Finding compact
coordinate
representations
for polygons
and polyhedra

by V. J. Milenkovic
L. R. Nackman

Practical solid modeling systems are plagued by
numerical problems that arise from using
floating-point arithmetic. For example,
polyhedral solids are often represented by a
combination of geometric and combinatorial
information. The geometric information may
consist of explicit plane equations, with floating-
point coefficients; the combinatorial information
may consist of face, edge, and vertex
adjacencies and orientations, with edges
defined by face-face adjacencies and vertices
by edge-edge adjacencies. Problems arise
when numerical roundoff error in geometric
operations causes the geometric information to
become inconsistent with the combinatorial
information. These problems can be avoided by
using exact arithmetic instead of floating-point
arithmetic. However, some operations, such as
rotation, increase the number of bits required to
represent the plane equation coefficients. Since
the execution time of exact arithmetic operators

©Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 34 NO. 5 SEPTEMBER 1990

increases with the number of bits in the
operands, the increased number of bits in the
plane equation coefficients can cause
performance problems. One proposed solution
to this performance problem is to round the
plane equation coefficients without altering the
combinatorial information. We show that such
rounding is NP-complete.

1. Introduction

To achieve reliable programs that implement geometric
computations, one must understand and control the
effect of numerical error. One approach to controlling
numerical error is to eliminate it by working only with
objects and transformations that can be represented with
numbers in a representable subfield of the real numbers,
such as the field of rational numbers. For linear objects
(e.g., points, lines, planes), using rational numbers would
allow exact computation of intersections. Unfortunately,
the situation is different with rotation, a commonly used
geometric transformation: Rotating a line whose
equation has rational coefficients can yield a line with
irrational coefficients. Any rotation can be approximated
arbitrarily closely by a rational rotation, a rotation that
can be represented by a matrix with rational entries

[1, Section 4.3.3]. Unfortunately, when rational
representations are used, iteration of geometric
transformations, such as rotation, can cause unbounded 753
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growth in the precision (number of bits) needed to
represent transformed objects, leading rapidly to
unacceptable time required to perform geometric
computations. We focus here on the precision growth
problem.

Precision growth can arise from a sequence of
geometric transformations. As a simple example,
consider a sequence of r rotations about the coordinate
axes (any rotation can be expressed as a sequence of
rotations about the axes), each of which is to be
approximated by a rational rotation with an angle of
rotation accurate to one part in 2—P, where P is the
desired number of bits of accuracy. It is easy to show that
after these r rotations have been applied to a point, the
precision required per transformed coordinate is O(rP).
Precision growth can be limited by interspersing in the
sequence rounding operations that closely approximate
the transformed geometric objects with geometric objects
that require less precision to represent. But what does it
mean to approximate a geometric object, and how should
rounding operations be interspersed in the sequence of
transformations? These questions are discussed at some
length in [1, Section 4.3].

Sugihara [2] has investigated approximating individual
hyperplanes in n-dimensional space. He formulates
the problem as follows. Given n + 1 positive integers
Q.-+, Q,,,, the hyperplane

ax +ax,+---+ax,+a,, =0
is approximated by the hyperplane
bx,+bx,+ - -+bx,+b_. =0,

where a, a,, - - -, a,,, are real numbers and

by, by, -+ -, b,,, are integers such that | b,| < 0.

The Q, bound the precision of the coeficients of the
approximation. The approximation is considered good if
b,/b; is close to a;/a;, for all i and j. Since finding an
appropriate set of b, values is very difficult, Sugihara
considers the following problem. Let k be the integer
such that the ratio | g, | /Q, is maximum. Dividing the
original equation by a,, he obtains the equation

wx +w, + -+ wx, +w, =0,

where w; = a,/a,. He then considers the more tractable
approximation problem of finding good rational
approximations p,/q to the w,, for some integer g < 0.
If the rational approximations are chosen such that

| p,/q| < w,, then the equation

px,tpx,+---+px,+p,, =0

approximates the original hyperplane and satisfies the
bounds on the precision of the coefficients. In order to
generate a good approximation, Sugihara proposes
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several heuristic methods for finding a set of integers
{a,p,, -, p,, | that minimizes

i
w, —

max
He evaluates these approximation methods by applying
them to a large number of randomly generated lines.
Although each individual line is approximated well,
nothing constrains the ensemble of approximations to
reproduce more global structure (e.g., on which side of
one line the intersection of two other lines falls). This is
apparent in the pictures shown in [2, Figure 2], in which
the rounding process clearly changes the combinatorial
structure of the set of lines.

Rounding lines is much more difficult if the rounding
must preserve some global structure imposed on the set
of lines. For example, Figure 1 shows a quadrilateral and
a triangle before and after a rotation and rounding of
individual lines. The rounding has clearly altered the
global structure of the set of lines: Before rotation and
rounding, point C is contained inside the quadrilateral;
afterward, C is outside the quadrilateral. Such a change
could cause failure of an algorithm that assumed that the
triangle is surrounded by the quadrilateral, which might
be the case in a solid modeler with the figure representing
a quadrilateral face of a polyhedron with a triangular
hole.

Some of the global structure of geometric objects can
be preserved by using the object reconstruction approach
[1]: If the structure of the set of geometric objects is
defined in terms of operations on geometric primitives
(e.g., lines or planes), then the primitives can be rounded
individually and the structure reimposed. For example,
suppose that a simple polygon (a polygon is simple if
nonconsecutive edges do not share points) is represented
by a constructive solid geometry (CSG) tree of half-
planes, that is, as a Boolean combination of half-planes.
(Any simple polygon can be represented in this manner
[3].) The polygon can then be rounded by rounding
each half-plane boundary (line) individually and then
re-evaluating the CSG tree to obtain the rounded
polygon. Although this sequence ensures that the
rounded polygon is also a simple polygon, it does not
necessarily preserve other aspects of the polygon’s
structure, such as the number of sides.

