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Practical solid modeling  systems  are  plagued  by 
numerical  problems  that  arise  from  using 
floating-point  arithmetic. For  example, 
polyhedral solids are often represented  by  a 
combination  of  geometric  and  combinatorial 
information.  The  geometric  information  may 
consist of explicit plane  equations,  with  floating- 
point  coefficients;  the  combinatorial  information 
may consist  of face,  edge,  and vertex 
adjacencies  and  orientations,  with  edges 
defined  by  face-face  adjacencies  and  vertices 
by  edge-edge  adjacencies.  Problems  arise 
when  numerical  roundoff  error in geometric 
operations  causes  the  geometric  information to 
become  inconsistent  with  the  combinatorial 
information.  These  problems  can be avoided by 
using  exact  arithmetic  instead  of  floating-point 
arithmetic.  However,  some  operations,  such as 
rotation,  increase  the  number  of bits required to 
represent  the  plane  equation  coefficients.  Since 
the  execution  time of exact  arithmetic  operators 
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increases  with  the  number  of bits in the 
operands,  the  increased  number  of bits in the 
plane  equation  coefficients  can  cause 
performance  problems. One proposed  solution 
to this performance  problem is to round the 
plane  equation  coefficients  without  altering  the 
combinatorial  information. We show  that  such 
rounding is NP-complete. 

1. Introduction 
To achieve  reliable  programs that implement geometric 
computations, one must understand and control the 
effect of numerical error. One approach to controlling 
numerical error is to eliminate it by working  only  with 
objects and transformations that can be  represented  with 
numbers in a  representable  subfield of the real numbers, 
such as the field  of rational numbers. For linear objects 
(e.g., points,  lines,  planes),  using rational numbers would 
allow  exact computation of intersections. Unfortunately, 
the situation is different  with rotation, a commonly used 
geometric transformation: Rotating a line  whose 
equation has rational coefficients can yield a line with 
irrational coefficients.  Any rotation can be approximated 
arbitrarily closely  by a rational rotation, a rotation that 
can be represented by a matrix with rational entries 
[ 1, Section 4.3.31. Unfortunately, when rational 
representations are used, iteration of geometric 
transformations, such as rotation, can cause unbounded 
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growth in the precision (number of bits)  needed to 
represent transformed objects,  leading  rapidly to 
unacceptable time required to perform  geometric 
computations. We focus  here on the precision  growth 
problem. 

Precision  growth can arise  from a sequence  of 
geometric transformations. As a simple  example, 
consider a sequence of r rotations about the coordinate 
axes (any rotation can  be  expressed as a sequence of 
rotations about the axes),  each  of  which is to be 
approximated by a rational rotation with an angle of 
rotation accurate to  one part in 2-', where P is the 
desired number of  bits of accuracy.  It is easy to show that 
after  these r rotations have  been  applied to a point, the 
precision  required per transformed coordinate is O(rP). 
Precision  growth can be limited by interspersing in the 
sequence  rounding operations that closely approximate 
the transformed geometric  objects  with  geometric  objects 
that require  less  precision to represent.  But  what does it 
mean to approximate a geometric  object, and how should 
rounding operations be interspersed in the sequence of 
transformations? These questions are discussed at some 
length in [ 1, Section 4.31. 

hyperplanes in n-dimensional  space. He formulates 
the problem as follows. Given n + 1 positive  integers 

Sugihara  [2]  has  investigated approximating individual 

Q, , . - , Q,,, the hyperplane 

a,x,  + a2x2 + . . . + a,x, + a,,, = 0 

is approximated by the hyperplane 

b,x,  + b2x2 + * * + b,x, + b,,, = 0, 

where a,, a2, . - , a,,, are real numbers and 
b, , b,, , b,,, are integers  such that I bi I I Q,. 
The Q, bound the precision  of the coefficients  of the 
approximation. The approximation is  considered  good if 
bi/bj is  close to ai/aj, for all i and j. Since  finding an 
appropriate set  of bi values is very  difficult,  Sugihara 
considers the following  problem.  Let k be the integer 
such that the ratio 1 a, I /Q, is maximum. Dividing the 
original equation by a,, he obtains the equation 

W l X l  + w2x2 + * * * + W,X,  + w,+, = 0, 

where wi = ai/uk. He then considers the more tractable 
approximation problem  of  finding  good rational 
approximations pi/q to the wi, for some  integer q 5 Qk. 
If the rational approximations are chosen  such that 
I p,/q I 5 w,, then the equation 

P I X ,  + PZX, + - * *  + P,X, + P,,, = 0 

approximates the original hyperplane and satisfies the 
bounds on  the precision of the coefficients. In order to 
generate a good approximation, Sugihara  proposes 
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several  heuristic methods for finding a set  of  integers 
{ q, p ,  , . . . , p,+, 1 that minimizes 

max w, - - . 

He  evaluates  these approximation methods by applying 
them to a large number of randomly generated  lines. 
Although  each individual line  is approximated well, 
nothing constrains the ensemble of approximations to 
reproduce more global structure (e.g., on which side of 
one line the intersection of  two other lines  falls). This is 
apparent in the pictures  shown in [2, Figure 21, in which 
the rounding process  clearly  changes the combinatorial 
structure of the set of lines. 

Rounding lines is much more difficult if the rounding 
must  preserve  some  global structure imposed on the set 
of lines. For example, Figure 1 shows a quadrilateral and 
a triangle  before and after a rotation and rounding of 
individual lines. The rounding has  clearly  altered the 
global structure of the set  of  lines:  Before rotation and 
rounding, point C is contained inside the quadrilateral; 
afterward, C is outside the quadrilateral. Such a change 
could  cause  failure of an algorithm that assumed that the 
triangle  is surrounded by the quadrilateral, which  might 
be the case in a solid  modeler  with the figure  representing 
a quadrilateral face  of a polyhedron  with a triangular 
hole. 

