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We present and discuss several dynamic
statistical graphics tools designed to help the
data analyst visually discover and formulate
hypotheses about the structure of multivariate
data. All tools are based on the notion of the
“data space,” a representation of multivariate
data as a high-dimensional (hD) space which
has a dimension for each variable (column of the
data) and a point for each case (row of the
data). The data space is projected orthogonally
onto the “visual space,” a three-dimensional
space which is seen and manipulated by the
data analyst. The visual space has a point-like
object for each case and can have a vector-like
object for each variable. The three dimensions
of the visual space are orthogonal linear
combinations of the variables. We discuss the
notion of a “guided tour” of multivariate data
space, and present guided-tour tools, including
1) 6D-rotation, a tool for dynamically rotating, in
six-dimensional (6D) space, from one 3D portion
of the data space to another while displaying the
dynamically changing projection in the visual
space; 2) hD-residualization, a tool that
determines, at the user’s request, the largest
invisible 3D space—i.e., the largest 3D space is
orthogonal to the visual space. This space is
used with the visual space so that 6D-rotation
can occur between two new 3D portions of the

data space; 3) projection-cueing, a group of
three tools that use change in object brightness
as a cue to show change in aspects of the
projection of objects from the data space to the
visual space during hD-rotation. In addition to
these tools for touring high-dimensional
multivariate space, we discuss tools for
manipulating the 3D visual space, and a tool for
examining the relationship between two data
spaces. Finally, we present a guided-tour
implementation in which the user manipulates
joysticks and sliders to dynamically and
smoothly control the graphics tools in real time.
A video supplement demonstrates the
implementation.

Introduction

Statistical graphics can be powerful data analysis tools for
exploring scientific data for structure—powerful because
they help the scientific explorer visualize structure.
Dynamic statistical graphics—graphic methods in which
the user interacts with a computer to create smoothly
moving pictures of the data—can be especially powerful
tools for exploring for structure when the data are more
than two-dimensional. Again, the power of these methods
stems from their ability to help a scientist visualize the
structure of data, even when the structure may exist in
more than three dimensions. Since the early stages of
scientific inquiry involve exploration, and since scientific
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exploration leads to scientific hypotheses, graphical
methods are central to the process of gaining scientific
insight.

In this paper we discuss dynamic statistical graphics. In
particular, we discuss a set of dynamic statistical graphics
tools for exploring and visualizing structure in high-
dimensional multivariate data. These tools are for
“looking at data to see what it seems to say,” to quote
John Tukey, the founder of the branch of statistics [1]
which focuses on, and is called, exploratory data analysis.

In the first section of this paper we present a number of
considerations in designing dynamic statistical graphics
tools for analyzing high-dimensional data. This
discussion reflects the light shed by Hurley and Buja [2]
in their paper describing guided tours, methods for
visualizing high-dimensional data that are based on real-
time dynamic graphics which the user guides through
high-interaction, immediate-feedback actions.

In the second section of the paper we describe the
conceptual and mathematical aspects of a set of guided-
tour tools for exploring and visualizing high-dimensional
data. These tools, some of which are presented here for
the first time, implement rotation in up to six
dimensions, provide the ability to perform a self-guided
tour of high-dimensional data space, and provide ways to
visualize the distance of a projection from high-
dimensional to three-dimensional space. We also discuss
tools for manipulating 3D space, and a tool for
comparing two high-dimensional spaces. These guided-
tour tools are designed to enable the data analyst to
explore and visualize structure in high-dimensional space.

In the third section we discuss the software and
hardware involved in an implementation of the guided-
tour tools presented in the previous section. We call our
system VISUALS/Pxpl, a new implementation on the
Pixel-Planes computer [3, 4] of the VISUALS software
reported earlier' [5-7]. Pixel-Planes is a special-purpose,
one-of-a-kind, massively parallel graphics computer
especially designed to optimize operations in 3D space.

In the fourth and final section we present an example
and discuss a video of VISUALS/Pxpl being used to
explore data concerning the rates of seven types of crime
in the fifty United States. The guided-tour tools are
demonstrated in the video. These data have been
explored using the original VISUALS system, as reported
by Young, Kent, and Kuhfeld [6] and by Young [7].