Another approach to avoiding precision growth in a
sequence of operations is to compose the sequence of
operations, round the composed operation, and then
apply the rounded, composed operation. Again, consider
rotations as an example. Let rat(4) denote a rational
rotation that approximates the rotation A. If we are to
compute an approximation to 4,4, A4,_, - - - A, p, where

ror—

p is a point, we should use rat(4,4,_,A,_,--- A,)p

reor—-

instead of rat(4,)rat(4,_,)rat(4,_,) - - - rat(4,)p, thus

IBM J. RES. DEVELOP. VOL. 34 NO. 5 SEPTEMBER 1990




(a)

)

Quadrilateral and triangle (a) before and (b) after finite-precision rotation and rounding.

reducing the precision required from O(rP) to O(P). This
is not always possible. For example, if p and q are
vertices of different polygons, we might apply rotation 4
to p and rotation B to q. After taking the union of the
two polygons, we then apply rotation C to it. Replacing
rat(C)rat(4)p and rat(C)rat(B)q with rat(CA)p and
rat(CB)q may change the structure of the resulting
polygon.

All three of the approaches we have discussed avoid
precision growth by rounding, but provide no guarantees
that any notion of structure among a set of geometric
objects is preserved. In this paper, we consider the
problem of rounding sets of polygons or polyhedra while
preserving a certain notion of combinatorial structure of
the set (defined precisely below, but, roughly, the nesting
relationship among the polygons in the set). Informally,
the problem can be formulated as follows. Assume that a
polygon is represented by a set of real numbers, called
coordinates, and let S be a set of polygons. We would
like to round the coordinates of the polygons of .S to
obtain a set of polygons .S’ that has the same
combinatorial structure as .S, but with coordinates that
can be represented with P bits of precision and are close
to the corresponding coordinates of .S. By close, we mean
that each rounded coordinate must be accurate to P — K
bits, for some integer K, 0 = K < P (that is, the
magnitude of the difference between a coordinate and its
corresponding rounded coordinate must be less than
27, If it is possible to do this, we call S’ a (P, K)-
approximation to .S.

Now let us discuss a practical scenario in which the
ability to find (P, K)-approximations to sets of polygons
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would be useful. Suppose we start with a set of P-bit
polygons (i.e., polygons with P-bit coordinates) and apply
some operation to them (possibly, but not necessarily, a
rigid motion), with the result being a set of M-bit
polygons, where M > P. We then wish to round the set of
output polygons back to a set of P-bit polygons while
preserving their combinatorial structure. Clearly, we
cannot merely truncate coordinates to P bits and expect
to preserve the combinatorial structure. Therefore, we are
willing to sacrifice a small amount of geometric accuracy
in exchange for preserving the structure, Namely, we seek
a set of P-bit polygons with the most significant P — K
bits correct and the same combinatorial structure—in
other words, a (P, K)-approximation to the set of

M-bit polygons.

Our main result is that determining the existence of a
(P, K)-approximation is NP-complete. This result is
stated formally and its applicability and relation to other
work discussed in Section 2. The result is proved in
Section 3 by reducing the problem of three-coloring a
planar graph of degree four to the problem of finding a
(P, K)-approximation to a set of simple polygons.
Section 4 generalizes from two-dimensional polygons to
three-dimensional polyhedra. Since our result is that
simultaneously rounding and preserving combinatorial
structure is hard, in Section 5 we discuss the use of
heuristics and polynomial-time techniques for rounding
while preserving nearly the same combinatorial structure.

2. Rounding is hard

In this section we show that the problem of determining
whether a collection of simple polygons has a 755
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(P, K)-approximation is NP-complete. This result
generalizes easily to polyhedra. We first define the
problem precisely and state the result and then discuss
the applicability of the result in practice and its relation
to other work in the area of coordinate representations.

o Combinatorial structure

We say that a polygon is bounded by lines L,, L,, L,,
-+, L, k=3, ifit has vertices L, NL,, L, N L,, - - -,
L., NL,, L N L, in counterclockwise order. A polygon
is simple if it has no self-intersections. A set of simple
polygons is simple if no two members intersect. We
define the combinatorial structure of a simple set of
simple polygons to be (a) the number of members, (b) the
number of sides of each member, and (c) the nesting
relationship among the members. The nesting
relationship can be represented by a forest of trees in
which a polygon 2 is a descendant of a polygon Q if and
only if £is nested in Q.

Two sets of polygons, S, and S,, have the same
combinatorial structure if and only if both are simple sets
of simple polygons, there is a on¢-to-one correspondence
between the polygons of S, and the polygons of S,,
corresponding polygons are bounded by the same
number of lines, and the forests are isomorphic under the
correspondence. For example, the two sets of simple
polygons shown in Figures 1(a) and 1(b) do not have the
same combinatorial structure because (a) is a simple set
of simple polygons and (b) is not (the quadrilateral and
triangle intersect).

Henceforth, we use “polygon” to mean simple polygon
and “set of polygons” to mean simple set of simple
polygons. Also, we denote by #n the total number of
bounding lines of all the members of a set of polygons.

e (P, K )-approximation

Assume that P and K are positive integers such that
0 < K< P, and define e = 27" and n = 2577, The set
BF ,, of P-bit binary fractions (or more simply P-bit
numbers) is defined as

BF, = {277 ¢| ¢ is an integer and —2" < ¢ < 2"}

This is the set of numbers in the range [—1, 1] that
terminate within P bits of the “binary point.” A line is
defined by the equation ax + by = ¢, where a, b, and ¢
are real. A P-bit line has coefficients a, b, ¢ € BF,..

