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Volume
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of 3D finite
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results

by K. Koyamada
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This paper describes a method for visualizing
the output data set of a 3D finite element
method result. A linear tetrahedral element is
used as a primitive for the visualization
processing, and a 3D finite element model is
subdivided into a set of these primitives, which
are generated at every solid element. With these
primitives, isosurfaces are visualized
semitransparently from scalar data at each node
point. Two methods are developed for the
visualization of isosurfaces with and without
intermediate geometries. The methods are
applied to output data sets from some
simulation results of a semiconductor chip.
These are visualized, and the effectiveness of
the method is discussed.

Introduction

The 3D finite element method (FEM) has recently
become very important in the manufacturing industry as
a result of the increase in computing power and the
progress of numerical computation technologies. This
analysis produces very large volumetric data sets on

unstructured grids, and the effective visualization of these
data sets has become an important problem. However,
the current postprocessors for the 3D FEM compel users
to imagine the volumetric distribution only from cutting
planes or exterior surfaces. It is necessary to migrate from
“volume imagination” to “volume visualization,” because
the 3D FEM results are essentially volumetric, and
volume visualization helps users to optimize a
mechanical design from a 3D FEM result. In volume
visualization, an isosurface, which is a set of points with
the same scalar value, plays a very important role,
because it can represent complex features that are
difficult to display by using several cutting planes.
Recently, visualization technologies for isosurfaces have
been studied intensively, especially in the medical
imaging area [1-5]. Lorensen and Cline have developed a
“marching cubes” method using a look-up table for
surface classification [5], and Levoy has reported a
“volume rendering” method incorporating such a
classification into the projection process [1). To be
applied to 3D FEM result visualization, these methods
must employ a gridding operation, because they assume
that data sets are defined on a structured grid. However,
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it is very difficult to arrange an adequate structured grid
for the operation. To avoid this difficulty and maintain
accuracy in the data, we use the original grid data on
which a 3D FEM result is defined. Recently, Gallagher
and Nagtegaal have applied an extension of the marching
cubes method to 3D FEM results, using the original grids
and visualized isosurfaces [6]. In the case of a linear
element, this method yields an effective visual
representation of slope-continuous surface segments. But
in the case of a higher-order element, because a linear
interpolation cannot be applied to the intersection search,
two or more intersections between an isosurface and a
finite element may be calculated on the edge line, which
makes a look-up table very complex. To effectively fit a
linear interpolation to an isosurface visualization, we
introduce a concept of element subdivision, namely
tetrahedronation, following the generation of new node
points inside the element, and propose the volume
visualization of 3D FEM output data sets, using a
tetrahedral cell as a process primitive. In
tetrahedronation, various kinds of elements such as a
linear wedge element, a linear brick element, and a
parabolic element are reconstructed into linear
tetrahedral elements to generate primitives. In the
following section, we discuss tetrahedronation for this
primitive generation in order to generalize the
visualization method on the basis of a tetrahedral
primitive. In the field of chemical graphics, Koide and
Doi have used this primitive to visualize isopotential
surfaces from structured grid data [7]. Here, we use it for
the visualization of unstructured grid data.

The tetrahedron has been used in many methods for
generating grids from objects of arbitrary shape, because
of its geometric flexibility [8—11]. Phai has reported a
technique for connecting manually defined nodal points
to a network structure consisting of tetrahedral grids
which have an optimum form for numerical
computation [8]. Yerry and Shephard have presented a
method which follows from the basic concepts of the
octree encoding technique to generate tetrahedral grids
completely automatically [9]. Shenton and Cendes have
proposed a method based on an extension of the
Delaunay triangulation algorithm to 3D geometry [10].
The geometrical flexibility of tetrahedral grids is so
attractive in terms of automatic grid generation that these
grids are beginning to be used in 3D FEM analysis [12].
Consequently, using a tetrahedral cell as a process
primitive is very effective. In terms of volume
visualization, this primitive has the following features:

1. Linear data distribution on the edge line.
2. Linear data distribution along any line segment.

The first feature, which is included under the second,
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makes it possible to find intersections of edges of a
primitive and an isosurface by using a very simple look-
up table; this led us to develop a method for isosurface
visualization based on triangular facets. The second
feature allows a point on the isosurface along the viewing
ray to be found easily by using the values on the entry
point to the primitive and the exit point from it; this led
us to develop a method for the direct imaging of
isosurfaces.

