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Finding  the 
,distance  between 
two circles  in 
three-dimensional 
space 

by C. A. Neff 

In this paper we investigate,  from an algebraic 
point of  view, the  problem  of  finding  the 
distance  between two circles located in R3. We 
show, by  combining  a  theorem  about  solvable 
permutation  groups  and  some explicit 
calculations  with  a  computer  algebra  system*, 
that, in general,  the  distance  between  two 
circles is an  algebraic  function  of  the 
parameters  defining them, but that this function 
is not solvable in terms  of  radicals.  Although this 
result  implies  that  one  cannot  find  a  “closed- 
form”  solution  for  the  distance  between  an 
arbitrary  pair of circles in R3, we discuss how 
such  an  algebraic  quantity  can still be 
manipulated  symbolically by combining  standard 
polynomial  operations  with  an  algorithm  for 
isolating  the real roots  of  a  polynomial in a 
convenient  data  structure  for real algebraic 
numbers.  This  data  structure  and its operations 
have  been  implemented. 

* All computer  algebra  calculations  in  this paper were  performed  with 
SCRATCHPAD[I]. 
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1. Introduction 
The problem of finding the distance between  two  circles 
in three-dimensional  space, or R3, and the related 
problem of finding the intersection of two tori in R3 both 
occur  surprisingly  often in computer-aided geometric 
design  systems that strive  for  a combination of  generality 
and robustness. We study the torus because it is  a 
common and esthetically  pleasing  shape and occurs in 
several important applications: in producing rounds and 
fillets  for  objects  with sharp edges, in delineating the 
workspace  of  multiply jointed robots, and in the shape of 
cutter heads of numerically controlled machine tools. It 
is  easy to see that the problem of intersecting two tori is 
related to the problem  of  finding the distance between 
two  circles,  because  a torus T can be  represented as the 
set  of points in R3 that are at some fixed distance r (the 
minor radius)  from  a central circle C. Thus, two tori TI 
and T2 will intersect if and only if the distance d between 
their central circles, C, and C,, is  less than  or equal to 
the sum of their two minor radii, rl + r2. 

it is  a common one, we would  like to have  a formula or 
“closed-form solution” for the distance in terms of the 
parameters that define the problem,  for at least  two 
reasons.  First,  such  a solution offers ease and speed  of 
evaluation (the operations involved in a  closed-form 
expression are common to all computers and can be 
computed quickly).  Second,  a  closed-form solution allows 
the distance quantity to be  calculated and manipulated 
robustly, that is,  with any specified  accuracy. 

Focusing on the circle-circle distance problem,  because 
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For example, take the simpler  problem of finding the 
distance  between a point p with coordinates (x,, yo, z,) 
and a plane W defined by the equation ax + by + cz + d 
= 0, in R’. In this case, the parameters are x,, yo, z,, a, 
b, c, and d. The distance between p and W is  given by the 
expression 

I ax, + by, + CZ, + d I 

da‘ + b2 + c2 

Another example of a closed-form solution comes  from 
the problem  of  finding the distance between  two 
circles in R2. Suppose that two  circles C, ( i  = 1, 2) have 
centers (x i ,  y , )  and radii r,  2 r,. We define the quantities 

D, = J(x, - x2Y + ( Y ,  - Y2Y 9 

A, = r,  - r, - D,, 

and 

A2 = D, - r ,  - r,. 

Then the distance  between C, and C, is  given by 

{ 
A, if A,  > 0 (C, lies inside C, ), 

dist(C, , C,) = A, if A, > 0 (the circles are separate), 

0 otherwise. 

The simple form of this expression  motivates, at least 
partially, the search  for a corresponding one in three 
dimensions.  Although this problem  is very  specialized in 
nature, it comes up frequently  enough to make 
worthwhile the task of deciding  whether it can be  solved. 
One may  easily conjecture that there is no such 
expression in three dimensions, but  to show this 
definitively  requires a good  deal  of  work and a lot of 
algebraic manipulation, which  we do in this paper. 
Fortunately, the use  of a computer algebra  system  allows 
us to ignore  most of the tedious calculations and  to 
concentrate instead on the interesting mathematical ideas 
behind the problem. 

