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This paper describes a general approach to data
visualization, based on the Rendering
Subroutine Package (RSP). RSP is a general-
purpose polygon-based renderer, and is IBM’s
first rendering application programming
interface (API) for users who wish to develop
their own applications. We present an overview
of the system, details of the image synthesis
tools, and several examples of the application of
RSP to architectural CAD, molecular graphics,
and computer tomography.

Introduction
In recent years, CAD/CAM, computer graphics
animation (CF, CM), and presentation graphics have
become big business as a result of the progress of
computer graphics technology. Data visualization of large
numerical simulations has also become important for the
understanding of simulation results. As a result, the user
needs a variety of representations, flexible interactive
operation, and high-quality and realistic image display
capability in a wide range of application fields. In order
to satisfy this requirement, we have developed a general-
purpose polygon-based renderer, the Rendering
Subroutine Package (RSP).

It is easy to imagine the ideal rendering system that
most users would like to use for visualization. It would
provide good-quality pictures quickly. Although many

rendering methods, for example [1-15], have been
proposed, it is very difficult to satisfy the requirements
for all applications. This is not surprising, because there
is always a trade-off between the quality of the generated
picture and the time taken to generate the picture. Thus,
one of the best answers is to provide several different
types of rendering software.

We therefore provide users with three rendering
methods (a list-priority method, a scan-line method, and
a ray-tracing method) that cover most of their needs.
Figure 1 shows the relationship among the methods in
terms of image quality and processing time. The user can
select any of them, taking account of the trade-off
between rendering time and quality. Both scan-line and
ray-tracing support a new texture-mapping technique,
which we call “attribute mapping.” It can generate more
realistic images and runs more efficiently than ordinary
texture-mapping techniques for surfaces with complex
textures. In this paper, we give a system overview of RSP,
details of the functions, and several examples of the
application of RSP to architectural CAD, molecular
graphics, and computer tomography.

System overview of RSP

Figure 2 shows an overview of the functions of the RSP
system. RSP uses polygonal models as geometry models,
and can treat convex and concave polygons with holes
and surface anomalies. The polygon data are defined by
the RSP data format, which has two file formats: a
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character file format and a binary file format. The
character file format is used to edit values in the files on a
terminal. The binary file format is used to read and write
rapidly from large polygonal data files. The use of a
polygonal model greatly simplifies shaded-image
synthesis, interactive operation on objects, and data
conversion from other data models such as boundary
representation (B-Rep), constructive solid geometry
(CSG), and free-surface models. Consequently, the user
can easily generate polygon data or write a program to
convert data from other systems. In fact, RSP has
reinforced existing modelers used by IBM, such as
CADAM,' CATIA,” and CAEDS.

The editing functions of RSP (inquiry, setting, memory
allocation, and memory deletion) allow users to access
the RSP data model, which can be used for interactive
operations. The user can build a suitable system
or user interface in the field by means of the editing
functions.

As mentioned before, three rendering methods have
been used to control the quality of the image and the
purpose, and are executed on the same data model. A
list-priority method gives an application the capability to
display shaded graphics in near real time. The idea of the
method is to draw (i.e., to generate components of the
image in a controlled sequence) from the furthest
polygons to the nearest polygons to remove hidden
surfaces; a drawn polygon “paints over” some parts of the

' CADAM is a trademark of CADAM, Inc.
? CATIA is a trademark of Dassault Systems Corporation.
*CAEDS is a registered trademark of International Business Machines Corporation.
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polygons behind it. The method is most suited to a set of
data of about a thousand polygons. Hence, it is good for
editing a small part of an object interactively. On the
other hand, it is not suitable for displaying an object with
a very large volume of data. A scan-line method is better
for a large volume of polygon data. Our scan-line method
gives an application the capability to generate shaded
color images with shadowing. The user can obtain
pictures within a reasonable response time. Ray-tracing is
a rendering method that can treat reflection, refraction,
and translucence. Our ray-tracing method is accelerated
by a three-dimensional digital analyzer (3DDA) on the
voxel data structure [11]. The details of each rendering
method are described later.

