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This  paper  describes  a  general  approach  to  data 
visualization, based on the  Rendering 
Subroutine Package (RSP).  RSP is a  general- 
purpose  polygon-based  renderer,  and  is IBM’s 
first  rendering  application  programming 
interface  (API) for  users  who  wish  to  develop 
their  own  applications. We  present  an  overview 
of  the  system, details of the  image synthesis 
tools,  and several  examples of the  application of 
RSP  to architectural  CAD,  molecular  graphics, 
and  computer  tomography. 

Introduction 
In recent years, CAD/CAM, computer graphics 
animation (CF, CM), and presentation graphics  have 
become big business as a result of the progress of 
computer graphics  technology. Data visualization of large 
numerical simulations has  also  become important for the 
understanding of simulation results. As a result, the user 
needs a variety  of  representations,  flexible interactive 
operation, and high-quality and realistic  image  display 
capability in a wide  range  of application fields.  In order 
to satisfy this requirement, we have  developed a general- 
purpose  polygon-based  renderer, the Rendering 
Subroutine Package  (RSP). 

It is easy to imagine the ideal  rendering  system that 
most  users  would  like to use  for  visualization.  It  would 
provide  good-quality  pictures  quickly.  Although  many 

rendering  methods,  for  example [ 1-15], have  been 
proposed, it is  very  difficult to satisfy the requirements 
for  all  applications. This is not surprising,  because there 
is  always a trade-off  between the quality of the generated 
picture and the time taken to generate the picture. Thus, 
one of the best answers  is to provide  several  different 
types of rendering  software. 

We therefore  provide  users  with three rendering 
methods (a list-priority method, a scan-line method, and 
a ray-tracing method) that cover  most of their needs. 
Figure 1 shows the relationship among the methods in 
terms of  image quality and processing time. The user can 
select any of them, taking account of the trade-off 
between  rendering time and quality. Both  scan-line and 
ray-tracing support a new texture-mapping technique, 
which we call “attribute mapping.” It can generate  more 
realistic  images and runs more efficiently than ordinary 
texture-mapping techniques for  surfaces  with  complex 
textures.  In this paper, we  give a system  overview  of  RSP, 
details of the functions, and several  examples of the 
application of RSP to architectural CAD,  molecular 
graphics, and computer tomography. 

System  overview  of  RSP 
Figure 2 shows an overview  of the functions of the RSP 
system. RSP uses  polygonal  models as geometry  models, 
and can treat convex and concave  polygons  with  holes 
and surface anomalies. The polygon data are defined by 
the RSP data format, which  has  two  file  formats: a 
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Image quality and processing time (image size 1024 X 1024, 
polygon  count  more  than 3000). 

character file format and a binary file format. The 
character file format is used to edit  values in  the files on a 
terminal. The binary file format is  used to read and write 
rapidly from large  polygonal data files. The use of a 
polygonal  model  greatly  simplifies  shaded-image 
synthesis,  interactive operation on objects, and data 
conversion  from other data models  such  as boundary 
representation  (B-Rep), constructive solid  geometry 
(CSG), and free-surface  models.  Consequently, the user 
can  easily  generate  polygon data or write a program to 
convert data from other systems. In fact, RSP has 
reinforced  existing  modelers  used by IBM,  such as 
CADAM,’  CATIA? and CAEDS3 

allocation, and memory deletion) allow  users to access 
the RSP data model,  which  can  be used for interactive 
operations. The user can build a suitable system 
or user  interface in the field  by means of the editing 
functions. 

As mentioned before, three rendering methods have 
been  used to control the quality of the image and the 
purpose, and are executed on the same data model. A 
list-priority method gives an application the capability to 
display  shaded  graphics in near real  time. The idea of the 
method is to draw  (i.e., to generate components of the 
image in a controlled sequence) from the furthest 
polygons to the nearest  polygons to remove hidden 
surfaces; a drawn  polygon “paints over” some parts of the 

The editing functions of  RSP (inquiry, setting,  memory 

’ CADAM is  a  trademark of CADAM, Inc. 
* CATlA is  a  trademark of Dassault Systems Corporation. 
’ CAEDS is  a  registered  trademark of International Business Machines Corporation. 

polygons  behind it. The method  is  most  suited to a set  of 
data of about a thousand polygons.  Hence, it is  good  for 
editing a small part of an object  interactively.  On the 
other hand, it is not suitable  for  displaying an object  with 
a very  large  volume  of data. A scan-line method is  better 
for a large  volume of  polygon data. Our scan-line method 
gives an application the capability to generate  shaded 
color  images  with  shadowing. The user can obtain 
pictures  within a reasonable  response time. Ray-tracing  is 
a rendering method that can treat reflection,  refraction, 
and translucence. Our ray-tracing method is  accelerated 
by a three-dimensional digital  analyzer (3DDA) on the 
voxel data structure [ 1 11. The details of each  rendering 
method are described later. 