1. Guided tours
Hurley and Buja [2] define a guided tour as a way of
exploring and visualizing multivariate data. The work

' VISUALS is also implemented on IBM and Macintosh microcomputers, and under
X-Windows on UNIX workstations. These implementations include all features
discussed in this paper except high-dimensional projection-cueing. Information on the
availability of these implementations is available from the first author. Macintosh is a
trademark of Apple Computer, Inc. The X-Window System is a trademark of MIT.
UNIX is a registered trademark of UNIX Systems Laboratories, Inc.
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reported here is an example of a guided tour. Indeed, our
work is very similar to earlier work reported by Young
and his co-workers [5-7]. However, that earlier work
differs from Hurley and Buja’s definition of a guided tour
in one important way, whereas the current work does
not. The difference is discussed below.

e Data space

To define a guided tour, we begin by defining the
multivariate data that are to be explored and visualized.
Suppose that the multivariate data consist of # numerical
variables observed on each of # cases. Suppose further
that these data are collected together into the matrix X,
an n X h matrix of data with elements x,,. This matrix
has n rows, one for each of the # cases, and 4 columns,
one for each of the / variables.

In order to understand the idea of a guided tour, we
introduce the notion of a data space. A data space is an
abstract view of the data. In the data space each case of
the data is represented by an /4-dimensional observation
vector x,, whose ath element is the observation on
variable a. Thus, abstractly, the entire set of data 1s
represented by z points in an s-dimensional data space.
The rows of the data matrix contain coordinates of the
points in this space; the columns are the dimensions of
the space. The canonical basis vectors of the data space
R” are denoted by e, a=1, ---, h. They are in one-to-
one correspondence with the observed variables. Without
loss of generality, we assume that X is “column-
centered,” i.e., that the mean of each column is 0. In the
abstract high-dimensional (hD) data space, this implies
that the centroid of the space is at the origin.

o Visual space

An important aspect of a guided tour of data space is that
the tour is visual: The purpose of the guided tour is to
help the data analyst visualize the high-dimensional
structure of the data space. Thus, a central part of the
guided tour is the visual space: a 3D picture of the data
formed by orthogonally projecting the data space R” onto
R’. The projection is orthogonal with respect to the
canonical inner product in R”. Such orthogonal
projections enable us to form 3D pictures which have
mutually perpendicular x, y, and z axes. Numerically, the
visual space is represented by the matrix V , an n X 3
matrix of data with elements v, . This matrix has n rows,
one for each of the # cases, and 3 columns, one for each
of the & variables. The visual space, and its matrix
representation, involve dynamically varying projections,
thus the subscript p.

The visual space contains points, one point for each
case as it is projected from the high-dimensional data
space into the visual space. The visual space may also
contain vectors, one vector for each variable as it is
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projected from the data space. (A vector has zero length
when its variable is orthogonal to the 3D space.) If the
plot contains only case points, the visual space is a 3D
scatterplot. If it also contains variable vectors, it is a 3D
biplot. Note that we specifically use orthogonal
projections that do not imply that the variables are unit
length, rather than orthonormal projections which do
carry this implication. If we wish, all variables can be
normalized to unit length.

Note that our definition of the visual space V, differs
from the corresponding notion in Hurley and Buja’s
guided tour in that their work deals with a sequence of
orthonormal projections that are one- or two-
dimensional. That is, their visualization is in R' or R’
not in R®. Also, their work only considers projecting the
cases as points in the visual space, and -does not consider
projecting the variables as vectors in the visual space.
However, while our definition can be seen as a
generalization of theirs, we do not view the generalization
as fundamental.

& Dynamic graphics

As did Hurley and Buja, we restrict our consideration to
moving plots produced by displaying a sequence of
frames in which every frame is a different projection of
the data space onto the visual space. Several frames are
computed and shown every second. We consider only
dynamic movement, movement which is smooth in real
time and which is controlled by a data analyst through
graphic, high-interaction, immediately effective actions.
Here, the computer creates only one frame in the
sequence before interrogating the analyst to see how the
next frame should be produced, with the creation-
interrogation cycle occurring several times per second.
Dynamic movement is in contrast to animated
movement, in which the computer creates a series of
frames and then presents them in sequence to the viewer
who passively views the “movie.”

The dynamic plots consist of a sequence of projections
displayed in rapid succession. We denote any one of
these visualizations as V , the visualization based on
projection p of the data space into the visual space. The
projection is one of the series V|, V,, ...,V |,V V .
.-+, whereeach V is in R’.

& Purpose

A guided tour capitalizes on the pattern-recognition
power of human vision and the computational power of
graphics workstations to help data analysts look for
structure (form hypotheses) in their high-dimensional
multivariate data. The purpose is to aid in forming
hypotheses about the high-dimensional geometric
structure of the data, even though we can only see in
three dimensions. To do this, a guided tour must
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& Respect the data’s high-dimensional geometry.

¢ Respect the data analyst’s three-dimensional
perception.

e Respect the workstation’s computational limits.

