Interactive
analysis

of the topology

of 4D vector fields

by R. R. Dickinson

Interactive visualization methods are now
evolving in response to a need to provide more
immediate access to particular features of
interest to analysts at particular points in the
space and time of their data. This paper focuses
on feature extraction methods relevant to the
analysis of vector fields. In vector fields,
“critical points” are those points at which the
vector magnitude passes through zero. The
word “topology” is used to describe the
interconnection patterns between critical points.
Topology is central to the understanding of
vector fields. It provides very succinct and
precise summary information, and can be used
to subdivide large fields into well-defined
subregions. In this paper, methods for
interactively creating maps of vector-field
topology are described. The advantages offered
by interactive methods in comparison with
automatic methods are also discussed.

Introduction

Much visualization research and system development in
recent years has focused on the automatic creation of
large quantities of pictorial information to represent the
end results of analysis. This trend is rooted in an implicit
assumption that visualization happens at the end of the

computing component of a given project. As a result, a
large amount of computing resources may be spent on
producing images in which the user might only have a
passing interest. This typically takes the form of a
videotape archive. Once a tape has been made, there is
no way of exploring different spatial regions of the
underlying data from different viewpoints without
restarting the videotape production cycle from scratch.
Further, with currently available video playback
equipment, there are limits on how quickly and easily a
scientist or engineer can obtain information about a
particular region of the time domain of a given problem.
And with the implicitly fixed number of output frames
that can appear in a video recording over a given portion
of analysis time, there is no guarantee that a feature of
particularly short duration will appear on the tape at all.
If the purpose of computing is insight, a feedback loop
is clearly implied. In turn, visualization should be
regarded not only as the climax of a process of
enlightenment, but also as the beginning of a new
analysis cycle. More immediate access to particular
features of interest to analysts at particular points in the
space and time of their data is clearly needed. Interactive
visualization methods are now evolving in response to
this need. This paper discusses some algorithms and user
interface issues relevant to the interactive visualization of
vector fields. When the accompanying videotape is
viewed, it should be remembered that each scene was
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recorded in real time. The narration explains what the
user is doing with a mouse and a Spaceball* to drive the
topology extraction process. In some cases, the user has
chosen to trade off image quality and density with
interactivity in order to focus interest on the particular
phenomenon that is being demonstrated.

In this paper, the term vector-field refers to a process
which associates a vector-valued quantity with each point
in a region of space and time. The most common
practical examples of fields that are fundamentally
vector-valued (as opposed to derived vector fields) are the
fluid velocity fields arising from computational fluid
dynamics analyses and experimental fluid mechanics
research. Other common applications are heat flows in
heat transfer problems and magnetic flux in magnetics.
Examples of derived vector fields of substantial interest to
meteorologists are the gradients of scalar fields such as
atmospheric pressure and temperature. The examples
given in this paper are primarily drawn from these
applications, but the theory is quite general.

The most common methods for visualizing vector
fields typically involve stream-line tracking and particle
traces. Several variations on these themes have appeared
recently. For example, tubes have been used to more
clearly communicate the 3D form of complex space
curves arising from 3D fluid flows [1, 2]. “Strokes” (based
on the head-to-tail shapes of pen strokes) are being used
to reduce the clutter associated with the more traditional
arrowheads for denoting vector direction [1, 3]. For
particle traces, paper jets are being used as alternatives to
the more traditional bubble shapes in order to show more
clearly the torsion of complex space curves [2]. A method
that uses surfaces rather than curves has also been
developed [4]; this is based on the displacement of a
cutting plane in the direction of the vector field at all
points of the cutting plane. The magnitude of the
displacement is everywhere proportional to the
corresponding vector magnitude. This method provides
an important alternative to curve-based approaches. But
substantial interpretation difficulties are likely to be
encountered when this method is used in the vicinity of
singularities due to the rapid changes in velocity
magnitude that typically accompany such features.