We apply the latter method to the thermal stress
analysis of a solder joint in a semiconductor chip, and
visualize isothermal surfaces and isostress surfaces. The
method can also be applied to simulation results from the
3D finite difference method (FDM) based on the
boundary-fitting coordinate (BFC) system.

Overview of the method
An overview of our method is presented in Figure 1. We
begin with a 3D FEM result defined at each node, as
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described in the third section. When the result is defined
at each element, we can convert it to the result at each
node point by extrapolating and then taking the average
of the values computed at parametric integration points
within the elements, using the interpolation function of
the element. The first step is tetrahedronation, described
in the third section, which converts each solid finite
element into several tetrahedral cells. The output of this
step is a set of tetrahedral cells with scalar data at each
node. Two independent steps, a surface-rendering step
and a direct-imaging step, use this set as input. In the
surface-rendering step, described in the fourth section,
triangular facets are first extracted as intermediate
geometries and then rendered. In the direct-imaging step,
described in the same section, this set is directly rendered
by a volume ray-tracing method. Each step produces
image data as output.

Data of 3D FEM resuit

Because the data structure of a 3D FEM result is not
intended for volume visualization, it does not allow
efficient visualization unless modified. In this section, we
first describe the characteristics of the data structure of 3D
FEM results and investigate the data structure needed for
efficient visualization. We then describe how FEM result
data are interpolated, and explain the effectiveness of
using tetrahedral cells in volume visualization.

e Data structure

To solve a partial difference equation such as a Navier—
Stokes equation, we often use an approximate solution
which converts the equation into an algebraic form. The
weighted residual method, which is often used in
numerical simulation, builds algebraic equations by
integrating the weighted error over the whole region.

In FEM analysis, the above integration is performed at
each subregion, called an element, and subalgebraic
equations are formed. Finally, whole algebraic equations
are constructed by superposing the subequations on a
whole matrix. The superposition in FEM analysis allows
the data structure to independently express the element
topological data simply by using the element-node
relation. Such an expression of an element does not offer
enough information for the volume visualization of 3D
FEM data.

Volume visualization includes processes on edges or
faces of an element and the traversal of elements along a
viewing ray. For example, if the generation of points on
an edge or face is performed independently at each
element, duplicate calculations may occur if the edge or
face is shared by other elements. Without a list of
adjacent elements, ray-tracing spends much CPU time
searching for the element which the viewing ray
encounters next.
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One solution to the problem is to rebuild the data
structure so that it involves an element-face relation, a
face-edge relation, an edge-node relation based on a
boundary representation (B-Rep), and a list of adjacent
elements. Such a data structure is often introduced in
solid-modeling systems, but it is not realistic for volume
visualization because many more elements must be
processed than solids. To identify an edge or a face which
can be shared by elements, we adopt hashing [13]. As a
preprocess for ray-tracing, we generate a list of adjacent
elements called a link table.

o Data interpolation

For effective visualization, attention must be given to
data interpolation at an arbitrary point in an element, as
well as to the data structure. In FEM analysis, the data in
an element are interpolated from nodal data by using
some function, which is expressed not in a global but in
an element-local coordinate system. Because an arbitrary
point in the element is expressed in the global system, the
point coordinates should be transformed into the local
system. This transformation is performed by iterative
calculation based on the Newton method, the
convergence of whose calculation depends on the initial
value. If the value is not adequate, the calculation
diverges. Since it is very difficult to forecast the initial
value of a given point, especially in a curved element, the
data should be interpolated in global coordinates in order
to avoid a transformation that may be accompanied by
instability and low performance.

