these important atoms. 

After a sequence of frames had  been created, 
previewed, and modified until the animation was 

The animation of elastase  in Part 2 was taken directly 
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satisfactory, the data for  each  frame  were  passed to the 
renderer,  developed in FORTRAN for the IBM 3090' 
processor. The renderer produced  ray-traced  images 
which  were  stored  digitally and later recorded on film. 

Image generation i 0. 

Since the appearance of  Whitted's [6] description of the 
basic  procedure,  ray-tracing  has  become  exceedingly 
popular as a technique for  image  synthesis. Its many 
advantages  over other image  synthesis techniques include 
the ability to simultaneously model the effects  of 
reflections,  refractions, and both multiple and variably 
configured  light  sources. Figures 5 and 6 illustrate  some 
of the possible  effects. 

From the infinite  set of rays emitted from a light 
source,  only  those  rays  arriving at the viewpoint are 
modeled. This is  achieved by the "backward"  tracing of 
the light  rays  from the viewpoint through an image plane 
to intersection points. At each  intersection point, a 
reflectance  ray, a refractance  ray, and a shadow  ray  for 
each  light  source are generated. The reflectance and 
refractance  rays are recursively treated identically as an 
incoming ray. The shadow  rays are different in that they 
do not spawn  reflection and refraction rays. Figure 7 
illustrates the basic  physical phenomena being  modeled. 

described [7-IO]. Most of these  modifications  represent 
Many enhancements to ray-tracing  have  been 

' 3090 is a trademark of International Business Machines Corporation. 
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attempts to produce improved images, achieve additional 
special  effects, or compensate for ray-tracing's few 
shortcomings (e.g.,  aliasing).  However, one very 
fundamental problem still  exists  with all approaches to 
ray-tracing: cost. 

Prohibitive costs often preclude the use  of ray-tracing 
as a visualization tool. Mechanisms for reducing the cost 
of the technique have been the subject of extensive 
research [ 10, 1 11. As part of this research, a ray-tracer was 
developed  for the IBM 3090 processor with a goal of 
maximizing the use  of the Vector Facility so that 
execution time could be minimized. 

The ray-tracer for this project is quite basic. Molecular 
dynamics, the subject of this imagery, is modeled entirely 
with  spheres. While this geometry is simple, the actual 
ray-tracing problem was nontrivial due  to  the  number of 
spheres being modeled and the nature of the desired 
visual  effects. 

Light source 

/ Object 1 

"- 
View Original  ray 
point - - - - - - - - Reflection ray 

Refraction ray 

Shadow ray " 

t 5 The physical phenomenon being modeled consists of tracing light 
rays backward from the view point.  The ray arriving from any given 1 direction  is  the  sum  of  all  rays  that  reflected  off or refracted 
through an object. Shadow rays are cast from each intersection point I to each light source so that the amount of light arriving at the view 

I 
I 

Original  ray 

'1 Reflections are calculated as described in Whiffed [ 6 ] .  The number 
of levels of reflection is arbitrary; however, the existence of more 1 than two or three levels is rare in nature. 

The most important special effect desired was 
transparency so that the viewer  would not lose  his 
perspective when viewing the molecule at close  range; 
i.e., landmark  atoms and structures would not be 
obscured by intervening atoms. Also, atom radii were 
kept proportional to the van der Waals standard so that 
bonded atoms would intersect. Thus, the bonds could 
still  be  visualized, and cylinders, which are generally  used 
to represent bonds, would not be needed. 

The ray-tracer follows that of Whitted [6], and 
comprises two phases. In the first phase, ray-sphere 
intersections are computed by recursively generating 
reflective and refractive rays to a specified depth. When 
refractive rays are generated, the next intersection point is 
the other side  of the object that it just entered. At this 
point, new  reflective and refractive rays are again 
generated-but it is the refractive ray that exits the 
object. The reflective ray begins the generation of a series 
of internal reflection  rays that continues to  the depth of 
recursion. Figures 8, 9, and 10 illustrate this section of 
the ray-tracer. 