These traditional methods can lead to excessive visual
clutter, especially if automatic graphics object creation
methods are used. In fact, in many books and articles
some of the most useful images are often schematic
diagrams drawn by artists to highlight particular features
that are known to exist but that are difficult to draw
automatically. (For a good example of this, see Figure 5.1
of the notes from a recent SIGGRAPH course [5].) In
contrast to this sort of clutter, vector-field topology
provides a very succinct and precise summary of a given

* Spaceball is a trademark of Spatial Systems Inc., Billerica, MA.

R. R. DICKINSON

vector field. Topology describes the interconnection
pattern of “critical points”—points at which the vector
value passes through zero. In many applications, vector-
field topology is central to the understanding of the
underlying processes. Topology can provide both
graphics programmers and users with ways of subdividing
large and complex fields into well-defined and more
easily understood regions. For example, topology edges
can be used to define geometric boundaries within which
tangent curves are constrained to lie. Structuring these
into groups that the user can switch on and off according
to regional interests follows in a natural way.

While the formal development of a method for
automatically analyzing vector-field topology appeared
quite recently [6, 7], the underlying mathematical
components required for analyzing 2D vector-field
topology have been available in books for some time [8].
In this paper we describe the implementation of these
established mathematical concepts in an interactive
system designed for the identification of selected parts of
topology near given points in the space and time of a
vector field.

2D vector-field topology

While 2D vector fields can be thought of as special cases
of the 4D fields dealt with later in this paper, it is useful
to begin with steady-state bivariate, bivalued vector fields,

£, u)]

1
£ v) (0

F(u, v) = l:

where f, and £, are the components of the vector value F,
and u and v represent the field domain. Note that F can
be either fundamentally vector-valued, representing a
velocity field, for example; or it can be derived from
some other function such as the gradient of a 2D pressure
field. But for the purposes of what follows, we need only
be concerned with the values of F itself, along with its
derivatives with respect to u and v.

With respect to first-order derivatives, critical points
can be classified according to the eigenvalues of the
Jacobian of the vector value [7, 8],

% %
ou dv 5
a_.f;a_f; > ()
du dv

J(uy, vy) =

where u,, v, is a point in the domain of F such that

0
F(u,, v,) = |:0:| . (3

In this paper the eigenvalues are written as
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Table 1 Classification of critical points.

Name Ao A, N

Saddle point <0 >0 =

Attracting node <0 <0 =

Repelling node >0 >0 =

Attracting focus <0 <0 #0

Repelling focus >0 >0 #0

Center = = #0
Ao = Ao + A (4a)
and
A=A, - AL (4b)

using the subscripts r and i to distinguish between the
real and imaginary parts of each eigenvalue. The
classification of critical points using this notation is given
in Table 1 for completeness.

For the purposes of interactive topology extraction, the
most important of these is the saddle point. At each
saddle point, the tangent to the vector field is undefined,
but the tangent is well defined some small distance away
from each saddle point. Accordingly, there is always a
distinct pair of curves that are each tangent to the vector
field some small distance away from a given saddle point,
as well as being tangent to an eigenvector of the Jacobian
at the saddle point. By dividing each of this pair of curves
into two distinct curves deemed to begin at the saddle
point and head off in a positive and a negative direction,
respectively, the user gets to interact with four distinct
curves emanating from each saddle point. We use italics
here to denote terms used in the Graph Theory sense: It
is these four curves that form the edges connected to the
node associated with the given saddle point in the graph
that uniquely defines the topology of the given vector
field. In an oriented graph, it is a simple matter to ensure
consistency of orientation of edges by always assigning
originating nodes (e.g., saddle points) as the origin of
each connected edge.

Note that since the tangent is undefined at a saddle
point, the assignment of positive and negative direction
lies solely with the assignment of the direction of the
eigenvector. This is nontrivial because the direction of a
given eigenvector is meaningless mathematically. For 2D
steady-state fields it turns out that it can be considered as
being arbitrary. For 2D transient fields, we need to
reconsider what we mean by arbitrary, as discussed in the
next section.