In addition to the rendering functions, RSP supports
color image quantization and dither functions for display
devices with a color lookup table (CLUT) and image
composition functions.

RSP is written in the C language, and is now running
on VM/CMS, MVS/SP,* MVS/XA,* and AIX’ operating
systems.

Data structure

e Geometry data structure

In this section, the geometric data of the system are
discussed. Although rendering of 3D objects is the major
goal of the system, the design of the geometric data
structure is very important, because it is one of the most
essential parts of the interface between an application and
the system. The rendering system is often used with
another system that yields 3D geometric data to be
visualized, such as a modeling system. The following
were considered as the minimum criteria for the
geometric structure of the system:

¢ Cost of converting geometric data for the rendering
system.

o Richness of representability of 3D geometric data.

+ Manageability of the 3D geometric data by the user.

Some geometric data in the user’s model must be
converted, because it is impossible to have exactly the
same geometric structure for every application. The first
criterion is that the conversion should be minimized. The
second criterion is that it should be possible to represent
even complicated 3D geometric data efficiently. The third
criterion is that the user should be able to edit the 3D
geometric data locally, so that there is no need to convert
all the data again when there is only a small change. In
view of the above criteria, questions must be answered

4 MVS/SP and MVS/XA are trademarks of International Business Machines
Corporation.

° AIX is a registered trademark of International Business Machines Corporation.

IBM J. RES. DEVELOP. VOL. 35 NO. 12 JANUARY/MARCH 1991




CATIA CAEDS CADAM ..., €t

Interface for user applications
RSP file RSP support
RSP file O
Editing functions
Geometric
data
List-
3D model priority
(polygon) method
= Graphic
Scan-line g mage
Attributes method 3 g;lsplay
Camera
Light § IBM 5080
Environment Rendered 5
1 [=
image % 38
<
Ray- E‘
tracing o]
method s
Image data
Texture
Background

System overview using RSP.

about the design of the geometric data structure for a any user’s models to polygon data. This does not cost too
visualization system. One question is what kind of much and it satisfies the first criterion. However, simple
geometric primitives should be supported, and anotheris  polygon data alone cannot represent a common object
how the relationship among them should be efficiently. It is more natural for the user to represent a
represented. face (surface) with a hole by one primitive rather than
In our system, polygon-based data were chosen as the multiple primitives. Thus the idea of faces, seals, and
geometric primitives, because it is usually easy to convert  holes, which is described later, is introduced in this 47
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Example of the structure of plan, object, and face.

system. These generalities allow a user to convert data
without any trouble. Thus, these polygon-based
primitives satisfy in most cases the first and second
criteria described above.

To satisfy the third criterion, a hierarchy for
representing the relations among geometric data was
introduced into the structure. The user can dynamically
edit this hierarchy, using the functions provided by the
system. Five entities are introduced to represent the
geometric data of the rendering system: plan, object,
face, seal, and hole. The plan is the largest entity and
consists of several objects. The object consists of several
faces. The face is a polygon that includes some seals and
holes.

Plan

The plan, which is the largest entity, is normally used as
a project unit from the user’s viewpoint. A user can have
several plans in the system, where they are stored as a list
structure (Figure 3).
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Object

The object is a unit under a plan. There are hierarchical
relations among objects. A parent object can have several
children. Each child can be a parent of other objects. A
parent object may not have any faces, but otherwise an
object consists of a group of faces (Figure 3).

Each object has its own coordinate system. The
coordinate system is represented by a transformation
matrix with respect to the parent’s coordinate system.

Each object has its own display flag. By setting the
value of the flag, a user can control the visibility of the
object. The flag controls three states: displaying faces and
seals, displaying faces only, and displaying neither.

The system provides a user area for each object. The
user area can serve as the user’s own attribute for the
object. It may be a physical property of the object.