2. Group theory  and  algebraic  solvability 
We  now  define more precisely  what we mean by a closed- 
form solution. 

Dejinition I Let (c,  , . . , c, 1 be a finite  set of 
parameters. A closed-form  expression in c, , . . . , c, is 

1. Any rational number a. 
2. One of the parameters c,. 
3. Any expression of the form C, + C,, C, - C,, 

C, x C,, or  C, IC,, where C, and C, are closed-form 
expressions in c, , . . . , c,. In the case C, IC2, we also 
insist that C, # 0. 
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4. An expression of the form  where Cis a closed- 
form  expression in c, , . . . , c, and n is any positive 
integer. 

A closely related concept is the following. 

Definition 2 A complex number {is called algebraically 
solvable if { can be  written as a closed-form  expression 
involving no parameters (i.e., just rational numbers). 

It  is  easy to see that if the solution of a problem 
involving parameters c, , . . . , c, can  be written as a 
closed-form  expression in the parameters c, , and if z is 
the solution of the same problem  for a particular set of 
rational values r, , . . . , r, of the c,, then z must be 
algebraically  solvable.  In the rest  of this section and the 
next, we construct two particular circles in R3 and prove 
that the distance  between them is not an algebraically 
solvable number, from  which we conclude that the 
general  problem  of  finding the distance between  two 
circles in R3 does not have a closed-form solution. 

In order to prove that a certain number is not 
algebraically  solvable, we make  use of  several concepts 
from group theory and Galois theory, which we  now 
quickly review. 

Definition 3 A group G is a set,  together  with a binary 
operation (usually  written  as multiplication or addition) 
and a special element of e E G such that 

1 .  (ab)c = a(bc) Va, b, c E G. 
2.  ea = a V u  E G. 
3. For  each a E G there exists a b E G with ha = e. (We 

write b = a” .) 

Remark It is not immediately obvious, but one can 
show that the conditions in Definition 3 are enough to 
conclude that ae = a and  that ba = e * ab = e 
Vu,  b E G. 

Definition A subset H C G is a subgroup of G if 

1. abEHwheneve raEHandbEH.  
2. a” E H whenever a E H. 

Example The set of integers  with the binary operation 
addition forms a group. The even  integers are a 
subgroup. 

The group of integers,  with addition as the binary 
operation, is an example of a group with an infinite 
number of elements, but many important groups are 
finite. One of the most important families  of  such groups 
is  given in the following definition. 
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Definition Given an ordered  set of n elements 
S = Is,, s2, . . , s, ], the set  of permutations of  these 
elements forms a group, usually denoted by Z,, , with 
binary operation given by composition. The group 2, is 
known as the symmetric group on n letters. 

A permutation 4 E 2, is  called a k-cycle  if there are k 
elements of the set S, say t , ,  . . . , tk ,  such that 4( t , )  = ti+, 
for i = 1, . . . , k - 1, and 4( tk)  = t ,  . A compact notation 
for  such a permutation is 4 = ( t ,  t2 . . + tk).  

For any  positive  integer n, a subgroup G of Z, is 
known as a permutation  group. Historically, the study of 
these  groups  provided much of the motivation for the 
general  theory of finite  groups; in fact,  every  finite group 
has a concrete representation as a subgroup of one of the 
symmetric  groups. Finite groups  have applications in 
many  diverse  fields,  ranging  from  crystallography to 
quantum mechanics. Their application to the theory of 
algebraic  solvability  is outlined in the following  sequence 
of definitions and lemmas. 

Definition For the purposes of this paper, afield is a 
subset  of the complex numbers that contains (0, 1 ] and is 
closed under the elementary operations +, -, X, / (except 
for  division by 0). The field  of rational numbers is 
written as 42. 

Definition Given a set  of  complex numbers ( r , ,  1 . . , rk] ,  
the field generated by r, , . . . , rk is  written Q(r, , . . . , rk) 
and is the smallest field that contains all  of the rj .  

Definition 4 An automorphism of a field K is a function 
from K to itself that respects  all of the arithmetic 
operations. 

Example Q( a) consists  of  all  real numbers of the 
form a + b &, where a and b are rational. The function 
+(u + b a) = a - b f i  is an automorphism of this field 
the function + ( t )  = l / t  is not. 