Some  of the global structure of geometric  objects can 
be  preserved by using the object  reconstruction approach 
[ 11: If the structure of the set  of  geometric  objects is 
defined in terms of operations on geometric  primitives 
(e.g., lines or planes), then the primitives can be rounded 
individually and the structure reimposed. For example, 
suppose that a simple  polygon (a polygon is simple if 
nonconsecutive edges do not share points) is represented 
by a constructive solid  geometry  (CSG) tree of  half- 
planes, that is, as a Boolean combination of half-planes. 
(Any  simple  polygon can be  represented in this manner 
[3].) The polygon can then be rounded by rounding 
each  half-plane boundary (line) individually and then 
re-evaluating the CSG tree to obtain the rounded 
polygon.  Although this sequence  ensures that the 
rounded polygon  is  also a simple  polygon, it does not 
necessarily  preserve other aspects of the polygon's 
structure, such as the number of  sides. 

Another approach to avoiding  precision  growth in a 
sequence of operations is to compose the sequence of 
operations, round the composed operation, and then 
apply the rounded, composed operation. Again,  consider 
rotations as an example.  Let  rat(A) denote a rational 
rotation that approximates the rotation A. If  we are to 
compute an approximation to A, A,- , Ar-2 . . A ,  p,  where 
p is a point, we should use  raf(ArAr-,Ar-, . . . A , ) p  
instead of rat(A,)rat(A,,)rat(A,-,) . rat(A,)p, thus 

i 1 :I 
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6 Quadrilateral and triangle (a) before and (b) after finite-precision rotation and rounding. 

reducing the precision  required  from O(rP) to O(P). This 
is not always  possible. For example, if p and q are 
vertices  of  different  polygons, we might apply rotation A 
to p and rotation B to q.  After taking the union of the 
two polygons, we then apply rotation C to it.  Replacing 
rat(C)rat(A)p and rat(C)rat(B)q with rat(CA)p and 
rat(CB)q may  change the structure of the resulting 
polygon. 

All three of the approaches we have  discussed  avoid 
precision  growth by rounding, but provide no guarantees 
that any notion of structure among a  set  of geometric 
objects  is  preserved.  In this paper, we consider the 
problem of rounding sets  of  polygons or polyhedra  while 
preserving  a certain notion of combinatorial structure of 
the  set  (defined  precisely  below, but, roughly, the nesting 
relationship among the polygons in the set).  Informally, 
the problem can be formulated as follows.  Assume that a 
polygon  is  represented by a  set of real numbers, called 
coordinates, and let S be a  set  of  polygons.  We  would 
like to round the coordinates of the polygons of 3 to 
obtain a  set  of  polygons S' that has the same 
combinatorial structure as S, but with coordinates that 
can be represented with P bits of precision and are close 
to the corresponding coordinates of 3. By close, we mean 
that each rounded coordinate must be accurate to P - K 
bits,  for  some  integer K, 0 I K < P (that is, the 
magnitude of the difference  between  a coordinate and its 
corresponding rounded coordinate must be less than 
2K-p) .  If it is possible to do this, we call S' a  (P, K)- 
approximation to 3. 

Now  let  us  discuss  a  practical  scenario in which the 
ability to find (P, K)-approximations to sets of  polygons 

would  be  useful.  Suppose we start with  a  set  of  P-bit 
polygons  (i.e.,  polygons  with P-bit coordinates) and apply 
some operation to them (possibly, but not necessarily,  a 
rigid motion), with the result  being  a  set of  "bit 
polygons,  where M >  P. We then wish to round the set  of 
output polygons  back to a  set of P-bit  polygons  while 
preserving their combinatorial structure. Clearly, we 
cannot merely truncate coordinates to P bits and expect 
to preserve the combinatorial structure. Therefore, we are 
willing to sacrifice  a  small amount of geometric  accuracy 
in exchange for preserving the structure. Namely, we  seek 
a  set  of P-bit polygons  with the most  significant P - K 
bits  correct and the same combinatorial structure-in 
other words,  a (P, K)-approximation to the set of 
M-bit polygons. 

Our main result  is that determining the existence of a 
(P, K)-approximation is NP-complete. This result is 
stated formally and its applicability and relation to other 
work  discussed in Section 2.  The result  is  proved in 
Section 3 by reducing the problem of three-coloring  a 
planar graph of  degree four to the problem of finding  a 
(P, K)-approximation to a  set of simple  polygons. 
Section 4 generalizes from two-dimensional  polygons to 
three-dimensional polyhedra.  Since our result is that 
simultaneously rounding and preserving combinatorial 
structure is hard, in Section 5 we discuss the use  of 
heuristics and polynomial-time techniques for rounding 
while  preserving nearly the same combinatorial structure. 

2. Rounding is hard 
In this section we show that the problem of determining 
whether  a  collection of simple  polygons  has  a 
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(P, K)-approximation is  NP-complete. This result 
generalizes  easily to polyhedra. We first  define the 
problem  precisely and state the result and then discuss 
the applicability of the result in practice and its relation 
to other work in the area of coordinate representations. 

Combinatorial structure 
We  say that a  polygon is bounded by lines L,, L,, L,, 
. . , L,, k 2 3, if it has  vertices L, n L,, L, r l  L3, . . , 
L,-, n L,,  L, n L, in counterclockwise order. A  polygon 
is simple if it has no self-intersections.  A  set of simple 
polygons  is simple if no two members intersect. We 
define the combinatorial structure of a  simple  set of 
simple  polygons to be (a) the number of members, (b) the 
number of  sides  of  each member, and (c) the nesting 
relationship among the members. The nesting 
relationship can be  represented by a  forest of trees in 
which  a  polygon p is  a descendant of a  polygon Q if and 
only if p is nested in Q. 

combinatorial structure if and only if both are simple sets 
of simple  polygons, there is a one-to-one correspondence 
between the polygons of SI and the polygons  of S,, 
corresponding  polygons are bounded by the same 
number of lines, and the forests are isomorphic under the 
correspondence. For example, the two  sets of simple 
polygons  shown in Figures l(a) and l(b) do not have the 
same combinatorial structure because (a) is  a  simple  set 
of simple  polygons and (b) is not (the quadrilateral and 
triangle  intersect). 

and “set of polygons” to mean simple  set of simple 
polygons.  Also,  we denote by n the total number of 
bounding lines of all the members of a  set of  polygons. 