A root object is automatically generated by the system
when the user generates a plan and its object. This root
object is employed when the user wants to manipulate all
the objects under the plan. For example, the user sets the
transformation matrix to move and rotate everything
under the plan.

Face, seal, and hole

The face data represent the object’s geometry and have a
list structure. A face element consists of the polygon of
the face, the seals on the face, and the holes inside the
face (Figure 4). The face is an area-defining geometric
primitive which is defined by the face polygon. The
polygon can have any number of edges as long as they do
not intersect. The seal is an area inside the face and can
have its own attributes. The seal has higher visibility than
the face. The hole is an area inside the face that is always
transparent. In other words, the seal and the hole are
those areas whose attributes are different from those of
the face. Multiple seals and holes are also allowed for the
face. The seal data and the hole data are also polygonal
lists. The polygons of the face, the seal, and the hole are
represented by a list of vertices (Figure 5).

The face has an edge attribute and a face attribute. The
edge attribute controls the appearance of the outer lines
of the face. The face attribute controls the appearance of
the face inside the edges. Since it is useful to distinguish
the front and the back of the face, the face can have a
different attribute for each side. The seal has attributes
similar to those of the face, and different seals can have
different attributes. The hole is not given any attributes,
and the appearance of the edges of the hole depends on
the attributes of the face to which the hole belongs.

o Attribute data structure

Attribute data in RSP are basically separate from
geometric data. A few attribute data, however, are closely
related to geometry, and are called “geometry-dependent
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attribute data.” Mapping attribute data and smooth-
shading attribute data are categorized as geometry-
dependent attribute data. All other attribute data are
called “geometry-independent attribute data” (Figure 6).
Before the rendering procedure can be used, both
geometry-dependent and geometry-independent attribute
data must be linked to geometry data.

Geometry-dependent attribute data

Careful attention must be paid to the assignment of
geometry-dependent attribute data, because they are
allowed to be linked only to pertinent geometric data.
Specifically, smooth-shading attribute data can be linked
only to triangles. They consist of normal vectors
corresponding to the three vertices of each triangle.
Mapping attribute data consist of a mapping origin, a
mapping direction, an actual length along each mapping
direction, and a mapping offset. The geometric primitives
to be mapped are basically restricted to rectangles, but it
is possible to map image data to a triangle, for example,
as long as the user specifies a virtual rectangular mapping
canvas including the mapping origin, mapping direction,
and so on.

Geometry-independent attribute data
Geometry-independent attribute data are divided into
two types: “attribute domain definition data” and
“rendering attribute data.” The role of attribute domain
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definition data is to define an “attribute domain,” which
represents a region with the same rendering attributes to
be assigned as a face attribute. One of the unique features
of RSP originates in the attribute domain structure. The
concept of the attribute domain is discussed in more
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detail in the section on attribute mapping. An attribute
domain is coupled via an “attribute index” with
rendering attribute data. Rendering attribute data consist
of color, optic, and bump attribute data. Usually they are
referenced by a pointer corresponding to an attribute
domain. Color attribute data represent either a RGB
color value or a pointer to a color image. Optical
attribute data represent a set of optical coefficients to be
used in shading. Examples of optic data are ambient,
diffusive, reflective, and refractive coeflicients. Bump
attribute data represent a pointer either to a functional
bump generator or to a bump image. A functional bump
generator generates a two-dimensional wavy bump
pattern. Both a wavy bump pattern and a bump image
are used to perturb surface normal vectors, and perturbed
normals are then used in shading calculation.

o Rendering condition data structure

RSP has four rendering conditions, which are classified as
the camera, light, environment, and special conditions of
each rendering method.

Camera data are defined by the viewing parameters
familiar to users of GDDM/graPHIGS® [16]. Therefore, a
user can eastly combine RSP and graPHIGS
environments on a workstation. RSP, however, employs
a normalized projection into a logical workstation space
called the “normalized projection coordinates” (NPC).
The NPC of RSP are defined as a cubic space from zero
to one along each axis. RSP maintains a camera data list,
and one of the cameras is selected for the rendering
process.