In addition to the rendering functions, RSP supports 
color  image quantization and dither functions for  display 
devices  with a color lookup table (CLUT) and image 
composition functions. 

RSP  is  written in the C language, and is  now running 
on VM/CMS,  MVS/SP,4  MVS/XA,4 and AIX5 operating 
systems. 

Data structure 

e Geometry data structure 
In this section, the geometric data of the system are 
discussed.  Although  rendering of 3D objects  is the major 
goal  of the system, the design  of the geometric data 
structure is  very important, because it is one of the most 
essential parts of the interface  between an application and 
the system. The rendering system  is often used  with 
another system that yields 3D geometric data to be 
visualized,  such as a modeling  system. The following 
were considered as the minimum criteria for the 
geometric structure of the system: 

e Cost of converting  geometric data for the rendering 

Richness of representability of 3D geometric data. 
Manageability of the 3D geometric data by the user. 

system. 

Some  geometric data  in the user’s model must be 
converted,  because it is  impossible to have  exactly the 
same  geometric structure for  every application. The first 
criterion is that the conversion should be  minimized. The 
second criterion is that it should  be  possible to represent 
even complicated 3D geometric data efficiently. The third 
criterion is that the user should be able to edit the 3D 
geometric data locally, so that there is no need to convert 
all the data again  when there is  only a small  change. In 
view  of the above criteria, questions must be  answered 

MVS/SP and MVS/XA are trademarks of International Business Machines 
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System overview using RSP. 

about the design  of the geometric data structure for a any user’s models to polygon data. This does not cost too 
visualization  system.  One question is  what  kind of much and it  satisfies the first criterion. However,  simple 
geometric  primitives  should be supported, and another is  polygon data alone cannot represent a common object 
how the relationship among them should  be  efficiently.  It  is more natural for the user to represent a 
represented.  face  (surface)  with a hole by one primitive rather than 

In our system,  polygon-based data were chosen  as the multiple  primitives. Thus the idea of  faces,  seals, and 
geometric  primitives,  because it is usually  easy to convert holes,  which  is  described later, is introduced in this 
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Example of the structure of plan,  object, and face. 

system.  These  generalities  allow a user to convert data 
without  any trouble. Thus, these  polygon-based 
primitives  satisfy in most  cases the first and second 
criteria  described  above. 

representing the relations among geometric data was 
introduced into the structure. The user can dynamically 
edit this hierarchy,  using the functions provided by the 
system.  Five entities are introduced to represent the 
geometric data of the rendering  system: plan, object, 
face, seal, and hole. The plan  is the largest entity and 
consists of  several  objects. The object  consists of  several 
faces. The face  is a polygon that includes some seals and 
holes. 

To satisfy the third criterion, a hierarchy  for 

Plan 
The plan,  which  is the largest entity, is normally used as 
a project unit from the user’s viewpoint. A user can have 
several  plans in the system,  where  they are stored as a list 

48 structure (Figure 3). 
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Object 
The object  is a unit under a plan. There are hierarchical 
relations among objects. A parent object  can  have  several 
children. Each  child  can  be a parent of other objects. A 
parent object  may not have  any  faces, but otherwise an 
object  consists of a group of  faces (Figure 3). 

Each object  has  its own coordinate system. The 
coordinate system  is  represented by a transformation 
matrix  with  respect to the parent’s coordinate system. 

Each  object  has  its  own  display flag. By setting the 
value  of the flag, a user  can control the visibility of the 
object. The flag controls three states:  displaying faces and 
seals, displaying  faces  only, and displaying neither. 

The system  provides a user area for  each  object. The 
user area can  serve  as the user’s  own attribute for the 
object.  It  may be a physical property of the object. 

A root  object  is automatically generated by the system 
when the user  generates a plan and its  object. This root 
object  is  employed  when the user  wants to manipulate all 
the objects under the plan. For example, the user  sets the 
transformation matrix to move and rotate everything 
under the plan. 

