
Interactive by R.  R. Dickinson 

analysis 
of the topology 
of 4D vector fields 

Interactive  visualization  methods  are now 
evolving in response to a  need to provide  more 
immediate  access  to  particular  features of 
interest to analysts  at  particular points in the 
space  and  time of their  data.  This  paper  focuses 
on  feature extraction methods  relevant to the 
analysis  of  vector  fields. In vector  fields, 
“critical points”  are  those  points at which  the 
vector  magnitude  passes  through  zero.  The 
word  “topology” is used to describe  the 
interconnection  patterns  between critical points. 
Topology is central to the understanding  of 
vector  fields. It provides  very  succinct  and 
precise summary  information,  and  can be used 
to subdivide large fields into well-defined 
subregions. In this paper,  methods  for 
interactively  creating  maps  of vector-field 
topology  are  described.  The  advantages  offered 
by  interactive  methods in comparison  with 
automatic  methods  are  also  discussed. 

Introduction 
Much  visualization  research and system development in 
recent  years  has  focused on the automatic creation of 
large quantities of pictorial information to represent the 
end results of  analysis. This trend is rooted in an implicit 
assumption that visualization happens at the end of the 

computing component of a given  project. As a result, a 
large amount of computing resources  may  be spent on 
producing  images in which the user  might  only  have a 
passing interest. This typically  takes the form of a 
videotape  archive. Once a tape has  been made, there is 
no way  of exploring  different spatial regions  of the 
underlying data from  different  viewpoints without 
restarting the videotape production cycle from scratch. 
Further, with currently available  video  playback 
equipment, there are limits on how quickly and easily a 
scientist or engineer can obtain information about a 
particular region  of the time domain of a given  problem. 
And  with the implicitly fixed number of output frames 
that can appear in a video  recording  over a given portion 
of  analysis time, there is no guarantee that a feature of 
particularly short duration will appear on  the tape at all. 

If the purpose of computing is insight, a feedback loop 
is  clearly  implied. In turn, visualization should be 
regarded not only as the climax of a process  of 
enlightenment, but also as the beginning  of a new 
analysis  cycle.  More immediate access to particular 
features of interest to analysts at particular points in the 
space and time of their data is clearly  needed. Interactive 
visualization methods are now  evolving in response to 
this need. This paper discusses  some algorithms and user 
interface  issues  relevant to the interactive visualization of 
vector  fields.  When the accompanying videotape  is 
viewed, it should  be  remembered that each  scene  was 
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recorded  m  real bme. ‘lhe narratlon explmns  what the 
user  is  doing  with  a  mouse and a  Spaceball* to drive the 
topology extraction process. In some  cases, the user has 
chosen to trade off image quality and density with 
interactivity in order to focus interest on the particular 
phenomenon that is being demonstrated. 

In this paper, the term vector-jeld refers to a  process 
which  associates  a  vector-valued quantity with  each point 
in a  region  of  space and time. The most common 
practical  examples of  fields that are fundamentally 
vector-valued (as opposed to derived  vector  fields) are the 
fluid  velocity  fields  arising from computational fluid 
dynamics analyses and experimental fluid mechanics 
research. Other common applications are heat flows in 
heat transfer problems and magnetic  flux in magnetics. 
Examples  of  derived  vector  fields  of substantial interest to 
meteorologists are the gradients of  scalar  fields  such as 
atmospheric pressure and temperature. The examples 
given in this paper are primarily drawn from these 
applications, but the theory is quite general. 

The most common methods for visualizing  vector 
fields  typically  involve stream-line tracking and particle 
traces.  Several variations on these themes have appeared 
recently. For example, tubes have  been  used to more 
clearly communicate the 3D form of complex  space 
curves  arising  from 3D fluid  flows [ 1,2]. “Strokes” (based 
on the head-to-tail  shapes of pen  strokes) are being  used 
to reduce the clutter associated  with the more traditional 
arrowheads for denoting vector direction [ 1, 31. For 
particle  traces, paper jets are being  used as alternatives to 
the more traditional bubble  shapes in order to show more 
clearly the torsion of complex  space  curves [2]. A method 
that uses  surfaces rather than curves  has  also  been 
developed [4]; this is based on  the displacement of a 
cutting plane in the direction of the vector  field at all 
points of the cutting plane. The magnitude of the 
displacement  is  everywhere proportional to the 
corresponding  vector  magnitude. This method provides 
an important alternative to curve-based approaches. But 
substantial interpretation difficulties are likely to be 
encountered when this method is used in  the vicinity of 
singularities due  to the rapid  changes in velocity 
magnitude that typically accompany such  features. 