A (P, K)-approximation to a real number q is a P-bit
number a’ satisfying | a’ — a| < 1. It follows that a
and a’ have the same P — K most significant bits. A line
a’x+ b'y=c"isa (P, K)-approximation to a line
ax+ by=cifa’, b’, and ¢’ are (P, K)-approximations
to a, b, and ¢, respectively. A simple polygon P’ isa
(P, K)-approximation to a simple polygon 2 if it has the
same number of lines and if each line of P’ isa
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(P, K)-approximation to the corresponding line in £ A
set of simple polygons S’ is a (P, K)-approximation to a
set S'if S’ has the same combinatorial structure as S and
if each simple polygon of S’ is a (P, K }-approximation to
the corresponding polygon of S.

o NP-completeness

Theorem 1 The language of simple sets of simple
polygons with at least one (P, K)-approximation is
NP-complete.

This theorem is proved in Section 3 and generalized to
polyhedra in Section 4.

o Applications of Theorem 1
It is important to understand what Theorem 1 implies
with regard to practical applications. Suppose we wish to
rotate (or apply some other Euclidean transformation to)
a polygon or polyhedron. We start with a P-bit polygon,
rotate it exactly using rational arithmetic, and then
round the higher-precision result to a nearby
(P, K)-approximation. The theorem does not necessarily
imply that this rounding step will be difficult because, in
this situation, we are restricting the input to those sets of
simple polygons that result from the Euclidean
transformation of P-bit polygons. This may be an easier
problem than the more general situation covered in the
theorem, in which the set of input polygons is not
restricted. Nevertheless, the theorem does imply that any
procedure we might be able to devise for rounding
restricted sets of polygons (e.g., those that result from
Euclidean transformation of P-bit polygons) must exploit
properties of the restriction. There can be no general
polynomial time procedure for rounding polygons
(unless, of course, the P # NP conjecture is false).

Unfortunately, a transformation-dependent rounding
procedure may be hard to find, for the following reason.
The distance between closest representable points varies
greatly from one part of the plane to another (as we show
below), where we define a point to be representable if it is
the intersection of two P-bit lines. Thus, even a pure
translation may cause problems if it moves a cluster of
vertices with representable locations to a region of the
plane of low “density.” As is shown in Section 3, the
proof of Theorem 1 depends on the existence of objects
that expand greatly when approximated. Such objects
may arise from a sequence of transformations and set
operations on polygons that creates objects that have
P-bit approximations but which expand if a subsequent
translation moves them to lower-density regions
of the plane.

To see how much the distance between closest
representable points can vary, consider first the origin.
Only lines of the form ax + by = 0 pass through the
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origin, Every other P-bit line ax + by = ¢ with ¢ # 0 lies
at least

el 27
Ja + b’ \/5.

distant. Therefore, the origin is the only representable
point in a circle of radius 27" V2.

Now consider nine integers, 4;, B, C,, i = 1, 2, 3, with
magnitude approximately equal to but not exceeding 27
such that

4, B, C
A,=14, B, C|=1
4, By G,

Such values exist, since we can assign the points

(4;, B, C), i=1, 2, 3, to be any basis for the integer
lattice in three dimensions [4, Section 13.9], and there
are an infinite number of such bases. It can be shown
that the three P-bit lines 2" 4,x + 2"B,y = 27°C,,
i=1,2, 3, bound a triangle of diameter roughly 2™
In particular, the distance from the intersection of the
first two lines (i = 1, 2) to the third line (i = 3) is

-1

_p A4, Bl
2 Ay
4, B,

When 4,, B,, 4,, B, are assumed to have the appropriate
signs, this distance is close to 27, Thus, the minimum
distance between representable points can vary from 27
t02/ «/2— There is clearly considerable unevenness in
the distribution of representable points.

e Relation to other work
Before proceeding to the proof, let us compare this result
to other work. Mnev [5] and Goodman, Pollack, and
Sturmfels {6] examine the problem of finding coordinate
representations for order types. An order type is an
assignment of an orientation for every triple of points
A, B, and C: The orientation is positive if triangle ABC is
counterclockwise, negative if ABC is clockwise, and zero
if A, B, and C are collinear. Mnev shows that
determining whether there exists a set of points with a
given order type is equivalent to the existential theory of
the real numbers. Goodman et al. show that even if such
a set of points exists, a coordinate representation may
require storage exponential in the number of points.

In contrast to the work of Mnev and of Goodman
et al., our work considers lines instead of points, uses the
notion of combinatorial structure instead of order type,
and seeks a (P, K)-approximation to some given
representation instead of seeking any coordinate
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Order type vs. combinatorial structure.

representation of a combinatorial structure. These
differences are motivated by practical considerations.

We consider lines instead of points because we wish to
generalize to polyhedra, which are commonly represented
by the plane equations of their faces. By well-known
duality relationships [7], there is a direct connection
between results on lines and results on points, so this
difference is of little consequence.

On the other hand, the concept of combinatorial
structure of a set of simple polygons is less stringent than
the order type of points. For example, in Figure 2, point
C could be moved to the other side of line AB without
changing the combinatorial structure. The order type
would be changed in this case because the orientation of
triangle ABC would change from positive to negative. We
believe that our definition of combinatorial equivalence
is more natural for most practical problems.

One way to pose the problem we are considering is the
following: Given a combinatorial structure for a set of
simple polygons, find a coordinate representation for the
polygons subject to the constraint that the coordinate
representation is a (P, K )-approximation to some
specified representation. This constraint is imposed
because in practice rounding must both preserve
combinatorial structure and incorporate some notion of
“nearness” to the unrounded object. Indeed, rounding
would be easy without this constraint, for it can easily be
shown that a combinatorial structure has a coordinate
representation if and only if each polygon appears exactly
once in the forest. Furthermore, an O(log »)-bit
coordinate representation can be found in linear time,
where # is the total number of sides of all the polygons.

