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Finding the

distance between

two circles In
three-dimensional
space

by C. A. Neff

In this paper we investigate, from an algebraic
point of view, the problem of finding the
distance between two circles located in R°. We
show, by combining a theorem about solvable
permutation groups and some explicit
calculations with a computer algebra system*,
that, in general, the distance between two
circles is an algebraic function of the
parameters defining them, but that this function
is not solvable in terms of radicals. Although this
result implies that one cannot find a “closed-
form” solution for the distance between an
arbitrary pair of circles in IR3, we discuss how
such an algebraic quantity can still be
manipulated symbolically by combining standard
polynomial operations with an algorithm for
isolating the real roots of a polynomial in a
convenient data structure for real algebraic
numbers. This data structure and its operations
have been implemented.

* All computer algebra calculations in this paper were performed with
SCRATCHPAD [1].
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1. Introduction

The problem of finding the distance between two circles
in three-dimensional space, or R’, and the related
problem of finding the intersection of two tori in R* both
occur surprisingly often in computer-aided geometric
design systems that strive for a combination of generality
and robustness. We study the torus because it is a
common and esthetically pleasing shape and occurs in
several important applications: in producing rounds and
fillets for objects with sharp edges, in delineating the
workspace of multiply jointed robots, and in the shape of
cutter heads of numerically controlled machine tools. It
is easy to see that the problem of intersecting two tori is
related to the problem of finding the distance between
two circles, because a torus 7" can be represented as the
set of points in R’ that are at some fixed distance r (the
minor radius) from a central circle C. Thus, two tori T,
and T, will intersect if and only if the distance d between
their central circles, C, and C,, is less than or equal to
the sum of their two minor radii, 7, + r,.

Focusing on the circle~circle distance problem, because
it is a common one, we would like to have a formula or
“closed-form solution” for the distance in terms of the
parameters that define the problem, for at least two
reasons. First, such a solution offers ease and speed of
evaluation (the operations involved in a closed-form
expression are common to all computers and can be
computed quickly). Second, a closed-form solution allows
the distance quantity to be calculated and manipulated
robustly, that is, with any specified accuracy.
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For example, take the simpler problem of finding the
distance between a point p with coordinates (x,, y,, z,)
and a plane W defined by the equation ax + by + cz + d
=0, in R’. In this case, the parameters are x,, y,, Z,, @
b, ¢, and d. The distance between p and W is given by the
expression

| ax, + by, + cz, + d|
Vad+ b+ ¢

Another example of a closed-form solution comes from
the problem of finding the distance between two

circles in R’ Suppose that two circles C, (i = 1, 2) have
centers (x;, ¥;) and radii 7, = r,. We define the quantities

Dr= J(xl - x2)2 + (yl - )’2)2 ,

A=r—-r,—D,

and

A, =D —r —r,.

Then the distance between C, and C, is given by
A, ifA >0 (C,liesinside C)),

dist(C,, C,} =< A, ifA,>0 (the circles are separate),

0 otherwise.

The simple form of this expression motivates, at least
partially, the search for a corresponding one in three
dimensions. Although this problem is very specialized in
nature, it comes up frequently enough to make
worthwhile the task of deciding whether it can be solved.
One may easily conjecture that there is no such
expression in three dimensions, but to show this
definitively requires a good deal of work and a lot of
algebraic manipulation, which we do in this paper.
Fortunately, the use of a computer algebra system allows
us to ignore most of the tedious calculations and to
concentrate instead on the interesting mathematical ideas
behind the problem.

2. Group theory and algebraic solvability
We now define more precisely what we mean by a closed-
form solution,

Definition I Let {c,, - -, c,} be a finite set of
parameters. A closed-form expressionin ¢, « -+, ¢, is

1. Any rational number «.

2. One of the parameters c,.

3. Any expression of the form C, + C,, C, = C,,
C, X C,, or C,/C,, where C, and C, are closed-form
expressionsin ¢, - - -, ¢,. In the case C,/C,, we also
insist that C, # 0.
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4. An expression of the form v C, where C is a closed-
form expressionin ¢, - - -, ¢, and n is any positive
integer.

A closely related concept is the following.

Definition 2 A complex number { is called algebraically
solvable if { can be written as a closed-form expression
involving no parameters (i.c., just rational numbers).