clutter, especially  if automatic graphics  object creation 
methods are used. In fact, in many books and articles 
some of the most  useful  images are often schematic 
diagrams drawn by artists to highlight particular features 
that are known to exist but  that are difficult to draw 
automatically. (For a  good example of this, see Figure 5.1 
of the notes from a  recent SIGGRAPH course [5].) In 
contrast to this sort of clutter, vector-field  topology 
provides  a very succinct and precise summary of a  given 

These traditional methods can lead to excessive  visual 

* Spaceball is a  trademark of Spatial Systems Inc., Billerica, MA. 
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vector  field.  Topology  describes the interconnection 
pattern of “critical  points”-points at which the vector 
value  passes through zero. In many applications, vector- 
field  topology is central to  the understanding of the 
underlying  processes.  Topology can provide both 
graphics programmers and users  with ways of subdividing 
large and complex  fields into well-defined and more 
easily understood regions. For example,  topology  edges 
can be  used to define  geometric boundaries within  which 
tangent  curves are constrained to lie. Structuring these 
into groups that  the user can switch on  and off according 
to regional interests follows in a natural way. 

While the formal development of a method for 
automatically analyzing  vector-field  topology appeared 
quite recently [6,7], the underlying mathematical 
components required for  analyzing 2D vector-field 
topology  have  been  available in books for some time [8]. 
In this paper we describe the implementation of these 
established mathematical concepts in  an interactive 
system  designed  for the identification of  selected parts of 
topology near given points in the space and time of  a 
vector  field. 

2D vector-field topology 
While 2D vector  fields can be thought of as special  cases 
of the 4D fields dealt with later in this paper, it is useful 
to begin  with  steady-state  bivariate,  bivalued  vector  fields, 

where& andJ; are the components of the vector  value F, 
and u and u represent the field domain. Note that F can 
be either fundamentally vector-valued,  representing a 
velocity  field, for example; or it can be  derived from 
some other function such as the gradient of a 2D pressure 
field.  But  for the purposes of what follows,  we  need only 
be concerned  with the values of F itself,  along  with its 
derivatives  with  respect to u and u. 

With  respect to first-order  derivatives,  critical points 
can be classified  according to the eigenvalues of the 
Jacobian of the vector  value [7, 81, 

where u,, uo is  a point in the domain of F such that 

In this paper the eigenvalues are written as 
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Table 1 Classification of critical points. 

Saddle  point < O  > O  = O  
Attracting  node < O  < O  = O  
Repelling  node > O  > O  = O  
Attracting  focus < O  < O  # O  
Repelling  focus > O  > O  # O  
Center = o  = O  # O  

X, = X,, + Xi i  (44  

and 

X, = X,, - X,i, (4b) 

using the subscripts r and i to distinguish  between the 
real and imaginary parts of each  eigenvalue. The 
classification  of  critical points using this notation is  given 
in Table 1 for  completeness. 

For the purposes  of  interactive  topology extraction, the 
most important of these is the saddle point. At each 
saddle point, the tangent to  the vector field  is  undefined, 
but the tangent is  well  defined some small distance away 
from  each  saddle point. Accordingly, there is always a 
distinct pair of curves that are each tangent to the vector 
field some  small  distance  away from a given  saddle point, 
as well as being tangent to an eigenvector  of the Jacobian 
at the saddle point. By dividing  each of this pair of curves 
into two distinct curves  deemed to begin at the saddle 
point and head off in a positive and a negative direction, 
respectively, the user  gets to interact with four distinct 
curves emanating from  each  saddle point. We  use italics 
here to denote terms used in the Graph Theory sense:  It 
is  these  four  curves that form the edges connected to the 
node associated  with the given  saddle point in the graph 
that uniquely  defines the topology  of the given  vector 
field.  In an oriented graph, it is a simple matter to ensure 
consistency  of orientation of edges by always  assigning 
originating  nodes (e.g., saddle points) as the origin of 
each  connected edge. 

Note that since the tangent is undefined at a saddle 
point, the assignment of positive and negative direction 
lies  solely  with the assignment of the direction of the 
eigenvector. This is nontrivial because the direction of a 
given  eigenvector  is  meaningless  mathematically. For 2D 
steady-state  fields it  turns  out  that it can be  considered as 
being arbitrary. For 2D transient fields, we need to 
reconsider  what we mean by arbitrary, as discussed in the 
next  section. 