From this viewpoint, a linear tetrahedral element (a
tetrahedral cell) is suitable, because the data in this cell
are directly interpolated in a global system. Moreover, in
a tetrahedral cell, the data distribution is linear in any
direction, which makes ray-tracing very efficient. For this
reason, we use the tetrahedral cell as a process primitive
for volume visualization. Usually, various kinds of
element are mixed in a 3D FEM result. In this case, we
subdivide these elements into a number of tetrahedral
cells in a preprocess that we call tetrahedronation.

In the visualization of 2D FEM results, elements are
often subdivided into linear triangular elements for
contour plotting [14, 15]. Our approach is a natural
expansion of this subdivision to 3D results. Converting
all elements into tetrahedral cells fixes the numbers of
nodes composing an element and the adjacent elements
at (4,4), which is very desirable in terms of the efficient
use of memory resources.

o Tetrahedronation

Koide and Doi have developed a cell-based
tetrahedronation method for efficient extraction of an
isosurface as a set of triangular facets [7]. They subdivide
each grid cell independently into five tetrahedral cells
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because, for a regularly ordered grid, there are some rules
for subdivision which warrant alignment with the face of
the adjacent cell. Since elements are not arranged
regularly in 3D FEM data, independent tetrahedronation
can cause misalignment with the face of an adjacent cell.
For correct alignment, an element should be subdivided
after the information has been obtained about the face of
the adjacent element. As we stated previously, we use a
hash table for this purpose.

Let us take a parabolic brick element as an example for
tetrahedronation (see Figure 2).

First, each face of this element is subdivided into six
triangles. Because there are two alignments in this
subdivision, we should register which alignment is
generated on the face in the hash table. The identifiers of
one of two nodes to which five edges are attached can be
made to represent the alignment. As entries in the hash
table, we also need node identifiers to represent a face
itself. It is sufficient to select the identifiers of the first
three out of four main nodes in descending order of
value. Because we chose the sum of these identifiers as a
hash value, we actually register their maximum and the
minimum values in the hash table.

Besides six-triangle subdivision, we can consider an
eight-triangle subdivision accompanying an additional
node generation at the center of a face. This subdivision
is axisymmetric about the face center at every ninety
degrees, so no misalignment of the subdivision occurs.
The identifier of the additionally generated node must be
registered in order to avoid duplicate generation of a
node.

Next, we independently generate an additional node at
the center of a volume, which does not require hashing.
Finally, we generate tetrahedral cells by connecting the
generated node and the vertices of 36 or 48 triangles. For
other types of elements, we also generate tetrahedral cells
in a similar manner. In Figure 3, we show the face
subdivision related to the tetrahedronation of various
kinds of elements.

Isosurface visualization

An isosurface, which is a set of points with the same
value in 3D space, is very useful for interpreting volume
data such as 3D FEM results. Our goal is to visualize
isosurfaces from a set of tetrahedral cells. There are two
approaches to visualization. One is to render polygonal
geometries which are locally extracted as isosurfaces at
each cell. In this approach, we calculate the intersections
of a cell with the surface at the edges of the cell, and
compose polygons whose vertices are the intersections.
The other is to use a method based on ray-tracing, in
which we calculate intersections along a viewing ray and
their pixel values directly without creating intermediate
geometries such as polygons. We develop a volume ray-
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g Tetrahedronation of a parabolic brick element: (a) six-triangle sub-
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tracing method for tetrahedral cells and apply the method
to the visualization of isosurfaces. First, we explain how
to calculate normal vectors, which are used for the
shading of isosurfaces. We then give two methods based
on two approaches, a triangular-facet method and a
direct-imaging method.
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o Normal vector calculation

The shading of an isosurface is synthesized by using
normal vectors and some illumination model. We can
calculate these normals as normalized gradients of a
given function, which is defined at each cell. In a
tetrahedral cell, the function is

FX.Y,2)=a,+aX+aY+aZ

where the coefficients a, (j = 0, 3) are determined by the
nodal coordinates and data. The normal N can be
calculated as follows:

N =grad [F(x, y, 2)].