Of course, while we can see in three dimensions, we can
draw in only two dimensions on the computer screen.
Thus, a guided tour must present high-dimensional
information in two dimensions, such that our three-
dimensional perception can understand the high-
dimensional geometry. In order to do this, the sequence
of projections should meet requirements that were
empbhasized by Hurley and Buja:

o The movement should be smooth, so that we can
observe smooth movement of points and vectors in the
visual space. This means that projections in the
sequence should be “close enough” so that the
movement of points and vectors from one to the next
is small.

& Since the purpose of a guided tour is to help the data
analyst visually explore data space for structure, the
sequence of projections and the corresponding
sequence of visual spaces should be generated under
the control of the data analyst. Furthermore, the data
analyst should control the sequence via highly
interactive, immediately effective actions.

e The computation of the sequence of projections and
visual spaces should be in real time. In particular, the
projections in the sequence should be “rapid enough”
so that the movement appears to be continuous.

o Target spaces

The central problem in designing a method for visually
touring data space is how to construct the sequence of
projections and their corresponding visual spaces. As has
been discussed by Young, Kent, and Kuhfeld [6] and by
Hurley and Buja [2], it is much simpler for the
implementor of a visual data-space tour to construct the
sequence of projections and visual spaces without regard
to the data analyst, and to present them passively to the
user. In fact, such a technique has been proposed by
Asimov [8] and by Buja and Asimov [9]. However, this
technique, which Asimov named the “grand tour,” does
not actively involve the data analyst, so it would seem to
be less likely that the data analyst would find structure of
interest.

Thus, the developer of a truly interactive “guided
tour,” as opposed to the noninteractive “grand tour,” is
faced with the problem of how to place the construction
of the sequence of projections under the control of the
data analyst, and how to do this in a way which is both
fast and simple to use. Solutions to these problems have
been provided by Young and his co-workers, and by Buja
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and his co-workers. These two groups of investigators
propose to provide the data analyst with tools for
constructing a series of “target spaces,” and with
additional tools for smoothly interpolating between the
target spaces. For both groups of researchers, the guided
tour consists of the sequence of spaces produced by
interpolating between successive target spaces.

Thus, the problem of how to construct the sequence of
projections reduces to two more fundamental problems:
First, what tools do we provide the data analyst to
construct target spaces? Second, what tools do we provide
the analyst to interpolate between the targets? In the next
section we discuss these guided-tour tools.

2. Guided-tour tools

In this section we present a specific set of guided-tour
tools. The tools include one for constructing target
spaces, one for interpolating between target spaces, and a
group of tools that use object brightness to represent
information about the projection of an object from data
to visual space. In addition, we present a group of tools
for manipulating 3D visual space, and a tool that can be
used to understand the relationship between two data
spaces.

e Data

Before presenting and defining the guided-tour tools, we
need to complete the definition of the data to be studied
with the tools. In the previous section we defined the
basic multivariate data as X, an n X /# matrix with a row
for each of the # cases and a column for each of the 4
variables. These data are assumed to be column-centered.
We indicated in that section that we take the abstract
view that the data are » points in an A-dimensional space
whose centroid is at the origin.

The variables in the data correspond to the dimensions
of the data space. We may represent the variables
(dimensions) in the visual space by axes that extend
between =/, a = 1, - - -, h. These axes necessarily run
through the origin and centroid of the space. We define
1, as the standard deviation of the coordinates on the
dimension. The standard deviation is proportional to the
length of the axes, since the length of an axis is the square
root of the sum of the squared coordinates, whereas the
standard deviation is the square root of the mean of the
squared coordinates. Because of the centering, the
standard deviation is the average of the distances of
points from the origin of the data space when the points
are orthogonally projected onto the dimension.

We augment the data matrix X by vertically
concatenating it with an / X & diagonal matrix L whose
diagonal elements are /.. This means that X is now an
(n + h) X h matrix containing the multivariate data in
the first » rows, and the standard deviations /, of the
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axes on the diagonals of the last 4 rows. If we wish, we
can further augment X with additional rows whose values
represent the coordinates of supplemental points or
variables. If there are s such supplemental rows or
coordinates, X becomes an (n + 4 + s5) X h matrix of
coordinates.