(P, K)-approximation 
Assume that P and K are positive  integers  such that 
0 I K < P, and define e = 2-‘ and 1) = 2K-p.  The set 
BF, of P-bit binaryfractions (or more  simply P-bit 
numbers) is  defined as 

BF, = (2-‘ q I q is an integer and -2‘ 5 q 5 2 ‘1. 

This is the set of numbers in the range [-1, 11 that 
terminate within P bits of the “binary point.” A line is 
defined by the equation ax + by = c, where a, b, and c 
are real.  A P-bit line has  coefficients a, b, c E BF,. 

A (P, K)-approximation to a real number a is  a P-bit 
number a’  satisfying I a ’  - a 1 < 0. It follows that a 
and a ’ have the same P - K  most  significant  bits. A line 
a’x + b’y = c’ is  a (P, K)-approximation to a line 
ax + by = c if a ’, b ’, and c ’ are (P, K)-approximations 
to  a, 6, and c, respectively.  A  simple  polygon P’ is  a 
(P, K)-approximation to a  simple  polygon p if it has the 
same number of lines and if each line of P’ is  a 

Two  sets of  polygons, S, and S,, have the same 

Henceforth, we use  “polygon” to mean  simple  polygon 
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(P, K)-approximation to the corresponding  line in /3. A 
set of simple  polygons Sf  is a (P, K)-approximation to a 
set S if S ‘ has the same combinatorial structure as S and 
if each  simple  polygon of S f  is a (P, K)-approximation to 
the corresponding  polygon of S. 

NP-completeness 

Theorem 1 The language  of  simple  sets  of  simple 
polygons  with at least one (P, K>approximation is 
NP-complete. 

polyhedra in Section 4. 
This theorem is  proved in Section 3 and generalized to 

Applications of Theorem 1 
It  is important to understand what Theorem 1 implies 
with  regard to practical applications. Suppose we  wish to 
rotate (or apply  some other Euclidean transformation to) 
a  polygon or polyhedron. We start with  a  P-bit  polygon, 
rotate it exactly  using rational arithmetic, and then 
round the higher-precision  result to a  nearby 
(P, K)-approximation. The theorem does not necessarily 
imply that this rounding step will  be  difficult  because, in 
this situation, we are restricting the input  to those  sets of 
simple  polygons that resultfrom the Euclidean 
transformation of P-bit polygons. This may  be an easier 
problem than  the more general situation covered in  the 
theorem, in which the set of input polygons is not 
restricted.  Nevertheless, the theorem does imply that any 
procedure we might  be  able to devise for rounding 
restricted  sets of  polygons  (e.g., those that result  from 
Euclidean transformation of P-bit  polygons) must exploit 
properties  of the restriction. There can be no general 
polynomial time procedure for rounding polygons 
(unless, of course, the P # NP conjecture is  false). 

Unfortunately, a transformation-dependent rounding 
procedure  may  be  hard to find,  for the following  reason. 
The distance between  closest  representable points varies 
greatly from one part of the plane to another (as we show 
below),  where we define  a point to be representable if it is 
the intersection of  two  P-bit  lines. Thus, even  a pure 
translation may  cause problems if it moves  a  cluster of 
vertices  with  representable  locations to a  region  of the 
plane of  low “density.” As is shown in Section 3, the 
proof  of Theorem 1 depends on the existence of objects 
that expand greatly  when approximated. Such  objects 
may  arise  from  a  sequence of transformations and set 
operations on polygons that creates  objects that have 
P-bit approximations but which expand if a  subsequent 
translation moves them to lower-density  regions 
of the plane. 

To see  how much the distance between  closest 
representable points can vary,  consider  first the origin. 
Only lines of the form ax + by = 0 pass through the 
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origin. Every other P-bit line ax + by = c with c # 0 lies 
at least 

distant. Therefore, the origin  is the only  representable 
point in a  circle of radius 2-' A. 
magnitude approximately equal to but not exceeding 2 ' 
such that 

Now consider nine integers, A , ,  B , ,   C , ,  i = 1, 2, 3, with 

A,,, = A,  B, C, = 1. I B l  1 4  B3 

Such  values  exist,  since we can assign the points 
(A, ,  B, ,  C,), i = 1, 2, 3, to be  any  basis  for the integer 
lattice in three dimensions [4, Section 13.91, and there 
are an infinite number of such bases. It can be  shown 
that the three P-bit lines 2-'A,x + 2-'B, y = 2-'C,, 
i = 1, 2, 3, bound a  triangle of diameter roughly Y 3 ' .  

In particular, the distance from the intersection of the 
first two  lines (i = 1, 2 )  to the third line (i = 3) is 

When A , ,  B ,  , A,, B, are assumed to have the appropriate 
signs, this distance is close to z 3 ' .  Thus, the minimum 
distance between  representable points can vary from 2-3p 
to 2 - ' / f i  There is clearly  considerable  unevenness in 
the distribution of representable points. 

0 Relation to other work 
Before proceeding to the proof,  let  us compare this result 
to other work.  Mnev [ 5 ]  and Goodman, Pollack, and 
Sturmfels [6] examine the problem  of  finding coordinate 
representations for order types. An order type is an 
assignment of an orientation for every triple of points 
A, B, and C: The orientation is positive if triangle ABC is 
counterclockwise, negative if ABC is clockwise, and zero 
if A, B, and C are collinear.  Mnev  shows that 
determining whether there exists  a  set of points with  a 
given order type is equivalent to the existential theory of 
the real  numbers. Goodman et  al.  show that even if such 
a  set  of points exists,  a coordinate representation may 
require  storage exponential in the number of points. 

In contrast to the work of  Mnev and of Goodman 
et al., our work  considers  lines  instead of points, uses the 
notion of combinatorial structure instead of order type, 
and seeks  a (P, K)-approximation to some  given 
representation  instead of seeking any coordinate 

1 Order type vs. combinatorial structure. 

representation of a combinatorial structure. These 
differences are motivated by practical  considerations. 

We consider lines instead of points because we  wish to 
generalize to polyhedra,  which are commonly represented 
by the plane equations of their faces. By well-known 
duality relationships [7], there is  a direct connection 
between  results on lines and results on points, so this 
difference  is  of little consequence. 