The second phase consists of casting a shadow ray 
from each intersection point to each light source. The 
shading model  follows [6, 12,  131.  If a shadow ray 
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Refractions are calculated as described in Whitted [ 6 ] .  Each object 
in the world  may have a unique index of refraction. As with reflec- 
tions, the number of levels of refraction is arbitrary. 

intersects a transparent sphere, the shadow  ray  is  cast 
again  toward the light  source,  with the intermediate 
intersection point as a new origin  for the shadow  ray. 
The total contribution by the given  light  source  is the 
product of all transparency factors  from  all  objects 
intersected by the shadow  ray. This recasting of shadow 
rays continues until either the light  source  is  reached or 
an intersection  with an opaque object  occurs. Figure 11 
illustrates this ray-tracing  phase. 

Many  refinements can be made to  the basic algorithm 
stated  above,  which in themselves  would  make no visual 
difference but would  reduce  cost. For example, the 
recasting of shadow  rays through multiple objects  may 
seem  pointless,  since the final contribution is  likely to be 
very small.  Similarly, the continued generation of 
internal reflection  rays  down to the maximum level of 
recursion  could be wasteful.  However,  with the  intent of 
comparing different approaches to minimize the cost of 
the ray-tracer, the basic problem, i.e., the generation and 

114 management of rays,  still  exists.  All  of the refinements 
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Second-level refkction 

Fist-level refraction 
Fwst of internal 
reflection series 

1 Once a refraction ray is produced, a  series of internal reflection rays I is begun.  The series ends at the maximum level of reflection. 

that are commonly used and that do significantly  reduce 
computer time can be incorporated in all of the 
approaches and will reduce  cost  equally, but do not aid 
in illustrating the benefits of one approach over another. 

Three unique approaches were taken to implement the 
ray-tracer. The first  is  designed to execute on a scalar 
processor and contains no vectorized  loops.  It  employs 
parallelepiped extents stored in an octree structure. 
Execution  cost  is  reduced by first  traversing the octree 
structure until an octant contains a single  object. At this 
point, the intersection between the ray and the object  is 
computed. This method delays the expensive  ray-object 
intersection calculations by eliminating regions  of  space 
where intersections will not occur. 

vector  processor. The first computes the vector 
intersections of a single  ray  with  all  objects in the scene. 
The second takes a single  object and computes its  vector 
intersections with V rays,  where V has been  set to a 
multiple of the hardware  vector  length; for the IBM 3090 

The two other techniques are intended to execute on a 
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generate  a  ray  from vp to  pixel (x,y) 

c-> Generate  intersection tree. first 
C 

for level  i of intersection tree 
for node j of  level  i 

calculate  intersection  points 
search octree for  closest  octant  with  intersection 

generate  reflective  and  refractive rays 
C 
c-> Compute  shading  components for each  intersection  point 

for each  level  i of intersection tree 

for light source k 
generate  ray from intersection node(ij) to light  source k 

for each node j of  level i that contains an intersection 

while  ray  intersects  objects 
search octree for closest  octant  with  intersection 

endwhile 
calculate  shading  component 

generate a ray  from vp to  Pixel (x,y) 
C 
c-> Generate  intersection tree first 

for  level i of intersection tree. 
for  node  j  of  level  i 

for each  object 

for each  object  that  intersects 

generate  reflective  and  refractive  rays 

calculate  intersection  points 

find  closest 

C 
c- > Compute  shading  components  for  each  intersection  point 

for each  level  i of intersection tree 
for  each node j of  level  i  that  contains an intersection 

generate  ray  from  intersection node(ij) to  light 
source k 

for  light  source k 

while  ray  intersects  objects 
for each  object 

calculate  shading  component 
endwhile 

Vector on objects. 

_"_ll."_"-l . " . . ~ " . 
Table 1 The factors  that contribute to the cost of computing 
and  imaging  via  ray-tracing. 

Factor Description 

0 
P 
x 

Number of objects 
Number of light sources 
Image resolution 
Depth of reflection/refraction 
Object  surface  characteristics, e.g., reflectivity, 

Scene geometry 
Number of rays  generated 
Number of pixels composing the  image 

transparency,  and  index of refraction 

processor this is 64 for  double  precision and 128 for 
single  precision. 