Face, seal, and hole 
The face data represent the object’s  geometry and have a 
list structure. A face element consists of the polygon  of 
the face, the seals on the face, and the holes  inside the 
face (Figure 4). The face  is an area-defining  geometric 
primitive  which  is  defined by the face  polygon. The 
polygon can have any number of  edges  as  long  as  they do 
not  intersect. The seal  is an area inside the face and can 
have its  own attributes. The seal  has  higher  visibility than 
the face. The hole  is an area inside the face that is  always 
transparent. In other words, the seal and  the hole are 
those  areas  whose attributes are different  from  those of 
the face.  Multiple  seals and holes are also  allowed  for the 
face. The seal data and the hole data are also  polygonal 
lists. The polygons  of the face, the seal, and the hole are 
represented by a list  of  vertices (Figure 5).  

The face  has an edge attribute and a face attribute. The 
edge attribute controls the appearance of the outer lines 
of the face. The face attribute controls the appearance of 
the face  inside the edges.  Since it is  useful to distinguish 
the front and the back  of the face, the face can have a 
different attribute for  each  side. The seal  has attributes 
similar to those of the face, and different  seals can have 
different attributes. The hole  is not given any attributes, 
and the appearance of the edges  of the hole depends on 
the attributes of the face to which the hole  belongs. 

Attribute  data structure 
Attribute data in RSP are basically separate from 
geometric data. A few attribute data, however, are closely 
related to geometry, and are called  “geometry-dependent 
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Example of a face with a seal and a hole. 1 Example of the structure of face,  seal, and hole. 

attribute data.” Mapping attribute  data  and smooth- 
shading attribute data are  categorized  as  geometry- 
dependent attribute  data. All other attribute  data are 
called “geometry-independent attribute data” (Figure 6) .  
Before the rendering procedure can be  used, both 
geometry-dependent and geometry-independent attribute 
data must be  linked to geometry data. 

Geometry-dependent attribute data 
Careful attention must be paid to the assignment of 
geometry-dependent attribute data, because  they are 
allowed to be  linked  only to pertinent geometric data. 
Specifically, smooth-shading attribute  data can be linked 
only to triangles. They consist  of normal vectors 
corresponding to the three vertices of each triangle. 
Mapping attribute data consist of a mapping origin, a 
mapping direction, an actual length  along each mapping 
direction, and a mapping offset. The geometric primitives 
to be mapped are basically  restricted to rectangles, but it 
is  possible to  map image data to a triangle, for example, 
as  long  as the user  specifies a virtual rectangular mapping 
canvas including the mapping origin, mapping direction, 
and so on. 

Geometry-independent attribute data 
Geometry-independent attribute data are divided into 
two  types: “attribute domain definition data”  and 
“rendering attribute data.” The role  of attribute domain 

Face attribute 

Attribute 

I 
I Geometry-dependent attributes I 

Attribute data structure. 

definition data is to define an “attribute domain,” which 
represents a region  with the same rendering attributes to 
be assigned as a face attribute. One of the unique features 
of RSP originates in the  attribute domain structure. The 
concept of the attribute domain is  discussed in more 
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detail  in the section on attribute mapping. An attribute 
domain is  coupled via an “attribute index” with 
rendering attribute data. Rendering attribute data consist 
of color,  optic, and bump attribute data. Usually  they are 
referenced by a pointer corresponding to an attribute 
domain. Color attribute data represent either a RGB 
color  value or a pointer to a color  image.  Optical 
attribute data represent a set of optical  coefficients to be 
used in shading.  Examples of optic data are ambient, 
diffusive,  reflective, and refractive  coefficients. Bump 
attribute data represent a pointer either to a functional 
bump generator or to a bump image. A functional bump 
generator generates a two-dimensional wavy bump 
pattern. Both a wavy bump pattern and a bump image 
are used to perturb surface normal vectors, and perturbed 
normals are then used in shading calculation. 

Rendering condition data structure 
RSP  has  four  rendering conditions, which are classified  as 
the camera, light, environment, and special conditions of 
each  rendering method. 

Camera data are defined by the viewing parameters 
familiar to users  of GDDM/graPHIGS6 [ 161. Therefore, a 
user  can  easily combine RSP and graPHIGS 
environments on a workstation.  RSP,  however,  employs 
a normalized  projection into a logical  workstation  space 
called the “normalized projection coordinates” (NPC). 
The NPC  of  RSP are defined  as a cubic  space  from  zero 
to one along  each  axis.  RSP maintains a camera data list, 
and one of the cameras is  selected  for the rendering 
process. 

