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We present  and  discuss  several  dynamic 
statistical graphics  tools  designed to help  the 
data  analyst  visually  discover  and  formulate 
hypotheses  about  the  structure  of  multivariate 
data. All tools  are  based  on  the  notion  of  the 
“data  space,”  a  representation  of  multivariate 
data  as  a  high-dimensional  (hD)  space  which 
has  a  dimension  for  each  variable  (column  of  the 
data)  and  a  point  for  each  case  (row  of  the 
data).  The data  space is projected orthogonally 
onto  the  “visual space,” a  three-dimensional 
space  which is seen  and  manipulated  by  the 
data  analyst.  The  visual  space  has  a point-like 
object  for  each  case  and  can h.ye a vector-like 
object  for  each  variable. The three  dimensions 
of  the  visual  space  are  orthogonal  linear 
combinations  of the variables. We discuss the 
notion  of  a  “guided  tour”  of  multivariate  data 
space,  and present  guided-tour  tools,  including 
1) 6D-rotation,  a tool for  dynamically  rotating, in 
six-dimensional (6D)  space,  from  one 3D portion 
of  the  data  space to another  while  displaying  the 
dynamically  changing projection in the visual 
space; 2) hD-residualiration,  a tool that 
determines, at the user’s  request,  the  largest 
invisible 3D  space-i.e., the  largest 3D space is 
orthogonal to the visual  space.  This  space is 
used  with  the  visual  space so that  6D-rotation 
can  occur  between  two  new 3D portions  of  the 

data  space;  3)  projection-cueing,  a  group of 
three  tools  that  use  change in object  brightness 
as  a  cue to show  change in aspects of the 
projection  of  objects  from  the  data  space to the 
visual  space  during  hD-rotation. In addition to 
these  tools  for  touring  high-dimensional 
multivariate  space, we discuss  tools  for 
manipulating  the 3D visual  space,  and  a tool for 
examining  the  relationship  between  two  data 
spaces.  Finally,  we  present  a  guided-tour 
implementation in which  the  user  manipulates 
joysticks and  sliders to dynamically  and 
smoothly control the  graphics  tools in real  time. 
A video  supplement  demonstrates  the 
implementation. 

Introduction 
Statistical  graphics can be  powerful  data  analysis tools for 
exploring  scientific  data  for  structure-powerful  because 
they help the scientific  explorer  visualize  structure. 
Dynamic statistical  graphics-graphic methods in which 
the user  interacts  with  a computer to create smoothly 
moving pictures of the data-can  be  especially  powerful 
tools for exploring for  structure when the data are more 
than two-dimensional. Again, the power of these methods 
stems from  their  ability to help a scientist visualize  the 
structure of data, even when the structure may exist in 
more than  three dimensions. Since the  early  stages of 
scientific  inquiry involve exploration, and since scientific 
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exploration  leads to scientific  hypotheses,  graphical 
methods are central to  the process of gaining  scientific 
insight. 

In this paper we discuss dynamic statistical  graphics. In 
particular, we discuss a set  of dynamic statistical  graphics 
tools for exploring and visualizing structure in high- 
dimensional multivariate data. These tools are for 
“looking at data to see what it seems to say,” to quote 
John Tukey, the founder of the branch of statistics [ 11 
which  focuses on, and is  called,  exploratory data analysis. 

In the first section of this paper we present a number of 
considerations in designing dynamic statistical  graphics 
tools  for  analyzing  high-dimensional data. This 
discussion  reflects the light  shed by Hurley and Buja [2] 
in their paper  describing guided tours, methods for 
visualizing  high-dimensional data that are based on real- 
time dynamic graphics  which the user  guides through 
high-interaction,  immediate-feedback  actions. 

In the second  section of the paper we describe the 
conceptual and mathematical aspects of a set  of  guided- 
tour tools  for  exploring and visualizing  high-dimensional 
data. These  tools,  some of  which are presented  here  for 
the first time, implement rotation in up to six 
dimensions,  provide the ability to perform a self-guided 
tour of high-dimensional data space, and provide ways to 
visualize the distance of a projection  from  high- 
dimensional to three-dimensional space. We also  discuss 
tools  for manipulating 3D space, and a tool  for 
comparing two  high-dimensional  spaces. These guided- 
tour tools are designed to enable the data analyst to 
explore and visualize structure in high-dimensional  space. 

In the third section we discuss the software and 
hardware  involved in an implementation of the guided- 
tour tools  presented in the previous  section. We call our 
system  VISUALS/Pxpl, a new implementation on the 
Pixel-Planes computer [3,4] of the VISUALS software 
reported earlier’ [5-71. Pixel-Planes  is a special-purpose, 
one-of-a-kind,  massively  parallel  graphics computer 
especially  designed to optimize operations in 3D space. 

In the fourth and final  section we present an example 
and discuss a video of VlSUALS/Pxpl  being  used to 
explore data concerning the rates of  seven  types  of crime 
in the fifty United States. The guided-tour tools are 
demonstrated in the video.  These data have  been 
explored  using the original VISUALS system,  as  reported 
by Young, Kent, and Kuhfeld [6] and by Young [7]. 

