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This  paper  describes a  method  for  visualizing 
the  output  data  set  of  a 3D finite element 
method  result. A linear  tetrahedral  element is 
used  as  a  primitive  for  the  visualization 
processing,  and a 3D finite  element  model is 
subdivided  into  a  set  of  these  primitives,  which 
are  generated  at  every  solid  element.  With  these 
primitives,  isosurfaces  are  visualized 
semitransparently  from  scalar  data  at  each  node 
point.  Two  methods  are  developed  for  the 
visualization  of  isosurfaces  with  and  without 
intermediate  geometries.  The  methods  are 
applied  to  output  data  sets  from some 
simulation  results  of  a  semiconductor  chip. 
These  are  visualized,  and  the  effectiveness  of 
the  method is discussed. 

Introduction 
The 3D finite  element method (FEM) has recently 
become  very important in the manufacturing industry as 
a  result  of the increase in computing power and the 
progress of numerical computation technologies. This 
analysis  produces  very  large  volumetric data sets on 

unstructured grids, and the effective visualization of these 
data sets  has  become an important problem.  However, 
the current postprocessors  for  the 3D FEM compel  users 
to imagine the volumetric distribution only  from cutting 
planes or exterior  surfaces. It is  necessary to migrate  from 
“volume imagination” to “volume  visualization,”  because 
the 3D FEM results are essentially  volumetric, and 
volume  visualization  helps  users to optimize  a 
mechanical design from  a 3D FEM result. In volume 
visualization, an isosurface,  which  is  a  set  of  points  with 
the same  scalar  value, plays a very important role, 
because it can  represent  complex  features that are 
difficult to display by using  several cutting planes. 

Recently,  visualization  technologies  for  isosurfaces  have 
been studied  intensively,  especially in the medical 
imaging area [ 1-51. Lorensen and Cline  have  developed  a 
“marching  cubes”  method  using  a  look-up  table  for 
surface  classification [ 5 ] ,  and Levoy has  reported  a 
“volume rendering”  method incorporating such  a 
classification into the projection  process [ 11. To be 
applied to 3D FEM result  visualization,  these  methods 
must  employ  a  gridding operation, because  they  assume 
that data sets are defined on a structured grid.  However, 

reProdUCtiOn is  done without alteration and (2) the Journal reference and ISM copyright notice are included on the first page, The title and abstract, but no other portions, of 
“Copyright 1991 by International Business Machines Corporation. Copying in  printed  form  for  private use is permitted without payment of royalty provided that (1) each 

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other 
portion of this paper  must be obtained from the Editor. 12 

K. KOYAMADA  AND T. NlSHlO 1BM J. RES. DEVELOP. VOL. 35 NO. 112 JANUARYMARCH 1991 



it is  very  difficult to arrange an adequate structured grid 
for the operation. To avoid this difficulty and maintain 
accuracy  in the data, we  use the original  grid data on 
which a 3D FEM result  is  defined.  Recently,  Gallagher 
and Nagtegaal  have  applied an extension of the marching 
cubes method to 3D FEM results,  using the original  grids 
and visualized  isosurfaces [6] .  In the case of a linear 
element, this method yields an effective  visual 
representation of slope-continuous surface  segments.  But 
in the case  of a  higher-order element, because  a linear 
interpolation cannot be  applied to the intersection search, 
two or more intersections between an isosurface and a 
finite element may be calculated on the edge line,  which 
makes  a look-up table very complex. To effectively  fit a 
linear interpolation to  an isosurface  visualization, we 
introduce a concept of element subdivision,  namely 
tetrahedronation, following the generation of  new node 
points inside the element, and propose the volume 
visualization of 3D FEM output data sets,  using  a 
tetrahedral cell as a  process  primitive. In 
tetrahedronation, various kinds of elements such as a 
linear wedge element, a  linear  brick element, and a 
parabolic element are reconstructed into linear 
tetrahedral elements to generate  primitives. In the 
following  section, we discuss tetrahedronation for this 
primitive generation in order to generalize the 
visualization method on the basis of a tetrahedral 
primitive. In the field of  chemical  graphics, Koide and 
Doi have used this primitive to visualize isopotential 
surfaces  from structured grid data [7]. Here, we use it for 
the visualization of unstructured grid data. 