RSP supports three types of  light  source: a point light 
source, a spot light  source, and a light  source  parallel to 
the image.  RSP maintains a light data list, and the lights 
in this list  can be turned on or off. Each  light  has  several 
parameters,  such as light color, position, direction, 
spotlight  angle, and so on. 

Environmental information consists of the ambient 
light term, background information, the fog-effect ratio, 
sky-effect parameters, and a global  shadow calculation 
switch. 

The special conditions of each  rendering method 
involve parameters such as the maximum ray  reflection 
number of the ray-tracing method and the anti-aliasing 
level  of the scan-line and ray-tracing methods. 

Attribute mapping 
Attribute mapping [ 17, 181 is a generalization of texture 
mapping.  While texture mapping maps attribute values 
directly, attribute mapping maps “indices” that 
correspond to a bundle of various  rendering attributes 
including  colors,  bumps,  optics, and shading models. 

50 Corporation. 
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These  indices are called “attribute indices,” and each  is 
defined  for a closed  region  called an “attribute domain” 
within a rectangular mapping canvas.  Rendering 
attributes within an attribute domain are assumed to be 
coherent. The core concept underlying attribute mapping 
is the attribute domain definition function (ADDF), 
which defines attribute domains and the associated 
attribute indices. By virtue of the ADDF, the integration 
of image  analysis and image  synthesis  is  easily attained, 
which in  turn makes it possible to produce very realistic 
images. 

Attribute index and bundle table 
On the basis of the available  shading  models 
implemented in RSP, once parameters associated  with a 
shading  model are determined, we can determine the 
intensity of an object at an arbitrary point. The attribute 
values  necessary  for attribute mapping are simply a set of 
these parameters in what we call a “bundle.” Let us 
conventionally  divide attribute values into three 
categories: 1) color attributes, 2 )  bump attributes, and 3) 
optic attributes. Color and bump attributes are 
independent of any shading model, but optic attributes 
are not. Color, bump, and optic attributes together are 
referred to as “rendering attributes.” Each parameter of a 
rendering attribute is  specified in one of three ways: a 
unique, fixed  value (Type l), a functional value (Type 2) ,  
or a value  looked  up in a two-dimensional  table (Type 3). 

The value  is independent of the position in the first 
method, but not in the other two methods. The last 
method is  usually  employed in texture mapping.  When 
we access a rendering attribute, it is  necessary to specify a 
“Type” parameter, as  defined  above, and the associated 
pointers. These data are kept in a table  called an 
“attribute bundle table.” To be more specific, the 
contents of an attribute bundle table are a specification 
type (Type 1,2,  or 3) and three pointers to rendering 
attributes: a pointer to the color attribute, a pointer to the 
bump attribute, and a pointer to the optic attribute. The 
attribute bundle table  itself can be  accessed  by  using an 
index  called an “attribute index.” Texture mapping  maps 
attribute values  directly. In contrast, attribute mapping 
maps attribute indices,  which in turn are replaced by a 
specification  type and pointers to rendering attributes. 

Attribute domain 
Compound objects  typically  seen in minerals and rocks 
have  different attributes intermixed, and distinct coherent 
regions are distributed over the surface of the object. An 
example of an artificial compound object  is one with 
metallic  seals  pasted onto a package that is not metallic 
by itself.  An  example  of a natural object of this kind  is a 
granite that naturally contains different minerals such as 
quartz, mica, and feldspar,  each of  which  has  different 
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rendering attributes. These compound objects are very 
difficult to represent  realistically. To solve  such 
difficulties, we introduce what we call “attribute 
domains.” By using attribute domains, compound objects 
can be simulated very  realistically. Another purpose of 
defining attribute domains is to reduce the amount of 
memory  required, taking advantage of area coherence. 

correspondence  between a surface and a rendering 
attribute in ordinary texture mapping.  In contrast, if  we 
define attribute domains between a surface and a 
rendering attribute, the relation  between a surface and 
the rendering attributes in  general  becomes one-to-many. 

With  each “attribute domain,” we associate a function 
called an “attribute-domain definition function” 
(ADDF). An ADDF is defined either functionally or by 
assigning a black-and-white  image  called a “trigger 
pattern.” Examples of functionally defined ADDFs 
include a tiled attribute-domain generation function and 
a bricked attribute-domain generation function. A trigger 
pattern is a rectangular pixel pattern whose content is 
ilsed as a pointer to  an attribute bundle table. In other 
words, the contents are used as attribute indices. 