It is easy to see that if the solution of a problem
involving parameters ¢,, - - -, ¢, can be written as a
closed-form expression in the parameters ¢;, and if z is
the solution of the same problem for a particular set of
rational values r,, - - -, r, of the ¢,, then z must be
algebraically solvable. In the rest of this section and the
next, we construct two particular circles in R* and prove
that the distance between them is not an algebraically
solvable number, from which we conclude that the
general problem of finding the distance between two
circles in R’ does not have a closed-form solution.

In order to prove that a certain number is not
algebraically solvable, we make use of several concepts
from group theory and Galois theory, which we now
quickly review. ‘

Definition 3 A group G is a set, together with a binary
operation (usually written as multiplication or addition)
and a special element of ¢ € G such that

1. (ab)c = a(bc) Va, b, c € G.

2. ea=a Va€eG.

3. For each a € G there exists a b € G with ba = e. (We
writt b=a"".)

Remark 1t is not immediately obvious, but one can
show that the conditions in Definition 3 are enough to
conclude that ge = aand that ba=e=ab=e¢

Va, beG.

Definition A subset H C G is a subgroup of G if

1. ab€ Hwhenevera€ Hand b € H.
2. o' € H whenever q € H.

Example The set of integers with the binary operation
addition forms a group. The even integers are a
subgroup.

The group of integers, with addition as the binary
operation, is an example of a group with an infinite
number of elements, but many important groups are
finite. One of the most important families of such groups
is given in the following definition.
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Definition Given an ordered set of n elements
S=1{s,S$,,-,s,}, the set of permutations of these
elements forms a group, usually denoted by 2, with
binary operation given by composition. The group Z, is
known as the symmetric group on n letters.

A permutation ¢ € 2, is called a k-cycle if there are k
elements of the set S, say ¢, - - -, #,, such that ¢(z,) = ¢,,,
fori=1,---,k—1,and ¢(z) = ¢,. A compact notation
for such a permutation is ¢ = (£,¢, - - - £,.).

For any positive integer #, a subgroup G of 2, is
known as a permutation group. Historically, the study of
these groups provided much of the motivation for the
general theory of finite groups; in fact, every finite group
has a concrete representation as a subgroup of one of the
symmetric groups. Finite groups have applications in
many diverse fields, ranging from crystallography to
quantum mechanics. Their application to the theory of
algebraic solvability is outlined in the following sequence
of definitions and lemmas.

Definition For the purposes of this paper, a field is a
subset of the complex numbers that contains {0, 1} and is
closed under the elementary operations +, —, X, / (except
for division by 0). The field of rational numbers is
written as Q.

Definition Given a set of complex numbers {r,, - - -, .},
the field generated by r, - - -, r, is written Q(r,, - - -, 1)
and is the smallest field that contains all of the r,.

Definition 4 An automorphism of a field X is a function
from X to itself that respects all of the arithmetic
operations.

Example Q(~2) consists of all real numbers of the
form a + b2, where a and b are rational. The function
#(a+ bN2) = a — b2 is an automorphism of this field;
the function ¢(¢) = 1/¢ is not.

It is not hard to see that an automorphism of a field
leaves all rational numbers fixed. Moreover, if ¢ is any
automorphism of a field K, and r € K'is a root of a
polynomial x” + ¢,_,x"™' + - - - + ¢, with rational
coeflicients, then ¢(r) must also be a root of this
polynomial, since

0=0¢0)=o("+ - +¢)
= ¢(r) + d(c, )" + - + B(c)

=¢(r) +c,_ o)+ +c,

Thus we have the following lemma.

Lemma Let p(x) be a polynomial with rational
coefficients and roots r, - - -, r, . f K= Q(r,, - - -, 7,),
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then any automorphism of X induces a permutation of
the roots of p.

If x, (i = 1, 2) are permutations of r,, - - -, r, that are
induced by automorphisms ¢, of X, then the product
permutation =, =, is induced by the composition
automorphism ¢,°¢, [¢,°¢,(z) = ¢,(¢,(z))], and the
inverse permutation 7r1—1 is induced by the automorphism
¢, . Thus the permutations of ,, - - -, 7, that are induced
by automorphisms of K form a subgroup of Z,, and this
leads to the following,

Definition With the notation of the above lemma, the
Galois group of p, G, is the group of all permutations of
the 7, that are induced by automorphisms of the field XK.
If L C K is a subfield, the Galois group of p over L, Gy
is the subgroup of G, consisting of all permutations that
are induced by automorphisms that are the identity on L.

Example 5 Let p(x) be the polynomial X =T+ 3x+
1. It has three real roots, which we denote by r,, r,, r;. In
this case, G, is Z;, the entire set of permutations of the
three roots.