Optionally, the dimensions of the data X may be
“normalized”: i.e., made to all have the same length (due
to the centering, if they have the same length they will
also have the same standard deviation and same
variance). This is done by dividing each column of X
(including augmented and supplemental values) by its
length /,, by the equation X =: XL™', where all (n + & + 5)
rows of X are included in the normalization. Note that
for the augmented (but not supplemental) rows, the
normalization process changes the nonzero coordinates
to one.

o Initial spaces

Now that the data matrix X is completely defined, we
define the initial visual space V, and the initial target
space T,. The definition of the initial visual space is,
simply, that V, is an (n + A + s5) X 3 matrix whose three
columns equal three of the columns of X. The definition
of the initial target space is equally simple: T, = V. The
subscripts on the visual and target space matrices indicate
that they vary, with the initial matrices indicated by 0.
Note that the subscripts are different for the two matrices.
For the visual space we use p to indicate that the visual
space presents varying projections from the data space.
For the target space we use ¢ to indicate that the target
changes over time,

o Visual representation

The rows of the multivariate data are represented by
points in the data space, and are represented by “point-
like” objects in the visual space. These objects could be
spheres, cubes, 3D crosses, etc. The variables of the data
are represented in the data space as dimensions. Thus, in
the visual space they are shown as “axis-like” objects. Of
course, we can think of planes in the data space (such as
the plane formed by a pair of variables). Such a plane
could be represented in the visual space by a “plane-like”
object such as a grid. Since the 4 augmented rows of X
represent the dimensions of the data space, their visual
“objects” are lines drawn between £/ . Finally, the
supplemental rows of X may represent either cases or
variables; thus, supplemental cases are represented in the
visual space by point-like objects, whereas supplemental
variables are represented by vector-like objects (lines
from the origin).

o hD-residualization tool
This tool calculates T, , and T,,,, the next two target
spaces in the sequence of targets. This tool enables the
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data explorer to create many alternative 3D views of the
data space, these views being used as targets by the 6D-
rotation tool discussed below. This tool was developed
and discussed by Young [7] and his co-workers [5, 6].

The hD-residualization tool calculates the largest 3D
space that is orthogonal to the visible space V , the
largest invisible space. This space is “largest” in the sense
that it contains the three longest mutually orthogonal
dimensions which are also orthogonal to the visible
space. It is also largest in the sense that it is the
maximum-variance 3D space orthogonal to the visible
space. This tool is called hD-residualization because it
computes the largest “residual” space in the invisible
portion of the high-dimensional data space.

The hD-residualization equations are based only on
the r coordinates of the cases, not on the & coordinates of
the variables nor on the s supplemental coordinates. The
data space X (excluding the lower & + s rows) is related
to the visible space V, by the equation (we omit the
subscript on V, for simplicity and because these
equations hold for all values of p)

X=VB+R,

where R is an (n X &) matrix of residual information
between the two spaces, and B is a (3 X 4) matrix of
coeflicients of three orthogonal linear combinations of
the / variables, determined by the equation

B=VX

where V™ = (V'V)"'V". Then
R=X-VVX

can be decomposed into

R = PQS’

using a singular value decomposition. We then define the
T,,, space as the old interpolation space V and the T, ,
space as the first three columns of PQ. Notice that
residualization does not change the data X.

e 6D-rotation tool

This tool is used by the data explorer to rotate a 3D
projection of the high-dimensional cloud of points back
and forth between the two targets through a 6D portion
of the data space. The user watches the dynamically
changing projection of the cloud into the visual space, in
order to understand the cloud’s 6D structure. Our tool
extends a 4D version of this tool developed and presented
by Buja et al. [10].

This tool uses a trigonometric interpolation which Buja
et al. have shown to be an orthonormal rotation in the
six-dimensional space spanned by the two target spaces.
The rotation follows the shortest geodesic path in 6-
space. The equation is
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V,=T, (cos[U,]) + T, (sin [U,]),

where V is the (n + 4 + 5) X 3 matrix of coordinates v,
of the objects seen in visual space, where the functions
cos and sin are the cosine and sine functions applied to
the diagonal of U, and where U, is a diagonal 3 X 3
matrix with diagonal values

0°=su

paa

= 90°,

where the values ,,, increment from 0° to 90°
dynamically over p, the increment being 5°.

o AD-depth cueing tools

The three tools in this set of tools use object brightness to
visually represent information about the projection
“depth” of the object from data space to visual space.
One of the hD-depth cueing tools uses brightness to
represent distance information, another tool uses
brightness to represent angular information, and the third
tool uses brightness to represent fit information. These
three tools are introduced for the first time in this paper.