As shown in Figure 7, there is a one-to-one 

Rendering pipeline in RSP 
Figure 8 shows a so-called “rendering pipeline” or 
“mapping pipeline.” This mapping pipeline includes 
attribute mapping and other functions, starting with a 
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process  for obtaining an object’s  position and ending 
with a process  for obtaining the values of its  rendering 
attributes. 

Process 1 
Starting with a screen coordinate value (S,, S,), this 
process obtains a modeling coordinate value 
corresponding to a point on  the object of concern. It 
generally depends on the rendering method used. For 
example, in ray-tracing we can work in the world 
coordinate (WC) system  directly.  In other words, it is 
simply  necessary to convert data from  world coordinates 
(WCs) to modeling coordinates (MCs). The scan-line 
method usually  begins  with  screen coordinates (SCs) 
because their shading calculation often depends on the 
number of scan  lines in the screen. In these  methods, SCs 
are first converted io view coordinates (VCs), then to 
WCs, and finally to MCs. The conversion among 
multiple coordinate systems can be  expressed in a 
homogeneous  four-by-four  matrix. The output of this 
process  is a point whose  value is expressed in MCs. 

A. D O 1  ET AL. 
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Attribute  bundle table. 

Process 2 
This process depends on the geometry of the object and 
the definition of a mapping function from 3D to 2D 
geometry.  Even  if the geometry of the object  does not 
change, an almost  infinite  variety of definitions of 
mapping functions may  exist. For instance, let P be a 
point on a parametrically  defined  bivariate  bicubic patch, 
P = (s, t).  A simple  mapping function from P to 2D 
coordinates (u ,  v )  is established by setting s + u, t + v .  
Another mapping function is obtained by first 
converting the value of P into (x, y, z )  according to the 
bicubic  patch  definition and then setting y + u, z + v ,  
which  is equivalent to projecting the point P to  the 
plane X = C (constant). The polar coordinate system or 
cylindrical coordinate system  can  also  be  used for 
defining a mapping function. 

Process 3 
This process converts (u, v )  in a 2D real  space obtained 
in  Process 2 into (u‘, v ’ )  in a rectangular  normalized UV- 
space.  Mapping parameters such as mapping direction, 
mapping  scale  factor, and wraparound control flag are 
included  here. The flexibility  of the mapping process  is 
greatly enhanced by a suitable  choice of parameters. 

Process 4 
The kernel of attribute mapping lies in this process.  Here 
the values (u’, v ’ ) ,  together  with the trigger pattern, if 
any, are given to  an ADDF  defined on a surface of an 
object, and an attribute index is produced as output. 

Process 5 
In this process, the attribute bundle table  is  accessed by 
an attribute index obtained in the previous  process. By 
using the contents of the table entry corresponding to the 
attribute index,  each  rendering attribute is obtained. A 
typical  example of an attribute bundle table  is  shown in 

52 Figure 9. 

Near-real-time display 

BSP tree 
A simple way to display an object  is to sort a group of 
polygons by using the relationship  between the view and 
the normal of a polygon.  However, it is  still 
computationally expensive,  because a slight  change  in 
view makes it necessary to sort all the polygons  again. 
Since many more applications need  view changes than 
need  world-model  changes, we decided to use a binary 
space partitioning (BSP)  tree,  which  was  proposed  by 
Fuchs  et  al. [6]. 

A BSP tree  is a structure in which  processed  polygon 
data are stored. Traversing the BSP tree with a given  eye 
location  performs  hidden-surface  removal in near  real 
time. The procedure for  generating a BSP tree  can be 
summarized as follows: 

1. Pick an arbitrary polygon  from the polygon  list, and 

2.  Process the rest  of the polygons to make a front 
assign it as the root  polygon. 

polygon  list and a back  polygon  list.  If  all the vertices 
of a polygon are in front of the root polygon  above, 
the polygon  is  added to the front polygon  list.  If  all the 
vertices of the polygon are behind the root  polygon, 
the polygon  is  added to the back  polygon  list. 
Otherwise, the polygon  is  divided into two  polygons 
by the plane on which the root  polygon  is  located. 
Then the front part of the polygon  is  added to the 
front polygon  list, and the back part of the polygon  is 
added to the back  polygon  list. 

3. Repeat  this  process  recursively  for the front polygon 
list and the back  polygon  list until no more polygons 
are left. 