The tetrahedron has  been  used in many methods for 
generating  grids  from  objects  of arbitrary shape,  because 
of its geometric  flexibility [8- 1 11. Phai has reported a 
technique for connecting manually  defined nodal points 
to a  network structure consisting of tetrahedral grids 
which  have an optimum form  for numerical 
computation [8]. Yerry and Shephard have  presented  a 
method which  follows  from the basic concepts of the 
octree  encoding technique to generate tetrahedral grids 
completely automatically [9]. Shenton and Cendes  have 
proposed  a method based on  an extension  of the 
Delaunay triangulation algorithm to 3D geometry [lo]. 
The geometrical  flexibility  of tetrahedral grids  is so 
attractive in terms of automatic grid  generation that these 
grids are beginning to be used in 3D FEM analysis [ 121. 
Consequently,  using  a tetrahedral cell as a  process 
primitive is  very  effective. In terms of volume 
visualization, this primitive has the following  features: 

1. Linear data distribution on the edge line. 
2. Linear data distribution along any line segment. 

The first feature,  which is included under the second, 

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARYIMARCH 1991 

Surface 
rendering 

3D FEM result 

F1: Set of cells 

Extraction 

Triangular facets 

Rendering 

I 

11 Image  data 

" 

" 

Direct 
imaging 

I 

11 Image  data 

Overview of the method. 

makes it possible to find intersections of edges  of  a 
primitive and  an isosurface by  using  a  very  simple  look- 
up table; this led  us to develop  a method for  isosurface 
visualization  based on triangular facets. The second 
feature allows  a point on the isosurface  along the viewing 
ray to be found easily  by  using the values on the entry 
point to the primitive and the exit point from it; this led 
us to develop  a method for the direct imaging of 
isosurfaces. 

We apply the latter method to the thermal stress 
analysis of a  solder joint in a semiconductor chip, and 
visualize isothermal surfaces and isostress  surfaces. The 
method can also  be  applied to simulation results  from the 
3D finite  difference method (FDM) based on the 
boundary-fitting coordinate (BFC)  system. 

Overview of the  method 
An overview  of our method is  presented in Figure 1. We 
begin  with  a 3D FEM result  defined at each  node, as 
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described in the third section.  When the result  is  defined 
at each element, we can convert it to the result at each 
node point by extrapolating and then taking the average 
of the values computed at parametric integration points 
within the elements,  using the interpolation function of 
the element. The first step is tetrahedronation, described 
in the third section,  which  converts  each  solid  finite 
element into several tetrahedral cells. The output of this 
step is a set  of tetrahedral cells  with  scalar data  at each 
node.  Two independent steps, a surface-rendering step 
and a direct-imaging  step,  use this set as input. In the 
surface-rendering  step,  described in  the fourth section, 
triangular facets are first extracted as intermediate 
geometries and then rendered. In the direct-imaging  step, 
described in the same section, this set  is  directly  rendered 
by a volume  ray-tracing method. Each step produces 
image data as output. 

Data of 30 FEM result 
Because the data structure of a 3D FEM  result  is not 
intended for  volume  visualization, it does not allow 
efficient  visualization  unless  modified. In this section, we 
first describe the characteristics of the data structure of 3D 
FEM  results and investigate the data structure needed  for 
efficient  visualization. We then describe  how  FEM  result 
data are interpolated, and explain the effectiveness  of 
using tetrahedral cells in volume  visualization. 

Data structure 
To solve a partial  difference equation such as a Navier- 
Stokes equation, we often  use an approximate solution 
which converts the equation into  an algebraic  form. The 
weighted residual method, which is often used in 
numerical simulation, builds  algebraic equations by 
integrating the weighted error over the whole  region. 

In FEM  analysis, the above integration is  performed at 
each  subregion,  called an element, and subalgebraic 
equations are formed.  Finally,  whole  algebraic equations 
are constructed by superposing the subequations on a 
whole matrix. The superposition in FEM  analysis  allows 
the data structure to independently express the element 
topological data simply by using the element-node 
relation.  Such an expression of an element does not offer 
enough information for the volume  visualization of 3D 
FEM data. 