On the other hand, the concept of combinatorial 
structure of a  set of simple  polygons  is  less stringent than 
the order type of points. For example, in Figure 2, point 
C could  be  moved to the other side  of  line AB without 
changing the combinatorial structure. The order type 
would  be  changed in this case  because the orientation of 
triangle ABC would  change  from  positive to negative. We 
believe that  our definition of Combinatorial  equivalence 
is more natural for most  practical  problems. 

One way to pose the problem we are considering  is the 
following:  Given  a combinatorial structure for  a  set of 
simple  polygons,  find  a coordinate representation for the 
polygons  subject to the constraint that the coordinate 
representation is  a (P, K)-approximation to some 
specified representation. This constraint is  imposed 
because in practice rounding must  both  preserve 
combinatorial structure and incorporate some notion of 
"nearness" to the unrounded object. Indeed, rounding 
would  be easy without this constraint, for it can easily  be 
shown that a combinatorial structure has  a coordinate 
representation if and only if each  polygon appears exactly 
once in the forest. Furthermore, an O(1og n)-bit 
coordinate representation can be found in linear time, 
where n is the total number of  sides of all the polygons. 

Goodman et al., determining the existence  of  a 
(P, K)-approximation  is  difficult in two or more 
dimensions and easy in one dimension. The one- 
dimensional problem,  generating  a (P, K)-approximation 
to a  forest  of  nested  closed  intervals, can be  solved in 
linear time. 

Finally, we note that, as in the results of Mnev and of 
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3. Proof 
To prove Theorem 1 ,  we must  show that the problem of 
finding a (P, K)-approximation to a set  of  simple 
polygons is contained in NP and that  it is NP-hard. 
Establishing that the problem  is in  NP is easy.  Given a 
set  of  simple  polygons  with n distinct lines, there are up 
to 23nK possible (P, K)-approximations to  the set,  each 
of  size O(nP) bits. To prove that a particular set of 
simple  polygons  has a (P, K)-approximation, we 
nondeterministically  generate one of the approximations 
and check it in polynomial time. To check an 
approximation, we first  verify in time O(n) that each 
coordinate is indeed a (P, K)-approximation of the 
corresponding coordinate in the original  set  of  polygons. 
Next, in time O(n log n)  we  verify that  the set of polygons 
is  simple and determine the nesting  relationships among 
the polygons in the approximation (using a standard 
sweep-line  algorithm [SI). Since the correspondence 
between the lines in the original  set of simple  polygons 
and the lines in a (P, K)-approximation to  it is  known, it 
is then only  necessary to test that the two  forests are 
isomorphic. This can be done in O(n)  time. Therefore, 
the problem is in NP. 

We show that the problem is NP-hard, thus completing 
the proof of Theorem 1, by reducing the NP-complete 
problem of three-coloring planar graphs having no vertex 
degree  greater than four [9, Section A 1.11 to  the problem 
of finding a (P, K)-approximation to a set of simple 
polygons. For any such  graph G = ( C), the reduction 
consists of two  steps: 

1. Embed G in  an orthogonal grid,  with  graph  vertices 
placed at grid  vertices and graph  edges  following  grid 
edges.  Using the algorithm of Tamassia and Tollis 
[lo], we can embed Gin a cV by cVgrid in O( V) time, 
where c is a constant and V = 1 ‘VI . 

2. Construct, in time polynomial in V, a set of 
simple  polygons S such that there exists a 
(P, K)-approximation S‘ of S if and only G can be 
three-colored. 

The set of  polygons constructed in the second step is the 
union of subsets of  polygons,  each  subset  being drawn 
from a small  library of basic component types. To help 
explain the construction, we group the component types 
into “levels” in a manner analogous to the way 
components are organized on a computer chip. We  use 
four  levels,  with a number of component types  defined at 
each  level: 

0 DEVICE: sponge,  slider, adder. 
0 SSI (small-scale integration): transmission line, 

splitter-inverter,  AND  gate. 
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0 MSI (medium-scale  integration):  transmission-line 

LSI (large-scale integration): graph. 
crossing. 

The purpose of embedding in a grid  is to simplify the 
“chip wiring.” 

A component, at any level,  is  characterized by its 
terminals and its input-output behavior  with  respect to its 
terminals. Terminals are geometric points that enable us 
to reason about the interaction of the components but do 
not belong to the set of simple  polygons. We say that a 
(P,  K)-approximation to a component covers a terminal 
if that terminal is in the interior of one of the polygons  of 
that component; otherwise, that terminal is uncovered. 
The input-output behavior of a component is the list  of 
legal assignments of the values  “covered” or “uncovered” 
to each  of its terminals. A particular assignment  is legal  if 
and only if there exists  some (P, K)-approximation to the 
component that covers the terminals according to the 
assigned  values. 

Components may  be  placed so that a terminal of one 
coincides  with a terminal of another. Since components 
are not allowed to intersect  (all  sets of  polygons are 
simple), in any (P, K)-approximation to two 
components, one  at most can cover a common terminal. 
Components come in two  versions: horizontal and 
vertical. We describe below the construction of horizontal 
components; the vertical  versions can be obtained by a 
90” rotation. In our constructions, we place components 
so that each terminal can be  covered by at most one 
horizontal component and  at most one vertical 
component. For each (P, K)-approximation, each 
terminal has the value 0, h, or v ,  if it is  uncovered, 
covered by a horizontal component, or covered by a 
vertical component, respectively. The coloring of the 
graph 6 we are simulating is  represented by the values  of 
certain terminals. We describe the construction from the 
bottom up, presenting at each level the characteristics 
and construction of the components at that level. 

As a form of shorthand and  to make the input-output 
behavior of a component more intuitive, we introduce 
the notion of pushing on a terminal. We say that we push 
on a terminal of a particular component when we  assign 
the value uncovered to  that terminal. That is,  we restrict 
our consideration to all  legal  assignments in which the 
value  of that terminal is  “uncovered.” We say that  that 
component pushes on another terminal if in all  members 
of that restricted  set  of  assignments, the value of that 
terminal must be “covered.” 