Traversing the BSP tree gives the display order of the 
polygons.  At  each  node of the BSP tree, the dot product 
of the given  viewing  vector and the normal of the 
partitioning polygon are calculated. If the dot product is 
negative, the eye  is  in front of the polygon, and the 
polygons  behind the node  polygon are traversed  before 
those  in front of it. If the dot product is  positive, the 
polygons in front of the node polygon are processed  first. 
If the node  is a leaf  of the BSP tree, the polygon  is  drawn 
and then the process  goes  back to traverse the rest  of the 
BSP tree. This process is continued until all the polygons 
are drawn. Details of the algorithm  for the BSP tree can 
be found in [6]. 

BSP tree for interactive use 
One  of the most  suitable applications of the BSP tree  is 
for interactive editing of 3D objects. Here, interactive 
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editing  means the editing of both the shape and the 
attributes of the 3D objects.  Editing the shape, that is, 
changing the topology and geometry of the 3D objects, 
can be done through a wire-frame  picture.  But  editing the 
attributes of the object  is  difficult to do in the 
environment of a wire-frame picture. Of course, it is 
possible to edit the attribute by picking an appropriate 
edge  of the object’s  face and then entering the 
appropriate values  from a keyboard.  However, this is no 
longer  interactive.  In an interactive environment, changes 
in the objects’ attributes are reflected in the picture 
displayed.  When the color  is  changed, the color of the 
shaded image should be changed in real time. Editing the 
individual  color of  polygons  is a typical application. 

To  take  advantage of the interactive capability, the 
system  provides four stages in the rendering, as shown in 
Figure 10. 

First, a user  must  generate the BSP trees  for the objects 
to be displayed. The user  picks an arbitrary node of the 
body, and then the system automatically makes a BSP 
tree for the polygon data under the body  node. 

After  generating the BSP trees, the user must prepare 
to set  several attributes. At this stage, appropriate 
attributes are  associated  with the BSP tree generated in 
the previous  stage. The user  chooses arbitrary camera, 
light, environment, and global attributes, and can change 
these attributes independently of one another. 

To increase the flexibility  with  which 3D objects can be 
edited  interactively, we provide the following  interface 
associated  with a polygon’s attributes, which  affects the 
appearance of  faces,  seals, and edges  when they are 
displayed. The color lookup table architecture is  assumed 
in the system. We decided to calculate a set  of  colors 
according  to the attributes set by the user, and load the 
colors to the color lookup table  before the display  stage, 
so that the advantages of the BSP tree and the lookup 
table architecture are fully  utilized. The dot product of 
the viewing vector and the face normal gives the intensity 
of luminescence. This value is converted to an 
appropriate color  table  index, depending on the number 
of color lookup table  entries to which the color  is 
assigned. 

Thus the system  is  designed to give the user an 
opportunity to assign an arbitrary number of color 
lookup table entries to arbitrary face or seal attributes. If 
the user  would  like to see a subtle change in the color due 
to the lighting, a large portion of the color lookup table 
should  be  assigned to the color. If the user  does not care 
much about it, a few lookup table entries are enough for 
the purpose. The above  color lookup allocation can be 
done through a system’s function call. The user can 
specify  which part of the lookup table, the starting entry 
or the number of the entries, is  used for a particular face, 
seal, or edge attribute. 
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Preprocessing M*e 
BSP tree 

- 

Association 
Associate 
with 
attribute 

1 Process flow of the list-priority method. 

After  setting up the attribute, the user  specifies the 
designated  workstation in the display  stage. The user 
associates the BSP tree with the workstation  where a 
picture of the object  represented by the BSP tree is 
supposed to be  displayed, and can associate  several BSP 
trees  with the workstation if he  wants to display more 
than one object  simultaneously. 

Finally,  when the user  does not need to display the 
object of the BSP tree any  more, the tree should be 
deleted to save  memory  space. 

Shading display with shadow 
Our shaded  display  with  shadow  is  processed by the 
Bouknight  scan-line  algorithm [ 1, 21 with the shadow 
volume  algorithm [3, 81. Basically, the Bouknight 
approach consists of a y-bucket sort on the edges. The 
first step is to create an edge table  for  all nonhorizontal 
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edges  of  all  polygons.  Each  edge is stored in the table 
according to its smaller  y-coordinate.  Next, the active 
edge  list  is  created  from the edges that intersect the 
current scan-line. For each scan-line, an x-coordinate sort 
is run on the active edge list,  which  is  based on scan-line 
coherence. The scan-line depth buffer of active  polygons 
shows the visible one. 