Example 6 Let p(x) be the polynomial X —6x" +3x+
1. Again, p(x) has three real roots, which we denote by
@, a,, a;. This time G, is just the three-element group
consisting of the identity permutation and the two
3-cycles (r,, r,, r;)and (7, 15, 1,).

We see below how to deduce these two examples.
Intuitively, G, measures the nature of the set of algebraic
relations among the roots of p. The more relations there
are, the fewer permutations G, will contain. In fact, there
is also a necessary and sufficient condition on G, for the
roots of p to be algebraically solvable. In order to
understand this condition, we need to make one last set
of definitions.

Definition A subgroup H of a group G is called a
normal subgroup of G, denoted H <1 G, if gHg ' C H for
all g € G. (This is equivalent to gHg ' = Hforallg € G
andtog 'Hg= Hforallg € G.)

Example e, (1 2 3), (1 3 2)}is a normal subgroup of
Z,; {e, (1 2)} is a subgroup, but is not normal, since
(1 3)(1 21 3" = 3).

If H is a normal subgroup of G, then the set of all
subsets of G of the form gH, where g € G, forms a group
with the multiplication rule (g, H)(g,H) = (g,&,)H, for
8,85 €EG.

This is called the quotient group of G with respect to H
and is written G/ H.

Definition A group G is called solvable if there is a
tower of subgroups
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fe}= Hy<dH, <. <4H_ <H, =G,

with the property that each quotient group H,/H,_, isa
commutative group.

The fundamental theorem of Galois theory [2] is the
following.

Theorem 7 Suppose that p(x) is a polynomial with
rational coefficients that has no nontrivial polynomial
factors with rational coefficients (p is called irreducible
over Q). For any root r of p, r is algebraically solvable if
and only if G, is a solvable group.

In order to gather information about the Galois group
of a particular polynomial, we make use of the following
definition and lemma.

Definition A group G of permutations on the set
S={s,---, s, is called transitive if for every pair of
elements s, s, of S there is a g € G such that g(s,) = 5,.
Equivalently, G is transitive if for every s, € S there is a
g€ Gsuchthat g(s,) = s,.

Lemma 8 Let p(x) be a polynomial and X a field. If p is
irreducible over K (does not factor into smaller
polynomials with coefficients in K), then G, is
transitive.

Example 9 (Example 5 continued) Consider again the
polynomial p(x) = X =7+ 3x+ L. Ifweusea
computer algebra system to factor p(x) over Q, the field
of rational numbers, we find that p(x) is irreducible.
Applying Lemma 8, with K = Q, we see that G, is
transitive. Next we construct the field K, = Q(r,), where
r, is a root of p(x). When we then factor p(x) over K, we
find

p(xX) = (x = )’ + (r, = Tx + 11 = Tr, + 3]

= (x — r)p,(x).

Let r, and r, be the other two roots of p(x)—that is,
the two roots of the polynomial p,(x). If we appeal to
Lemma 8 again, this time with K = K, and with p, in
place of p, we see that the Galois group of p over Q(r,) is
transitive on the set {r,, r,}. That is, G, contains a
permutation of the form (r,, r,). From this it is easy to
conclude that G, is all of Z,.

Example 10 (Example 6 continued) Now consider
instead p(x) = x* — 6x° + 3x + 1.

If we factor p(x) over Q, we again find that p(x) is
irreducible. So, as before, G, is transitive. But this time

when we try to factor over the field Q(r,) we get
pX)=(x = r)x—7r +6r, —4x+r -5, -2).

In this case, if , and r, are as in the previous example,
we have
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r= rf - 6r, +4=gq,(r),
r, = —rf + 5r, + 2 = g,(r).

This tells us that the Galois group of p over Q(r,) is
trivial (consists of only the identity permutation), because
any automorphism with the property that ¢(r,) = r, must
also have the property that ¢[q(r,)] = q(r,) for any
polynomial g with rational coefficients. In other words, ¢
must satisfy ¢(r,) = r, and ¢(r;) = r,. Thus, each element
g € G, is completely determined by g(r,), and we
conclude that G, contains only the identity permutation
and the two 3-cycles mentioned in Example 6.