1. Guided  tours 
Hurley and Buja [2] define a guided tour as a way  of 
exploring and visualizing multivariate data. The work 
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reported  here  is an example of a guided tour. Indeed, our 
work  is  very similar to earlier  work  reported by Young 
and his  co-workers [5-71. However, that earlier  work 
differs  from Hurley and Buja’s definition of a guided tour 
in one important way, whereas the current work  does 
not. The difference  is  discussed  below. 

Data space 
To define a guided tour, we  begin  by defining the 
multivariate data that are to be explored and visualized. 
Suppose that the multivariate data consist of h numerical 
variables  observed on each of n cases. Suppose further 
that these data are collected  together into the matrix X, 
an n x h matrix of data with elements x,. This matrix 
has n rows, one for  each of the n cases, and h columns, 
one for  each  of the h variables. 

In order to understand the idea of a guided tour, we 
introduce the notion of a data space. A data space  is an 
abstract view of the data. In the data space  each case  of 
the data is  represented by an h-dimensional  observation 
vector x,, whose ath element is the observation on 
variable a. Thus, abstractly, the entire set  of data is 
represented by n points in  an h-dimensional data space. 
The rows  of the data matrix contain coordinates of the 
points in this space; the columns are the dimensions of 
the space. The canonical basis  vectors of the data space 
Rh are denoted by e,, a = 1, . . . , h. They are in one-to- 
one  correspondence  with the observed  variables. Without 
loss of generality, we assume that X is “column- 
centered,” i.e., that the mean of each column is 0. In the 
abstract high-dimensional (hD) data space, this implies 
that the centroid of the space is at the origin. 

Visual space 
An important aspect of a guided tour of data space  is that 
the tour is  visual: The purpose of the guided tour is to 
help the data analyst  visualize the high-dimensional 
structure of the data space. Thus, a central part of the 
guided tour is the visual space: a 3D picture of the data 
formed by orthogonally  projecting the  data space Rh onto 
R3. The projection is  orthogonal  with  respect to the 
canonical inner product in Rh. Such orthogonal 
projections  enable  us to form 3D pictures  which  have 
mutually perpendicular x, y, and z axes.  Numerically, the 
visual  space  is  represented by the matrix V,, an n X 3 
matrix of data with elements vi,,. This matrix has n rows, 
one for  each  of the n cases, and 3 columns, one for  each 
of the h variables. The visual  space, and its matrix 
representation, involve  dynamically  varying  projections, 
thus the subscript p .  

The visual  space contains points, one point for  each 
case  as it is  projected  from the high-dimensional data 
space into the visual  space. The visual  space  may  also 
contain vectors, one vector  for  each  variable  as it is 
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projected  from the data space. (A vector  has  zero  length 
when its  variable  is orthogonal to the 3D space.) If the 
plot contains only  case  points, the visual  space is a 3D 
scatterplot. If it also contains variable  vectors, it is a 3D 
biplot.  Note that we specifically  use orthogonal 
projections that  do not imply that the variables are unit 
length, rather than orthonormal projections  which do 
carry this implication. If  we  wish, all  variables can be 
normalized to unit length. 

Note that our definition  of the visual  space V,, differs 
from the corresponding notion in Hurley and Buja’s 
guided tour in that their work deals  with a sequence of 
orthonormal projections that are one- or  two- 
dimensional. That is, their visualization is in R1 or R2, 
not  in 02’. Also, their work  only  considers  projecting the 
cases as points in the visual  space, and does not consider 
projecting the variables  as  vectors in the visual  space. 
However,  while our definition can be  seen as a 
generalization of theirs, we do not view the generalization 
as fundamental. 

Dynamic graphics 
As did Hurley and Buja, we restrict our consideration to 
moving  plots  produced by displaying a sequence of 
frames in which  every  frame is a different projection of 
the data space onto the visual  space.  Several  frames are 
computed and shown  every  second. We consider only 
dynamic movement, movement which  is smooth in real 
time and which  is controlled by a data analyst through 
graphic,  high-interaction, immediately effective actions. 
Here, the computer creates  only one frame in the 
sequence  before interrogating the analyst to see  how the 
next  frame should be produced, with the creation- 
interrogation cycle occumng several times per second. 
Dynamic movement is in contrast to animated 
movement, in which the computer creates a series  of 
frames and then presents them in sequence to the viewer 
who  passively  views the “movie.” 

The dynamic plots  consist of a sequence of projections 
displayed in rapid  succession. We denote any one of 
these  visualizations as V,,, the visualization based on 
projection p of the data space into the visual  space. The 
projection  is one of the series VI, V,, . . , V,,-,, V,,, V,,+l, 
. . , where  each V, is in R3. 

Purpose 
A guided tour capitalizes on the pattern-recognition 
power  of human vision and the computational power  of 
graphics  workstations to help data analysts  look  for 
structure (form hypotheses) in their high-dimensional 
multivariate data. The purpose is to aid in forming 
hypotheses about the high-dimensional  geometric 
structure of the data, even though we can only see in 
three dimensions. To do this, a guided tour must 
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Respect the data’s  high-dimensional  geometry. 
e Respect the data analyst’s three-dimensional 

e Respect the workstation’s computational limits. 
perception. 