RSP supports three types of light source: a point light
source, a spot light source, and a light source parallel to
the image. RSP maintains a light data list, and the lights
in this list can be turned on or off. Each light has several
parameters, such as light color, position, direction,
spotlight angle, and so on.

Environmental information consists of the ambient
light term, background information, the fog-effect ratio,
sky-effect parameters, and a global shadow calculation
switch.

The special conditions of each rendering method
involve parameters such as the maximum ray reflection
number of the ray-tracing method and the anti-aliasing
level of the scan-line and ray-tracing methods.

Attribute mapping

Attribute mapping [17, 18] is a generalization of texture
mapping. While texture mapping maps attribute values
directly, attribute mapping maps “indices” that
correspond to a bundle of various rendering attributes
including colors, bumps, optics, and shading models.

® GDDM and graPHIGS are trademarks of International Business Machines
Corporation.
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These indices are called “attribute indices,” and each is
defined for a closed region called an “attribute domain”
within a rectangular mapping canvas. Rendering
attributes within an attribute domain are assumed to be
coherent. The core concept underlying attribute mapping
is the attribute domain definition function (ADDF),
which defines attribute domains and the associated
attribute indices. By virtue of the ADDF, the integration
of image analysis and image synthesis is easily attained,
which in turn makes it possible to produce very realistic
images.

o Attribute index and bundle table
On the basis of the available shading models
implemented in RSP, once parameters associated with a
shading model are determined, we can determine the
intensity of an object at an arbitrary point. The attribute
values necessary for attribute mapping are simply a set of
these parameters in what we call a “bundle.” Let us
conventionally divide attribute values into three
categories: 1) color attributes, 2) bump attributes, and 3)
optic attributes. Color and bump attributes are
independent of any shading model, but optic attributes
are not. Color, bump, and optic attributes together are
referred to as “rendering attributes.” Each parameter of a
rendering attribute is specified in one of three ways: a
unique, fixed value (Type 1), a functional value (Type 2),
or a value looked up in a two-dimensional table (Type 3).
The value is independent of the position in the first
method, but not in the other two methods. The last
method is usually employed in texture mapping. When
we access a rendering attribute, it is necessary to specify a
“Type” parameter, as defined above, and the associated
pointers. These data are Kept in a table called an
“attribute bundle table.” To be more specific, the
contents of an attribute bundle table are a specification
type (Type 1, 2, or 3) and three pointers to rendering
attributes: a pointer to the color attribute, a pointer to the
bump attribute, and a pointer to the optic attribute. The
attribute bundle table itself can be accessed by using an
index called an “attribute index.” Texture mapping maps
attribute values directly. In contrast, attribute mapping
maps attribute indices, which in turn are replaced by a
specification type and pointers to rendering attributes.

o Attribute domain

Compound objects typically seen in minerals and rocks
have different attributes intermixed, and distinct coherent
regions are distributed over the surface of the object. An
example of an artificial compound object is one with
metallic seals pasted onto a package that is not metallic
by itself. An example of a natural object of this kind is a
granite that naturally contains different minerals such as
quartz, mica, and feldspar, each of which has different
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rendering attributes. These compound objects are very
difficult to represent realistically. To solve such
difficulties, we introduce what we call “attribute
domains.” By using attribute domains, compound objects
can be simulated very realistically. Another purpose of
defining attribute domains is to reduce the amount of
memory required, taking advantage of area coherence.

As shown in Figure 7, there is a one-to-one
correspondence between a surface and a rendering
attribute in ordinary texture mapping. In contrast, if we
define attribute domains between a surface and a
rendering attribute, the relation between a surface and
the rendering attributes in general becomes one-to-many.