3. The circle-circle problem

Let us construct a particular instance of the circle—circle
distance problem. We choose C, to be a unit circle,
centered at the origin and located in the xy-plane. We
take C, to be a unit circle, centered at (1, 0, 3) and
located in the plane passing through this point and
perpendicular to the vector (3, 2, 1). By using the
method of Lagrange multipliers, we find that the distance
between C, and C, is the minimum nonnegative

real value of VD, where D is a value for which there is a
solution to the following system of equations:

W+l —-1=0, (1)
=1 +y +(z=-3"~-1=0, )
Aix-D+2y+(z-3)=0, 3)
p(x = 1) + 3p, — (x — u) = 0, (4)
1y +2u—(y—v)=0, (5)
p(z=3)+pu,—2z=0, 6)
pu—(x—u)y=0, 0]
wpy—(y—v)=0, ®)
x—uf +(y~v¥+z-D=0. ©)

As noted in the previous section, if there is a closed-
form solution to the general circle~circle distance
problem in R, then vD must be algebraically solvable.
It follows immediately from Definitions 1 and 2 that this
is equivalent to the condition that D be algebraically
solvable. We shall now see that it is not.

We can eliminate all variables except D by doing a
Grobner basis calculation [3, 4], a method of eliminating
variables from a system of equations, by using a
computer algebra system. The result is a polynomial of
degree 8 in D alone, with rational coefficients:

pDy=D*+¢c,D' +---+¢D+c,. (10)

Since the coefficients have large numerators and
denominators, and since their exact values are not crucial
to what follows, we do not list them here.
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We now prove that the Galois group of p(D) is not
solvable, by using the following lemma and theorem in
combination with some explicit computer algebra
calculations.

Lemma 11 A subgroup of a solvable group is solvable.
Proof See [5, 6].

Theorem 12 If G is a transitive permutation group on a
set S of g elements where g is a prime integer and G is
solvable, then the only element of G that leaves two
elements fixed is the identity permutation.

Before we prove this, let us see how it applies to the
problem we are considering.

Let p(D) be the polynomial in (10), and suppose that
G, is solvable. Pick a root p, of p(D) and consider the
Galois group G, of p of Q(p, ). By definition, this is a
subgroup of G,. Thus, by Lemma 11, since we are
assuming that G, is solvable, G, must also be solvable.

Now G, is a permutation group on a seven-clement set
{py, -+ -5 pg}. We can factor p(D) over Q(p,), and we
obtain p(D) = (D — p,) p,(D), where p, is a polynomial
of degree 7 with coefficients in the field K, = Q(p,),
which is irreducible over K. Thus, Lemma 8 tells us that
G, is transitive on {p,, - - -, pg}.

Next we factor p, over the field K, = Q(p,, p,),
obtaining p,(D) = (D — p,) p,(D), where p, is a
polynomial of degree 6, which is irreducible over K,.

If the only element of G, that fixes the two elements
P, p, is the identity, then p (D) must split completely
into linear factors over the field Q(p,, p,, p,). Otherwise,
Lemma 8 would imply that the elements of G, that fix
both p, and p, are actually transitive on some nontrivial
subset of the elements p,, - - -, p;. However, when we
factor p,(D) (using a computer algebra system), we find
that this is not the case; in fact, p,(D) has only one linear
factor. Thus, by Theorem 12, G, cannot be a solvable
group. But, by Lemma 11, this contradicts our
assumption that G, is solvable. Hence, by Theorem 7, no
root of p(D) is algebraically solvable. Thus, there is no
closed-form solution to the general circle-circle distance
problem in R”.

To complete this section we now give the proof of
Theorem 12.

Proof of Theorem 12 Let H be a normal subgroup of G.
We define our equivalence relation ~ on the elements of
S as follows:

s~ s eals)=3; for some ¢ € H. (11)

The equivalence relation ~ splits .S into disjoint
equivalence classes. Let ¢, = {s,, - -, s,}and G, =

{s;, - - -, 5;} be two such classes. Since G is transitive,
we can choose o; € G with the property that o,(s,) = s,.
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Consider the set 0,(¢,) = {o,(s,), - - -, 0,(s,)}, and
let o,(s,) € 0,(C,). Then there is a ¢ € H such that
o(s,) = s,, and we have

o, (oo ' To (s = o,[0(s)] = o,(s,)- (12)

Thus 6,(¢,) is exactly the equivalence class of ~ that

contains s,. Since s, was arbitrary, all equivalence classes

contain the same number of elements. But, since ¢ is

prime, this number must be either 1 (g classes and

H = {e}) or g (one class and H is also transitive on S).
Let

e} =G, <G, <4G,_ <4---<G, 4G, =G  (13)

be a solvable series for G. Since every commutative group
has a normal, cyclic subgroup, we may assume that the
group G, is generated by the g-cycle

W= (sl Sy - sq_lsq). (14)
Suppose ¥ € G,_,. We know that yoy ' € G,, so

voy ' =" forsome min 1,2, ---, g — 1. In fact,

m=1 ifand onlyif y € G,, (15)

since the only permutations in Z, that commute with a
g-cycle are the powers of that g-cycle.
If we suppose v(s,) = s;, then

v(s;) = v[w(s,)] = yor [yl = ©"(s) =s,,  (16)

where » = (j + m) mod ¢.