Of course,  while we can see in three dimensions, we can 
draw in only  two dimensions on the computer screen. 
Thus, a guided tour must  present  high-dimensional 
information in two dimensions, such that  our three- 
dimensional perception can understand the high- 
dimensional geometry.  In order to  do this, the sequence 
of projections  should  meet requirements that were 
emphasized by Hurley and Buja: 

The movement should be smooth, so that we can 
observe smooth movement of points and vectors  in the 
visual  space. This means that projections in the 
sequence should be  “close enough” so that the 
movement of points and vectors  from one to the next 
is  small. 
Since the purpose of a guided tour is to help the data 
analyst  visually  explore data space  for structure, the 
sequence of projections and the corresponding 
sequence of  visual  spaces should be  generated under 
the control of the data analyst. Furthermore, the data 
analyst should control the sequence via  highly 
interactive, immediately effective  actions. 

visual  spaces should be in real  time. In particular, the 
projections in the sequence  should  be “rapid enough” 
so that the movement appears to be continuous. 

e The computation of the sequence of projections and 

Target spaces 
The central problem in designing a method for  visually 
touring data space  is how to construct the sequence of 
projections and their corresponding  visual  spaces. As has 
been  discussed  by  Young, Kent, and Kuhfeld [6]  and by 
Hurley and Buja [2], it is much simpler  for the 
implementor of a visual data-space tour to construct the 
sequence of projections and visual  spaces without regard 
to the data analyst, and to present them passively to the 
user.  In  fact,  such a technique has  been  proposed by 
Asimov [8] and by  Buja and Asimov [9] .  However, this 
technique, which  Asimov named the “grand tour,” does 
not actively  involve the data analyst, so it would  seem to 
be  less  likely that the data analyst would  find structure of 
interest. 

Thus, the developer of a truly interactive  “guided 
tour,” as opposed to the noninteractive “grand tour,” is 
faced  with the problem of  how to place the construction 
of the sequence of projections under the control of the 
data analyst, and how to  do this in a way which  is  both 
fast and simple to use. Solutions to these  problems  have 
been  provided by Young and his  co-workers, and by  Buja 
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and his  co-workers.  These  two  groups  of  investigators 
propose to provide the data analyst  with tools for 
constructing  a  series of “target  spaces,” and with 
additional tools for smoothly interpolating between the 
target  spaces. For both  groups of researchers, the guided 
tour consists of the sequence of spaces produced by 
interpolating between  successive  target  spaces. 

projections  reduces to two more fundamental problems: 
First,  what tools do we provide the data analyst to 
construct target  spaces?  Second,  what tools do we provide 
the analyst to interpolate between the targets? In  the next 
section we discuss  these guided-tour tools. 

Thus, the problem of  how to construct the sequence of 

2. Guided-tour tools 
In this section we present  a  specific  set of guided-tour 
tools. The tools include one for constructing target 
spaces, one for interpolating between  target  spaces, and a 
group of tools that use  object  brightness to represent 
information about the projection of an object from data 
to visual  space.  In addition, we present  a group of tools 
for manipulating 3D visual  space, and a  tool that can  be 
used to understand the relationship between  two data 
spaces. 

0 Data 
Before presenting and defining the guided-tour tools, we 
need to complete the definition of the data to be studied 
with the tools.  In the previous  section we defined the 
basic multivariate data as X, an n X h matrix with  a  row 
for  each  of the n cases and a column for each of the h 
variables.  These data are assumed to be column-centered. 
We indicated in that section that we take the abstract 
view that the data are n points in an h-dimensional  space 
whose centroid is at the origin. 

The variables in the data correspond to the dimensions 
of the data space. We may  represent the variables 
(dimensions) in the visual  space by axes that extend 
between ‘I,, a = 1, . . , h. These  axes  necessarily run 
through the origin and centroid of the space. We define 
I ,  as the standard deviation of the coordinates on the 
dimension. The standard deviation is proportional to the 
length of the axes,  since the length of an axis  is the square 
root of the sum of the squared coordinates, whereas the 
standard deviation is the square root of the mean of the 
squared coordinates.  Because of the centering, the 
standard deviation is the average  of the distances of 
points from the origin of the data space  when the points 
are orthogonally  projected onto the dimension. 

We augment the data matrix X by vertically 
concatenating it with an h X h diagonal matrix L whose 
diagonal elements are I,. This means that X is now an 
( n  + h )  X h matrix containing the multivariate data in 

100 the first n rows, and the standard deviations I, of the h 
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axes on the diagonals  of the last h rows.  If  we  wish,  we 
can further augment X with additional rows  whose  values 
represent the coordinates of supplemental points or 
variables. If there are s such supplemental rows or 
coordinates, X becomes an ( n  + h + s) X h matrix of 
coordinates. 

Optionally, the dimensions of the data X may  be 
“normalized”: i.e., made to all  have the same  length (due 
to the centering, if they  have the same length  they will 
also  have the same standard deviation and same 
variance). This is done by dividing  each column of X 
(including augmented and supplemental values)  by its 
length I,, by the equation X =: XL”, where all ( n  + h + s) 
rows  of X are included in the normalization. Note that 
for the augmented (but not supplemental) rows, the 
normalization process  changes the nonzero coordinates 
to one. 