Volume  visualization includes processes on edges or 
faces of an element and the traversal of elements along a 
viewing  ray. For example, if the generation of points on 
an edge or face  is  performed independently at each 
element, duplicate calculations may occur if the edge or 
face is shared by other elements. Without a list of 
adjacent elements,  ray-tracing spends much CPU time 
searching  for the element which the viewing  ray 
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One solution to the problem  is to rebuild the data 
structure so that it involves an element-face relation, a 
face-edge relation, an edge-node relation based on a 
boundary representation  (B-Rep), and a list  of adjacent 
elements.  Such a data structure is often introduced in 
solid-modeling  systems, but it is not realistic  for  volume 
visualization  because many more elements must  be 
processed than solids. To identify an edge or a face  which 
can be shared by elements, we adopt hashing [ 131. As a 
preprocess  for  ray-tracing, we generate a list of adjacent 
elements called a link table. 

Data interpolation 
For effective  visualization, attention must  be given to 
data interpolation at an arbitrary point in  an element, as 
well  as to the data structure. In  FEM  analysis, the data in 
an element are interpolated from nodal data by using 
some function, which  is  expressed not in a global but in 
an element-local coordinate system.  Because an arbitrary 
point in the element is  expressed in the global  system, the 
point coordinates should  be transformed into the local 
system. This transformation is  performed by iterative 
calculation  based on the Newton method, the 
convergence  of whose calculation depends on the initial 
value. If the value  is not adequate, the calculation 
diverges.  Since it is very  difficult to forecast the initial 
value  of a given point, especially in a curved element, the 
data should be interpolated in global coordinates in order 
to avoid a transformation that may be accompanied by 
instability and low performance. 

From this viewpoint, a linear tetrahedral element (a 
tetrahedral cell)  is  suitable,  because the data in this cell 
are  directly interpolated in a global  system.  Moreover, in 
a tetrahedral cell, the data distribution is linear in any 
direction, which makes ray-tracing very  efficient. For this 
reason, we  use the tetrahedral cell as a process primitive 
for  volume  visualization.  Usually,  various kinds of 
element are mixed in a 3D FEM  result.  In this case, we 
subdivide  these elements into a number of tetrahedral 
cells in a preprocess that we call tetrahedronation. 

In the visualization of 2D FEM  results, elements are 
often subdivided into linear triangular elements for 
contour plotting [ 14, 151. Our approach is a natural 
expansion of this subdivision to 3D results.  Converting 
all elements into tetrahedral cells  fixes the numbers of 
nodes  composing an element and the adjacent elements 
at (4,4), which  is  very  desirable  in terms of the efficient 
use  of memory resources. 

Tetrahedronation 
Koide and Doi have  developed a cell-based 
tetrahedronation method for efficient extraction of an 
isosurface as a set  of triangular facets  [7].  They  subdivide 
each  grid  cell independently into five tetrahedral cells 
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because,  for a regularly  ordered  grid, there are some  rules 
for  subdivision  which warrant alignment with the face  of 
the adjacent  cell.  Since elements are not arranged 
regularly in 3D FEM data, independent tetrahedronation 
can  cause  misalignment  with the face of an adjacent cell. 
For  correct alignment, an element should be  subdivided 
after the information has  been obtained about the face  of 
the adjacent element. As we stated previously, we  use a 
hash  table  for this purpose. 

tetrahedronation (see Figure 2). 

triangles.  Because there are two alignments in this 
subdivision, we should  register  which alignment is 
generated on the face in the hash  table. The identifiers of 
one of  two nodes to which  five  edges are attached can be 
made to represent the alignment. As entries in the hash 
table, we also  need node identifiers to represent a face 
itself.  It  is  sufficient to select the identifiers of the first 
three out of four main  nodes in descending order of 
value.  Because we chose the sum of these  identifiers as a 
hash  value, we actually  register their maximum and the 
minimum values in the hash  table. 

Besides six-triangle  subdivision, we can consider an 
eight-triangle  subdivision accompanying an additional 
node  generation at the center of a face. This subdivision 
is axisymmetric about the face center at every ninety 
degrees, so no misalignment of the subdivision  occurs. 
The identifier  of the additionally generated node must be 
registered in order to avoid duplicate generation of a 
node. 

the center of a volume, which does not require hashing. 
Finally, we generate tetrahedral cells by connecting the 
generated  node and the vertices of 36 or 48 triangles. For 
other types of elements, we also  generate tetrahedral cells 
in a similar manner. In Figure 3, we show the face 
subdivision  related to the tetrahedronation of various 
kinds of elements. 