Finally, we note that, as in the results of Mnev and of
Goodman et al., determining the existence of a
(P, K)-approximation is difficult in two or more
dimensions and easy in one dimension. The one-
dimensional problem, generating a (P, K )-approximation
to a forest of nested closed intervals, can be solved in
linear time.
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3. Proof

To prove Theorem 1, we must show that the problem of
finding a (P, K)-approximation to a set of simple
polygons is contained in NP and that it is NP-hard.
Establishing that the problem is in NP is easy. Given a
set of simple polygons with # distinct lines, there are up
to 2°"% possible (P, K )-approximations to the set, each
of size O(nP) bits. To prove that a particular set of
simple polygons has a (P, K)-approximation, we
nondeterministically generate one of the approximations
and check it in polynomial time. To check an
approximation, we first verify in time O(n) that each
coordinate is indeed a (P, K)-approximation of the
corresponding coordinate in the original set of polygons.
Next, in time Ofn log n) we verify that the set of polygons
is simple and determine the nesting relationships among
the polygons in the approximation (using a standard
sweep-line algorithm [8]). Since the correspondence
between the lines in the original set of simple polygons
and the lines in a (P, K)-approximation to it is known, it
is then only necessary to test that the two forests are
isomorphic. This can be done in O(n) time. Therefore,
the problem is in NP.

We show that the problem is NP-hard, thus completing
the proof of Theorem 1, by reducing the NP-complete
problem of three-coloring planar graphs having no vertex
degree greater than four [9, Section Al.1] to the problem
of finding a (P, K)-approximation to a set of simple
polygons. For any such graph ¢ = (1 &), the reduction
consists of two steps:

1. Embed ¢ in an orthogonal grid, with graph vertices
placed at grid vertices and graph edges following grid
edges. Using the algorithm of Tamassia and Tollis
[10], we can embed ¢ in a cV by ¢V grid in O(¥V) time,
where c is a constant and V' = | V|.

2. Construct, in time polynomial in V, a set of
simple polygons .S such that there exists a
(P, K)-approximation S’ of S'if and only ¢ can be
three-colored.

The set of polygons constructed in the second step is the
union of subsets of polygons, each subset being drawn
from a small library of basic component types. To help
explain the construction, we group the component types
into “levels” in a manner analogous to the way
components are organized on a computer chip. We use
four levels, with a number of component types defined at
each level:

e DEVICE: sponge, slider, adder.
o SSI (small-scale integration): transmission line,
splitter-inverter, AND gate.
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o MSI (medium-scale integration): transmission-line
crossing.
o LSI (large-scale integration): graph.

The purpose of embedding ¢ in a grid is to simplify the
“chip wiring.”

A component, at any level, is characterized by its
terminals and its input-output behavior with respect to its
terminals. Terminals are geometric points that enable us
to reason about the interaction of the components but do
not belong to the set of simple polygons. We say that a
(P, K)-approximation to a component covers a terminal
if that terminal is in the interior of one of the polygons of
that component; otherwise, that terminal is uncovered.
The input-output behavior of a component is the list of
legal assignments of the values “covered” or “uncovered”
to each of its terminals. A particular assignment is legal if
and only if there exists some (P, K)-approximation to the
component that covers the terminals according to the
assigned values.

Components may be placed so that a terminal of one
coincides with a terminal of another. Since components
are not allowed to intersect (all sets of polygons are
simple), in any (P, K)-approximation to two
components, one at most can cover a common terminal.
Components come in two versions: horizontal and
vertical. We describe below the construction of horizontal
components; the vertical versions can be obtained by a
90° rotation. In our constructions, we place components
so that each terminal can be covered by at most one
horizontal component and at most one vertical
component. For each (P, K)-approximation, each
terminal has the value 0, A, or v, if it is uncovered,
covered by a horizontal component, or covered by a
vertical component, respectively. The coloring of the
graph ¢ we are simulating is represented by the values of
certain terminals. We describe the construction from the
bottom up, presenting at each level the characteristics
and construction of the components at that level.

As a form of shorthand and to make the input-output
behavior of a component more intuitive, we introduce
the notion of pushing on a terminal. We say that we push
on a terminal of a particular component when we assign
the value uncovered to that terminal. That is, we restrict
our consideration to all legal assignments in which the
value of that terminal is “uncovered.” We say that that
component pushes on another terminal if in all members
of that restricted set of assignments, the value of that
terminal must be “covered.”

o Device level

At the lowest level, the graph implementation consists of
three types of components (sets of simple polygons):
sponges, sliders, and adders.
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(a) Sponge and (b) its (P, K)-approximation.

Sponges

One can think of a sponge as a tiny object that expands
when approximated (see Figure 3). Let p be a point and
n a nonzero vector such that [n | = |n |. A horizontal
(p, n)-sponge is a set of simple polygons with the
following properties:

¢ The sponge’s polygons lie in a square of side e aligned
with the coordinate axes and centered at p. (As stated
in the subsection on (P, K)-approximation, ¢ = 27" and
n=2"")

¢ In every (P, K)-approximation to the sponge, there
exists a polygon vertex q at least [(n — ¢)In, |/|n]]
distant from p along the direction of the vector n.
Expressed analytically, (q —p) - n= (g — ¢)|n,|.

¢ Every (P, K)-approximation to the sponge lies in a
square of side 6 aligned with the coordinate axes and
centered at p.

o There exists at least one (P, K)-approximation to the
sponge that extends no farther than [(n + ¢)[n,|/|n|]
from p in the direction n. That is, for all vertices q in
this approximation, (q — p) - n<(n + ¢)|n,|.

A vertical (p, n)-sponge is defined analogously for
In, | = |n, |. When we refer to a (p, n)-sponge, we mean
either a horizontal or vertical (p, n)-sponge, as
appropriate.