0 Initial spaces 
Now that  the data matrix X is completely  defined, we 
define the initial visual  space V, and the initial target 
space To. The definition of the initial visual  space  is, 
simply, that Vo is an ( n  + h + s) X 3 matrix whose three 
columns equal three of the columns of X. The definition 
of the initial target  space is equally  simple: To = V,. The 
subscripts on the visual and target space  matrices indicate 
that they  vary,  with the initial matrices  indicated by 0. 
Note that the subscripts are different  for the two  matrices. 
For the visual  space we  use p to indicate that the visual 
space  presents  varying  projections from the data space. 
For the target  space we use t to indicate that the target 
changes  over time. 

Visual representation 
The rows  of the multivariate data are represented by 
points in the data space, and are represented by “point- 
like”  objects in the visual  space.  These  objects  could  be 
spheres,  cubes, 3D crosses,  etc. The variables of the data 
are represented in the data space as dimensions. Thus, in 
the visual  space  they are shown as “axis-like’’ objects. Of 
course, we can think of planes in the data space  (such  as 
the plane formed by a pair of variables). Such a plane 
could  be  represented in the visual  space by a  “plane-like’’ 
object such as a  grid.  Since the h augmented rows  of X 
represent the dimensions of the data space, their visual 
“objects” are lines drawn between &la. Finally, the 
supplemental rows of X may  represent either cases or 
variables; thus, supplemental cases are represented in  the 
visual  space by point-like  objects,  whereas supplemental 
variables are represented by vector-like  objects  (lines 
from the origin). 

hD-residualization tool 
This tool calculates TI+, and Tlc2, the next  two  target 
spaces in the sequence of targets. This tool enables the 
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data explorer to create  many  alternative  3D views  of the 
data space,  these  views  being  used  as  targets  by the 6D- 
rotation tool  discussed  below.  This  tool  was  developed 
and  discussed  by  Young  [7] and his  co-workers [5,6]. 

The hD-residualization  tool  calculates the largest  3D 
space that is orthogonal to the visible  space V,,, the 
largest invisible space.  This  space  is  “largest” in the sense 
that it contains the three  longest  mutually  orthogonal 
dimensions which are also  orthogonal to the visible 
space.  It  is  also  largest  in the sense that it is the 
maximum-variance  3D  space  orthogonal to the visible 
space. This tool is  called  hD-residualization  because it 
computes  the  largest  “residual”  space in the invisible 
portion of the  high-dimensional data space. 

The hD-residualization equations are  based  only  on 
the n coordinates  of the cases, not  on the h coordinates of 
the variables nor on the s supplemental  coordinates. The 
data space X (excluding  the lower h + s rows)  is  related 
to the visible  space V,, by the equation (we omit the 
subscript  on V,, for  simplicity and because  these 
equations hold  for  all  values  of p )  

X = VB + R, 

where R is an ( n  X h )  matrix of residual information 
between  the  two  spaces, and B is  a (3 x h)  matrix  of 
coefficients  of  three  orthogonal  linear combinations of 
the h variables, determined by the equation 

B = V-X, 

where V- = (V’V)”V’. Then 

R = X - W - X  

can be decomposed into 

R = PQS’ 

using a  singular value decomposition. We then define the 
T,,,  space as the old interpolation space V and the TI+, 
space as the first three columns of PQ. Notice that 
residualization  does  not  change the data X. 

e 6D-rotation  tool 
This  tool is  used  by the data explorer to rotate a 3D 
projection of the high-dimensional  cloud  of points back 
and forth between the two  targets  through  a 6D portion 
of the data space. The user  watches the dynamically 
changing  projection of the cloud into the visual  space,  in 
order to understand the cloud‘s 6D structure. Our tool 
extends  a 4D version  of  this  tool  developed and presented 
by  Buja et  al. [ 101. 

This tool uses a  trigonometric interpolation which  Buja 
et al. have  shown to be an orthonormal rotation in the 
six-dimensional  space  spanned by the two  target spaces. 
The rotation follows the shortest  geodesic path in 6- 
space. The equation is 
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V,, = T,+,(cos [U,,]) + T,,,(sin  [U,,]), 

where V,  is the ( n  + h + s) X 3  matrix of coordinates via 
of the objects  seen  in  visual  space,  where the functions 
cos  and  sin  are the cosine and sine functions applied to 
the diagonal  of Up, and where Up is a  diagonal  3 X 3 
matrix  with  diagonal  values 

0” I u,,,, 5 90”, 

where the values uw, increment  from 0” to 90” 
dynamically  over p ,  the increment being 5”. 

hD-depth cueing  tools 
The three  tools  in  this  set of tools use object  brightness to 
visually represent information about the projection 
“depth” of the object  from data space to visual  space. 
One of the hD-depth  cueing  tools uses brightness to 
represent  distance information, another tool uses 
brightness to represent  angular information, and the third 
tool uses brightness to represent fit information. These 
three  tools  are introduced for the first time in this paper. 