Projection distance cueing

The definition of this hD-depth cueing tool depends on
the fact that an orthogonal projection of a point i in data
space onto the 3D visual space forms a right triangle, as
portrayed in Figure 1. The hypotenuse of the triangle is
denoted #,, which is the distance in data space between
the origin and the location of point / in data space. The
sides of the triangle are denoted p,, the distance in data
space between the location of point i in data space and
the nearest surface of visual space, and d,, the distance in
visual space between the origin and the projection of
point i into visual space. The sides p; and d, form a right
angle (as indicated in the figure), because of the
orthogonality of the projection. Therefore,

2 2 2

hi=p; +d;,

and it follows by substitution that
2 h 2 3 2

pi = za(xia) - Zza(vm)'

We normalize the distance p, so that it is always between
0 and 1 by dividing it by the maximum of the distances
of the n + A + s objects from the origin, say object m.
We then represent the distance over which the object has
been projected from data space to the visual space by the
brightness of the object in the visual space. If the
projection is very long (the data object is far from the
visual space), the object is shown dimly. If the projection
is very short (the data object is very close to the visual
space), the object is shown brightly. Specifically, we
define the brightness cueing value for projection distance
to be
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Data ‘space

Orthogonal projection of point i in data space onto 3D visual
space.

bi =1- [pi/dm]

for object .

Projection angle cueing

This hD-depth cueing tool uses brightness to visually cue
the cosine of the angle between the line from the origin
to the location of the object in data space and the line
from the origin to the location of the object in visual
space. With this definition of hD-depth cueing, the value
for object i is defined as

b, = cos [a,].

It can be shown that this is equivalent to
3 2 h, 2

b=1-[3 ) = ZUX/EA0,).

When the cosine is 1, the object is bright. In this case the
angle is 0, and the distance 4, between the object in data
and visual space is 0, implying that the location of the
object in visual space coincides with the location of the
object in data space. If the angle is very small, the cosine
is nearly 1, and the two lines are nearly colinear. This
implies that the visual space very nearly contains the
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object before it is projected from data space. Thus, the
location of the object in visual space adequately
represents the location of the object in data space. If the
angle is large, the cosine is nearly 0 and the hypotenuse 4,
is very long, indicating that the location of the object in
visual space does not adequately represent the location of
the object in data space. Here, the object is very dim.

Projection fit cueing

This tool uses brightness to visually depth cue the
proportion of the total variance of the case which is
represented in the visual space. The value of this hD-
depth cueing tool is defined as

b = (£ (v, = v BYIENx, — x,Y/hL

(Note that a subscript “dot” on v, and x, indicates the
mean for row i. Also note that # with no subscript is the
dimensionality of the high-dimensional space, not the
distance #, of point / from the origin.) If the proportion is
1, all of the variance of the case is represented in the
visual space, and the object is very bright. If the
proportion is 0, none of the variance of the case is
represented in the visual space, and the object is very
dim. The brightness varies linearly with the proportion.

& 3D tools

Since our definition of a guided tour of high-dimensional
space is in terms of projections into a visual space which
is three-dimensional, the data explorer needs to have a
collection of tools for manipulating 3D space. We discuss
here, briefly, a standard collection of such tools. We do
not, however, define these tools mathematically, as their
definition and development have been presented
elsewhere. In fact, the tools presented in this section are
available in a number of commercially available data
analysis systems,

The visual data analyst must have tools to spin (rotate)
and move (translate) the visual space. Ideally, it should be
possible to combine spins and moves on each of the three
axes of the space. The analyst should also be able to rock
the spin and move motions to increase the depth illusion.
A number of additional tools have been proposed to
enhance the explorer’s understanding of the data cloud’s
structure. These include brushing, the ability to move a
rectangular “brush” across the screen to select and
manipulate subsets of points inside the brush;
metamorphing, which is changing the size, shape, or color
of the object that represents the observation point in the
3D space; and subsetting, the creation of subsets of
objects by their location in 3D space; by their color, size,
or shape; by the value of an attached label; or by their
observation number.

In addition to the (now) standard set of 3D tools, the
implementation we discuss in the next section contains

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARY/MARCH 1991




two less-common 3D tools. These tools, which are
designed to enhance the 3D effect, project the cloud of
observation points in perspective onto the 2D graphics
screen, and (optionally) in stereo perspective.

o 6D-interpolation tool
In addition to the tools for exploring and visualizing one
data space, the implementation discussed below has a
tool for visually comparing two high-dimensional data
spaces. This tool enables the data explorer to smoothly
interpolate between two 3D portions of two hD data
spaces. The user watches the dynamically changing
interpolation in order to understand the relationship
between the two hD spaces. This tool was developed and
discussed by Young and his co-workers [5-7]. It is very
similar to the 4D-rotation tool developed by Buja and his
co-workers, and was in fact presented by Young to
perform the functions performed by hD-rotation.
However, it has been shown by Buja et al. [10] that when
viewed as a rotation, the 6D-interpolation tool does not
yield an orthogonal rotation; rather, it yields a sheared,
nonorthogonal rotation. They go on to point out,
however, that the tool is useful for comparing two 3D
spaces, or two 3D portions of two separate hD data
spaces.