The normals in the cell are all the same, because partial
derivatives of F with respect to x, y, and z are constant.
This means that a local isosurface in this cell is a plane.
The use of a normal at each cell leads to the isosurface
having a constant shading image, which is not good for
expressing the smoothness of the surface. To avoid this
disadvantage, we convert the vector of a cell into the
vector at each node. As a result, normals are stored at
every node, and in a cell, a normal is interpolated
through four normals at nodes. This conversion is also
advantageous in terms of memory utilization. The
number of cells is larger than the number of nodes,
because the number of cells connecting a node is usually
greater than four. Therefore, storing a normal at each
node requires less memory space than doing so at each
cell.

o Triangular-facet method

This method represents an isosurface as a set of
triangular facets that are extracted from a cell. The
process is as follows:

1. Search for edges which intersect the isosurface.
2. Calculate the intersections by linear interpolation.
3. Connect the intersections to form triangular facets.

In general, an edge is shared by several cells. To give a
unique identifier to each intersection and avoid duplicate
calculations on the edge, hashing is introduced. The
method is basically inspired by that of Koide and Doi, in
which a grid is subdivided with only the given grid
points. Since in our method an element is subdivided
into tetrahedral cells along with the generation of an
additional node, it is possible to generate a cell with an
edge whose vertex is this node. It is efficient to have a
local table for hashing at each element, because hashing
with respect to the intersection at the above edge can be
localized. We prepare a table at each element. In the case
of the element shown in Figure 4, the maximum number
of rows in the table is eight, because there are eight edges
which extend to nodes from the volume center. If we
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take one cell from the element which contains two
triangles of an isosurface, we give unique identifiers to
two vertices at these edges by using the local table and to
two vertices at the other edges by using the global table.

o Direct-imaging method

The above representation of isosurfaces sometimes
requires much memory space for polygonal geometries
such as triangular facets; this is one of the motives for
development of the volume-rendering method. We have
developed a method for directly rendering not only
polygonal geometries but also tetrahedral cells by volume
ray-tracing. First, we propose a tetrahedral model for
efficiently traversing an unstructured collection of cells.
Next, we explain the volume ray-tracing method based
on this model and its application to isosurface
visualization.

Tetrahedral model

The tetrahedral model is composed of a node table, a cell
topological table, a link table, and an exterior face table,
which are intimately connected to one another. The node
table is an array of coordinates, normal vectors, and
scalar data. The cell topological table is an array of cells,
each of which is represented by the identifiers of its four
nodes (cell-node relation). The node identifiers are
chosen according to their addresses in the node table.
The link table is another array of the same cells, each of
which is represented by the identifiers of the four cells
connected to its four faces (cell-cell relation). The cell
identifiers are chosen according to their addresses in the
cell topological table. If there is no cell connected to a
face, the exterior face identifier, the sign of which is
changed, is registered instead. The exterior face table is
an array of faces, each of which is represented by the
identifiers of the cells connected to it and a face number.
This number is an internal face identifier of a cell. When
the node identifiers of a tetrahedral cell are »,, n,, n,, and
n,, a face labeled n (n = 1, 4) is defined by the following
face-node relations:

face 1 = (n,, n,, n,),
face 2 = (n, n, n),
face 3 = (n,, n,, n,),
face 4 = (n, n,, n,),

where n denotes an internal face identifier. The exterior
face table and the cell topological table realize two-way
linkage between an exterior face and a tetrahedral cell.
Figure 5 shows a tetrahedral model which consists of
two tetrahedral cells. A cell labeled 1 is composed of
nodes labeled 1, 5, 4, and 2 and connected to a cell
labeled 2 at face 1. Faces 2, 3, and 4 are exterior faces 17
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labeled 1, 2, and 3. A cell labeled 2 is composed of nodes
labeled 2, 4, 5, and 3 and connected to a cell labeled 1 at
face 4. Faces 1, 2, and 3 are exterior faces labeled 4, 5,
and 6. The viewing ray first intersects the model at the
exterior face labeled 1. By referring to the exterior face
table, we find it is face 2 of the cell labeled 1. The
viewing ray exits from face 1, which is found to be
identical to face 4 of the cell labeled 2 by referring to the
link table. Next, it exits from face 1 of the cell labeled 2,
which is found to be identical to the exterior face labeled
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4. We illustrate this traversal schematically in the lower
part of the figure.