The addition of shadows  vastly  complicates the image 
synthesis  process, though it contributes considerably to 
the realism of a scene and increases the perception of 
depth. In  1977, F. Crow  presented a technique for 
shadow  casting that was  based on shadow  volumes  [3]. A 
shadow  volume is defined by the shadow  polygon  given 

position. The contour edges are those  edges  owned by 
both front-facing  polygons and back-facing  polygons for 
each  light  source. The endpoints of the edges from the 
light  source  positions are the bounds of the field  of  view. 
The shadow  polygons are added to the ordinary 
geometrical data, and do not influence  visibility. 
However, the depth order of shadow  surfaces and visible 
surfaces determines the shadowing. If a visible point lies 
within the shadow  volume, the point is in shadow. The 
shadow-volume method allows  concave  polygons  with 
holes and any number of  light  sources  anywhere in 3D 

I by planes  defined by  1) contour edges and 2 )  light  source 

54 space in the scan-line  process. This unconstrained 
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environment is the most  efficient feature in other shadow 
algorithms based on a scan-line method or z-buffer 
methods [ 1, 2 ,  5 ,  71. 

shadow-polygon data reduction techniques [ 191. A 
shadow-volume  algorithm  is  expensive  for  image 
synthesis in a complex environment, because it generates 
a lot of shadow  polygons. In order to relax the restriction, 
we have  proposed  shadow-polygon reduction techniques. 
These  consist of the use  of a coplanar surface  (seal) data 
structure, determination of shadowing  polygons by using 
six-space  subdivision at a point light  source, and 
techniques for extraction of contour edges.  Use  of these 
techniques makes the shadow-volume  algorithm  effective 
in a complex environment. 

In order to overcome this aliasing  problem, we apply 
color-blending  techniques at each  scan-line  process in the 
scan-line method. The color at each  pixel is 
approximated by the product of the area sums of  visible 
polygons.  In order to calculate the precise area of  visible 
polygon at each  pixel, we applied a subscan-line  division 
technique, which divides a scan-line into N subscan-lines: 

The most  efficient feature of our scan-line  method is its 

Here, Colorpix,, is the color of a pixel and L, is the length 
of the face on the subscan-line; C, is the color of the face 
on the subscan-line, and N is the number of subscan-lines 
in a scan-line. 

High-quality  image display 
A ray-tracing method gives RSP the function of  high- 
quality  image  display.  It  enables transparency, 
translucency,  refraction,  reflection, and shadowing to be 
used  as standard functions. 

In  ray-tracing  methods, a ray is traced from the eye 
through  each pixel into the polygonal data environment. 
At  each  polygon  struck by the ray, a reflected and/or a 
refracted ray can be  generated. The rays are traced 
recursively to establish  what  polygons  they  intersect, and 
an intersection tree is constructed for  each pixel. The 
final  pixel intensity is determined by traversing the tree 
and computing the intensity contribution of each node 
according to the shading  model. 

display and high performance.  Whitted  [9]  shows that 
75 percent of the total time is spent on calculating 
intersections between rays and objects  for  simple  scenes. 
To reduce this burden, we employ a “voxe1”-based 
method [ 1 11 with  user-controllable parameters such  as 
the number of  voxels along  each coordinate axis and the 
voxel  size (Figure 11). A voxel  is an orthogonal cuboidal 
cell,  which can be thought of  as a 3D extension of a 

There is  usually a trade-off  between  high-quality  image 
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Simulation of a landscape by the list-priority method. Face num- 
ber 1135; CPU (BSP-generation) time 0.29 s; CPU (traverse-and- 
display) time 0.05 s. 

Visual effect of the interior room I. Face number 1641; CPU time 
4 min 22.20 s .  

raster  grid,  with  pixels  becoming voxels. The voxel data 
structure is constructed before the intersections between 
rays and objects are calculated.  Each cell has information 
on which  polygons are involved in the cell. The 3DDDA 
(three-dimensional digital  differential  analyzer [ 1 l]), 
which  is  like a 3D line  generator,  is a basic tool for 
traversing voxel data structures. It  is  applied in the 
direction of the ray, and continues pursuing the ray  in 
the same direction until some object  is  intersected or 
until  it  leaves the voxel domain. The calculation of 
motions from one cell to another is  achieved by 
incremental logic,  without  any multiplication or division. 

A salient feature of our ray-tracing method is that it 
incorporates attribute mapping,  using a full  set of 
attribute data assigned to each  face. Attribute mapping 
coupled  with  ray-tracing  has the capability of producing 
extremely  high-quality  pictures.  Supersampling  coupled 
with  ray-tracing  also enhances the image quality. The 
user can specify the degree  of  supersampling  with 
parameters provided by rendering condition data. 