Device level 
At the lowest  level, the graph implementation consists of 
three types of components (sets of simple  polygons): 
sponges,  sliders, and adders. 

IBM J. RES. DEVELOP. VOL. 34 NO. 5 SEPTEMBER 1990 



(a) Sponge and (b) its ( P ,  K)-approximation. 

Sponges 
One can think of a sponge as a tiny object that expands 
when approximated (see Figure 3). Let p be a point and 
n a nonzero vector  such that I n, I 2 I n, I. A horizontal 
(p, n)-sponge is a set of simple  polygons  with the 
following  properties: 

0 The sponge's  polygons  lie in a square of side t aligned 
with the coordinate axes and centered at p. (As stated 
in the subsection on (P, K)-approximation, t 2-' and 
? l = 2  .) 
In every (P, K)-approximation to the sponge, there 
exists a polygon  vertex q at least [(T - t )  I n, I / I n I ] 
distant from p along the direction of the vector n. 
Expressed  analytically, (q - p) . n L (11 - t )  I n, I . 

0 Every (P, K)-approximation to the sponge  lies in a 
square of side 611 aligned  with the coordinate axes and 

K-P 

centered at p. 
There exists at least  one (P, K)-approximation to the 
sponge that extends no farther than [(v + t )  I n, I / I n I ] 
from p in the direction n. That is, for  all  vertices q in 
this approximation, (q - p) . n < (11 + t) I n, I . 

A vertical (p, n)-sponge is defined  analogously for 
I nx 1 2 I ny I . When we refer to a (p, n)-sponge, we mean 
either a horizontal or vertical (p, n)-sponge, as 
appropriate. 

A (p, n)-sponge  consists  of a set of squares with  sides 
parallel to the coordinate axes. We now  give an algorithm 

for constructing a sponge  for the case n, 2 n, L 0; 
constructions for the other cases can be obtained 
straightforwardly by reflections and rotations by 
multiples of 90'. Let E = 2 and define the sets of 
horizontal and vertical  lines: 

hl,: y = p, + it, i = 0, 1, . . , 23K+3 ; 

VI,: x = p, + jg ,  j = 0, 1, . . . , 23K+3 .  

Because  is so small, the point p lies within 6 of 
each  of  these  lines,  each  line hl, has the same  set of 
(P, K)-approximations as the line y = p,, and each  line 
vl, has the same set  of (P, K)-approximations as the line 
x = p,. Since the K least  significant  bits of all three 
coefficients  of  any  line can be changed, x = px and y = p, 
each  have 23K (P, K)-approximations. 

-(P+3K+4) 

The following  algorithm  generates a (p, n)-sponge: 

sponge-set = 0 
for i = o to 23K+I 

for j  = o to 23K+1 
/ * ( 9  - €)-invariant * / 
add the square bounded by hl,, vl,,, h12r+l, 

~ 1 , , + ~  to sponge-set. 
/ * (11 + e)-invariant * / 
if sponge-set  is a (p, n)-sponge, return it. 

The set  sponge-set can contain no more than 
26K+2 squares.  Each square has no more than 2IzK 
(P, K)-approximations (because  each  side  has no more 
than 23K approximations). Therefore, there are no more 
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1 Slider. 

than (2 ) (P, K)-approximations to the squares in 
sponge-set. Since K is a constant, we can test in (a 
somewhat daunting) constant time whether the current 
sponge-set is a ( p ,  n)-sponge. 

IZK (26K+*)  

We prove  correctness  using  two invariants: 

0 (7 - €)-invariant: There exists at least one 
(P, K)-approximation to sponge-set that does not 
extend farther than [(v - t )  I n, I / I n I ] in the direction 
of n (for  all  vertices q in the approximation, 
( v “ ) * n < ( v - t ) l n , I ) .  
(11 + €)-invariant: There exists at least one 
(P, K)-approximation to sponge-set that extends 
at least [( q - t )  I n, I / I n I 1, but no farther than 
[(v + t) I n, I / I  n I 1, in the direction of  n. 

The proof of correctness  is  as  follows. 

0 The first invariant clearly  holds  for the empty set. 
If the first invariant holds  for sponge-set, then the 
second invariant holds  when the square bounded by 
hlZi, vlZj, h12i+l, vlZjfl is added to sponge-set. The 
(P, K)-approximation implied by the first invariant 
does not intersect the square bounded by the lines 
x = p,, y = p,  + v - e,  x = p,  + t, and y = p ,  + 9, 
because this square lies at least [(v - t) I n, 1 / I n I ] 
in the direction of n and no farther than 
[(v+c)ln,,l/InI].Butthissquareisa 
(P, K)-approximation to the square hlZi, vl,, , h12i+l, 
vl,,, I ,  so the second invariant is satisfied. 

fails to be a ( p ,  n)-sponge, it must be true that not all 
(P, K)-approximations have a vertex  lying 
[( v - e )  1 n, I / I n I ] in the direction of n. In other words, 
the first invariant holds. 

If the sponge-set satisfies the second invariant but 

The prod  of termination is as follows. Each time 
760 around the inner loop, the second invariant implies that 
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there  exists at least one (P, K)-approximation to sponge- 
set. If the algorithm terminates without concluding that 
sponge-set is a ( p ,  n)-sponge, then there are 26K+z squares 
in sponge-set. But this set  is too large to have a valid 
(P, K)-approximation. To see  why, consider that there 
are only 23K possible approximations each  for the set  of 
horizontal and for the set of vertical  lines.  Therefore, 
only 26K points in the plane are eligible to be  vertices  of 
polygons in the (P, K)-approximation. A set  of 26K+z 
disjoint polygons  needs more vertices than that. 

It remains for us to verify that each point of every 
(P, K)-approximation to the sponge  lies  within the 
square of side 69 centered at p.  Let ax + by = c be a 
line,  where a’ + b2 = 1. Let a’x + b’y = c’ be a 
(P, K)-approximation to  that line, and let (X, Y )  be a 
point on the latter line  inside the unit square  centered at 
the origin.  How  far can this point lie from the original 
line? We know that 

I a Y + b Y - c 1 5  I a ’ X + b ’ Y - c ’ I  + I ( a - a ’ ) X l  

+ I(b - b’)YI + I(c - c’)l 5 0 + 9 + 9 + 9 = 39. 