Let us take a parabolic  brick element as an example  for 

First,  each  face of this element is  subdivided into six 

Next, we independently generate an additional node at 

lsosurface  visualization 
An isosurface,  which  is a set  of points with the same 
value in 3D space,  is  very  useful  for interpreting volume 
data such  as 3D FEM  results. Our goal  is to visualize 
isosurfaces  from a set  of tetrahedral cells. There are two 
approaches to visualization. One is to render polygonal 
geometries  which are locally  extracted  as  isosurfaces at 
each  cell. In this approach, we calculate the intersections 
of a cell  with the surface at the edges of the cell, and 
compose  polygons  whose  vertices are the intersections. 
The other is to use a method  based on ray-tracing, in 
which  we calculate intersections along a viewing  ray and 
their pixel  values  directly without creating intermediate 
geometries  such as polygons. We develop a volume  ray- 
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tracing method for tetrahedral cells and apply the method 
to the visualization of  isosurfaces.  First, we explain how 
to calculate normal vectors,  which are used  for the 
shading of isosurfaces. We then give  two methods based 
on two  approaches, a triangular-facet method and a 
direct-imaging method. 15 
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Normal vector calculation 
The shading of an isosurface  is  synthesized by using 
normal vectors and some illumination model. We can 
calculate  these normals as  normalized  gradients  of a 
given function, which  is  defined at each  cell.  In a 
tetrahedral cell, the function is 

F(X,  Y, 2) = a. + a,X + a2Y + a,Z, 

where the coefficients a, ( j  = 0, 3) are determined by the 
nodal coordinates and data. The normal N can be 
calculated  as  follows: 

N = grad [ F( x, y ,  z)] .  

The normals in the cell are  all the same,  because partial 
derivatives of F with  respect to x, y ,  and z are constant. 
This means that a local  isosurface in this cell  is a plane. 
The use  of a normal at each  cell  leads to the isosurface 
having a constant shading  image,  which  is not good  for 
expressing the smoothness of the surface. To avoid this 
disadvantage, we convert the vector of a cell into the 
vector at each  node. As a result, normals are stored at 
every node, and in a cell, a normal is interpolated 
through  four normals at nodes. This conversion  is  also 
advantageous in terms of memory utilization. The 
number of  cells is larger than the number of nodes, 
because the number of  cells connecting a node  is  usually 
greater than four. Therefore, storing a normal at each 
node  requires less memory  space than doing so at each 
cell. 

Triangular-facet method 
This method  represents an isosurface  as a set of 
triangular facets that are extracted from a cell. The 
process  is  as  follows: 

1. Search  for  edges  which  intersect the isosurface. 
2 .  Calculate the intersections by linear interpolation. 
3. Connect the intersections to form triangular facets. 

In  general, an edge  is  shared by several  cells. To give a 
unique identifier to each intersection and avoid duplicate 
calculations on the edge, hashing  is introduced. The 
method is  basically  inspired by that of Koide and Doi, in 
which a grid  is  subdivided  with  only the given  grid 
points.  Since in our method an element is  subdivided 
into tetrahedral cells  along  with the generation of an 
additional node, it is  possible to generate a cell  with an 
edge  whose  vertex  is this node. It is efficient to have a 
local  table  for  hashing at each element, because  hashing 
with  respect to the intersection at the above edge can be 
localized. We prepare a table at each element. In the case 
of the element shown in Figure 4, the maximum number 
of  rows in the table  is  eight,  because there are eight  edges 
which extend to nodes  from the volume  center. If  we 

take one cell from the element which contains two 
triangles of an isosurface, we  give unique identifiers to 
two vertices at these edges  by  using the local  table and to 
two  vertices at the other edges  by  using the global  table. 