Volume ray-tracing

The volume ray-tracing method based on the tetrahedral
model can be divided into two processes. One is
searching for the cell which the viewing ray encounters
first, and the other is calculating the brightness in the
traversal of the model.

The first process, in other words, is searching for the
nearest exterior face to the viewing point, which is an
application of hidden-surface removal. Many algorithms
for this have already been developed, and our purpose is
not to develop more. We therefore adopt the Z-buffer
algorithm to obtain the exterior face identifier, and
determine the cell by referring to the exterior face table.
Reference to the link table enables us to search for cells
which intersect the viewing ray successively until the ray
reaches an exterior face.

In the next process, we use the following brightness
equation in each cell:

n i=1
B=3% [Ball(l-a).

i=1 =1
The term B, denotes the brightness which is calculated
from the interpolated normal at a sampling point and
from Phong’s model [11], and a denotes the opacity
which is calculated from some transfer function of the
interpolated scalar data and gradient. (B, a,) and (B,, a,)
are the brightness and opacity at the exterior faces (see
Figure 6). At a sampling point in a cell which is D,
apart from the viewing point, we calculate (B,, a,) as
follows:

1. Interpolate the normals and scalar data at the entry
and exit points.

2. Interpolate the normals and scalar data at the
sampling point. Note that the weights are (D,,, — D,)/
(Do — D, and (D, = D, )/(D,,,— D,,), where D,

and D, are the distances of the entry and exit points
from the viewing point, respectively.

3. Calculate (B, a,) from the interpolated normal and

scalar data.

By performing the processes at each viewing ray, we can
create a volume-rendering image into which the exterior
surface-rendering image has been integrated.

Application to isosurface visualization

To visualize isosurfaces by the volume ray-tracing
method, we usually raise the local opacity around the
visualizing data in general. However, there is a slight loss
of surface sharpness because the sampling points are not
always on the isosurface. There are many requirements
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for achieving sharpness in visualizing the result of a
numerical simulation such as a 3D FEM result; we
achieve it by confining the sampling points to the
intersections between the viewing ray and isosurfaces.
This approach is efficient because the number of
sampling points is significantly reduced. In Figure 7, we
show two images which are created by the volume ray-
tracing method from the same pressure data in a clean
room. The upper one is based on uniform sampling with
the opacity in proportion to the data, and the lower one
is based on sampling only at intersections.

Application to chip design

We have applied our visualization method to the
packaging of 4 semiconductor chip which is based on
controlled collapse chip connection (C4) technology.
First, we present a general view of this technology. Next,
we explain the model used for the FEM analysis, and
finally, we discuss the effectiveness of our visualization
method for interpreting 3D scalar data.
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& C4 technology

C4 is a technology for attaching silicon circuit chips to a
ceramic substrate through a tin-lead solder joint, as
shown in Figure 8 [16-18]. This technology achieves high
packaging density; however, there is a problem with the
reliability of C4, namely that fatigue can occur in a solder
joint because of the thermal stress introduced by a
difference in coefficient of thermal expansion (CTE)
between the chip and the substrate. The process leading
to fatigue in standard C4 technology can be explained as
follows: When a chip is active, the difference in CTE
between the chip and the substrate results in a shear
strain between the top and the bottom of a solder joint as
the temperature of the chip increases. Because the
displacement is removed when the chip becomes
inactive, the power-on-off cycle imposes a cumulative
strain on the solder joint. When the equivalent strain
exceeds a critical value, a fracture appears in the portion
of the solder joint where the strain concentration occurs,
and this finally results in fatigue. Therefore it is desirable
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that the CTE of the substrate, which is 2.7-3.0 ppm/°C,
be close to that of the chip. But, for reasons of
productivity and cost, alumina, whose CTE is 6.5-9.0
ppm/°C, is chosen to be used as the substrate in
production. Because the CTE of the substrate is more
than twice the CTE of the chip when the temperature of
each material increases, the chip size and the thermal
environment are restricted to avoid fracture.
Furthermore, Goldmann has reported [18] that the
fatigue life of the solder joint based on C4 technology
depends on its diameter and height. If such restrictions
can be removed, C4 technology will have potential
applications in many areas.