A (p, n)-sponge consists of a set of squares with sides
parallel to the coordinate axes. We now give an algorithm
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for constructing a sponge for the case n, = n_= 0;
constructions for the other cases can be obtained
straightforwardly by reflections and rotations by
multiples of 90°. Let £ = 2-7"***¥ and define the sets of
horizontal and vertical lines:

h:y=op +if i=0,1---,2"7;

. . . . 3K+3
vi:x=p +j§ j=01---,2 .

Because £ is so small, the point p lies within e of
each of these lines, each line hl, has the same set of
(P, K)-approximations as the line y = p,, and each line
v, has the same set of (P, K)-approximations as the line
x = p,. Since the KX least significant bits of all three
coefficients of any line can be changed, x =p, and y=p,
each have 2°% (P, K)-approximations.

The following algorithm generates a (p, n)-sponge:

sponge-set = &
for i = 0 to 2"
forj=0to2
/* (9 — ¢)-invariant */
add the square bounded by hl,, vl,, hl,,_,
vl,;,, to sponge-set.
/* (7 + ¢)-invariant */
if sponge-set is a (p, n)-sponge, return it.

3K+1

The set sponge-set can contain no more than

2%K+2 squares. Each square has no more than

(P, K)-approximations (because each side has no more
3K . .

than 27" approximations). Therefore, there are no more

12K
2
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(2)

o ——

(&)

2 7(6) *m |‘_32“"“*2“
_

Slider.

™ (P, K)-approximations to the squares in
sponge-set. Since K is a constant, we can test in (a
somewhat daunting) constant time whether the current
sponge-set is a (p, n)-sponge.

We prove correctness using two invariants:

than (2'%)®

e (n — e)-invariant: There exists at least one
(P, K)-approximation to sponge-set that does not
extend farther than [(7 — ¢)| n,|/|n|] in the direction
of n (for all vertices q in the approximation,
(a=p)-n<(n—¢€)n])

e (7 + e)-invariant: There exists at least one
(P, K)-approximation to sponge-set that extends
at least [(n — ¢)|n,|/| n]], but no farther than
[(n +¢)Im,|/|n[], in the direction of n.

The proof of correctness is as follows.

o The first invariant clearly holds for the empty set.

o If the first invariant holds for sponge-set, then the
second invariant holds when the square bounded by
hl,, v,;, hl,,,,, v1, ., is added to sponge-set. The
(P, K)-approximation implied by the first invariant
does not intersect the square bounded by the lines
x=px,y=py+n—e,x=px+e,andy=py+n,
because this square lies at least [(7 — ¢)|n,|/|n|]
in the direction of n and no farther than
[(n + €¢)|n,|/|n|]. But this square is a
(P, K)-approximation to the square hl,,, vl,, hL,, ,,
vl ,, so the second invariant is satisfied.

o If the sponge-set satisfies the second invariant but
fails to be a (p, n)-sponge, it must be true that not all
(P, K)-approximations have a vertex lying
[(m = ¢)In,|/In|] in the direction of n. In other words,
the first invariant holds.

The proof of termination is as follows. Each time
around the inner loop, the second invariant implies that
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there exists at least one (P, K)-approximation to sponge-
set. If the algorithm terminates without concluding that
sponge-set is a (p, n)-sponge, then there are 20K+ squares
in sponge-set. But this set is too large to have a valid
(P, K)-approximation. To see why, consider that there
are only 2 possible approximations each for the set of
horizontal and for the set of vertical lines. Therefore,
only 2°% points in the plane are eligible to be vertices of
polygons in the (P, K }-approximation. A set of 2°***
disjoint polygons needs more vertices than that.

It remains for us to verify that each point of every
(P, K)-approximation to the sponge lies within the
square of side 67 centered at p. Let ax + by=cbea
line, where @’ + b> = 1. Leta’x + b’y =c’ be a
(P, K)-approximation to that line, and let (X, Y) be a
point on the latter line inside the unit square centered at
the origin. How far can this point lie from the original
line? We know that

laX + bY —c| < |a’X + b'Y = ¢’ | + |(a — a’)X|

+ B =b)Y|+|{c=c)=0+n+n+19=3n

Since each vertex in the (P, K)-approximation to a

(p, n)-sponge lies on a (P, K)-approximation to a vertical
line and to a horizontal line through p, each vertex lies
within the 65 X 67 square centered at p.

Sliders

This section defines a s/ider, which is a component that
can “transmit information” from a terminal p, to
another terminal p,. Sliders are used below to construct
transmission lines, which transmit colors among vertices,
As depicted in Figure 4 (which is foreshortened),” a

p, p,-slider is a hexagon with two sponges inside. The
hexagon has the form of a long shaft with a right-
triangular “speartip” at each end. The length of the shaft
is arbitrary, and it is chosen so that the hexagon has the
following properties:

e The slider covers neither terminal p, nor p, and lies at
least » distant from each terminal.

e Every (P, K)-approximation to the slider covers at least
one of the terminals.

¢ There exists at least one (P, K )-approximation that
covers p, but not p,, and at least one that covers p, but
not p,.

In other words, if we push on one terminal, the slider
pushes on the other.

We may think of the slider as a computational device
that amplifies the expansion of the slider’s sponges under

* In this and all other figures, dimensions are considered to be accurate within a small
multiple of . Thus, 3y + 4e is labeled as 3». The correct line equations are given in
the text.
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(P, K)-approximation. Amplification is achieved through
the use of speartips with a high aspect ratio, one part in
eight in this case (Figure 4 is-foreshortened). Displacing
by 7 either the hypotenuse or the longer leg parallel to
itself has the effect of displacing their intersection in the
x-direction by 8. Initially, the shorter legs have length
about 44, and the longer legs about 32y. In any
(P, K)-approximation, the sponges force each hypotenuse
to be displaced parallel to itself by about », causing the
spearheads to extend about an additional 8+ to cover the
terminals, as shown in Figure 5. However, the shaft can
be displaced upward by #, restoring the right spearhead to
its original length and uncovering p,, as shown in
Figure 6, or the shaft can be displaced downward to
uncover p,. Because of the length chosen for the shaft, it
is not possible to uncover both terminals at the same
time.