Since  each  vertex in the (P, K)-approximation to a 
( p ,  n)-sponge lies on a (P, K)-approximation to a vertical 
line and to a horizontal line through p ,  each  vertex  lies 
within the 69 X 611 square centered at p .  

Sliders 
This section  defines a slider, which  is a component that 
can “transmit information” from a terminal p ,  to 
another terminal p z .  Sliders are used  below to construct 
transmission lines, which transmit colors among vertices. 
As depicted in Figure 4 (which  is  foreshortened),* a 
p l  p,-slider is a hexagon  with  two  sponges  inside. The 
hexagon  has the form of a long  shaft  with a right- 
triangular “speartip” at each end. The length of the shaft 
is arbitrary, and it is  chosen so that the hexagon  has the 
following  properties: 

The slider  covers neither terminal p I  nor p2 and lies at 

Every (P, K)-approximation to the slider  covers at least 

0 There exists at least one (P, K)-approximation that 

least 9 distant from  each terminal. 

one of the terminals. 

covers p 1  but not p 2 ,  and at least one that covers p z  but 
not pI . 

In other words, if  we push on one terminal, the slider 
pushes on the other. 

We may think of the slider as a computational device 
that amplifies the expansion of the slider’s  sponges under 

* In this and all other figures, dimensions are considered to be accurate within a small 

the text. 
multiple of c. Thus, 31 f 4r is labeled as 37. The w m t  line equations are given in 
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(P, K)-approximation. Amplification  is  achieved  through 
the use  of speartips  with a high aspect ratio, one part in 
eight in this  case  (Figure 4 is foreshortened). Displacing 
by 7 either the hypotenuse or the longer leg parallel to 
itself  has the effect  of displacing their intersection in the 
x-direction by  87. Initially, the shorter legs have  length 
about 47, and the longer legs about 327. In any 
(P, K)-approximation, the sponges  force  each  hypotenuse 
to be  displaced  parallel to itself by about 7, causing the 
spearheads to extend about an additional 87 to cover the 
terminals, as shown in Figure 5. However, the shaft  can 
be displaced  upward by 7, restoring the right  spearhead to 
its original  length and uncovering pz , as shown in 
Figure 6, or the shaft can be  displaced  downward to 
uncover pI . Because  of the length  chosen for the shaft, it 
is not possible to uncover both terminals at the same 
time. 

Let  us  first  define the slider  for pI = (-X, 0) and 
pz = (X, 0); generalization  is  straightforward. For 
simplicity, we assume that X is an integral multiple of 7. 
Since there must  be  room  for both sponges to expand 
simultaneously in the horizontal direction by 37, the tip 
length  is about 327, and the distance from the tip point 
to terminal must be at least 7. Thus, X must be at least 
361. To allow for the space  necessary to position the 
sponges  properly, we require that X 2 387. The six  lines, 
as labeled in Figure 4, are defined by the following 
equations: 

line 

(1) ox + -1y = €, 

1 x - 27 
(2) ”x + l y  = - 

8  8 + € 3  

(3) -1x + oy = -X + 347 + t, 
(4) ox + ly = €, 

1 X - 27 
( 5 )  --x + -1y = - 8 8 + e, 

(6)  IX + Oy = -X + 347 + t. 

The sponge in the uppermost comer of the hexagon 
is a ((X - 347,47), n)-sponge, and the one in the 
lowermost comer is a ((-X + 347, -47), -n)-sponge, 
with n = (1/8, 1). 

approximations are parallel, we can easily  verify that the 
slider  has the desired  properties. The sponges expand by 
7 (actually J64/657, the amount required to shift  line (2) 
vertically by a distance 7) in the desired direction and 
expand by no more than 37 horizontally and vertically. 
Because the spearheads  have  height 47 initially, the 
vertical  expansion does not interfere with the motion of 
the shaft. Without loss of generality, we always  choose 

Assuming that the lines and their (P, K)- 
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One possible ( P ,  K)-approximation to a slider. 

Another ( P ,  K)-approximation to a slider. 

the shaft to have  length  greater than 67; thus, the 
horizontal displacement cannot eliminate the shaft. 

We claim that any change in orientation of the lines 
has  negligible  effect  for the length of sliders we consider, 
a few hundred 7 at most. The magnitude of the slope  of 
line (2) is ( 1 /8)/ 1. Approximation can increase the slope 
magnitude to (( 1/8) + v)/( 1 - 7) at most, which  is 
(1/8)( 1 + 97 + 9; + . . . ). When terms higher than first 
order are neglected, this change in slope  corresponds to a 
change in orientation of (9/8)7 = 1.1257 radians. Similar 
reasoning  shows that the change in orientation of line (1) 
is bounded by 7 radians. Thus, for X = lOOOq, a change 
in the orientation of lines (1) and (2) moves the 
intersection of lines (1) and (2) by no more than 
2.1237X = 21257’. For 7 = 2-”, this error amounts to 
about 0.0027, which is negligible,  as  claimed. 
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c 
Adder. 

In  general,  a  slider  can be positioned  anywhere  in the 
plane and oriented either horizontally or vertically. 
Translating the slider to be centered at a point (X,  Y )  
simply  requires  changing  each of its lines ux + by = c to 
a x + b y = c + a X + b Y .  