Now, to interactively  locate  saddle  points, and in turn 
track topology  edges, we need to be  able to find the 
nearest  saddle point from a given  user-specified point, 
and then track the relevant tangent curve(s) emanating 
from that saddle point. Ideally, this process and the 
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overhead of interacting with the user should be 
achievable at speeds approaching screen  refresh  rates. 
The following  numerical procedure has  been found to be 
quite adequate to achieve this goal on typical  graphics 
workstations. 

The following  pseudocode  gives an outline of the 
algorithm that we use to locate  saddle  points: 

Find-nearby-saddle-point: 

Classify-nearby-singularity (Table 1) 
if (nearby-singularity is a  saddle  point) 
( 

I 
else 
I 

Step-to-nearby-saddle-point 

Find-nearby-saddle-like-region 
if (found) Step-to-nearby-saddle-point 

1 
The algorithm “Classify-nearby-singularity” simply 
involves  taking the Jacobian of the vector field at the 
(potentially arbitrary) user-specified point, and classifying 
the form of the field at  that point using the criteria in 
Table 1. In  doing  this, we implicitly  assume that first- 
order information is generally  sufficient to predict the 
form of the nearest  singularity to the user-specified point. 
Since we are dealing  with an interactive system, the 
consequences of this assumption being incorrect are 
trivial  because the user  is  able to observe the behavior of 
the underlying algorithms at all  times, and can simply 
move the user-specified point if the behavior  is not what 
was expected. 

If the class  of the nearby  singularity  is a saddle point, 
then stepping on  to it simply  consists of the following 
first-order  iterative  process. At any given point in the 
vicinity  of the saddle point, a first-order estimate of its 
location  is  given by 

and 

where 

By iteratively  stepping a distance 6u in u and 6v in v ,  and 
re-evaluating the Jacobian at  the new point, finding the 
precise location of the saddle point to within some 
tangent-magnitude and/or location tolerance follows in 
the obvious manner. 
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If the class  of the singularity near a  given  user-specified 
point is not a  saddle point, we obviously  need to take 
some other course of action. Find-nearby-saddle-like- 
region takes  care of this. The objective is to move out of 
the region  occupied by the user-specified point, into a 
region that is likely to contain a  saddle point. If the user- 
specified point is  deemed to be near a node or a  focus, we 
simply  march  along the tangent curve passing through 
that point in the direction away from the node or focus, 
in search of a  saddle-like  region.  If the user-specified 
point is  deemed to be near a center, indicating that  the 
tangent curves in this area are nearly circular or elliptical, 
we  use the geometry of the osculating  circle  of the 
tangent curve  passing through respective points in an 
iterative  process that is  designed to quickly  move  directly 
away from the nearby  singularity, in search of a  saddle- 
like  region. The geometry  of the osculating  circle to the 
tangent curve  passing through a  given point is given  by 
the curl of the unit tangent vector: 

(6) 

The magnitude of the inverse of the coefficient  of k gives 
the radius of the osculating  circle, and its sign indicates 
the side of the tangent curve on which the center of the 
circle  is  located. 

Given either of the above initial states, if the saddle- 
point-searching  algorithm ends up  at a point outside the 
domain of the field, our system currently does nothing 
visually, returning directly to the input event loop to wait 
for the user to move to a new point from which to try 
again. 

Interaction  paradigms 
For the remainder of this section, we assume that nearby 
saddle points are locatable at speeds approaching or faster 
than screen  refresh  rates, and  that a  feedback  line from 
the user-specified point to the saddle point is always 
displayed in a  rubber-band-like manner. All that remains 
is to track the four curves emanating from the currently 
found saddle point and display them as temporary curves 
for the user to preview. Our system  simply interprets a 
mouse  click as an indication that the found edges are of 
interest, and saves them as permanent graphic structures. 

A simple but very  useful  extension  of this paradigm 
involves an edge search menu with the following  choices: 

0 All four edges. 
0 Adjacent edges. 
0 Largest eigenvalue,  positive  sense. 
0 Largest eigenvalue,  negative  sense. 
0 Smallest  eigenvalue,  positive  sense. 

62 0 Smallest  eigenvalue,  negative  sense. 