Let us first define the slider for p, = (—A, 0) and
p, = (X, 0); generalization is straightforward. For
simplicity, we assume that X is an integral multiple of ».
Since there must be room for both sponges to expand
simultaneously in the horizontal direction by 37, the tip
length is about 321, and the distance from the tip point
to terminal must be at least . Thus, A must be at least
364. To allow for the space necessary to position the
sponges properly, we require that A = 38y. The six lines,
as labeled in Figure 4, are defined by the following
equations:

line
(1) Ox + =1y =,

-2

8 + ¢,

2) éx+ 1y=>\

(B) ~lx+0y=-=2+3n+e¢
4) Ox + ly = ¢,

A—29

1
(5) —gx + =1y = 2%

+ ¢,

6) Ix+0y=—\+ 349+ e

The sponge in the uppermost corner of the hexagon
is a (A — 341, 47), n)-sponge, and the one in the
lowermost corner is a ((—A + 347, —47), —n)-sponge,
with n = (1/8, 1).

Assuming that the lines and their (P, K)-
approximations are parallel, we can easily verify that the
slider has the desired properties. The sponges expand by
» (actually v 64/657, the amount required to shift line (2)
vertically by a distance ») in the desired direction and
expand by no more than 35 horizontally and vertically.
Because the spearheads have height 4y initially, the
vertical expansion does not interfere with the motion of
the shaft. Without loss of generality, we always choose
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i Another (P, K)-approximation to a slider.

the shaft to have length greater than 67; thus, the
horizontal displacement cannot eliminate the shaft.

We claim that any change in orientation of the lines
has negligible effect for the length of sliders we consider,
a few hundred 5 at most. The magnitude of the slope of
line (2) is (1/8)/1. Approximation can increase the slope
magnitude to ((1/8) + n)/(1 — ») at most, which is
(1/8)(1 + 9 + 9%° + - - - ). When terms higher than first
order are neglected, this change in slope corresponds to a
change in orientation of (9/8)n = 1.1254 radians. Similar
reasoning shows that the change in orientation of line (1)
is bounded by 7 radians. Thus, for A = 1000y, a change
in the orientation of lines (1) and (2) moves the
intersection of lines (1) and (2) by no more than
2.123n\ = 2125%". For n = 27, this error amounts to
about 0.0027, which is negligible, as claimed.
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In general, a slider can be positioned anywhere in the
plane and oriented either horizontally or vertically.
Translating the slider to be centered at a point (X, Y)
simply requires changing each of its lines ax + by = ¢ to
ax+ by=c+ aX + bY.

Adder
An adder, as depicted in Figure 7 (foreshortened), has
four input terminals u,, w,, v,, and v,, and two output
terminals w, and w,. For a (P, K)-approximation to the
adder, we say that its first input is zero if both u, and u,
are covered, one if only u, is covered, and two if neither
u, nor u, is covered. The second input is defined
analogously for v, and v,. The adder has the property
that if the sum of the inputs is at least 2, w, is covered,
and if the sum is at least 4, w, is also covered.

An adder is implemented by a nine-sided polygon with
four sponges. Let us first consider an adder centered at
the origin. It is bounded by the following lines:

line

(1) —1x + Oy = —64y,

1
2) —'éix + ly=—dn + ¢,

1
3) —ﬁx + —ly=12n+¢

4 Ix+ 0y =—64n + ¢,

V. J. MILENKOVIC AND L. R. NACKMAN

1
%) 3—2x+ —ly =49+ ¢
1
©6) -§§x+ ly=4n+ ¢,
(7) 1x + 0y = —64n + ¢,

1
®) —ﬁx + 1y =129 + ¢,

9) —3l2x + —ly=—4n+e

Wedged in the uppermost and lowermost corners are two
sponges—a ((—647, 10), (—1/32, 1))-sponge and a
(=649, —1079), (—1/32, —1))-sponge, respectively—which
displace lines (8) and (3) outward and parallel to
themselves by about 4 in each (P, K)-approximation. To
keep lines (2), (5), (6), and (9) from moving more than 5
inward, we add two more sponges: a ((—647, 47),

(1/32, 1))-sponge and a ((—64n, —47), (1/32, —1))-sponge.
Now, suppose that we push on u,. Since lines (6) and (9)
are prevented from moving inward, they must move
outward so that the intersection of (the approximations
of) lines (8) and (9) lies to the right of u,. This then
causes the intersection of (the approximations of) lines
(5) and (6) to move to the right of w,, pushing on w,. By
analogous reasoning, if we also push on v,, line (5) is also
forced to move outward, moving the intersection of lines
(5) and (6) still farther to the right, pushing on w,.
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i SSI symbols: (a) slider and (b) adder.

Similar arguments can be used to show that the desired
behavior can be obtained for the other combinations
of inputs.

To make the adder perform as described, the terminals
must be placed appropriately. This requires consideration
both of the geometry of the adder itself and of the way it
will be integrated into higher-level “circuits.” We see in
the next section that u, and v, must be placed sufficiently
far to the left of the intersection of lines (8) and (9) and
the intersection of lines (2) and (3), respectively, so that
they can be covered by slider tips; it suffices to shift u,
and v, left by 25. Terminals u, and v, are placed 167 to
the left of the intersections of lines (8) and (9) and lines
(2) and (3), respectively. To compensate for shifting u,
and v,, w, is shifted 37 to the left of the intersection of
lines (5) and (6). The coordinates of the control points
are

u, = (—1444, 8n),
u, = (—1307, 8n),
v, = (—144n, —8n),
v, = (—1307, —81),
w, = (1257, 0),

w, = (1551, 0).