Now, to interactively locate saddle points, and in turn
track topology edges, we need to be able to find the
nearest saddle point from a given user-specified point,
and then track the relevant tangent curve(s) emanating
from that saddle point. Ideally, this process and the
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overhead of interacting with the user should be
achievable at speeds approaching screen refresh rates.
The following numerical procedure has been found to be
quite adequate to achieve this goal on typical graphics
workstations.

The following pseudocode gives an outline of the
algorithm that we use to locate saddle points:

Find _nearby_saddle_point:

Classify—nearby _singularity (Table 1)
if (nearby_singularity is a saddle point)
{

J

else

{

Step_to_nearby_saddle_point

Find_nearby_saddle_like_region
if (found) Step_to_nearby._saddle_point

}

The algorithm “Classify_nearby_singularity” simply
involves taking the Jacobian of the vector field at the
(potentially arbitrary) user-specified point, and classifying
the form of the field at that point using the criteria in
Table 1. In doing this, we implicitly assume that first-
order information is generally sufficient to predict the
form of the nearest singularity to the user-specified point.
Since we are dealing with an interactive system, the
consequences of this assumption being incorrect are
trivial because the user is able to observe the behavior of
the underlying algorithms at all times, and can simply
move the user-specified point if the behavior is not what
was expected.

If the class of the nearby singularity is a saddle point,
then stepping on to it simply consists of the following
first-order iterative process. At any given point in the
vicinity of the saddle point, a first-order estimate of its
location is given by

(rh_, %
6u—<f, r» —anv)/A (5a)
and

(e _ %
v = <j3 u ) 6u> / A, (5b)
where
N A A 9

By iteratively stepping a distance éu in u and dv in v, and
re-evaluating the Jacobian at the new point, finding the

precise location of the saddle point to within some
tangent-magnitude and/or location tolerance follows in

the obvious manner. 61
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If the class of the singularity near a given user-specified
point is not a saddle point, we obviously need to take
some other course of action. Find_nearby_saddle_like_
region takes care of this. The objective is to move out of
the region occupied by the user-specified point, into a
region that is likely to contain a saddle point. If the user-
specified point is deemed to be near a node or a focus, we
simply march along the tangent curve passing through
that point in the direction away from the node or focus,
in search of a saddle-like region. If the user-specified
point is deemed to be near a center, indicating that the
tangent curves in this area are nearly circular or elliptical,
we use the geometry of the osculating circle of the
tangent curve passing through respective points in an
iterative process that is designed to quickly move directly
away from the nearby singularity, in search of a saddle-
like region. The geometry of the osculating circle to the
tangent curve passing through a given point is given by
the curl of the unit tangent vector:

afo zaf zafx a_fl 3
) o]

du " 'ov
The magnitude of the inverse of the coeflicient of k gives
the radius of the osculating circle, and its sign indicates
the side of the tangent curve on which the center of the
circle is located.

Given either of the above initial states, if the saddle-
point-searching algorithm ends up at a point outside the
domain of the field, our system currently does nothing
visually, returning directly to the input event loop to wait
for the user to move to a new point from which to try
again.

curl(t) = [(—f;)f, -fi—+f

k.
©®)

Interaction paradigms
For the remainder of this section, we assume that nearby
saddle points are locatable at speeds approaching or faster
than screen refresh rates, and that a feedback line from
the user-specified point to the saddle point is always
displayed in a rubber-band-like manner. All that remains
is to track the four curves emanating from the currently
found saddle point and display them as temporary curves
for the user to preview. Our system simply interprets a
mouse click as an indication that the found edges are of
interest, and saves them as permanent graphic structures.
A simple but very useful extension of this paradigm
involves an edge search menu with the following choices:

All four edges.

Adjacent edges.

Largest eigenvalue, positive sense.
Largest eigenvalue, negative sense.
e Smallest eigenvalue, positive sense.
e Smallest eigenvalue, negative sense.
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The second choice is the most intuitively satisfying one.
With this selection, the particular edge that is oriented
closest to the feedback line from the user-specified point
to the saddle point is the only one that is tracked,
displayed, and subsequently saved. The remaining four
can be used to uniquely define any particular one of the
four curves from a given point. This is useful for
systematically dividing the topology creation process into
parts that are smaller and easier to understand.