The second  choice is the most intuitively satisfying  one. 
With this selection, the particular edge that is oriented 
closest to the feedback line from the user-specified point 
to the saddle point is the only one that is  tracked, 
displayed, and subsequently  saved. The remaining four 
can  be  used to uniquely  define any particular one of the 
four  curves  from  a  given point. This is useful for 
systematically  dividing the topology creation process into 
parts that are smaller and easier to understand. 

The opening  segment of the accompanying video 
graphic  shows  some of these interaction paradigms in 
action. The first  example  involves  a  derived  vector field 
that was produced by taking the gradient of a 2D 
atmospheric pressure field. The second  example  describes 
the physics  involved in the transonic analysis of the flow 
of SF6 through an industrial circuit breaker, and then 
displays  some  results of an interactive analysis of the 
topology  of  these data. 

Transient 20 fields 
In this section, the topology extraction concepts described 
in the previous  section are augmented for  use  with 
trivariate bivalued  vector  fields of the form 

where& andf; are the components of the vector  value F, 
u and v represent the spatial domain of the field, and t 
represents the time domain of the analysis or data used to 
define F. 

For tracking  topology  with  respect to time, at any 
given instant along the time domain of F the Jacobian 
and its  eigenvalues can be computed as described  above. 
That is, any  given snapshot of the transient field  is 
treated as a  steady-state field independently of the values 
of F at any other point in its time domain. The only 
difference  is that in a  sequence of time steps  used to 
animate the evolution of  topology  with  respect to time, 
we need to ensure that the senses  of direction of the four 
curves emanating from  a  given  saddle point are 
consistent  from  one time to the next. This is because we 
would  like to be  able to give the user the ability to point 
to one particular edge at a  given instant in time, and then 
ask the system to display its continuous evolution both 
before and after the specified  time. To  do this, we need to 
ensure that the computation of the sense of direction of 
the eigenvector  associated  with  a  given  saddle point is 
consistent  for  small  changes in the Jacobian associated 
with that saddle point, from one point in time to the 
next. We achieve this by symbolically  solving the 
eigensystem  of the Jacobian as follows. 

For a compact representation of the symbolic 
operations that follow, we can rewrite the Jacobian at a 
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given point in space and time as 

a = [: :::I (8) 

The eigenvalues  of this matrix are 

X, = OS[(u, + u,,) + A ]  (94  

and 

X, = OS[(u, + u,,) - A ] ,  (9b) 

where 

A = (0; - 2u,uI, + u:, + 41~,,u,,)~'~ 

and sA is the sign  of A :  

SA = r1 for X,, 
-1 for X,. 

Note that for  foci, the magnitude of A is the imaginary 
part of the eigenvalues in Equation (4). The eigenvectors 
of a are given  by the following  singular linear system: 

[a] x = Ax, (1 la) 

or, equivalently, 

If  we  wish to obtain normalized  eigenvectors, we can 
impose the constraint that 

x ,  + x 2  = 1. 2 2  (12) 

To solve  for the eigenvectors corresponding to X, and X, 
in a way that gives a consistent  sign convention for  small 
changes in u, the eigenvector corresponding to X, is 
computed as  follows.  Solving the top row  of (1 1) subject 
to ( 12)  gives 

X, [OI  = sense 2 u , , ~ - ~ ' ~  ( 1 3a) 

and 

X , [ l ]  = -sense B C-'I2, 

where 

C = 4ui,  + B2, 

B = u, - u,, - sAA, 

and sense is f 1 denoting the sense  of direction assigned 
by the user in the menu items listed in the previous 
section. 

If both a,, and u,, are small  relative to the diagonal 
values, u, is  assigned to X,, and the vector (0, -sense) is 

assigned to x. The assignment of the eigenvector 
associated  with X, follows  similarly  from the lead  given 
here. 

A detailed illustration of interactive transient 2D 
topology extraction is not included as part of the 
accompanying  video  graphic  because  of  space limitations 
imposed on the video publication. 

3D vector-field topology 
This section  deals  with  steady-state trivariate, trivalued 
vector  fields, 

A@, v, w )  

F(u, v,  w )  = A(% v, w )  , (14) 

f,(ut v,  w )  

where thef; represent the components of the vector  value 
F, and u, v,  and w represent the 3D Cartesian domain of 
the field. 