One technique for enhancing the reliability of C4
technology is to encapsulate solder joints between the
chip and the substrate with epoxy resin, as shown in
Figure 9.

In the encapsulated solder joint, the stress distribution
is caused not only by the shear strain but also by the
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compressive/tensile strain resulting from the expansion/
shrinkage of the epoxy resin with the change in
temperature. Because the strain distribution is too
complex to analyze theoretically, FEM analysis is needed
to investigate the strain distribution of the new structural
design.

o FEM model

This new C4 technology is applied to the memory chip.
Several chips are connected on a circuit card. For
simplicity, only one chip is treated as a finite element
model. The model can be described as a quarter of a
chip, because the location of the solder joints is
symmetrical with respect to the A-A surface and B-B
surface, as shown in Figure 10. The model is defined as
the area occupied by a chip. The defined FEM model is
composed of 4155 nodes (including 455 for the shell),
2740 linear bricks, and 1048 linear wedges (see Figure
11).

Zero-displacement boundary conditions have been
imposed along the center surfaces A-A and B-B, and
heat sources have been placed under the surface of the
chip. Convection surfaces have been imposed on top of
the chip and the card, and under the card. The side
surfaces are assumed to be adiabatic. The solder joint has
material properties that are highly dependent on
temperature and time. Therefore, in FEM analysis, the
material property of the solder joint is assumed to be
plastic and dependent on temperature. That of the other
portion is assumed to be elastic and dependent on
temperature.

® Result

Figure 12 shows the steady-state thermal contour map
after the chip has begun to consume 0.625-W power.
Temperature values at each node point are needed to set
up a load condition for stress/strain analysis after the
chip has been activated, and to evaluate a cooling effect
for the chip that does not endure beyond 85°C. Although
the thermal distribution on an exterior surface can be
understood from this image, the volumetric distribution
inside the chip cannot be determined. Figure 13 shows
the corresponding isothermal surfaces in the
encapsulation and the joints. This visualization makes it
easier to understand the internal thermal distribution. To
understand such volumetric distribution in detail, we
should effectively express the depth information of
isosurfaces in a graphic display. For this purpose,

several images should be displayed from two or more
viewing points. We introduce the following two methods
for this:

o Wire-frame display using local graphic functions such
as zooming, rotation, and translation.
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o Stereoscopic display using a double-buffering
mechanism.

The first is used in order to understand the volumetric
distribution at high speed in routine work. The second is
used in order to examine the depth in detail, displaying
two shaded images produced by changing the viewing
position.

Figure 14 shows the Von Mises stress contour map
which corresponds to the previous thermal distribution.
Our concern is to understand the stress distribution in
the encapsulation surrounding solder joints. In this case,
the contour map on an exterior surface does not provide
sufficient information. Figure 15 shows the Von Mises
stress surfaces obtained by our visualization method.
Note particularly that there is an isolated region with a
high stress value in the upper left corner. Naturally, it can
be expected that there will be a high possibility of a
fracture at the solder joint nearest to this region, which
agrees qualitatively with experimental results.
Furthermore, we can understand that the stress value is
not simply proportional to the distance from the center
of a chip, which is another reason why FEM analysis is
needed for the development of encapsulated C4
technology.

Figure 16 shows the strain contour on the outer
surface of the solder joint previously mentioned, and
Figure 17 shows the corresponding isostrain surfaces. The
latter indicates that surfaces with high strain are attached
to the edge of the solder joint, where a fracture may
occur.

Through 3D FEM analysis and volumetric
visualization, we have reached the first step in developing
an advanced chip based on C4 technology, which may be
summarized as follows:

¢ We found a solder joint which can be heavily damaged.
¢ We found the portion of the above joint in which a
fracture may occur.