The opening segment of the accompanying video
graphic shows some of these interaction paradigms in
action. The first example involves a derived vector field
that was produced by taking the gradient of a 2D
atmospheric pressure field. The second example describes
the physics involved in the transonic analysis of the flow
of SF6 through an industrial circuit breaker, and then
displays some results of an interactive analysis of the
topology of these data.

Transient 2D fields

In this section, the topology extraction concepts described
in the previous section are augmented for use with
trivariate bivalued vector fields of the form

filu, v, 1) ]
fiw vt |

Fu,v,t) = [ )]

where f, and £, are the components of the vector value F,
u and v represent the spatial domain of the field, and ¢
represents the time domain of the analysis or data used to
define F.

For tracking topology with respect to time, at any
given instant along the time domain of F the Jacobian
and its eigenvalues can be computed as described above.
That is, any given snapshot of the transient field is
treated as a steady-state field independently of the values
of F at any other point in its time domain. The only
difference is that in a sequence of time steps used to
animate the evolution of topology with respect to time,
we need to ensure that the senses of direction of the four
curves emanating from a given saddle point are
consistent from one time to the next. This is because we
would like to be able to give the user the ability to point
to one particular edge at a given instant in time, and then
ask the system to display its continuous evolution both
before and after the specified time. To do this, we need to
ensure that the computation of the sense of direction of
the eigenvector associated with a given saddle point is
consistent for small changes in the Jacobian associated
with that saddle point, from one point in time to the
next. We achieve this by symbolically solving the
eigensystem of the Jacobian as follows.

For a compact representation of the symbolic
operations that follow, we can rewrite the Jacobian at a
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given point in space and time as

O 10
‘ 3
%1 On

The eigenvalues of this matrix are

®)

Ao = 0.5[(oq + ;) + A4] (9a)
and

A, = 0.5[(ogy + 0,,) — 4], (9b)
or

Aoy = 0.5[(0gy + 7)) + 5,4], (10)

where
_ 2 2 12
A= (04 — 20040, + 0}, + 40,,0,)

and s, is the sign of 4:

+1
s, = )

Note that for foci, the magnitude of A is the imaginary
part of the eigenvalues in Equation (4). The eigenvectors
of ¢ are given by the following singular linear system:

[¢] (11a)

or, equivalently,
%1

%10 o, — A Xy

If we wish to obtain normalized eigenvectors, we can
impose the constraint that

for A,,
for A,.

« X = )X,

(11b)

xi+x;=1 (12)

To solve for the eigenvectors corresponding to A, and A,
in a way that gives a consistent sign convention for small
changes in ¢, the eigenvector corresponding to A, is
computed as follows. Solving the top row of (11) subject
to (12) gives

—-1/2

x,[0] = sense 20, C (13a)

and

x,[1] = ~sense B C™', (13b)
where

C=4¢. + B,

B=oy—0,— 54,

and sense is =1 denoting the sense of direction assigned
by the user in the menu items listed in the previous
section.

If both ¢,, and o, are small relative to the diagonal
values, g, is assigned to A, and the vector (0, —sense) is
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assigned to x. The assignment of the eigenvector
associated with A, follows similarly from the lead given
here.

A detailed illustration of interactive transient 2D
topology extraction is not included as part of the
accompanying video graphic because of space limitations
imposed on the video publication.

3D vector-field topology
This section deals with steady-state trivariate, trivalued
vector fields,

Jolu, v, w)
S, v, wy |,
L, v, w)

where the f; represent the components of the vector value
F, and u, v, and w represent the 3D Cartesian domain of
the field.