Direct-imaging method 
The above representation of isosurfaces  sometimes 
requires much memory  space for polygonal  geometries 
such as triangular facets; this is one of the motives  for 
development of the volume-rendering method. We have 
developed a method for  directly  rendering not only 
polygonal  geometries but also tetrahedral cells by volume 
ray-tracing.  First, we propose a tetrahedral model  for 
efficiently  traversing an unstructured collection of  cells. 
Next, we explain the volume  ray-tracing method based 
on this  model and its application to isosurface 
visualization. 

Tetrahedral model 
The tetrahedral model  is  composed of a node table, a cell 
topological  table, a link table, and an exterior face  table, 
which are intimately connected to  one another. The node 
table  is an array of coordinates, normal vectors, and 
scalar data. The cell  topological  table  is an array of  cells, 
each  of  which is represented by the identifiers of its four 
nodes  (cell-node  relation). The node identifiers are 
chosen  according to their addresses in the node table. 
The link  table is another array of the same cells,  each  of 
which  is  represented by the identifiers of the four  cells 
connected to its four faces  (cell-cell relation). The cell 
identifiers are chosen  according to their addresses in the 
cell topological  table. If there is no cell connected to a 
face, the exterior face  identifier, the sign  of  which  is 
changed,  is  registered instead. The exterior face  table  is 
an array of faces,  each  of  which  is  represented  by the 
identifiers  of the cells connected to it and a face number. 
This number is an internal face  identifier of a cell.  When 
the node identifiers  of a tetrahedral cell are n,, n2, n3, and 
n,, a face  labeled n ( n  = 1, 4) is defined by the following 
face-node  relations: 

face 1 = (u2, n3, n,), 

face 2 = (n3, n,, n,), 

face 3 = (n,, n, ,   nJ,  

face 4 = (n, ,  n2,  n3), 

where n denotes an internal face  identifier. The exterior 
face  table and the cell  topological  table  realize two-way 
linkage  between an exterior face and a tetrahedral cell. 

two tetrahedral cells. A cell  labeled 1 is  composed of 
nodes  labeled 1, 5, 4, and 2 and connected to a cell 
labeled 2 at face 1. Faces 2 ,  3, and 4 are exterior faces 17 

Figure 5 shows a tetrahedral model  which  consists  of 
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labeled 1, 2, and 3. A cell  labeled 2 is composed of nodes 
labeled 2,4,  5 ,  and 3 and connected to a cell  labeled 1 at 
face 4. Faces 1, 2, and 3 are exterior faces  labeled 4, 5 ,  
and 6. The viewing  ray  first intersects the model at the 
exterior  face  labeled 1. By referring to the exterior face 
table, we find it is  face 2 of the cell  labeled 1. The 
viewing  ray  exits from face 1, which  is found to be 
identical to face 4 of the cell  labeled 2 by  referring to the 
link table.  Next, it exits from face 1 of the cell  labeled 2, 

18 which  is found to be identical to the exterior face  labeled 

4. We illustrate this traversal  schematically in the lower 
part of the figure. 

Volume ray-tracing 
The volume  ray-tracing method based on the tetrahedral 
model can be  divided into two  processes. One is 
searching  for the cell  which the viewing  ray encounters 
first, and the other is  calculating the brightness in the 
traversal of the model. 

The first  process, in other words,  is  searching  for the 
nearest exterior face to the viewing point, which  is an 
application of hidden-surface  removal.  Many  algorithms 
for this have  already  been  developed, and our purpose  is 
not to develop  more. We therefore adopt the 2-buffer 
algorithm to obtain the exterior face  identifier, and 
determine the cell  by referring to the exterior face table. 
Reference to the link table  enables us to search  for  cells 
which intersect the viewing  ray  successively until the ray 
reaches an exterior face. 

In the next  process, we  use the following  brightness 
equation in each  cell: 

n I= I 

B = c [ B ,  a, n (1 - 9 1 1 .  
I =  I / = I  

The term B, denotes the brightness  which is calculated 
from the interpolated normal at a sampling point and 
from  Phong’s  model [ 1 I], and a denotes the opacity 
which is calculated  from  some transfer function of the 
interpolated  scalar data and gradient. ( B l ,  a, )  and (B,,, a,,) 
are the brightness and opacity at the exterior faces  (see 
Figure 6). At a sampling point in a cell  which  is Di 
apart from the viewing point, we calculate (B, ,  a,) as 
follows: 

1. Interpolate the normals and scalar data  at the entry 

2 .  Interpolate the normals and scalar data at the 
and exit points. 

sampling point. Note that the weights are (De,, - Di)/ 

and De,, are the distances of the entry and exit points 
from the viewing point, respectively. 

scalar data. 