Adder 
An adder, as depicted in Figure 7 (foreshortened), has 
four input terminals u, , u2, v, , and v,, and two output 
terminals w2 and w,. For a (P, K)-approximation to  the 
adder, we say that its first input is zero if both u, and u2 
are covered, one if  only u2 is covered, and two if neither 
u, nor u2 is  covered. The second input is defined 
analogously  for v, and v2. The adder has the property 
that if the sum of the inputs is at least  2, w2 is  covered, 
and if the sum is at least 4, w, is also  covered. 

four sponges. Let us first consider an adder centered at 
the origin.  It  is bounded by the following  lines: 

line 

An adder is implemented by a  nine-sided  polygon  with 

(1) - 1 ~  + Oy = -647, 

1 
32 

1 
32 

762 (4) IX + 0~ = -647 + t, 

(2) --x + ly = -47 + t, 

(3) --x + -1y = 127 + €, 

1 
32 
1 

32 

(5) -x + -1y = 47 + E ,  

(6) -X + ly = 47 + t, 

(7) IX + Oy = -64q + t, 
1 

32 
(8) --X + ly = 127 + t, 

1 
32 (9) --x + -1y = -47 + t, 

Wedged in the uppermost and lowermost corners are two 
sponges-a ((-647, loo), (-1/32,  1))-sponge and a 
((-647, - 107), (- 1/32, - 1))-sponge,  respectively-which 
displace lines (8) and (3) outward and parallel to 
themselves by about 7 in each (P, K)-approximation. To 
keep lines (2), (5 ) ,  (6), and (9) from  moving more than 7 
inward, we add two more sponges:  a ((-641,4q), 
(1/32,  1))-sponge and a ((-647, -47), (1/32, -1))-sponge. 
Now, suppose that we push on u2. Since lines (6) and (9) 
are prevented  from  moving inward, they must move 
outward so that the intersection of (the approximations 
of) lines (8) and (9) lies to the right  of u,. This then 
causes the intersection of (the approximations of) lines 
( 5 )  and (6) to move to  the right of w,, pushing on w2. By 
analogous  reasoning, if  we also  push on v,, line ( 5 )  is also 
forced to move outward, moving the intersection of lines 
( 5 )  and (6) still farther to the right,  pushing on w,. 
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SSI symbols: (a) slider and (b) adder. 

Similar  arguments  can be  used to show that the desired 
behavior  can  be  obtained  for the other  combinations 
of inputs. 

To make the adder  perform  as  described, the terminals 
must be placed appropriately.  This  requires  consideration 
both of the geometry of the adder itself and of the way it 
will be integrated into higher-level  “circuits.”  We  see in 
the next  section that u2 and v2 must be  placed  sufficiently 
far to the left  of the intersection of lines (8) and (9) and 
the intersection of lines ( 2 )  and (3), respectively, so that 
they  can  be  covered  by  slider  tips; it suffices to shift u2 
and vz left  by 27. Terminals u, and v, are  placed 167 to 
the left of the intersections of  lines (8) and (9) and lines 
( 2 )  and (3), respectively. To compensate  for  shifting uz 
and vz, wz is  shifted 37 to the left of the intersection of 
lines (5) and (6).  The coordinates of the control points 
are 

u, = (-1447, 87), 

uz = (-1307, 87) ,  

V, = (-1447, -87),  

vZ = (-1307, -87), 

wz = (1257, 01, 

w4 = (1  557, 0). 

Centering the adder at some point other than the origin  is 
accomplished as with  sliders. 

SSI level 
The device-level components  described  in the preceding 
subsection are integrated into higher-level components 
by placing  horizontal and vertical  devices so that they 
share  a  common  terminal.  Recall that a terminal can 

be  covered  by at most  one  device  at  a  time  (because 
polygons are not permitted to intersect), and a  terminal 
can  have  three  logic  values,  denoted 0, h, or v,  depending 
on  whether  no  device,  a  horizontal  device,  or  a  vertical 
device is  covering  it. 

The top row  of Figure 8 shows  symbols  used  in  SSI 
diagrams  for  sliders and adders.  The output of each  of 
these  devices  can  be  duplicated by placing  extra  terminals 
appropriately.  This is illustrated  on the bottom row  of 
Figure 8: An extra  terminal p3 is  placed 37 to the right  of 
p2 and an extra terminal is  placed 37 to the left  of  each  of 
the original  control  points wz and w4. The  specifications 
given  in the subsections on adders and sliders  are 
designed to permit  these  extra  terminals. 

Transmission  lines 
Figure 9(a) depicts  a transmission  line, which  consists  of 
a  string of horizontal and vertical  sliders  sharing  common 
terminals. If the value of p, is 0, then p2 must have  value 
h, p3 must have  value v, p4 must  have  value h, and so on. 
Thus,  asserting  a  zero  value  for pI transmits  information 
over the line.  Transmission  lines have no “tensile 
strength,” however;  if p, is h, we can  conclude  nothing 
about the other values; for  example, pz can  take  on 
any of the three logic  values. The MSI symbol  for  a 
transmission  line  is  a  sequence of alternating  horizontal 
and vertical  line  segments,  like the ones shown  in 
Figure 9(b). 

AND gates 
Figure 10 illustrates the SSI implementation of an AND 
gate and its MSI symbol.  Pushing  on pI and p2 causes the 
gate to push on p3. In  fact, the gate  is symmetrical with 
respect to its  three  terminals:  Pushing  on  any two  causes 
the gate to push on the third. In  other words, any 763 
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1 (a) SSI implementation of a transmission line and (b) its MSI symbol. 

. .. ......... ~ ~ ~. ~.~ "" 

(a) SSI implementation of an AND gate and (b) its MSI symbol. 

(P, K)-approximation of an AND gate must cover at least the effect  of  freeing p3 to be  pushed on. Since we cannot 
one and at most  two of its  terminals. actually pull on a terminal, this is as close as we can 

Splitter-inverters 
Figure 11 illustrates the horizontal SSI implementation of 0 MSZ: Transmission-line crossing 
a splitter and its MSI symbol.  Pushing on p1 causes this Even though the graph to be simulated is planar, 
component to push on pz and p3, thus duplicating its transmitting color information among vertices  requires 

come to  an inverter. 

764 input. If we think of p2 as the input, pushing on p2 has transmission lines to cross. Figure 12 illustrates the MSI 
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A 

/ (a) MSI implementation of a transmission-line crossing and (b) its LSI symbol. 
~" """ II_ ".." .. ~~ ~~ ~ 
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LSI implementation of two neighboring vertices of a graph. 

implementation of a transmission-line crossing and its 
LSI symbol.  A  crossing  consists  of three adders,  two 
splitter-inverters, and a number of transmission lines. We 
now  show that if  we push on p, , the crossing  pushes on 
p4 ; independently, if  we push on p,, the crossing  pushes 
on p3. Let A be the first input of the left adder, and let B 
be its second input. If  we push on p, , A = 1; otherwise 
A = 0, and similarly  for p, and B. The left adder 
computes A + B :  It pushes on w2 if either is 1, and  it 
pushes on w, if both are 1. The upper adder computes 
2 + A + B = 1 - A + A + B = 1 + B, which depends on 
B only.  Similarly, the lower adder computes 1 + A.  