It is not hard to see that  an automorphism of a field 
leaves  all rational numbers fixed.  Moreover, if 4 is  any 
automorphism of a field K, and r E K is a root  of a 
polynomial xn  + c,,-,xn-' + . . . + c, with rational 
coefficients, then 4 ( r )  must  also  be a root of this 
polynomial,  since 

Thus we have the following lemma. 

Lemma Let p ( x )  be a polynomial  with rational 
coefficients and roots r, , + . . , r,,. If K = Q(r ,  , . , r,,), 
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then  any automorphism of K induces a permutation of 
the roots of p.  

If ri ( i  = 1, 2 )  are permutations of r, , . . . , r, that are 
induced by automorphisms 4j of K, then the product 
permutation r, T, is induced by the composition 
automorphism 4p4, [4 ,04~(z)  = 4,(4,(z))I, and the 
inverse permutation r;' is induced by the automorphism 
4;'. Thus the permutations of r,  , , r,, that are induced 
by automorphisms of K form a subgroup of X,,, and this 
leads to the following. 

Definition With the notation of the above lemma, the 
Galois group of p ,  G,, is the group of  all permutations of 
the ri that are induced by automorphisms of the field K. 
If L G K is a subfield, the Galois group of p over L, GPlL, 
is the subgroup of G, consisting of all permutations that 
are induced by automorphisms that are the identity on L. 

Example 5 Let p ( x )  be the polynomial x 3  - 7x2 + 3x + 
1. It has three real  roots,  which we denote by r,  , r2, r3 . In 
this case, G, is Z,, the entire set of permutations of the 
three  roots. 

Example 6 Let p ( x )  be the polynomial x 3  - 6x2 + 3x + 
1 .  Again, p ( x )  has three real  roots,  which we denote by 
a, ,   az ,  a3. This time G, is just the three-element group 
consisting of the identity permutation and  the two 
3-cycles ( r , ,  r,,  r3) and (r, ,   r3,   r2).  

Intuitively, G, measures the nature of the set of algebraic 
relations among the roots of p .  The more relations there 
are, the fewer permutations G, will contain. In fact, there 
is also a necessary and sufficient condition on G, for the 
roots of p to be  algebraically  solvable. In order to 
understand this condition, we need to make one last  set 
of definitions. 

We  see  below  how to deduce these  two  examples. 

Definition A subgroup H of a group G is called a 
normal subgroup of G ,  denoted H Q G ,  if gHg" G H for 
all g E G.  (This is  equivalent to gHg-' = H for  all g € G 
and to g"Hg = H for all g E G.) 

Example {e,  (1 2 3), (1  3 2)) is a normal subgroup of 
Z,; (e,  (1 2)] is a subgroup, but is not normal, since 
(1  3)(1 2)(1 3)-' = (2 3). 

If H is a normal subgroup of G, then the set  of  all 
subsets of G of the form gH, where g E G, forms a group 
with the multiplication rule ( g ,  H ) ( g 2 H )  = (g, g2)H, for 
g ,  9 g2 E G. 

This is called the quotient group of G with  respect to H 
and is  written GIH. 

Definition A group G is called solvable if there is a 
tower  of  subgroups 
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(e) = H, a HI Q * * 4 Hk-,  U Hk = G, 

with the property that each quotient group H,IH,-, is a 
commutative group. 

The fundamental theorem of Galois theory [ 2 ]  is the 
following. 

Theorem 7 Suppose that p(x) is a polynomial  with 
rational coefficients that has no nontrivial polynomial 
factors  with rational coefficients (p is  called  irreducible 
over Q). For any  root r of p, r is  algebraically  solvable  if 
and only if G, is a solvable  group. 

In order to gather information about the Galois group 
of a particular polynomial, we make use  of the following 
definition and lemma. 

Dejnition A group G of permutations on the set 
S = {s, , . . . , sk)  is  called transitive if for  every  pair of 
elements si, s, of S there is a g E G such that g(s,) = s, . 
Equivalently, G is  transitive if for  every s, E S there is a 
g E G such that g(s,) = st. 

Lemma 8 Let p(x) be a polynomial and K a field. Ifp is 
irreducible  over K (does not factor into smaller 
polynomials  with  coefficients in K ) ,  then GpIK is 
transitive. 