(De,, - De,,) and (Dl  - De,,)/(D,xl - De,,), where De,, 

3. Calculate (B,, ai) from the interpolated normal and 

By performing the processes at each  viewing  ray, we can 
create a volume-rendering image into which the exterior 
surface-rendering  image  has  been integrated. 

Application to isosurface  visualization 
To visualize  isosurfaces by the volume  ray-tracing 
method, we usually  raise the local  opacity around the 
visualizing data in general.  However, there is a slight  loss 
of  surface  sharpness  because the sampling points are not 
always on the isosurface. There are many requirements I 
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1 Sampling  points  on a viewing ray. 

for  achieving sharpness in visualizing the result of a 
numerical simulation such as a 3D FEM  result; we 
achieve  it by confining the sampling points to the 
intersections  between the viewing  ray and isosurfaces. 
This approach is  efficient  because the number of 
sampling points is  significantly  reduced. In Figure 7, we 
show  two  images  which  are  created  by the volume  ray- 
tracing  method  from the same  pressure data in a clean 
room. The upper one is  based on uniform sampling with 
the opacity in proportion to the data, and the lower  one 
is  based on sampling  only at intersections. 

Application to chip design 
We have  applied our visualization method to the 
packaging  of a semiconductor chip which  is  based on 
controlled collapse chip connection (C4) technology. 
First, we present a general view  of this technology.  Next, 
we explain the model used for the FEM  analysis, and 
finally, we discuss the effectiveness  of our visualization 
method for interpreting 3D scalar data. 

C4 technology 
C4  is a technology  for attaching silicon  circuit  chips to a 
ceramic substrate through a tin-lead  solder joint, as 
shown in Figure 8 [ 16- 181. This technology  achieves  high 
packaging  density;  however, there is a problem  with the 
reliability of C4,  namely that fatigue can occur in a solder 
joint because  of the thermal stress introduced by a 
difference in coefficient of thermal expansion  (CTE) 
between the chip and the substrate. The process  leading 
to fatigue in standard C4  technology can be explained as 
follows:  When a chip is active, the difference in CTE 
between the chip and the substrate results in a shear 
strain between the top and the bottom of a solder joint as 
the temperature of the chip increases.  Because the 
displacement is removed  when the chip becomes 
inactive, the power-on-off  cycle  imposes a cumulative 
strain on the solder joint. When the equivalent strain 
exceeds a critical  value, a fracture appears in the portion 
of the solder joint where the strain concentration occurs, 
and this finally  results in fatigue.  Therefore it is  desirable 19 
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that the CTE of the substrate, which  is  2.7-3.0  ppm/"C, 
be  close to  that of the chip. But, for reasons of 
productivity and cost, alumina, whose CTE is 6.5-9.0 
ppm/"C, is chosen to be  used as the substrate in 
production. Because the  CTE of the substrate is more 
than twice the  CTE of the chip when the  temperature of 
each material increases, the  chip size and the thermal 
environment are restricted to avoid fracture. 
Furthermore, Goldmann has reported [ 181 that the 
fatigue  life  of the solder joint based on C4 technology 
depends on its diameter and height.  If such restrictions 
can be removed, C4 technology will have potential 
applications in  many areas. 

One technique for enhancing the reliability of C4 
technology  is to encapsulate solder joints between the 
chip and  the substrate with epoxy resin, as shown in 
Figure 9. 

In the encapsulated solder joint, the stress distribution 
20 is caused not only by the shear strain but also by the 
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compressive/tensile strain resulting from the expansion/ 
shrinkage of the epoxy  resin  with the change in 
temperature. Because the strain distribution is too 
complex to analyze theoretically, FEM analysis is needed 
to investigate the strain distribution of the new structural 
design. 