Discussion

We have developed two methods for visualizing
isosurfaces from a 3D FEM result. In each method, all
elements are subdivided into tetrahedral cells. If elements
to be processed are confined to linear elements, the
tetrahedronation may be omitted in the triangular-facet
method, which is based on the linear distribution only
along the edges of the cells. However, when higher-order
elements are processed, tetrahedronation is very
important, since it converts a complex data distribution
in these elements into a linear distribution set. Moreover,
it is only in a tetrahedral cell that data are linearly
distributed along an arbitrary line segment. In this sense,
tetrahedronation is indispensable for the direct-imaging
method.
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The triangular-facet method allows the benefits of
hardware technology to be enjoyed in polygon-based
graphics, because a triangle is a basic primitive of
graphics hardware. These benefits lead to interactive
manipulation of isosurfaces, such as selecting one of the
vertices of which an isosurface is composed, and
inquiring about its coordinates. This advantage originates
in the explicit extraction of triangular facets, which has
the disadvantage that a very large area of memory or
DASD space may be required for such intermediate
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Cutout model.

geometries. The direct-imaging method overcomes this
disadvantage by incorporating the extraction process with
the shading.

The direct-imaging method makes the most of the fact
that data are linearly distributed along an arbitrary line
segment which is proper to the tetrahedral cell. To find
an intersection along the viewing ray, it is sufficient to
solve a linear equation, which makes it possible to check
the existence of an intersection from two scalar data at
the entry and exit points. Other primitives do not allow
such simplicity in searching. For example, because the
data are interpolated trilinearly in the cubic primitive, the
data distribution along an arbitrary line segment is
expressed as a cubic function. To search for an
intersection on the segment, a cubic equation must be
solved. The search cannot be based on the two values at
the entry and exit points.

Here, we compare the two methods in terms of their
computational costs. Ray-tracing is assumed to be used
for rendering isosurfaces in the triangular-facet method in
order to create uniform conditions. In each method, the
processes can be categorized into linear interpolation

K. KOYAMADA AND T. NISHIO

Encapsulation

Substrate

along an edge and over a triangle. The first consists of
calculating weights at the vertices of the edge (process 11)
and interpolating scalar data by using the weights
(process 12). The second consists of calculating weights at
the vertices of the triangle from the intersection of a
viewing ray and the triangle (process 21) and
interpolating scalar data by using the weights (process
22). The triangular-facet method performs process 11
three and a half times on the average at each cell and
process 12 six times at each edge to extract one or two
triangles. It then performs process 21 once and process
22 three times at the intersection to interpolate a normal.
Assuming that 1) the projection area of extracted
triangles is half that of the cell, 2) the number of rays that
intersect the triangles is K, and 3) an edge is shared by six
cells, we can estimate the computation time 7T, at each
ray and each cell as

T, = [3.5C,, + 3.5(6C /6K + (C,, + 3Cp,)/2
= (0.583/K)C,, + (3.5/K)C,, + 0.5C,, + 1.5C,,,

where C, denotes the computation time for process 7.
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Defined FEM model.

Steady-state thermal contour.

The direct-imaging method performs process 21 once and
process 22 four times to interpolate a normal and a
scalar, since it may divert the result of the adjacent cell. It
then performs process 11 once and process 12 three times
to interpolate a normal on the isosurface. Consequently,
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Isothermal surface.

the computation time 7, can be estimated as

T,

(C,, +3C,) +(C,, +4C,)

C,+3C,+C, +4C,,.
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Stress contour map on an exterior surface. Isostress surface.

Strain contour map of the outermost joint. i Corresponding isostrain surfaces.

Apparently, C, can be arranged according to magnitude method is advantageous. When the application requires
as follows: only isosurface visualization, the triangular-facet method
should be selected. But when it requires a cloudlike
image, the direct-imaging method is very attractive,
That is, in terms of computation time, the triangular- because it can create both a surface-rendering image and
facet method is superior to the direct-imaging method, a volume-rendering image.

which is confined to the case of one isosurface at each
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