With each “attribute domain,” we associate a function
called an “attribute-domain definition function”
(ADDF). An ADDF is defined either functionally or by
assigning a black-and-white image called a “trigger
pattern.” Examples of functionally defined ADDFs
include a tiled attribute-domain generation function and
a bricked attribute-domain generation function. A trigger
pattern is a rectangular pixel pattern whose content is
used as a pointer to an attribute bundle table. In other
words, the contents are used as attribute indices.

o Rendering pipeline in RSP

Figure 8 shows a so-called “rendering pipeline” or
“mapping pipeline.” This mapping pipeline includes
attribute mapping and other functions, starting with a
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process for obtaining an object’s position and ending
with a process for obtaining the values of its rendering
attributes.

Process 1

Starting with a screen coordinate value (S,, S,), this
process obtains a modeling coordinate value
corresponding to a point on the object of concern. It
generally depends on the rendering method used. For
example, in ray-tracing we can work in the world
coordinate (WC) system directly. In other words, it is
simply necessary to convert data from world coordinates
(WCs) to modeling coordinates (MCs). The scan-line
method usually begins with screen coordinates (SCs)
because their shading calculation often depends on the
number of scan lines in the screen. In these methods, SCs
are first converted to view coordinates (VCs), then to
WCs, and finally to MCs. The conversion among
multiple coordinate systems can be expressed in a
homogeneous four-by-four matrix. The output of this
process is a point whose value is expressed in MCs.

A. DOl ET AL.
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Process 2

This process depends on the geometry of the object and
the definition of a mapping function from 3D to 2D
geometry. Even if the geometry of the object does not
change, an almost infinite variety of definitions of
mapping functions may exist. For instance, let P be a
point on a parametrically defined bivariate bicubic patch,
P = (s, t). A simple mapping function from P to 2D
coordinates (u, v) is established by setting s — u, t — v.
Another mapping function is obtained by first
converting the value of P into (X, y, z) according to the
bicubic patch definition and then setting y — u, z — v,
which is equivalent to projecting the point P to the
plane X = C (constant). The polar coordinate system or
cylindrical coordinate system can also be used for
defining a mapping function.

Process 3

This process converts (u, v) in a 2D real space obtained
in Process 2 into (u’, v’) in a rectangular normalized UV-
space. Mapping parameters such as mapping direction,
mapping scale factor, and wraparound control flag are
included here. The flexibility of the mapping process is
greatly enhanced by a suitable choice of parameters.

Process 4

The kernel of attribute mapping lies in this process. Here
the values (u’, v’), together with the trigger pattern, if
any, are given to an ADDF defined on a surface of an
object, and an attribute index is produced as output.

Process 5

In this process, the attribute bundle table is accessed by
an attribute index obtained in the previous process. By
using the contents of the table entry corresponding to the
attribute index, each rendering attribute is obtained. A
typical example of an attribute bundle table is shown in
Figure 9.
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Image synthesis tool
o Near-real-time display

BSP tree

A simple way to display an object is to sort a group of
polygons by using the relationship between the view and
the normal of a polygon. However, it is still
computationally expensive, because a slight change in
view makes it necessary to sort all the polygons again.
Since many more applications need view changes than
need world-model changes, we decided to use a binary
space partitioning (BSP) tree, which was proposed by
Fuchs et al. [6].

A BSP tree is a structure in which processed polygon
data are stored. Traversing the BSP tree with a given eye
location performs hidden-surface removal in near real
time. The procedure for generating a BSP tree can be
summarized as follows:

1. Pick an arbitrary polygon from the polygon list, and
assign it as the root polygon.

2. Process the rest of the polygons to make a front
polygon list and a back polygon list. If all the vertices
of a polygon are in front of the root polygon above,
the polygon is added to the front polygon list. If all the
vertices of the polygon are behind the root polygon,
the polygon is added to the back polygon list.
Otherwise, the polygon is divided into two polygons
by the plane on which the root polygon is located.
Then the front part of the polygon is added to the
front polygon list, and the back part of the polygon is
added to the back polygon list.