FEMmodel 
This new C4 technology is applied to  the memory chip. 
Several chips are connected on a circuit card. For 
simplicity, only one chip is treated as a finite element 
model. The model can be described as a quarter of a 
chip, because the location of the solder joints is 
symmetrical with  respect to the A-A surface and B-B 
surface, as shown in Figure 10. The model is defined as 
the area occupied by a chip. The defined FEM model is 
composed of 4155 nodes (including 455  for the shell), 
2740 linear bricks, and 1048 linear wedges  (see Figure 
11). 

Zero-displacement boundary conditions have  been 
imposed along the center surfaces A-A and B-B, and 
heat sources have been placed under the surface of the 
chip. Convection surfaces have been imposed on  top of 
the chip and the card, and under  the card. The side 
surfaces are assumed to be adiabatic. The solder joint has 
material properties that are highly dependent on 
temperature and time. Therefore, in FEM analysis, the 
material property of the solder joint is assumed to be 
plastic and dependent on temperature. That of the  other 
portion is assumed to be elastic and dependent on 
temperature. 

Result 
Figure 12 shows the steady-state thermal contour map 
after the chip has begun to consume 0.625-W  power. 
Temperature values at each node point are needed to set 
up a load condition for stress/strain analysis after the 
chip has been activated, and to evaluate a cooling effect 
for the chip that does not endure beyond 85°C. Although 
the thermal distribution on an exterior surface can be 
understood from this image, the volumetric distribution 
inside the chip cannot be determined. Figure 13 shows 
the corresponding isothermal surfaces in  the 
encapsulation and  the  joints. This visualization makes it 
easier to understand the internal thermal distribution. To 
understand such volumetric distribution in detail, we 
should effectively  express the  depth information of 
isosurfaces in a graphic display. For this purpose, 
several  images should be displayed from two or more 
viewing points. We introduce  the following two methods 
for this: 

Wire-frame display  using  local graphic functions such 
as zooming, rotation, and translation. 

IBM J. RES. DEVELOP. VOL. 35 NO. 1/2 JANUARYiMARCH 1991 



Stereoscopic  display using a double-buffering 
mechanism. 

/Chip 

The first  is  used in order to understand the volumetric 
distribution at high  speed in routine work. The second  is 
used in order to examine the depth in detail,  displaying 
two  shaded  images  produced by changing the viewing 
position. 

Figure 14 shows the Von  Mises stress contour map 
which  corresponds to the previous thermal distribution. 
Our concern  is to understand the stress distribution in 
the encapsulation surrounding solder joints. In this case, 
the contour map on  an  exterior  surface does not provide 
sufficient information. Figure 15 shows the Von  Mises 
stress  surfaces obtained by our visualization method. 
Note  particularly that there  is an isolated  region  with a 
high stress  value in the upper left corner. Naturally, it can 
be  expected that there will  be a high  possibility  of a 
fracture at the solder joint nearest to this region,  which 
agrees  qualitatively with experimental results. 
Furthermore, we can understand that the stress  value  is 
not  simply proportional to the distance from the center 
of a chip, which  is another reason why  FEM analysis  is 
needed  for the development of encapsulated C4 
technology. 

Figure 16 shows the strain contour on the outer 
surface of the solder joint previously mentioned, and 
Figure 17 shows the corresponding  isostrain  surfaces. The 
latter indicates that surfaces  with  high strain are attached 
to the edge  of the solder joint, where a fracture may 
occur. 

visualization, we have  reached the first step in developing 
an advanced chip based on C4 technology, which  may  be 
summarized  as  follows: 

Through 3D FEM  analysis and volumetric 

We found a solder joint which can be  heavily  damaged. 
We found the portion of the above joint in which a 
fracture  may occur. 

Discussion 
We have  developed  two methods for  visualizing 
isosurfaces  from a 3D FEM result.  In  each method, all 
elements are subdivided into tetrahedral cells. If elements 
to be processed are confined to linear elements, the 
tetrahedronation may be omitted in the triangular-facet 
method, which  is  based on the linear distribution only 
along the edges  of the cells.  However,  when  higher-order 
elements are processed, tetrahedronation is  very 
important, since it converts a complex data distribution 
in these elements into a linear distribution set.  Moreover, 
it is  only  in a tetrahedral cell that data are linearly 
distributed along an arbitrary line  segment.  In this sense, 
tetrahedronation is indispensable  for the direct-imaging 
method. 