The 6D-interpolation tool for dynamically moving

from T, , to T,,, is defined as

V,=T,A-C)+T

P +2%p 3

where V is defined as above, and where C, is a diagonal
3 X 3 matrix with diagonal values

O0<c¢ =1,

paa

where the values ¢ increment from 0 to 1 dynamically

paa

over p in increments of 0.05.

3. VISUALS/Pxpl implementation’

The tools for guiding a tour of high-dimensional data
space that are defined above are implemented in a system
we call VISUALS/Pxpl. We have chosen this name
because many of the fundamental touring tool concepts
were defined and implemented by Young [7] and his co-
workers [3, 6] in a system they called VISUALS. The
“Pxpl” suffix reflects that the software has been
reimplemented on a special-purpose, massively parallel,
custom graphics computer called Pixel-Planes. This
computer was developed by Fuchs and his co-workers
[3, 4].

Pixel-Planes is a raster graphics system for high-speed
rendering of 3D objects and scenes. It features a “frame
buffer” composed of custom logic-enhanced memory
chips that can be programmed to perform most of the

* The material in this section on Pixel-Planes 4 is adapted from the Pixel-Planes
Project Summary, Department of Computer Science, UNC, Chapel Hill, North
Carolina.
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time-consuming pixel-oriented tasks in parallel at each
pixel. The novel feature of this approach is a unified
mathematical formulation for these tasks and an efficient
tree-structured computation unit that calculates inside
each chip the proper values for every pixel in parallel.

The current system, Pixel-Planes 4 (Pxpl4), contains
512 x 512 pixels X 72 bits per pixel, implemented with
2048 custom 3-um nMOS chips (63 000 transistors in
each, operating at 8 million microinstructions per
second). There are a total of 262 144 separate processors,
one for each pixel. These processors work in paraliel.

The Pixel-Planes architecture is a novel approach to
raster graphics in which the front part of the system
specifies the objects on the screen in pixel-independent
terms, and the frame-buffer memory chips themselves
work from this description to generate the final image.
Image primitives such as lines, polygons, and spheres are
each described by expression (and operations) that are
“linear in screen space,” that is, by coeflicients 4, B, C
such that the value desired at each pixel is Ax + By + C,
where X, y is the location of the pixel on the screen.
Thus, the information that is broadcast to the frame
buffer is a sequence of sets (4BC, instruction), rather
than the usual (pixel-address, RGB-data) pairs. In
contrast to other raster systems, the most time-
consuming pixel-level calculations are done neither by
general-purpose processors nor by special hardware that
executes only a particular set of graphics functions.
Instead, Pixel-Planes is a fairly general-purpose raster
engine, especially powerful when most of the pixel
operations can be described in linear (or planar)
expressions.

Pxpl4 contains a fairly conventional “front-end”
graphics processor, implemented using the Weitek XL
chip set, that traverses a segmented, hierarchical display
list, computes viewing transformations, performs lighting
calculations, clips polygons (or other primitives) that are
not visible, and performs perspective division. For objects
described by polygons, the graphics processor translates
the colored-polygon-vertex description of each object into
the form of data (4, B, C) for linear expressions, together
with instructions for the “smart” frame buffer. An image-
generation controller converts work-parallel data and
instructions into the bit-serial form required by the
enhanced memory chips. A video controller scans video
data from the frame buffer and refreshes a standard raster
display. The system is hosted by a conventional UNIX
workstation that supports the system’s user interface
through various graphics input devices and provides
system programming tools.

The heart of the Pxpl4 system is the “smart” frame
buffer, an array of custom VLSI processor-enhanced
memory chips. Each of these chips contains two identical
64-pixel modules. Each module has three main parts: a
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Initial display, showing the principal 3D space. Cubes represent
the fifty states; the vectors represent seven crimes.

The display of Figure 2, with states and crimes labeled. Property
crime vectors point upward, personal crime vectors point ‘down-
ward, and higher crime rates correspond to greater distance to the
right along the vectors.

conventional memory array that stores all pixel data for a
64-pixel column on the screen, an array of 64 tiny one-
bit ALUs, and a linear expression evaluator that
generates Ax + By + C simultaneously for all pixels. All
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ALUs in the system execute the same microinstruction at
the same time, and all memories receive the same address
(each pixel ALU operates on its corresponding bit of
data) at the same time. Pxpl4 can process about 39 000
smooth-shaded, z-buffered triangles per second. Shadows
are cast at about 13 000 triangles per second, using true
shadow volumes. About 12 000 smooth-shaded,
z-buffered, interpenetrating spheres are rendered per
second.