In general, v(s;) = s,,), where »(i) = (j + mi) mod q.
Thus, either v € G,, or v fixes exactly one element.

Now, suppose that § € G, _,. Since G,_, <G, _,, and
since w € G, C G,_,, we know that 6wf ' € G,_,. But it
is easy to see from Equation (14) that w8~ does not fix
any elements. By the previous paragraph, this can happen
only if 6w ™' € G,, that is, G, 1 G,_,. We can now
simply replace G,_, with G,_, in the previous discussion,
and the proof can be completed by induction.

4. Computing with real algebraic numbers

We can still capture some of the advantages of a closed-
form solution by extending the idea of taking an nth root
to the idea of taking real roots of arbitrary polynomials.
To do this, we represent a real algebraic number « as a
pair. The first element of the pair is a polynomial with
rational coeflicients, of which « is a root. We call this the
defining polynomial for «. The second element of the
pair is a rational isolating interval for a—that is, an
interval of the real line that contains only one root of the
defining polynomial for o, namely « itself.

Example /3 can be represented as the pair
> =3, [1,2]).

The elementary operations +, —, X, / are actually
much easier to perform with this representation than
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with a representation that uses “towers” of radicals. The
operations +, —, X are performed on real algebraic
numbers almost as if they were polynomials. If « is
defined by (p(x), [a, b]), B = q,(a), and v = ¢,(«), then
8 - v = q(a), where

q(x) = q,(x) - g,(x) mod p(x). 7)

Example 13 Suppose « is defined as (x” — 6x” +
3x + 1, [0, 4]) (Example 6). If 8 = o’ + o + 1 and
'y=a+2,then,8'y=a3+3a2+3a+2=9a2+ 1.

Division is implemented using the Euclidean
algorithm; r(«) = 1/¢() if and only if there is a
polynomial A(x) such that

q(or(x) + A(x)p(x) = 1. (18)
Example Using o defined above, we have

l/a = —a’ + 6a -3, (19)
1/(&® = 1) = (1/71)(51a> — 19a — 41). (20)

In order to take full advantage of this notion of a real
algebraic number, however, one must be able to build
them in “towers” and to use them in geometric
calculations. Both of these require that numbers be
ordered. For example, if we take the 8 and v of Example
13, it is not easy to tell whether 8 < «. A relatively simple
algorithm for doing this does exist, though, and has been
implemented recently.

Example Suppose we are given the equations of two
tori T, and T, and want to know if they intersect. The
equations for their central circles, C, and C,, are easily
obtained from the equations for T, and T, so we can
find the polynomial p(D) in Section 3. By doing
successive binary subdivision, we can find a rational
number r such that p(D) has exactly one distinct root in
the interval [0, 7]. We now define D, symbolically by
D, = (p(D), [0, r]). Let r, and r, be the radii of C; and
C, respectively, and let R, = 7}, R, = 7>. Quantities

R, and R, are easily obtained from the equations for T,
and T, so we can define r, and r, symbolically as the
quantities

r= (r2 - Rl, [0’ R1]),
r,=(" = R, [0, R,)).

Using the fact that we can order real algebraic numbers
represented in this way, we can now simply determine
whether T, and T, intersect by determining whether the
inequality D, < (r, +r, ¥ holds. Or, using the fact that we
can build real algebraic numbers in towers, we can define
the distance between the two circles C, and C, as the
quantity d, = (d° — D,, [0, D,]), and then determine
whether T, and T, intersect, even more directly, by
determining whether d, < r, +r,.
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The point is that, from the point of view of the person
doing the calculation, working symbolically with a root
of the complicated polynomial p(D) is no more difficult
than working symbolically with a root of the simple
polynomial x* — 3, namely V3. More emphatically, in
the context of symbolic calculations (in geometric
applications and elsewhere) the question of whether a
particular real algebraic number can be expressed in
closed form becomes unimportant.
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