lo? prI( So'der \ I 

Solder joint 

/ (epoxy resin) 
Encapsulation 

ate 

The triangular-facet method allows the benefits  of 
hardware  technology to be enjoyed in polygon-based 
graphics,  because a triangle  is a basic primitive of 
graphics  hardware.  These  benefits  lead to interactive 
manipulation of  isosurfaces,  such  as  selecting  one of the 
vertices  of  which an isosurface is composed, and 
inquiring about its  coordinates. This advantage originates 
in the explicit extraction of triangular facets,  which  has 
the disadvantage that a very  large area of memory or 
DASD space  may  be  required  for  such intermediate 
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Cutout model. 

geometries. The direct-imaging method overcomes this 
disadvantage by incorporating the extraction process  with 
the shading. 

The direct-imaging method makes the most of the fact 
that  data are linearly distributed along an arbitrary line 
segment  which is proper to the tetrahedral cell. To find 
an intersection along the viewing  ray, it is sufficient to 
solve  a linear equation, which makes it possible to check 
the existence  of an intersection from two  scalar data at 
the entry and exit  points. Other primitives do not allow 
such  simplicity in searching. For example,  because the 
data are interpolated trilinearly in the cubic primitive, the 
data distribution along an arbitrary line  segment  is 
expressed as a  cubic function. To search for an 
intersection on the segment,  a cubic equation must be 
solved. The search cannot be  based on the two  values at 
the entry and exit  points. 

Here, we compare the two methods in terms of their 
computational costs.  Ray-tracing  is  assumed to be  used 
for  rendering  isosurfaces in the triangular-facet method in 
order to create uniform conditions. In each method, the 

22 processes can be categorized into linear interpolation 

along an edge and over  a  triangle. The first  consists of 
calculating  weights at the vertices  of the edge (process 1 1) 
and interpolating scalar data by using the weights 
(process 12). The second  consists of calculating  weights at 
the vertices of the triangle  from the intersection of a 
viewing  ray and the triangle  (process 21)  and 
interpolating scalar data by  using the weights  (process 
22).  The triangular-facet method performs process 11 
three and a  half times on the average at each  cell and 
process 12 six times at each edge to extract one or two 
triangles. It then performs process 2 1 once and process 
22 three times at the intersection to interpolate a normal. 
Assuming that 1) the projection area of extracted 
triangles  is  half that of the cell, 2 )  the number of rays that 
intersect the triangles is K, and 3 )  an edge  is  shared by  six 
cells,  we can estimate the computation time TI at each 
ray and each  cell  as 

T,  = [3.5C,, + 3.5(6CI,)]/6K + (C,, + 3C2,)/2 

= (0.583/K)Cl, + (3.5/K)C,, + OSC,, + 1.5C2,, 

where C, denotes the computation time for  process n. 
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Substrate 

Number of nodes: Bricks: 2740 

Wedges: 1048 

Shells: 455 

Steady-state thermal contour. 

The direct-imaging method performs process 2 1 once and 
process 22 four times to interpolate a normal and a 
scalar,  since it may  divert the result of the adjacent cell.  It 
then performs  process 11 once and process 12 three times 
to interpolate a normal on the isosurface.  Consequently, 
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the computation time T2 can be estimated as 

T, = (C,, + 3CI2) + (C2, + 4C2,) 

= c,, + 3c,, + c,, + 4c2, .  
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1 Stress contour map on an exterior surface. f Isostress surface. 

Apparently, C,, can  be  arranged  according to magnitude 
as follows: 

c,, ” e,, > e 2 2  > c,2 . 
That is, in terms of computation time, the triangular- 
facet method is superior to the direct-imaging method, 
which  is  confined to the case of one isosurface at each 
cell.  However,  when N isosurfaces are visualized in a cell, 
in T, all terms are increased by N times, but in T2 only 
terms related to C, , and C,, are increased by N times. 

24 Accordingly,  when N is  greater than 2, the direct-imaging 

1 Corresponding isostrain surfaces. 

method  is  advantageous.  When the application requires 
only  isosurface  visualization, the triangular-facet method 
should be selected. But  when it requires a cloudlike 
image, the direct-imaging method is  very attractive, 
because it can  create  both a surface-rendering  image and 
a volume-rendering image. 
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