3. Repeat this process recursively for the front polygon
list and the back polygon list until no more polygons
are left.

Traversing the BSP tree gives the display order of the
polygons. At each node of the BSP tree, the dot product
of the given viewing vector and the normal of the
partitioning polygon are calculated. If the dot product is
negative, the eye is in front of the polygon, and the
polygons behind the node polygon are traversed before
those in front of it. If the dot product is positive, the
polygons in front of the node polygon are processed first.
If the node is a leaf of the BSP tree, the polygon is drawn
and then the process goes back to traverse the rest of the
BSP tree. This process is continued until all the polygons
are drawn. Details of the algorithm for the BSP tree can
be found in [6)].

BSP tree for interactive use
One of the most suitable applications of the BSP tree is
for interactive editing of 3D objects. Here, interactive
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editing means the editing of both the shape and the
attributes of the 3D objects. Editing the shape, that is,
changing the topology and geometry of the 3D objects,
can be done through a wire-frame picture. But editing the
attributes of the object is difficult to do in the
environment of a wire-frame picture. Of course, it is
possible to edit the attribute by picking an appropriate
edge of the object’s face and then entering the
appropriate values from a keyboard. However, this is no
longer interactive. In an interactive environment, changes
in the objects’ attributes are reflected in the picture
displayed. When the color is changed, the color of the
shaded image should be changed in real time. Editing the
individual color of polygons is a typical application.

To take advantage of the interactive capability, the
system provides four stages in the rendering, as shown in
Figure 10.

First, a user must generate the BSP trees for the objects
to be displayed. The user picks an arbitrary node of the
body, and then the system automatically makes a BSP
tree for the polygon data under the body node.

After generating the BSP trees, the user must prepare
1o set several attributes. At this stage, appropriate
attributes are associated with the BSP tree generated in
the previous stage. The user chooses arbitrary camera,
light, environment, and global attributes, and can change
these attributes independently of one another.

To increase the flexibility with which 3D objects can be
edited interactively, we provide the following interface
associated with a polygon’s attributes, which affects the
appearance of faces, seals, and edges when they are
displayed. The color lookup table architecture is assumed
in the system. We decided to calculate a set of colors
according to the attributes set by the user, and load the
colors to the color lookup table before the display stage,
so that the advantages of the BSP tree and the lookup
table architecture are fully utilized. The dot product of
the viewing vector and the face normal gives the intensity
of luminescence. This value is converted to an
appropriate color table index, depending on the number
of color lookup table entries to which the color is
assigned.

Thus the system is designed to give the user an
opportunity to assign an arbitrary number of color
lookup table entries to arbitrary face or seal attributes. If
the user would like to see a subtle change in the color due
to the lighting, a large portion of the color lookup table
should be assigned to the color. If the user does not care
much about it, a few lookup table entries are enough for
the purpose. The above color lookup allocation can be
done through a system’s function call. The user can
specify which part of the lookup table, the starting entry
or the number of the entries, is used for a particular face,
seal, or edge attribute.
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After setting up the attribute, the user specifies the
designated workstation in the display stage. The user
associates the BSP tree with the workstation where a
picture of the object represented by the BSP tree is
supposed to be displayed, and can associate several BSP
trees with the workstation if he wants to display more
than one object simultaneously.

Finally, when the user does not need to display the
object of the BSP tree any more, the tree should be
deleted to save memory space.

o Shading display with shadow

Our shaded display with shadow is processed by the
Bouknight scan-line algorithm [1, 2] with the shadow
volume algorithm [3, 8]. Basically, the Bouknight
approach consists of a y-bucket sort on the edges. The
first step is to create an edge table for all nonhorizontal
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edges of all polygons. Each edge is stored in the table
according to its smaller y-coordinate. Next, the active
edge list is created from the edges that intersect the
current scan-line. For each scan-line, an x-coordinate sort
is run on the active edge list, which is based on scan-line
coherence. The scan-line depth buffer of active polygons
shows the visible one.