Example 9 (Example 5 continued) Consider  again the 
polynomial p(x) = x3 - 7x2 + 3x + I .  If  we  use a 
computer algebra  system to factor p(x) over Q, the field 
of rational numbers, we find that p(x) is  irreducible. 
Applying  Lemma 8, with K = Q, we  see that G, is 
transitive.  Next we construct the field K,  = Q(r,), where 
r, is a root of p(x). When we then factor p(x) over K ,  , we 
find 

p(x) = (x - r,)[x2 + (r, - 7)x + r: - 7r, + 31 
= (x - rl)Pl(x). 

Let  r2 and r, be the other two roots of p(x)-that is, 
the two roots of the polynomial p, (x). If  we appeal to 
Lemma 8 again, this time with K = K ,  and with p, in 
place  of p, we  see that the Galois group of p over Q(r, ) is 
transitive on the set { r,,  r, 1. That is, G, contains a 
permutation of the form (r2, r3). From this it is  easy to 
conclude that G, is  all of Z,. 

Example 10 (Example 6 continued) Now consider 
instead p(x) = x3 - 6x2 + 3x + 1. 

If  we factor p(x) over Q, we again  find that p(x) is 
irreducible. So, as before, G, is  transitive.  But this time 
when  we try to factor  over the field Q(r, ) we  get 

p(x) = (x - r,)(x - r: + 6r, - 4)(x + r: - 5r, - 2) .  

In this case,  if  r, and r, are as in the previous  example, 
we have 

r2 = r: - 6r, + 4 = q,(r,), 

r, = -r: + 5r, + 2 = q2(rI). 

This tells  us that the Galois group ofp over Q(r,) is 
trivial  (consists of  only the identity permutation), because 
any automorphism with the property that $(rI) = r, must 
also  have the property that $[q(r,)] = q(r,) for any 
polynomial q with rational coefficients. In other words, $ 
must satisfy $(r2) = r2 and $(r,) = r3. Thus, each element 
g E G, is  completely determined by g(r, ), and we 
conclude that G, contains only the identity permutation 
and the two  3-cycles mentioned in Example 6. 

3. The  circle-circle  problem 
Let us construct a particular instance of the circle-circle 
distance  problem. We choose C, to be a unit circle, 
centered at the origin and located in the xy-plane. We 
take C, to be a unit circle,  centered at (1 , 0, 3) and 
located in the plane passing through this point and 
perpendicular to the vector (3 ,  2, 1 ). By using the 
method of  Lagrange  multipliers, we find that the distance 
between C, and C, is the minimum nonnegative 
real  value of m, where D is a value  for  which there is a 
solution to the following  system  of equations: 

2 2  u + v  - 1 = o ,  (1) 

(x - 1)’ + y 2  + ( 2  - 3)’ - 1 = 0, ( 2 )  

3(x - 1) + 2 y  + ( 2  - 3) = 0, (3) 

P2(X - 1) + 3P,  - (x - u )  = 0, (4) 

P2-V + 2P3 - (v - v )  = 0, ( 5 )  

P2(Z - 3) + - z = 0, (6) 
p ,  u - (x - u )  = 0, (7 ) 

P , U  - ( y  - v )  = 0, (8) 

(9) (X - u)’ + ( y  - v)’ + Z* - D = 0. 

As noted  in the previous  section, if there is a closed- 
form  solution to the general  circle-circle distance 
problem in 08 ,, then f i  must be  algebraically  solvable. 
It  follows  immediately  from  Definitions 1 and 2 that this 
is  equivalent to the condition that D be  algebraically 
solvable. We shall now  see that it is not. 

We can eliminate all  variables  except D by doing a 
Grobner basis calculation [3,4], a method of eliminating 
variables  from a system  of equations, by  using a 
computer algebra  system. The result  is a polynomial of 
degree 8 in D alone, with rational coefficients: 

p(D) = D8 + clD7 + . . . + c,D + eo. (10) 

Since the coefficients  have  large numerators and 
denominators, and since their exact  values are not crucial 
to what  follows,  we do not list them here. 773 
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We  now  prove that the Galois  group of p ( D )  is not 
solvable,  by  using the following  lemma and theorem in 
combination with  some  explicit computer algebra 
calculations. 

Lemma I 1  A subgroup of a  solvable group is  solvable. 

Proof See [5,6]. 

Theorem 12 If G is  a  transitive permutation group on a 
set S of q elements  where q is  a prime integer and G is 
solvable, then the only  element of G that leaves  two 
elements fixed is the identity permutation. 

problem we are considering. 