Projection distance cueing 
The definition of this hD-depth  cueing tool depends on 
the fact that an orthogonal  projection of a point i in data 
space onto the 3D visual  space  forms  a  right  triangle, as 
portrayed  in Figure 1. The hypotenuse of the triangle is 
denoted hi, which is the distance in data space  between 
the origin and the location of point i in data space. The 
sides of the triangle are denoted pi, the distance  in data 
space  between the location of point i in data space and 
the nearest  surface  of visual  space, and di, the distance  in 
visual  space  between the origin and the projection of 
point i into visual  space. The sides pi and di form  a  right 
angle (as indicated in the figure),  because  of the 
orthogonality of the projection.  Therefore, 

hf = p f  + d : ,  

and it follows  by substitution that 

We normalize the distance pi so that it is always  between 
0 and 1 by dividing it by the maximum of the distances 
of the n + h + s objects  from the origin, say  object m. 
We then  represent the distance  over which the object  has 
been  projected  from data space to the visual  space by the 
brightness  of the object in the visual  space. If the 
projection is  very long (the data object  is  far from the 
visual  space), the object  is  shown  dimly. If the projection 
is  very short (the data object  is  very  close to the visual 
space), the object  is  shown  brightly.  Specifically, we 
define the brightness  cueing  value  for  projection  distance 
to be 
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Orthogonal  projection of point i in data  space  onto 3D visual 
space. 

b, = 1 - [P;/d,,l 

for  object i. 

Projection  angle  cueing 
This hD-depth  cueing tool uses brightness to visually cue 
the cosine  of the angle  between the line  from the origin 
to the location of the object in data space and the line 
from the origin to the location of the object in visual 
space.  With this definition of hD-depth cueing, the value 
for  object i is defined as 

6, = COS [a,]. 

It  can  be  shown that this is equivalent to 

b, = 1 - rc;(d - g&)1/z:(7(a). 

When the cosine is 1, the object  is  bright. In this case the 
angle  is 0, and the distance hi between the object in data 
and visual  space is 0, implying that the location of the 
object in visual  space  coincides  with the location of the 
object in data space.  If the angle  is  very  small, the cosine 
is  nearly  1, and the two lines are nearly colinear. This 
implies that the visual  space  very  nearly contains the 

object  before it is  projected  from data space.  Thus, the 
location of the object in visual  space  adequately 
represents the location of the object in  data space.  If the 
angle  is  large, the cosine  is  nearly 0 and the hypotenuse hi 
is  very  long, indicating that the location of the object in 
visual  space does not adequately represent the location of 
the object in data space.  Here, the object  is very dim. 

Projection j t  cueing 
This tool uses  brightness to visually depth cue the 
proportion of the total variance of the case  which  is 
represented in the visual  space. The value of this hD- 
depth cueing tool is  defined as 

b, = [E%(.,, - ~j . f /31 / [Z~(~i0  - x,f /hI.  

(Note that a subscript “dot” on vi. and xi, indicates the 
mean  for row i. Also note that h with no subscript is the 
dimensionality of the high-dimensional  space, not the 
distance h, of point i from the origin.) If the proportion is 
1, all  of the variance of the case  is  represented in the 
visual  space, and the object is very bright. If the 
proportion is 0, none of the variance of the case  is 
represented in the visual  space, and the object is very 
dim. The brightness  varies  linearly  with the proportion. 

30 tools 
Since our definition of a guided tour of high-dimensional 
space  is in terms of projections into a visual  space  which 
is three-dimensional, the data explorer  needs to have a 
collection of tools  for manipulating 3D space. We discuss 
here,  briefly, a standard collection of such  tools. We do 
not, however,  define  these tools mathematically, as their 
definition and development have  been  presented 
elsewhere. In fact, the tools  presented in this section are 
available in a number of commercially  available data 
analysis  systems. 

The visual data analyst must have tools to spin (rotate) 
and move (translate) the visual  space.  Ideally, it should  be 
possible to combine spins and moves on each  of the three 
axes  of the space. The analyst should also  be  able to rock 
the spin and move motions to increase the depth illusion. 
A number of additional tools  have  been  proposed to 
enhance the explorer’s understanding of the data cloud‘s 
structure. These include brushing, the ability to move a 
rectangular “brush” across the screen to select and 
manipulate subsets  of points inside the brush; 
metamorphing, which  is  changing the size, shape, or color 
of the object that represents the observation point in the 
3D space; and subsetting, the creation of subsets of 
objects by their location in 3D space;  by their color,  size, 
or shape; by the value  of an attached label; or by their 
observation number. 

In addition to the (now) standard set  of 3D tools, the 
implementation we discuss in the next  section contains 
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two less-common 3D tools.  These  tools,  which are 
designed to enhance the 3D  effect,  project the cloud of 
observation points in perspective onto the 2D graphics 
screen, and (optionally) in stereo perspective. 

0 6D-interpolation  tool 
In addition to the tools for  exploring and visualizing one 
data space, the implementation discussed  below  has a 
tool  for  visually comparing two  high-dimensional data 
spaces. This tool enables the data explorer to smoothly 
interpolate between  two  3D portions of  two hD data 
spaces. The user  watches the dynamically  changing 
interpolation in order to understand the relationship 
between the two hD spaces. This tool was developed and 
discussed by Young and his  co-workers [5-71. It  is  very 
similar to the 4D-rotation tool developed by  Buja and his 
co-workers, and was in fact  presented by Young to 
perform the functions performed by hD-rotation. 
However,  it  has  been  shown by Buja et al. [ 101 that when 
viewed as a rotation, the 6D-interpolation tool does not 
yield an orthogonal rotation; rather, it yields a sheared, 
nonorthogonal rotation. They go on  to point out, 
however, that the tool is  useful  for comparing two 3D 
spaces, or two 3D portions of  two separate hD data 
spaces. 

from T,+, to T,,, is  defined as 
The 6D-interpolation tool for  dynamically  moving 

v,, = T , + 4  - C,,) + T,+& > 

where V,, is defined as above, and where Cp is a diagonal 
3 X 3 matrix  with  diagonal  values 

0 5 c,,ou 5 1, 

where the values c,,,, increment from 0 to 1 dynamically 
over p in increments of 0.05. 