Centering the adder at some point other than the origin is
accomplished as with sliders.

o SSI level

The device-level components described in the preceding
subsection are integrated into higher-level components
by placing horizontal and vertical devices so that they
share a common terminal. Recall that a terminal can
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be covered by at most one device at a time (because
polygons are not permitted to intersect), and a terminal
can have three logic values, denoted 0, 4, or v, depending
on whether no device, a horizontal device, or a vertical
device is covering it.

The top row of Figure 8 shows symbols used in SSI
diagrams for sliders and adders. The output of each of
these devices can be duplicated by placing extra terminals
appropriately. This is illustrated on the bottom row of
Figure 8: An extra terminal p, is placed 3 to the right of
p, and an extra terminal is placed 37 to the left of each of
the original control points w, and w,. The specifications
given in the subsections on adders and sliders are
designed to permit these extra terminals.

Transmission lines

Figure 9(a) depicts a transmission line, which consists of
a string of horizontal and vertical sliders sharing common
terminals. If the value of p, is 0, then p, must have value
h, p, must have value v, p, must have value /4, and so on.
Thus, asserting a zero value for p, transmits information
over the line. Transmission lines have no “tensile
strength,” however; if p, is &, we can conclude nothing
about the other values; for example, p, can take on

any of the three logic values. The MSI symbol for a
transmission line is a sequence of alternating horizontal
and vertical line segments, like the ones shown in

Figure 9(b).

AND gates

Figure 10 illustrates the SSI implementation of an AND
gate and its MSI symbol. Pushing on p, and p, causes the
gate to push on p,. In fact, the gate is symmetrical with
respect 1o its three terminals: Pushing on any two causes
the gate to push on the third. In other words, any
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i

(a) SSI implementation of a transmission line and (b) its MSI symbol.

(a) SSI implementation of an AND gate and (b) its MSI symbol.

(P, K)-approximation of an AND gate must cover at least the effect of freeing p, to be pushed on. Since we cannot
one and at most two of its terminals. actually pull on a terminal, this is as close as we can
come to an inverter.

Splitter-inverters

Figure 11 illustrates the horizontal SSI implementation of e MSI: Transmission-line crossing

a splitter and its MSI symbol. Pushing on p, causes this Even though the graph to be simulated is planar,
component to push on p, and p;, thus duplicating its transmitting color information among vertices requires
input. If we think of p, as the input, pushing on p, has transmission lines to cross. Figure 12 illustrates the MSI
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(a) MSI implementation of a transmission-line crossing and (b) its LSI symbol.
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LSI implementation of two neighboring vertices of a graph.

implementation of a transmission-line crossing and its
LSI symbol. A crossing consists of three adders, two
splitter-inverters, and a number of transmission lines. We
now show that if we push on p,, the crossing pushes on
p,; independently, if we push on p,, the crossing pushes
on p,. Let 4 be the first input of the left adder, and let B
be its second input. If we push on p,, 4 = 1; otherwise

A =0, and similarly for p, and B. The left adder
computes 4 + B: It pushes on w, if either is 1, and it
pushes on w, if both are 1. The upper adder computes
A+A+B=1—A+ A+ B=1+ B, which depends on
B only. Similarly, the lower adder computes 1 + A4.

& LSI: Implementing a graph

Each vertex in ¥ is represented by an AND gate
surrounded by circuitry required to transmit its state to
other vertices. It follows from the definition of the logical
AND that an AND gate must cover at least one of its
three terminals. Let us label its terminals R, B, and G. If
the gate covers terminal R, we say the vertex is colored
red; if it covers B but not R, its color is blue; else it
covers only G, and it is green. Information about the
color of a vertex is transmitted to neighboring vertices by
three transmission lines. For example, if a vertex is blue,
it pushes on the transmission line leading out of the B
terminal. Since it is not possible to push on both ends of
a transmission line simultaneously, none of the
neighboring vertices can be blue.
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Figure 13 illustrates the LSI implementation of two
neighboring vertices of a graph. Nine splitters and nine
crossings suffice to transmit information about a vertex’s
color in four directions (remember, this graph has degree
four); an additional three crossings may be required for
each simulated edge.

We now argue that P and K can be chosen so that
appropriate vertices and transmission lines can be
constructed to simulate any graph ¢. Recall that the
algorithm of Tamassia and Tollis [10] can be used to
embed ¢ in a ¢V X ¢V grid, for some constant ¢. For
some constants k, and k,, the “circuitry” for a vertex
takes no more space than k,;# X k, 7, and the
“circuitry” for a transmission line is no wider than
k,n. In total, the width of the embedding is
max(k,, k,) ncV, which must be less than unity.
Therefore, n = min{2™>°, [max(k,, k,) eV 17"}, since,
from the subsection on sliders, n < 2™>°. The value of ¢
must be small enough that the addition of e to line
coefficients has a negligible effect. Setting ¢ = 2y
easily suffices. This leads to P = [—log ¢1and
K=T-loge/n1=20.

To complete the proof of the theorem, we point out
that before any rounding, none of the terminals is
covered by any slider. If a valid (P, K)-approximation
exists, the set of covering choices for the slider
terminals corresponds to a choice of colors. Thus, an
approximation exists if and only if a coloring
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exists. Therefore, finding a (P, K)-approximation is
NP-complete.

4. Generalization to polyhedra

With suitable generalizations of the definitions,

Theorem 1 also applies to sets of simple polyhedra. To
understand this, observe that if it did not, membership in
the language of sets of simple polygons could be
determined by “thickening” polygons into polyhedra in
the z-direction.