The addition of shadows vastly complicates the image
synthesis process, though it contributes considerably to
the realism of a scene and increases the perception of
depth. In 1977, F. Crow presented a technique for
shadow casting that was based on shadow volumes [3]. A
shadow volume is defined by the shadow polygon given
by planes defined by 1) contour edges and 2) light source
position. The contour edges are those edges owned by
both front-facing polygons and back-facing polygons for
each light source. The endpoints of the edges from the
light source positions are the bounds of the field of view.
The shadow polygons are added to the ordinary
geometrical data, and do not influence visibility.
However, the depth order of shadow surfaces and visible
surfaces determines the shadowing. If a visible point lies
within the shadow volume, the point is in shadow. The
shadow-volume method allows concave polygons with
holes and any number of light sources anywhere in 3D
space in the scan-line process. This unconstrained
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environment is the most efficient feature in other shadow
algorithms based on a scan-line method or z-buffer
methods (1, 2, 5, 7].

The most efficient feature of our scan-line method is its
shadow-polygon data reduction techniques [19]. A
shadow-volume algorithm is expensive for image
synthesis in a complex environment, because it generates
a lot of shadow polygons. In order to relax the restriction,
we have proposed shadow-polygon reduction techniques.
These consist of the use of a coplanar surface (seal) data
structure, determination of shadowing polygons by using
six-space subdivision at a point light source, and
techniques for extraction of contour edges. Use of these
techniques makes the shadow-volume algorithm effective
in a complex environment.

In order to overcome this aliasing problem, we apply
color-blending techniques at each scan-line process in the
scan-line method. The color at each pixel is
approximated by the product of the area sums of visible
polygons. In order to calculate the precise area of visible
polygon at each pixel, we applied a subscan-line division
technique, which divides a scan-line into N subscan-lines:

N

= (L X C)/N. (n

=1

Color

pixel

Here, Color,,,, is the color of a pixel and L, is the length
of the face on the subscan-line; C, is the color of the face
on the subscan-line, and N is the number of subscan-lines
in a scan-line.

o High-quality image display

A ray-tracing method gives RSP the function of high-
quality image display. It enables transparency,
translucency, refraction, reflection, and shadowing to be
used as standard functions.

In ray-tracing methods, a ray is traced from the eye
through each pixel into the polygonal data environment.
At each polygon struck by the ray, a reflected and/or a
refracted ray can be generated. The rays are traced
recursively to establish what polygons they intersect, and
an intersection tree is constructed for each pixel. The
final pixel intensity is determined by traversing the tree
and computing the intensity contribution of each node
according to the shading model.

There is usually a trade-off between high-quality image
display and high performance. Whitted [9] shows that
75 percent of the total time is spent on calculating
intersections between rays and objects for simple scenes.
To reduce this burden, we employ a “voxel”-based
method [11] with user-controllable parameters such as
the number of voxels along each coordinate axis and the
voxel size (Figure 11). A voxel is an orthogonal cuboidal
cell, which can be thought of as a 3D extension of a
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Simulation of a landscape by the list-priority method. Face num-
ber 1135; CPU (BSP-generation) time 0.29 s; CPU (traverse-and-
display) time 0.05 s.

raster grid, with pixels becoming voxels. The voxel data
structure is constructed before the intersections between
rays and objects are calculated. Each cell has information
on which polygons are involved in the cell. The 3DDDA
(three-dimensional digital differential analyzer [11]),
which is like a 3D line generator, is a basic tool for
traversing voxel data structures. It is applied in the
direction of the ray, and continues pursuing the ray in
the same direction until some object is intersected or
until it leaves the voxel domain. The calculation of
motions from one cell to another is achieved by
incremental logic, without any multiplication or division.
A salient feature of our ray-tracing method is that it
incorporates attribute mapping, using a full set of
attribute data assigned to each face. Attribute mapping
coupled with ray-tracing has the capability of producing
extremely high-quality pictures. Supersampling coupled
with ray-tracing also enhances the image quality. The
user can specify the degree of supersampling with
parameters provided by rendering condition data.