With  respect to first-order  derivatives, critical points 
for 3D vector  fields can also  be  classified  according to the 
Jacobian of the vector  value, 

aA a ?  J(u,, v,, w,) = - - - 
au av aw ' 

where u,, v,, wo is a point in the domain of F such that 

We are currently experimenting with a hybrid  of 
symbolic and numerical techniques for solving the 
eigenvalues  of J for the  3D case,  using a generalization of 
the methods required for tracking tensor field lines 
through symmetric 3D tensor fields [2 ,9 ] .  To locate a 
particular critical point, the following  first-order iterative 
scheme is used from an arbitrary point specified by the 
user. A first-order  expansion of F gives 

63 
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An unrolled  symbolic  version  of Gaussian elimination 
has  been found to be both fast and robust for  solving this 
system  of equations for 6u, 6v, and 6w at each step in  an 
iterative  process that searches for the nearest point 
satisfying Equation (16). As shown in the videotape, this 
makes  interactive  searching of critical points quite 
feasible. 

In general, there are six curves emanating from  each 
3D saddle point, connecting adjacent nodes and foci. 
This many  curves can lead to substantial visual clutter. 
For this reason it is  useful to classify edges as well as 
nodes when attempting to extract topology from 3D 
vector fields.  We  call one such edge  class  a  “vortex 
centerline.” This involves the restriction that  the curl of 
the vector field  be  parallel to the vector field  itself, 
everywhere  along the corresponding tangent curve. That 
is,  we would  like to find the particular curve that satisfies 

r q  

I O 1  
F x curl(F) = 0 l o 1  (18) 

along  its entire length. To find the nearest  curve 
satisfying this condition from an arbitrary point specified 
by the user, we use the first-order expansion 

where the coefficient matrix is computed as follows.  We 
denote curl(F) = (eo, C , ,  C,) (i.e., Co = af;/aw - af,/av 
and so on), and write af,/du as&,, and so on for the 
remaining components and derivatives: 

A ,  =f;,c2 -f,,c, 3 

A01 = L C ,  -fZvCI 9 

-40, =&,.e, -f,& 9 

4 0  =f,,,co -&,IC, 9 

A , ,  =.LC0 -f,C, 7 

A , ,  =f,,.co -f,,c2 3 

A20 =fOaCI - f ; u c o  3 

A,, =f,C,  -f;,Co Y 

A22 =&WcI * 

An unrolled  symbolic Gaussian elimination solver  is 
used at each iteration, in a manner analogous to that 
used for  locating point singularities. For locating singular 
curves  from poor initial guess  locations, the above 

64 coefficient matrix often turns  out  to be  numerically 
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poorly determined until the iteration starts to zero in  on 
the required  curve. In such  circumstances, we take a 
section through the 3D field that is perpendicular to the 
curl of the vector  value and that passes through the initial 
point. At all points in this new 2D field, the 3D vector 
value  is  projected onto  the plane. The out-of-plane 
component of the 3D vector  value is ignored. In this new 
“virtual 2D vector  field,” we perform the same operations 
that were described  earlier  for 2D fields, to zero in  on  the 
point in this plane at which the vector  value  vanishes. 
This entire process  is  repeated in  an iterative manner 
until the above three-dimensional convergence criterion 
is  satisfied. 

Scene 4 of the accompanying videotape  shows this 
curve-searching algorithm in action. The interaction 
paradigm  is similar to  that described  for saddle-point 
searching,  except that the feedback line points from the 
user-specified point to the nearest point on the found 
curve, rather than at a  singularity. The usefulness  of  these 
curves  becomes  particularly apparent in attempting to 
track paper jets in the vicinity of the curve.  Such  curves 
are  clearly  necessary in order to provide  a  reference 
feature  for the unambiguous interpretation of 3D particle 
traces.  Some  examples  of  a  second  class of  edge that we 
call  a  “saddle curve” are also  given in  the accompanying 
video  graphic, but a  detailed mathematical description of 
the algorithm  for tracking this second  class of curve is 
beyond the scope  of the present  paper. 

Transient 3D vector  fields 
This section  deals  with quadvariate, trivalued  vector 
fields  of the form 

[ I  fo(u, v ,  w, t )  

F(u,  v, w, t )  = f ;b ,  v,  w, t )  , (19) 

v, w, t )  

where thef; represent the components of the vector  value 
F; u, v, and w represent the spatial domain; and t 
represents the time domain of the underlying  analysis or 
data used to define F. 