3. VISUALS/PX~I implementation* 
The tools for  guiding a tour of high-dimensional data 
space that are defined  above are implemented in a system 
we call  VISUALS/Pxpl. We have  chosen this name 
because  many of the fundamental touring tool concepts 
were  defined and implemented by Young [7] and his  co- 
workers [5,6] in a system  they  called  VISUALS. The 
“Pxpl” suffix  reflects that the software  has  been 
reimplemented on a special-purpose,  massively  parallel, 
custom  graphics computer called  Pixel-Planes. This 
computer was  developed  by Fuchs and his  co-workers 
13~41. 

Pixel-Planes is a raster  graphics  system  for  high-speed 
rendering  of 3D objects and scenes. It features a “frame 
buffer”  composed of custom logic-enhanced  memory 
chips that can be programmed to perform  most of the 

’The material in this section on Pixel-Planes 4 is adapted from the Pixel-Planes 
Project Summary, Department of Computer Science, UNC, Chapel Hill, North 
Carolina. 
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time-consuming  pixel-oriented  tasks in parallel at each 
pixel. The novel feature of this approach is a unified 
mathematical formulation for these  tasks and an efficient 
tree-structured computation unit that calculates  inside 
each chip the proper values  for  every  pixel in parallel. 

The current system,  Pixel-Planes 4 (PxpW), contains 
5 12 X 5 12  pixels X 72 bits per pixel, implemented with 
2048 custom  3-pm  nMOS chips (63 000 transistors in 
each, operating at 8 million microinstructions per 
second). There are a total of  262  144 separate processors, 
one for  each  pixel.  These  processors  work in parallel. 

The Pixel-Planes architecture is a novel approach to 
raster  graphics in which the front part of the system 
specifies the objects on the screen in pixel-independent 
terms, and the frame-buffer  memory  chips  themselves 
work  from this description to generate the final  image. 
Image  primitives  such  as  lines,  polygons, and spheres are 
each  described by expression (and operations) that are 
“linear in screen  space,” that is, by coefficients A,  B, C 
such that the value  desired at each  pixel  is Ax + By + C, 
where x, y is the location of the pixel on the screen. 
Thus, the information that is  broadcast to the frame 
buffer  is a sequence of sets (ABC, instruction), rather 
than the usual  (pixel-address,  RGB-data)  pairs. In 
contrast to other raster  systems, the most time- 
consuming pixel-level calculations are done neither by 
general-purpose  processors nor by  special hardware that 
executes  only a particular set of graphics functions. 
Instead,  Pixel-Planes is a fairly  general-purpose  raster 
engine,  especially  powerful  when  most  of the pixel 
operations can be  described in linear (or planar) 
expressions. 

Pxpl4 contains a fairly conventional “front-end’’ 
graphics  processor, implemented using the Weitek  XL 
chip set, that traverses a segmented,  hierarchical  display 
list, computes viewing transformations, performs  lighting 
calculations, clips  polygons (or other primitives) that are 
not visible, and performs perspective  division. For objects 
described by polygons, the graphics  processor translates 
the colored-polygon-vertex  description of  each  object into 
the form of data ( A ,  B, C) for linear expressions,  together 
with instructions for the “smart” frame  buffer. An image- 
generation controller converts work-parallel data and 
instructions into the bit-serial  form  required by the 
enhanced memory chips. A video controller scans  video 
data from the frame buffer and refreshes a standard raster 
display. The system  is  hosted  by a conventional UNIX 
workstation that supports the system’s  user  interface 
through various graphics input devices and provides 
system programming tools. 

The heart of the Pxpl4  system  is the “smart” frame 
buffer, an array of custom VLSI processor-enhanced 
memory  chips.  Each of these chips contains two identical 
64-pixel  modules.  Each module has three main parts: a 
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Initial display, showing the  principal 3D space. Cubes represent 
the fifty states;  the  vectors  represent seven crimes. 

The  display of Figure 2, with  states and crimes labeled. Property 
crime vectors point  upward,  personal  crime  vectors  point down- 
ward,  and  higher  crime  rates  correspond  to  greater  distance to the 
right  along  the vectors. 

conventional memory array that stores  all  pixel data for a 
64-pixel column on  the screen, an array of 64 tiny one- 
bit  ALUs, and a linear expression evaluator that 
generates Ax + By + C simultaneously for  all  pixels. All 
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ALUs in the system  execute the same microinstruction at 
the same time, and all  memories  receive the same  address 
(each  pixel  ALU operates on its corresponding bit of 
data) at the same time. PxpW can process about 39 000 
smooth-shaded, z-buffered  triangles  per  second.  Shadows 
are  cast at about 13 000 triangles  per  second,  using true 
shadow  volumes. About 12 OOO smooth-shaded, 
z-buffered, interpenetrating spheres are rendered  per 
second. 