In particular, we could replace each line ax + by =¢
with the plane ax + by = c. This replacement would
transform each simple polygon into an infinite cylinder
in the z-direction. To make each cylinder finite, we
would terminate it at the plane z = | and the
plane z = —~1. If a set of simple polygons has a
(P, K)-approximation, then the resulting set of cylinders
has a (P, K)-approximation: Simply convert each
polygon in the planar (P, K)-approximation into a
cylinder. Conversely, if the set of cylinders has a
(P, K)-approximation, then we can generate a
(P, K)-approximation to the original set of polygons
by taking the cross section z = 0. Thus, the
set of polygons has a (P, K )-approximation if and
only if the corresponding set of cylinders has a
(P, K)-approximation. Therefore, the polyhedral
rounding problem is NP-hard.

To show that the polyhedral rounding problem
is in NP, we have to be able to check a potential
(P, K)-approximation in polynomial time. Even using
naive methods, it requires no more than O(n’) time to
verify that a set of polyhedra is simple and to determine
the nesting relationship. Comparing the forest of nesting
relationships with that of the original set of polyhedra can
be done in O(n) time.

5. Approximation methods

Since finding a (P, K)-approximation to a set of simple
polygons is an NP-complete problem, hence prohibitively
expensive to execute, it is important to consider other
approaches to finding compact coordinate representations
of polygons and polyhedra. We discuss four alternative
approaches in this section.

Perhaps the most obvious approach is to avoid the
problem altogether by using one of the techniques we
discussed in Section 1. To round an object defined
in terms of a constructive solid geometry (CSG) tree
of set operations on geometric primitives, the object-
reconstruction technique rounds individual geometric
primitives independently and then reconstructs the object
according to its CSG definition. This technique need not
preserve the combinatorial structure of the resulting
object. When rounding is to be used to control precision
growth resulting from applying a sequence of Euclidean
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transformations to a set of polygons or polyhedra, it may
be possible to compose the transformations and then
round the composed transformation before applying it to
the set of polygons or polyhedra. Unfortunately, if the
transformations are not applied in a single sequence but
instead are distributed throughout a CSG tree, rounding
of transformations may also alter the structure of the
final object.

A second alternative is to place restrictions on the set
of input polygons to make rounding easier. Clearly, the
sets of simple polygons used in the proof of Theorem 1,
particularly the sponges, are not typical. Suppose then
that we are willing to assume that the sets of polygons we
wish to round result from, say, applying a rigid motion to
sets of polygons having some minimum separability
properties (e.g., no two vertices are too close and no
vertex is too close to an edge). Theorem 1 does not imply
that the problem of finding a (P, K)-approximation for
this restricted input is NP-complete, but it does imply
that any algorithm that solves the restricted problem
must exploit the input restrictions. Another alternative is
an algorithm that can find a (P, K)-approximation for
any set of polygons which has a (P, K/2)-approximation.
It might be possible to find a polynomial-time algorithm
for these or other restricted problems. This is a topic for
future research.

Another avenue of exploration, which is related to the
previous one, is to turn to heuristics. Here, a heuristic is
an algorithm that accepts arbitrary sets of input polygons
and in polynomial time either computes the desired
(P, K)-approximation or reports that it cannot do it. In
the latter case, we know nothing about whether or not
the desired approximation exists, only that this particular
algorithm cannot find it. The difference between this
approach and the previous one is that we might not be
able to characterize concisely the sets of input polygons
for which the algorithm will succeed. However, if the
algorithm succeeds for most inputs encountered in
practice, it might nevertheless be useful in the following
scenario. Suppose that all operations on polygons are
implemented in arbitrary (but finite) precision arithmetic.
When the coordinates of the polygons become too long
for efficient computation, we run the rounding operation
to try to find a (P, K)-approximation for some suitable
values of P and K. If the algorithm fails to find an
approximation, we increase P and/or K and try again.
Either we succeed after some small number of attempts,
or we continue working with full precision, but with
some performance penalty. If the algorithm succeeds for
most inputs, the overall performance penalty might be
acceptable. This, too, is a topic for future research.

The fourth alternative is very different, in a
fundamental way. In Section 2 we argue that the notion

of combinatorial structure is more natural than the 767
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_Figure 14 _

Polygonal rounding based on shortest paths.

stronger notion of order type. Perhaps there is an even
weaker type of structure that is still useful for practical
applications. It might be possible to devise a polynomial-
time algorithm that preserves this weaker structure. (This
differs from Sugihara’s hyperplane rounding algorithm,
summarized in Section 1, in that his algorithm does not
attempt to preserve any definable structure, aside from
the number of hyperplanes.) Milenkovic [11] gives a
polynomial-time algorithm that replaces each edge of a
polygon with the shortest polygonal path that has nearly
the same combinatorial relationship with every other
edge. By “nearly” we mean that some new vertices may
be introduced, causing what was originally an edge to
become a path, This process is illustrated in Figure 14, in
which edge AB becomes path ACDB. This approach
allows the combinatorial structure to change, but it does
not allow polygons to interpenetrate. Whether or not this
technique preserves enough structure for practical
applications is another topic for future research.

6. Conclusion

We have shown that to round polygons and polyhedra
while preserving combinatorial structure is a difficult
problem. We have not shown, however, that rotation
with limited precision growth is necessarily difficult,
because this would require showing that the polygon used
in the reduction can result from the rotation of a P-bit set
of simple polygons. However, we have shown that one
cannot solve the problem of rotations by solving the
general problem of rounding. Any technique for rotation
must either increase the number of bits required to
represent each coefficient, or it must change the
combinatorial structure, or it must exploit the fact that
the polygons or polyhedra to be rounded result from a
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rotation. A technique based on the third approach may
exist, but it will not generalize to other operations that
require rounding.
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