Motion in VISUALS/Pxpl is controlled by two 3D
Joysticks and a slider. One joystick always controls 3D
spinning. The other joystick has three modes: In one
mode it controls 3D translation; in another mode it
controls 6D-rotation; in the third mode it controls 6D-
interpolation. The slider always controls viewing angle.
Various keyboard commands implement other tools.

4. Video example

In this example we demonstrate using VISUALS/Pxpl to
look for structure in seven-dimensional data. These data,
which are shown in Table 1 of [7], report the crime rate
for seven major types of crime in each of the fifty United
States for 1977. The rate is per 100 000 population. (The
data were gathered by the FBI and were published in the
1979 Statistical Abstract of the United States by the U.S.
Department of Commerce.) We submitted these data to a
principal components analysis and then used VISUALS/
Pxpl to investigate the structure of the principal
component scores and coefficients.

Figure 2’ (video scene 1) shows the initial display
constructed by VISUALS/Pxpl. This is the initial 3D
space V. What we see is the 3D space formed by the first
three principal components (the principal 3D space). The
first component is displayed horizontally and the second
vertically; the third is represented by the size of the cubes
(large cubes are in the front of the space, small ones are
in the back). In Figure 2 there are fifty cubes for the
principal component scores of the fifty states, and seven
vectors for the principal component coefficients of the
seven crimes. The cubes represent the location of each
state as projected into the principal 3D space, while the
vectors represent the seven crimes as projected into this
space. The length of a vector represents how close the
crime is to the principal 3D space (i.e., the amount of
variance in the crime that is associated with the plane).
This type of plot, which shows the observations (states) as
points (cubes) and the variables (crimes) as vectors, is
called a biplot [11].

Figure 3 (also from video scene 1) shows the same
display as Figure 2 except that the states and crimes have
been labeled. We see that the crime vectors point to the
right in the direction of the first principal component,

*The photographs are taken from a video sequence made by the authors that is part of
the video supplement to this issue.
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indicating that it represents the overall crime rate, and
that the states on the right have the highest overall crime
rates and those on the left have the lowest overall crime
rates. Note that the property crime vectors (auto theft,
larceny, burglary, and robbery) point upward, and the
personal crime vectors (rape, assault, and murder) point
downward. Thus, the second principal component, which
is vertical, separates property crime from personal crime.

Previous visual exploration of these data [7] has
revealed that in the principal 3D space there is a cluster
of southern states. This cluster does not include Florida,
which has a crime pattern like northern states. In Figure
4 (video scene 2), the same scene is shown as in Figures 2
and 3, except that the southern states are now
represented by red cubes and Florida by a yellow cube,
and the crime vectors have been made invisible. Since
the southern states are at the bottom of the space, they
are states with disproportionately high rates of personal
crime. Spinning the space shown in Figure 4 confirms
that the cluster of southern states is at least three-
dimensional.

We now use VISUALS/Pxpl to investigate whether the
cluster of southern states is a cluster in all seven
dimensions, or only in the three we see while spinning
the space shown in Figure 4, or in some other
dimensionality between three and seven. To do this, we
prepare to take a guided tour of the high-dimensional
data space. First we define the two targets T, and T,. We
define T, = V,, the space we have been examining. We
then define T, to be the space whose dimensions are
principal components 4, 5, and 6 (the largest space
orthogonal to T;). Spinning T, (video scene 4) indicates
that the cluster of southern states is a cluster in this space
as well.

However, further investigation suggests that the
southern states may divide into three clusters, one
consisting of North and South Carolina, another of
Mississippi, Alabama, and Louisiana, and the third of
Georgia, Arkansas, and Tennessee. If we count Florida,
there appear to be four clusters of these southern states.
This conclusion is reached by taking a depth-cued guided
tour of the six-dimensional space formed by T, and 7.

This process (video scenes 5-7) involves the following
steps. First, we focus on the states of interest by making
all cubes except the southern ones invisible. This is
shown in Figure 5, where the space has been spun into a
new orientation. Second, we switch to parallel from
perspective projection, to accurately portray paths of
movement. The locations of the Southern states
(including Florida) are shown in Figure 6. Here the red
cubes are the Carolinas, the blue cubes are Georgia,
Arkansas, and Tennessee, and the white cubes are
Mississippi, Alabama, and Louisiana. (Note that colors
were not assigned before discovering the clusters. After
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Same scene as Figures 2 and 3, with Florida represented by a yel-
low cube, the other southern states by red cubes, and the vectors
made invisible.