Applications
In this section, we describe some applications of RSP.
Visual simulation has become popular in architectual
CAD. It is very important to understand the potential
appearance of new buildings, or the view, lightness, and
shadows of the interior rooms. Figure 12 shows a
simulation of a landscape by the list-priority method. The
user can rotate the view, pick a visible polygon, and
change the attributes on the screen interactively. Figures
13 and 14 show the visual effect created by changing
from carpet to polished tile patterns on the floor. They
are respectively rendered by the scan-line method and the
ray-tracing method. Figure 15 shows an example of
image composition functions. It combines a computer-
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4 min 22.20 s.

Visual effect of the interior room II. Face number 1641; render-
ing time 36 min 29.22 s.

generated image and a photographed picture. The
photographed foreground picture is extracted by image
segmentation by thresholds, and overlaid on the
computer-generated picture. Figure 16 shows an example
of attribute mapping. Attribute mapping is used at the
transoms near the ceiling. Each transom consists of a
polygon on which transparency and color image
information is mapped.

The spatial shape of molecular orbital functions plays
an important role in allowing researchers to understand
the nature of chemical reactions, as the frontier orbital

A. DOI ET AL.

Visual effect of the interior room I. Face number 1641; CPU time
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Figure 15

Example of image composition. CPU time 28.51 s.

Example of attribute mapping. Face number 10981; CPU time 5

min 8.71 s.

theory [20, 21] and Woodward-Hoffmann theorem [22,
23] have shown. If polyhedral approximation is done in
molecular orbital functions, the user can rotate, zoom,
shift, and overlay equivalued surfaces. The overlay of
molecular orbital functions of two molecules is useful for
recognizing reaction sites. Figure 17 shows an equivalued
surface of the electron density of C,H;OH. The electron
density values are 0.1 and 0.125 bohr .

A. DOI ET AL.

Example of smoothly shaded image display. Face number 7174;
CPU time 2 min 19.61 s.

Constant-density surface by computer tomography. Face number
29134; CPU time 6 min 3.41 s.

Three-dimensional visualization has become important
in helping physicians to understand the complex
anatomy of the human body. If the triangulation of a
constant-density surface by 3D computer tomography is
achieved, the resulting models can easily be displayed
with RSP. Figure 18 shows some results of computer
tomography, with the soft-tissue surfaces displayed in
transparent form.
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The polyhedral data of Figures 17 and 18 are generated
by the tetrahedral grid method [24, 25]. Figures 13, 14,
15, and 16 were rendered with a resolution of 800 by 800
pixels, and the resolution of Figures 17 and 18 is 512 by
512 pixels. Figures 13 and 15 are generated by two
subscan-lines, and Figure 16 by one subscan-line. The
former is more anti-aliased than the latter.

Conclusions

We have described data visualization techniques for use
with a general-purpose renderer. The polygonal model
approach was proposed for easy and economical
implementation of flexible interactive manipulation, real-
time animation display, and high-quality image display.
When the number of polygons becomes large, there may
be a memory problem in an application program. But we
believe that in this case the problem can be processed
completely in a large virtual-memory environment. In
particular, the enhancement of program addressability
[26] will overcome the problem.

In order to satisfy the requirements of all applications,
we provide three rendering methods. The user can select
the most suitable of them for the image generation
process. This allows stepwise refinement of the image
quality. Texture mapping is a powerful tool for realistic
image synthesis in computer graphics. As a generalization
of texture mapping, we have proposed “attribute
mapping.” By virtue of ADDF, it can generate more
realistic images and run more efficiently than ordinary
texture mapping for surfaces with complex textures.

Currently, we are continuing to improve RSP, and are
developing an interactive graphics environment. A user-
friendly interactive graphics environment will help novice
users and nonprogrammers to generate pictures easily.
We also aim to develop higher-quality rendering
methods, which will be able to support mutual
interreflection of light, color bleeding, penumbra, and
realistic texture generation.
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