G, is  solvable.  Pick  a root pI ofp(D) and consider the 
Galois  group GI of p of Q(pl). By definition, this is a 
subgroup of G,. Thus, by Lemma 1 1, since we are 
assuming that G, is  solvable, GI must  also be solvable. 

{ p 2 ,  . . . , p s ) .  We can factorp(D) over Q(pl), and we 
obtain p(D)  = (D - p,)p,(D), where p ,  is  a  polynomial 
of  degree 7 with  coefficients in the field K ,  = CP(pl), 
which  is irreducible over Kl . Thus,  Lemma 8 tells us that 
GI is transitive on { p2, . . . , ps }. 

Next we factor p ,  over the field K2 = Q ( p , ,  p,), 

obtainingp,(D) = (D - p2)p6(D),  where p6 is  a 
polynomial  of degree 6, which  is irreducible over K, . 

If the only  element of GI that fixes the two  elements 
p 2 ,  p3 is the identity, then p6(D)  must  split  completely 
into linear  factors  over the field Q(pl, p 2 ,   p 3 ) .  Otherwise, 
Lemma 8 would  imply that the elements of GI that fix 
both p, and p 3  are actually  transitive on some nontrivial 
subset  of the elements p4, . . , p s .  However,  when we 
factor p6(D) (using  a computer algebra  system), we find 
that this is not the case; in fact, p6(D)  has  only one linear 
factor. Thus, by Theorem 12, GI cannot be a  solvable 
group.  But, by Lemma 1 1 ,  this contradicts our 
assumption that G, is  solvable.  Hence, by Theorem 7, no 
root of p ( D )  is  algebraically  solvable. Thus, there is no 
closed-form  solution to the general  circle-circle  distance 
problem in R '. 

To complete  this  section we  now  give the proof of 
Theorem 12. 

Before  we prove  this,  let  us  see how it applies to the 

Let p ( D )  be the polynomial in (lo), and suppose that 

Now GI is a permutation group on a  seven-element  set 

Proof of Theorem 12 Let H be a normal subgroup of G. 
We define our equivalence  relation - on the elements  of 
S as follows: 

si - si e u(s,) = sj for  some u E H. (1 1) 

The equivalence  relation - splits S into disjoint 
equivalence  classes.  Let el = (sI , . . . , s,} and C, = 
{s,, . , sj ] be  two  such  classes.  Since G is  transitive, 

774 we can  choose ui E G with the property that ui(sl) = s,. 

Consider  the  set ui(Cl) = (ui(sl), . . . , ui(sk)},  and 
let u,(s,) E ui(e,). Then there is a u E H such that 
u(s , )  = s/, and we  have 

~ , ( ~ ( ~ , l [ ~ i ( s l ) l l )  = a , [ 4 s , ) l  = U , ( s / ) -  (12) 

Thus ai( e l )  is  exactly the equivalence  class of - that 
contains si. Since si was arbitrary, all  equivalence classes 
contain the same number of elements.  But,  since q is 
prime,  this number must be either 1 ( q  classes and 
H = ( e ] )  or q (one class and H is also  transitive on S ) .  

Let 

( e ]  = Gk+l U Gk a Gk-l Q ... U GI Q Go = G (13) 

be a  solvable  series  for G. Since  every commutative group 
has  a normal, cyclic subgroup, we may  assume that the 
group G, is  generated by the q-cycle 

w = (s,s2 . . s,-,s,). 

Suppose y E GkTl .  We know that ywy - I  E G,, so 
ywy" = urn for  some m in I ,  2, . . . , q - 1. In fact, 

m = 1 if and only if y E G,, 

since the only permutations in Z, that commute with  a 
q-cycle are the powers  of that q-cycle. 

If  we suppose y(s,) = sj,  then 

= Y[4Sq)1 = Y 4 [ Y ( Q I  = w r n ( s j )  = s" > (16) 

where v = ( j  + m )  mod q. 
In  general, y(si) = sv(i), where u ( i )  = ( j  + mi) mod q. 