The algorithms  for  each approach are given  below. All 
versions of the software run on  an IBM 3090, under 
MVSJXA,'  using  Version 2.3 of the vectorizing compiler. 

Scalar/vector  statistics  for  ray-tracing 
algorithms 

while  pixels are left to ray  trace 
generate M K Q - S I Z E  - Q-SIZE rays  from  vp to pixels 

while V rays are available for intersection 

intersect N rays  with  object  i 
keep  closest  intersection  points 

for  object i 

for  each  shadow  ray 
if  ray intersects  then 

else 
generate  new  origin 

compute  shading  component 

for  each  non-shadow  ray  that  intersects  an  object 
generate  reflective,  refractive,  and 
shadow  rays 

endwhile 
endwhile 

In comparing the run-time characteristics of each f Vector on rays. 
approach, it is  necessary to minimize the individual 
variances  of  each factor that contributes to the total cost 
of execution. 

The calculation of a single metric as a function of the 
factors  described in Table 1 is very difficult. For example, 
by varying the relative  positions of the objects and 

keeping  all other factors constant, run-time execution  can 
vary by orders of magnitude. This is  explained by the 
following.  First, the number of  rays  generated  can 

' MVS/XA is a trademark of International  Business  Machines  Corporation. change,  since the number of  pixels  having  rays  which 
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P 
Series of 
shadow rays 

/ 
/ 0 

At  each  intersection point, a ray is cast to each light source. The 
transparency  value  for each object lying between  the  light  source  and 
intersection  point is multiplied to compute  the  magnitude of light 
arriving  at  the  intersection point. 

intersect  objects can vary.  Second, the relative  position of 
the objects  also  affects the quantity of  reflective and 
refractive  rays that are generated. Thus, there is no 
simple  direct  method-short of  ray-tracing-that  will 
compute the effect  of the placement of objects on run- 
time execution. 

three  approaches, an empirical study was made to 
determine a measure of the complexity of the scene 
definition input. The effect on cost by variances in 
scene  geometry (0) is approximated by Equation (6). 
The metric scene complexity (C) is computed using 

However,  in demonstrating the differences among the 

116 Equation (7): 

" 0- 0.5 1 

Scene  complexity 

Scalar mode 
algorithm 3 

Scalar  mode 
algorithm 2 

Vectormode 
algorithm 3 

Vector mode 
algorithm 2 

Scalar  and  vector execution times  as  a  function of scene complex- 1 ity  for  the  vector on objects algorithm (2) and  the vector on rays t algorithm (3). 

The scene complexity of an  input file comprises both 
user-defined  characteristics and run-time statistics. This 
metric was computed for 12 separate cases  for  all three 
algorithms.  In this analysis, p, 6, y were  held constant; 
surface  characteristics and scene  geometry were 
uniformly distributed; and the number of objects was 
varied  from 8 to 256. Figure 12 illustrates the 
relationship between  execution time and scene 
complexity. 

As shown  in Figure 13, vectorization  provides  little 
performance enhancement for very simple  scenes. 
However,  for more complex  scenes, the use  of the IBM 
3090  Vector  Facility cuts the execution time by 50 
percent. 

Conclusion 
Visualization  methodologies  such  as computer animation 
and ray-tracing  have  significantly contributed to the 
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understanding of the structure and change of scientific 
processes. 

A software  system  using computer animation and ray- 
tracing  visualization  methodologies  has  been  developed. 
Working  with  biochemists at Texas A&M University, we 
used this  system to animate the structure and dynamics 
of the enzyme porcine pancreatic elastase. 

Prohibitive  costs  often  preclude the use of ray-tracing 
as a visualization tool by researchers. Three approaches 
to ray-tracing were implemented to investigate  vector 
processing performance. The results indicate that 
vectorizing on objects  is a more  cost-effective approach to 
ray-tracing than either vectorizing on rays or using an 
optimized scalar approach. 
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