With respect to first-order derivatives, critical points
for 3D vector fields can also be classified according to the
Jacobian of the vector value,

[ % 3% 9 |
u dv Iw

4.9, 9,
u dvow |’

L du dv Iw |

F(u, v, w) = (14)

Juy, vy, W) =

(15)

where u,, v,, W, is a point in the domain of F such that

0

F(uy, vy, wy) = | 0 (16)

0

We are currently experimenting with a hybrid of
symbolic and numerical techniques for solving the
eigenvalues of J for the 3D case, using a generalization of
the methods required for tracking tensor field lines
through symmetric 3D tensor fields [2, 9]. To locate a
particular critical point, the following first-order iterative
scheme is used from an arbitrary point specified by the
user. A first-order expansion of F gives

[ 9% % % |
ou dv ow su P
of, of, o,
I A WA =— 7
du dv dw o / an
ow A
| du Jv ow | 63
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An unrolled symbolic version of Gaussian elimination
has been found to be both fast and robust for solving this
system of equations for du, dv, and éw at each step in an
iterative process that searches for the nearest point
satisfying Equation (16). As shown in the videotape, this
makes interactive searching of critical points quite
feasible.

In general, there are six curves emanating from each
3D saddle point, connecting adjacent nodes and foci.
This many curves can lead to substantial visual clutter.
For this reason it is useful to classify edges as well as
nodes when attempting to extract topology from 3D
vector fields. We call one such edge class a “vortex
centerline.” This involves the restriction that the curl of
the vector field be parallel to the vector field itself,
everywhere along the corresponding tangent curve. That
is, we would like to find the particular curve that satisfies

0
Fxcurll(F)= |0 (18)
0

along its entire length. To find the nearest curve
satisfying this condition from an arbitrary point specified
by the user, we use the first-order expansion

ou HEC, = £C,
{41 - | ov LG = /G 1
ow KC = 1G

where the coeflicient matrix is computed as follows. We
denote curl(F) = (C,, C,, C,) (i.e., C, = of,/dw — 8f,/dv
and so on), and write df/du as f,, and so on for the
remaining components and derivatives:

Ao =f1Co = £ C s
4o =1.C, - £,Cy,
4o, = .G, = £,.Cy
Aio=£uCo = S Co s
A, =5.Co = 1.Cos
A =£Co =10 G5
Ay =10.C = 1o
45, =1.C = .G
Ay = £,C = f1.Co -

An unrolled symbolic Gaussian elimination solver is
used at each iteration, in a manner analogous to that
used for locating point singularities. For locating singular
curves from poor initial guess locations, the above
coefficient matrix often turns out to be numerically

11
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poorly determined until the iteration starts to zero in on
the required curve. In such circumstances, we take a
section through the 3D field that is perpendicular to the
curl of the vector value and that passes through the initial
point. At all points in this new 2D field, the 3D vector
value is projected onto the plane. The out-of-plane
component of the 3D vector value is ignored. In this new
“virtual 2D vector field,” we perform the same operations
that were described earlier for 2D fields, to zero in on the
point in this plane at which the vector value vanishes.
This entire process is repeated in an iterative manner
until the above three-dimensional convergence criterion
is satisfied.

Scene 4 of the accompanying videotape shows this
curve-searching algorithm in action. The interaction
paradigm is similar to that described for saddle-point
searching, except that the feedback line points from the
user-specified point to the nearest point on the found
curve, rather than at a singularity. The usefulness of these
curves becomes particularly apparent in attempting to
track paper jets in the vicinity of the curve. Such curves
are clearly necessary in order to provide a reference
feature for the unambiguous interpretation of 3D particle
traces. Some examples of a second class of edge that we
call a “saddle curve” are also given in the accompanying
video graphic, but a detailed mathematical description of
the algorithm for tracking this second class of curve is
beyond the scope of the present paper.

Transient 3D vector fields
This section deals with quadvariate, trivalued vector
fields of the form

S v, w, t)
Fu,v,w, ty=] fltu,v,w, t) |, (19)
L, v, w, t)

where the f, represent the components of the vector value
F; u, v, and w represent the spatial domain; and ¢
represents the time domain of the underlying analysis or
data used to define F.