Thus,  either y E G,, or y fixes  exactly one element. 
Now, suppose that 13 E Gk-2. Since Gk-l Q Gk-2, and 

since w E Gk c Gk-l, we know that 0wO-l E Gk-l. But it 
is easy to see from  Equation (14) that OwO-I does not fix 
any  elements. By the previous  paragraph,  this  can  happen 
only if OwO" E G,, that is, G, Q Gk-2. We can now 
simply  replace G,-, with Gk-2 in the previous  discussion, 
and the proof  can  be  completed by induction. 

4. Computing  with real algebraic  numbers 
We can  still capture some of the advantages of a  closed- 
form  solution by extending the idea of taking an  nth root 
to the idea of taking  real  roots of arbitrary polynomials. 
To do this, we represent  a  real  algebraic number a as a 
pair. The first element of the pair  is  a  polynomial  with 
rational  coefficients,  of  which a is a root. We call  this the 
defining  polynomial  for a. The second  element of the 
pair is a rational isolating  interval for  a-that  is, an 
interval of the real  line that contains only one root of the 
defining  polynomial  for a, namely a itself. 

Example & can be represented as the pair 
(x' - 3, [ I ,  21). 

The elementary operations +, -, X, / are  actually 
much  easier to perform  with  this  representation than 
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with a  representation that uses “towers” of  radicals. The 
operations +, -, X are performed on real  algebraic 
numbers  almost as if they  were  polynomials. If a is 
defined by ( P ( x ) ,  [a, bl), P = q,(a), and = q2(a), then 
,8 . y = q(a), where 

= qI(x) * 42(x) modP(x). (17) 

Example 13 Suppose a is  defined as (x’ - 6x2 + 
3x + I ,  [ 0 , 4 ] )  (Example  6). If p = a’ + a + 1 and 
y = a + 2, then j3y = a3 + 3a2 + 3a + 2 = 9a2 + 1 .  

Division  is  implemented  using the Euclidean 
algorithm; r (a )  = l/q(a) if and only if there is a 
polynomial A(x) such that 

q(x)r(x) + A(X)P(X) = 1 .  (18) 

Example Using a defined  above, we have 

l /a = -a2 + 6a - 3,  (19) 

l / (a2 - 1 )  = (1/71)(51a2 - 19a - 41). (20) 

In order to take  full  advantage  of this notion of a  real 
algebraic number, however, one must be able to build 
them  in  “towers” and to use them in geometric 
calculations. Both  of  these  require that numbers be 
ordered. For  example, if  we take the P and y of Example 
13, it is  not easy to tell  whether p < y. A relatively  simple 
algorithm  for  doing this does  exist,  though, and has  been 
implemented  recently. 

Example Suppose we are  given the equations of  two 
tori TI and T2 and want to know  if  they  intersect. The 
equations for their central  circles, C, and C,, are easily 
obtained  from the equations for TI and T2, so we can 
find the polynomial p(D)  in Section 3. By doing 
successive binary  subdivision, we can  find  a rational 
number r such that p(D) has exactly one distinct root in 
the interval [0, r] .  We  now define Dl symbolically  by 
Dl = (p(D),  [0, r]) .  Let r,  and r2 be the radii of C, and 
C2 respectively, and let R ,  = r i ,  R, = r:. Quantities 
R, and R, are easily obtained  from the equations for TI 
and T,, so we can  define r,  and r, symbolically as the 
quantities 

r,  = (r2 - R , ,  [O, RII), 

r2 = (r2 - R2, 10, R2I). 

Using the fact that we can order real  algebraic numbers 
represented in this way,  we can now  simply determine 
whether TI and T2 intersect by determining whether the 
inequality Dl I ( r ,  + r,)’ holds. Or, using the fact that we 
can  build real  algebraic numbers in towers, we can define 
the distance  between the two  circles C, and C, as the 
quantity dl = ( d 2  - D l ,  [0, D l ] ) ,  and then determine 
whether TI and T, intersect,  even  more  directly, by 
determining  whether dl 5 r,  + r2. 
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The point is that, from the point of view of the person 
doing  the  calculation,  working  symbolically  with  a root 
of the  complicated  polynomial p(D)  is no more difficult 
than working  symbolically  with  a  root of the simple 
polynomial x’ - 3,  namely f i .  More  emphatically, in 
the context of  symbolic  calculations (in geometric 
applications and elsewhere) the question of whether  a 
particular  real  algebraic number can be  expressed in 
closed form  becomes unimportant. 
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