For tracking 3D topology  with  respect to time, we can 
again  deal  with  each instant along the time axis as a 
steady-state  problem of the form  discussed in the 
previous  section.  Scene 5 of the accompanying videotape 
shows this process in action on  the creation and 
evolution of the vortices in the airflow through a room. 
At the beginning of analysis time, the air is stagnant, and 
a  forced  flow  velocity is imposed at  the inlet. The 
movement of the vortices  displayed  here  provides the 
analyst  with  essential  visual  feedback  required to 
meaningfully interpret the flow results, without the 
excessive  visual clutter that typically accompanies groups 
of particle  traces. Note that as the user zooms in on a 
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given portion of  analysis  time, more information is 
displayed in the region of interest, and nothing is 
displayed outside the time clip  limits.  Users quickly learn 
to exploit this capability  because it is analogous to  the 
screen  space clip limits of a static image. 

Our experiences  with  these tools to date clearly  show 
that transient 2D topology extraction is very much easier 
for the user than transient 3D topology.  Accordingly, it  is 
desirable to be  able to help the user  even more by being 
able to search  for particular critical points and topology 
edges along the time axis, as well as along the three 
spatial  coordinates. For critical  points, this task can be 
expressed  in terms of a  first-order expansion as 

While  various  numerical methods are available for 
solving  poorly determined systems of equations such  as 
these, there is  a  problem  with  user  feedback. For 
feedback of the spatial offset from the user-specified point 
to the found point, we simply rubber-band a line between 
the two. For providing  feedback of the found point along 
the time domain, it is  clearly  undesirable to shift the time 
associated  with the display on behalf  of the user. This 
would  be  analogous to moving the cursor on behalf of 
the user  for  spatial  feedback,  which  has  been found to be 
very undesirable.  Clearly, there are many user interface 
problems to be dealt with as we move  toward  faster and 
more complex  visual  feedback  capabilities, but the 
rewards  for  solving them can be  expected to be 
substantial. The more we as system  designers can 
simplify  complex  tasks  for  analysts, the more they will 
enjoy  using the tools that we create. 

Conclusions 
In the work presented in this paper, we have  clearly 
established the feasibility  of interactive vector field 
topology extraction on today’s state-of-the-art 
workstations. The potential benefits and advantages  for 
scientists and engineers  using  these  tools are clear.  Older 
methods of creating automatic abstract visualizations of 
objects tend to produce copious amounts of imagery to 
be examined in attempting to extract meaning from 
vector-field data. In contrast, direct interaction with maps 
of the data to create features of particular interest in 
particular parts of the domain of the data provides  a 
powerful subdivide-and-conquer approach to  data 
interpretation. 

While we are pleased  with the progress we have made 
to date, the tools we have created are new, and  the 
underlying mathematics is not trivial. This leads to a user 
learning  curve that is difficult for novice  users, 
particularly  those  who are not familiar with  vector-field 
theory.  Accordingly, it is strongly recommended that 
further work  be undertaken with  respect to  the 
development of a  “style  guide” for feature extraction 
using multidimensional graphics input devices,  based on 
a  formal  psychology study of  various  proposed 
approaches. This will provide  a  basis  for  freeing up more 
of the user’s thinking time for the underlying field 
behavior by making the viewing and 3D cursor controls 
more automatic. 
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List of videotape  captions 
The videotape that accompanies this paper has been 
designed to be complementary to the printed material, as 
well as being  informative and visually  interesting 
independently of the printed paper. The narration is  used 
to communicate what the user  is  doing  with  various 
graphics input devices at various points in time, as well 
as to provide  a  qualitative  overview  of the need  for 
interactive  topology  extraction. The viewer  is  referred 
back to this paper  for  details on the mathematical 
concepts  behind the system’s  responses to given  user 
interactions. 

Scene I Some  examples of  excessive  visual clutter from 
the use of automatic graphics  object creation systems. 

Scene 2 Interactive 2D topology extraction. The red 
and blue  curves  respectively denote + 1 and - 1 for s, in 
Equation ( 10). 

Scene 3 Interactive 3D topology extraction. Vortex 
centerlines are selected  from  user-specified  points, and 
tracked  in  both  directions about the found point until 
either  a  critical point or the domain boundary is 
encountered. 

Scene 4 Interactive transient 3D topology creation 
paradigms. This Scene shows the creation and evolution 
of  various  vortex  centerlines  associated  with the air flow 
through  a  room. The inlet velocity is steadily  increased 
from the start of analysis  time. 
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