For tracking 3D topology with respect to time, we can
again deal with each instant along the time axis as a
steady-state problem of the form discussed in the
previous section. Scene 5 of the accompanying videotape
shows this process in action on the creation and
evolution of the vortices in the airflow through a room.
At the beginning of analysis time, the air is stagnant, and
a forced flow velocity is imposed at the inlet. The
movement of the vortices displayed here provides the
analyst with essential visual feedback required to
meaningfully interpret the flow results, without the
excessive visual clutter that typically accompanies groups
of particle traces. Note that as the user zooms in on a
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given portion of analysis time, more information is
displayed in the region of interest, and nothing is
displayed outside the time clip limits. Users quickly learn
to exploit this capability because it is analogous to the
screen space clip limits of a static image.

Our experiences with these tools to date clearly show
that transient 2D topology extraction is very much easier
for the user than transient 3D topology. Accordingly, it is
desirable to be able to help the user even more by being
able to search for particular critical points and topology
edges along the time axis, as well as along the three
spatial coordinates. For critical points, this task can be
expressed in terms of a first-order expansion as

[ % % % 9|
du dv dw At ou
A
% o O P P (20)
auavawar | | swl !
A
% % 3, 3, o
| Ou dv dw o

While various numerical methods are available for
solving poorly determined systems of equations such as
these, there is a problem with user feedback. For
feedback of the spatial offset from the user-specified point
to the found point, we simply rubber-band a line between
the two. For providing feedback of the found point along
the time domain, it is clearly undesirable to shift the time
associated with the display on behalf of the user. This
would be analogous to moving the cursor on behalf of
the user for spatial feedback, which has been found to be
very undesirable. Clearly, there are many user interface
problems to be dealt with as we move toward faster and
more complex visual feedback capabilities, but the
rewards for solving them can be expected to be
substantial. The more we as system designers can
simplify complex tasks for analysts, the more they will
enjoy using the tools that we create.

Conclusions

In the work presented in this paper, we have clearly
established the feasibility of interactive vector field
topology extraction on today’s state-of-the-art
workstations. The potential benefits and advantages for
scientists and engineers using these tools are clear. Older
methods of creating automatic abstract visualizations of
objects tend to produce copious amounts of imagery to
be examined in attempting to extract meaning from
vector-field data. In contrast, direct interaction with maps
of the data to create features of particular interest in
particular parts of the domain of the data provides a
powerful subdivide-and-conquer approach to data
interpretation.
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While we are pleased with the progress we have made
to date, the tools we have created are new, and the
underlying mathematics is not trivial. This leads to a user
learning curve that is difficult for novice users,
particularly those who are not familiar with vector-field
theory. Accordingly, it is strongly recommended that
further work be undertaken with respect to the
development of a “style guide” for feature extraction
using multidimensional graphics input devices, based on
a formal psychology study of various proposed
approaches. This will provide a basis for freeing up more
of the user’s thinking time for the underlying field
behavior by making the viewing and 3D cursor controls
more automatic.
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List of videotape captions

The videotape that accompanies this paper has been
designed to be complementary to the printed material, as
well as being informative and visually interesting
independently of the printed paper. The narration is used
to communicate what the user is doing with various
graphics input devices at various points in time, as well
as to provide a qualitative overview of the need for
interactive topology extraction. The viewer is referred
back to this paper for details on the mathematical
concepts behind the system’s responses to given user
interactions.

Scene I Some examples of excessive visual clutter from
the use of automatic graphics object creation systems.

Scene 2 Interactive 2D topology extraction. The red
and blue curves respectively denote +1 and —1 for s, in
Equation (10).

Scene 3 Interactive 3D topology extraction. Vortex
centerlines are selected from user-specified points, and
tracked in both directions about the found point until
either a critical point or the domain boundary is
encountered.

Scene 4 Interactive transient 3D topology creation
paradigms. This scene shows the creation and evolution
of various vortex centerlines associated with the air flow
through a room. The inlet velocity is steadily increased
from the start of analysis time.
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