A different orientation of the 3D space, with only the southern
states visible. Florida remains yellow, North and South Carolina
remain red, and the remaining visible states are changed to white,
reflecting the three apparent clusters within the group of southern
states.

all, they presuppose knowledge of the clusters that did
not exist prior to the visual exploration. Rather, they
were assigned after visual exploration revealed the three
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What we look at during this high-dimensional depth-
cued rocking is the paths of movement and the changing
brightnesses of the cubes representing the nine southern
states. Clusters of states which follow similar paths and
which show similar changes in brightness are close
together in six-dimensional space. States in different
clusters will follow different paths and have different
brightness changes.

This guided tour reveals that the Carolinas (red cubes)
move along paths which are different from those taken by
the other states but which are similar to each other; that
Georgia, Arkansas, and Tennessee (blue cubes) move
along another set of similar paths which are different
from those taken by other states; and that the same is
true for Mississippi, Alabama, and Louisiana (the white
cubes). The paths are called “similar” because they show
the same kind of movements.

Depth cueing further reinforces this structure. Figure 7
shows projection fit cueing, the tool which uses brightness
to show the proportion of a state’s total variance that is
represented in the visual space. Bright portions of the
paths represent projections of states which retain much of
their variance in the visual space, dim portions represent
projections which retain little. If the states in a cluster are
located in about the same place in multivariate space,
then, as they are projected onto the visual space as it
rotates through six dimensions, the cubes for the states in
a cluster should display similar brightness changes. By
studying this photograph we see that the brightnesses of
cubes that are the same color change in similar fashion
(although one white-cube path—for Mississippi—seems
to differ from the other two white paths), further
suggesting that the states are clustered in high-
dimensional space as we suspect.

The depth-cued guided tour allows us to draw a
conclusion about the structure of these states in the six-
dimensional space formed by the first six principal
components. The conclusion is that these nine southern
states appear to form four clusters in six dimensions.
Apparently, there are four different patterns of crime in
these nine southern states.

Finally, in video scene 9 (which is not shown in
photographs here) we return to the full biplot of all fifty
states and seven crimes to see if the depth-cued guided
tour will reveal additional structure of interest. We notice
that the Alaska cube moves in and out from the center to
the upper right-hand corner as we rotate from the
principal space (where Alaska is in the center) to the
residual space (where Alaska is in the corner). We further
clusters.) Third, we use 6D-rotation to rock back and notice that Alaska’s brightness changes opposite to the
forth between T, and 7. A time-lapse photograph of the ~ way in which most cubes change: Alaska is dimmest
rocking process is shown in Figure 7. (Figure 6 is one end  when it is in the principal space, the space that accounts
of the rocking, as can be seen by comparing the two for the most variance, and it is brightest when it is in the
photographs.) residual space, a space which accounts for much less

A parallel projection of the southern states, with color changed to
blue for Georgia, Arkansas, and Tennessee.

A time-lapse image of 6-dimensional rotation of the image of
Figure 6. showing differing paths for each cluster but similar paths
for the states within a cluster.
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variance. Thus, we see that Alaska is an outlier, and that
much of its variance is accounted for by components that
account for little other variance. Indeed, when we look at
the original crime rate data, we see that Alaska’s crime-
rate profile is unusual: At least in 1977, when these data
were obtained, it had the highest rate of rape per 100 000
population of any state in the country, but it did not
have an extremely high rate for other personal crimes.

5. Conclusion

In the video we have seen dynamic statistical graphics
that use changing brightness and movement. With the
aid of these guided-tour tools we can discover and
visualize structure in high-dimensional multivariate data.
These graphics tools have helped us discover that Alaska
has an unusual crime pattern, and that there are four six-
dimensional clusters among the crime patterns of the
southern states.

Note that we cannot see these four clusters as spatial
clusters in any portion of the video. Rather, we see these
clusters as movement clusters. Furthermore, the
movement clustering is reinforced by similar patterns of
changing brightness. Indeed, it may be that we cannot
see a spatial structure that actually exists in a high-
dimensional space in any of the infinity of different static
projections of that space. For our example there may be
no 2D (or 3D) projection that shows these four groups of
states as spatially separated clusters. However, the
movement and brightness clusters imply that spatial
clusters do exist in 6D. Thus, VISUALS/Pxpl gives us a
way of “visualizing” the structure of high-dimensional
space by encoding the structure as movement and
changing brightness in three-dimensional space.

Dynamic statistical graphics has helped us discover and
visualize structure in high-dimensional multivariate data.
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