Applications 
In this section, we describe  some applications of RSP. 

Visual simulation has  become popular in architectual 
CAD.  It  is  very important to understand the potential 
appearance of  new buildings, or the view, lightness, and 
shadows of the interior rooms. Figure 12 shows a 
simulation of a landscape by the list-priority method. The 
user can rotate the view, pick a visible  polygon, and 
change the attributes on the screen  interactively. Figures 
13 and 14 show the visual  effect  created  by  changing 
from carpet to polished tile patterns on the floor.  They 
are respectively  rendered by the scan-line method and the 
ray-tracing method. Figure 15 shows an example of 
image composition functions. It combines a computer- 
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Visual effect of the interior room 11. Face number 1641; render- 
ing time 36 min 29.22 s. 

generated  image and a photographed  picture. The 
photographed  foreground picture is extracted by image 
segmentation by thresholds, and overlaid on  the 
computer-generated  picture. Figure 16  shows an example 
of attribute mapping. Attribute mapping is used at the 
transoms near the ceiling.  Each transom consists of a 
polygon on which transparency and color  image 
information is mapped. 

The spatial shape of molecular orbital functions plays 
an important role in allowing  researchers to understand 
the nature of chemical  reactions, as the frontier orbital 
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Example of smoothly shaded image display.  Face number 7174; 
CPU time 2 min 19.61 s. 

Example of image  composition.  CPU time 28.51 s .  

Example of attribute mapping. Face number 10981; CPU time 5 
min 8.71 s. 

Constant-density surface by computer tomography. Face number 
29134; CPU time 6 min 3.41  s. 

theory [20,21] and Woodward-Hoffmann theorem [22, 
231 have  shown. If polyhedral approximation is done in 
molecular orbital functions, the user can rotate, zoom, 
shift, and overlay  equivalued  surfaces. The overlay  of 
molecular orbital functions of two  molecules  is  useful for 
recognizing  reaction  sites. Figure 17 shows an equivalued 
surface of the electron density of C,H,OH. The electron 

56 density  values are 0.1 and 0.125 bohf3. 

Three-dimensional visualization  has  become important 
in  helping  physicians to understand the complex 
anatomy of the human body.  If the triangulation of a 
constant-density  surface by 3D computer tomography  is 
achieved, the resulting  models can easily  be  displayed 
with RSP. Figure 18 shows  some  results of computer 
tomography,  with the soft-tissue  surfaces  displayed in 
transparent form. 

A. DO1 ET AL. IBM J .  RES. DEVELOP. VOL. 35 NO. 1/2 JANUARYMARCH 1991 



The polyhedral data of  Figures 17 and 18 are generated 
by the tetrahedral grid method [24, 251. Figures  13, 14, 
15, and 16  were rendered  with a resolution of 800 by 800 
pixels, and the resolution of Figures 17 and 18 is 5 12 by 
5 12 pixels.  Figures  13 and 15 are generated by two 
subscan-lines, and Figure  16 by one subscan-line. The 
former  is  more  anti-aliased than the latter. 

Conclusions 
We have  described data visualization techniques for use 
with a general-purpose  renderer. The polygonal  model 
approach was proposed  for easy and economical 
implementation of  flexible interactive manipulation, real- 
time animation display, and high-quality  image  display. 
When the number of  polygons  becomes  large, there may 
be a memory  problem in an application program.  But we 
believe that in this case the problem can be  processed 
completely in a large  virtual-memory environment. In 
particular, the enhancement of program  addressability 
[26] will overcome the problem. 

In order to satisfy the requirements of all  applications, 
we provide three rendering methods. The user can select 
the most  suitable of them for the image generation 
process. This allows  stepwise  refinement  of the image 
quality. Texture mapping  is a powerful tool for  realistic 
image  synthesis in computer graphics. As a generalization 
of texture mapping, we have  proposed “attribute 
mapping.” By virtue of ADDF, it can generate more 
realistic  images and run more  efficiently than ordinary 
texture mapping  for  surfaces  with  complex  textures. 

Currently, we are continuing to improve RSP, and are 
developing an interactive  graphics environment. A user- 
friendly  interactive  graphics environment will help  novice 
users and nonprogrammers to generate  pictures  easily. 
We also  aim to develop  higher-quality  rendering 
methods, which  will be able to support mutual 
interreflection of  light,  color  bleeding, penumbra, and 
realistic  texture  generation. 
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