Motion in VISUALS/Pxpl  is controlled by two 3D 
joysticks and a slider. One joystick  always controls 3D 
spinning. The other joystick  has three modes:  In one 
mode it controls 3D translation; in another mode  it 
controls 6D-rotation; in the third mode it controls 6D- 
interpolation. The slider always controls viewing  angle. 
Various  keyboard commands implement other tools. 

4. Video example 
In  this  example we demonstrate using  VISUALS/Pxpl to 
look  for structure in seven-dimensional data. These data, 
which are shown in Table 1 of [7], report the crime  rate 
for  seven major types of crime in each of the fifty United 
States  for 1977. The rate is per 100 000 population. (The 
data were  gathered by the FBI and were  published in the 
1979  Statistical  Abstract of the United States by the U.S. 
Department of Commerce.) We submitted these data to a 
principal components analysis and then used  VISUALS/ 
Pxpl to investigate the structure of the principal 
component scores and coefficients. 

Figure z3 (video  scene 1) shows the initial display 
constructed by VISUALS/Pxpl. This is the initial 3D 
space V,. What we  see is the 3D space  formed by the first 
three principal components (the principal 3D space). The 
first component is  displayed  horizontally and the second 
vertically; the third is  represented by the size  of the cubes 
(large  cubes are in the front of the space,  small ones are 
in the back). In Figure 2 there are fifty cubes for the 
principal component scores of the fifty states, and seven 
vectors  for the principal component coefficients of the 
seven crimes. The cubes represent the location of each 
state as  projected into  the principal 3D space,  while the 
vectors  represent the seven  crimes as projected into this 
space. The length .of a vector  represents  how  close the 
crime is to the principal 3D space  (i.e., the  amount of 
variance in the crime that is  associated  with the plane). 
This type of plot, which  shows the observations  (states)  as 
points (cubes) and the variables  (crimes) as vectors,  is 
called a biplot [ 1 11. 

Figure 3 (also  from  video  scene 1) shows the same 
display  as  Figure 2 except that the states and crimes  have 
been  labeled. We  see that the crime vectors point to the 
right in the direction of the first principal component, 

the  video  supplement to this  issue. 
The  photographs  are  taken from a  video  sequence  made by the  authors  that  is  part of 
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indicating that it represents the overall crime rate, and 
that the states  on the right  have the highest  overall crime 
rates and those on the left have the lowest  overall  crime 
rates.  Note that the property crime vectors (auto theft, 
larceny,  burglary, and robbery) point upward, and the 
personal  crime  vectors (rape, assault, and murder) point 
downward. Thus, the second principal component, which 
is  vertical,  separates  property crime from  personal crime. 

revealed that in the principal 3D space there is a cluster 
of southern states. This cluster  does not include Florida, 
which  has a crime pattern like northern states.  In Figure 
4 (video  scene 2), the same  scene is shown as in Figures 2 
and 3, except that the southern states are now 
represented by red  cubes and Florida by a yellow cube, 
and the crime  vectors  have  been  made  invisible.  Since 
the southern states are at the bottom of the space,  they 
are states  with disproportionately high rates of personal 
crime. Spinning the space  shown in Figure 4 confirms 
that the cluster of southern states  is at least three- 
dimensional. 

cluster of southern states  is a cluster in all  seven 
dimensions, or only in the three we  see while spinning 
the space  shown in Figure 4, or in some other 
dimensionality between three and seven. To  do this, we 
prepare to take a guided tour of the high-dimensional 
data space. First we define the two  targets To and Ti. We 
define To = V,, the space we have  been examining. We 
then define T,  to be the space whose dimensions are 
principal components 4, 5, and 6 (the largest  space 
orthogonal to To). Spinning T,  (video  scene 4) indicates 
that the cluster of southern states is a cluster in this space 
as well. 

However, further investigation suggests that the 
southern states  may  divide into three clusters, one 
consisting of North and South Carolina, another of 
Mississippi,  Alabama, and Louisiana, and the third of 
Georgia,  Arkansas, and Tennessee. If  we count Florida, 
there appear to be  four  clusters of these southern states. 
This conclusion is reached by taking a depth-cued guided 
tour of the six-dimensional  space  formed by To and Ti. 

This process  (video  scenes 5-7) involves the following 
steps.  First, we focus on the states of interest by making 
all  cubes  except the southern ones invisible. This is 
shown  in Figure 5, where the space  has  been spun into a 
new orientation. Second, we switch  to  parallel  from 
perspective projection, to accurately portray paths of 
movement. The locations of the Southern states 
(including Florida) are shown in Figure 6. Here the red 
cubes are the Carolinas, the blue cubes are Georgia, 
Arkansas, and Tennessee, and the white  cubes are 
Mississippi,  Alabama, and Louisiana. (Note that colors 
were not assigned  before  discovering the clusters.  After 

Previous  visual exploration of these data [7] has 

We  now  use  VISUALS/Pxpl to investigate  whether the 
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Same  scene  as  Figures 2 and 3,  with Florida represented by a yel- 
low cube, the other southern states by red cubes, and the vectors 
made invisible. 

A different  orientation of the 3D space,  with  only  the  southern 
states visible. Florida remains yellow, North and South Carolina 
remain red, and the remaining visible states are changed to white, 
reflecting the three apparent clusters within the  group of southern 
states. 

all,  they  presuppose  knowledge of the clusters that did 
not exist prior to the visual exploration. Rather, they 
were  assigned after visual exploration revealed the three 
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A parallel projection of the southern states, with color changed to 
blue for Georgia,  Arkansas, and Tennessee. 

A time-lapse  image of 6-dimensional  rotation of the  inlase of 
Figure 6, showing differing paths for  each cluster but similar paths 
for the states within a cluster. 

clusters.) Third, we  use 6D-rotation to rock  back and 
forth between To and T,.  A time-lapse photograph of the 
rocking  process  is  shown in Figure 7. (Figure 6 is one end 
of the rocking, as can be  seen by comparing the two 

106 photographs.) 
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What we look at during this highdimensional depth- 
cued  rocking is the paths of movement and the changing 
brightnesses of the cubes representing the nine southern 
states.  Clusters of states  which follow similar paths and 
which  show similar changes in brightness are close 
together in six-dimensional  space.  States in different 
clusters will  follow  different paths and have  different 
brightness  changes. 

This guided tour reveals that the Carolinas (red cubes) 
move  along paths which are different  from  those taken by 
the other states but which are similar to each other; that 
Georgia,  Arkansas, and Tennessee (blue cubes)  move 
along another set of similar paths which are different 
from  those taken by other states; and that  the same is 
true for  Mississippi,  Alabama, and Louisiana (the white 
cubes). The paths are called “similar” because  they  show 
the same kind  of movements. 

Depth cueing further reinforces this structure. Figure 7 
shows projection fit cueing, the tool which  uses  brightness 
to show the proportion of a state’s total variance that is 
represented in the visual  space.  Bright portions of the 
paths represent  projections of states  which  retain  much of 
their variance in the visual  space, dim portions represent 
projections  which retain little. If the states in a cluster are 
located in about the same place in multivariate space, 
then, as  they are projected onto the visual  space as it 
rotates through six dimensions, the cubes  for the states  in 
a cluster should display similar brightness  changes. By 
studying this photograph we  see that the brightnesses  of 
cubes that are the same color  change in similar fashion 
(although one white-cube path-for  Mississippi-seems 
to differ  from the other two  white paths), further 
suggesting that the states are clustered in high- 
dimensional space as we suspect. 

The depth-cued guided tour allows us to draw a 
conclusion about the structure of these states in the six- 
dimensional space  formed by the first  six  principal 
components. The conclusion  is that these nine southern 
states appear to form four clusters in six dimensions. 
Apparently, there are four different patterns of crime in 
these nine southern states. 

photographs here) we return to the full  biplot of all fifty 
states and seven crimes to see  if the depth-cued guided 
tour will  reveal additional structure of interest. We notice 
that the Alaska  cube  moves in and out from the center to 
the upper right-hand corner as we rotate from the 
principal  space  (where  Alaska  is in the center) to the 
residual  space  (where  Alaska  is in the corner). We further 
notice that Alaska’s brightness  changes opposite to the 
way in which  most cubes change:  Alaska  is dimmest 
when it is in the principal  space, the space that accounts 
for the most  variance, and it is brightest  when  it  is in the 
residual  space, a space  which accounts for much less 

Finally, in video  scene 9 (which  is not shown  in 
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variance.  Thus, we  see that Alaska is an outlier, and that 
much of its  variance  is accounted for by components that 
account for  little other variance. Indeed, when we look at 
the original crime rate data, we  see that Alaska’s crime- 
rate  profile  is unusual: At least in 1977,  when  these data 
were obtained, it had the highest rate of rape  per 100 000 
population of any state in the country, but it did not 
have an extremely high rate  for other personal  crimes. 

5. Conclusion 
In the video we have  seen dynamic statistical  graphics 
that use changing  brightness and movement. With the 
aid of these guided-tour tools we can discover and 
visualize structure in high-dimensional multivariate data. 
These  graphics tools have  helped  us  discover that Alaska 
has an unusual crime pattern, and that there are four six- 
dimensional clusters among the crime patterns of the 
southern states. 

Note that we cannot see these four clusters as spatial 
clusters  in any portion of the video. Rather, we see  these 
clusters as movement clusters. Furthermore, the 
movement  clustering  is  reinforced by similar patterns of 
changing  brightness.  Indeed, it may be that we cannot 
see a spatial structure that actually  exists in a high- 
dimensional space in any of the infinity of different static 
projections of that space. For our example there may be 
no 2D (or 3D) projection that shows  these four groups of 
states as spatially  separated  clusters.  However, the 
movement and brightness  clusters  imply that spatial 
clusters do exist  in 6D. Thus,  VISUALS/Pxpl  gives  us a 
way of “visualizing” the structure of high-dimensional 
space by encoding the structure as movement and 
changing  brightness in three-dimensional  space. 

Dynamic  statistical  graphics  has  helped  us  discover and 
visualize structure in high-dimensional multivariate data. 
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