LSI: Implementing a graph 
Each  vertex in U is  represented by an AND gate 
surrounded by circuitry required to transmit its state to 
other vertices. It follows  from the definition of the logical 
AND that  an AND  gate must cover at least one of its 
three terminals.  Let us label its terminals R, B, and G. If 
the gate  covers terminal R, we say the vertex is colored 
red; if it covers B but not R, its color is blue;  else it 
covers  only G, and it is  green. Information about the 
color of a  vertex is transmitted to neighboring  vertices by 
three transmission  lines. For example, if a  vertex is blue, 
it pushes on the transmission line leading out of the B 
terminal. Since it is not possible to push on both ends of 
a  transmission line simultaneously, none of the 
neighboring  vertices  can  be  blue. 

Figure 13 illustrates the LSI implementation of  two 
neighboring  vertices of a  graph.  Nine splitters and nine 
crossings  suffice to transmit information about a vertex’s 
color in four directions (remember, this graph  has  degree 
four); an additional three crossings  may  be  required  for 
each simulated edge. 

We now  argue that P and K can be  chosen so that 
appropriate vertices and transmission lines can be 
constructed to simulate any graph G. Recall that the 
algorithm  of  Tamassia and Tollis [ 101 can be  used to 
embed in a CV X cVgrid, for some constant c. For 
some constants k, and k,, the “circuitry” for  a  vertex 
takes no more space than k, 1 X k, 7, and the 
“circuitry” for  a transmission line  is no wider than 
k2 q. In total, the width  of the embedding is 
max(k, , k,) qcV, which must be  less than unity. 
Therefore, 1 = rnin(2-,’, [max(k,, k,) cV]”), since, 
from the subsection on sliders, 1 < 2-”. The value o f t  
must be small enough that  the addition of c to line 
coefficients  has  a  negligible  effect.  Setting e = 2-,’q 
easily  suffices. This leads to P = r-log t 1 and 
K = r-log c l l~  = 20. 

To complete the proof of the theorem, we point out 
that before any rounding, none of the terminals is 
covered  by  any  slider.  If  a  valid (P, K)-approximation 
exists, the set of covering  choices for the slider 
terminals corresponds to a  choice of colors. Thus, an 
approximation exists if and only if a  coloring 
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exists.  Therefore,  finding  a (P, K)-approximation is 
NP-complete. 

4. Generalization  to  polyhedra 
With  suitable  generalizations of the definitions, 
Theorem 1 also  applies to sets  of  simple  polyhedra. To 
understand  this,  observe that if it did not, membership  in 
the language  of sets of simple  polygons  could be 
determined by “thickening”  polygons into polyhedra  in 
the z-direction. 

In  particular, we could  replace  each line ax + by = c 
with the plane ax + by = c. This replacement would 
transform  each  simple polygon into  an infinite cylinder 
in the zdirection. To make  each  cylinder  finite, we 
would terminate it at the plane  z = 1 and the 
plane  z = - 1. If a  set  of  simple  polygons has a 
(P, K)-approximation, then the resulting  set of cylinders 
has  a (P, K)-approximation: Simply  convert  each 
polygon in the planar (P, K)-approximation into a 
cylinder.  Conversely,  if the set  of  cylinders has a 
(P, K)-approximation, then we can  generate  a 
(P, K)-approximation to the original  set of polygons 
by taking the cross  section  z = 0. Thus, the 
set  of  polygons has a (P, K)-approximation if and 
only if the corresponding  set of cylinders has a 
(P, K)-approximation.  Therefore, the polyhedral 
rounding  problem  is  NP-hard. 

To show that the polyhedral rounding problem 
is in NP, we have to be able to check  a  potential 
(P, K)-approximation in polynomial  time.  Even  using 
naive  methods, it requires no more than O(n3) time to 
verify that a  set  of  polyhedra  is  simple and  to determine 
the nesting  relationship.  Comparing the forest  of  nesting 
relationships  with that of the original set  of  polyhedra can 
be done in q n )  time. 

5. Approximation  methods 
Since  finding  a (P, K)-approximation to a  set  of  simple 
polygons  is an NP-complete  problem,  hence  prohibitively 
expensive to execute, it is important to consider other 
approaches to finding compact coordinate representations 
of  polygons and polyhedra. We discuss  four alternative 
approaches in this  section. 

Perhaps the most  obvious approach is to avoid the 
problem  altogether by using one of the techniques we 
discussed  in  Section 1. To round an object  defined 
in terms of a  constructive  solid  geometry (CSG) tree 
of  set operations on geometric  primitives, the object- 
reconstruction technique rounds individual geometric 
primitives  independently and then reconstructs the object 
according to its CSG definition. This technique need not 
preserve  the combinatorial structure of the resulting 
object.  When  rounding  is to be used to control precision 
growth  resulting  from  applying  a sequence of  Euclidean 
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transformations to a set  of  polygons or polyhedra, it may 
be  possible to compose the transformations and then 
round the composed transformation before  applying it to 
the set  of  polygons or polyhedra. Unfortunately, if the 
transformations are not  applied  in  a  single  sequence but 
instead are distributed throughout a CSG tree,  rounding 
of transformations may  also  alter  the structure of the 
final  object. 

A second alternative is to place  restrictions on the set 
of input polygons to make  rounding  easier.  Clearly, the 
sets  of  simple  polygons  used  in the proof of Theorem 1, 
particularly the sponges,  are not typical.  Suppose  then 
that we are willing to assume that the sets  of  polygons we 
wish to round result from, say,  applying  a  rigid motion to 
sets  of  polygons  having  some minimum separability 
properties (e.g., no two  vertices are too close and no 
vertex  is too close to  an edge).  Theorem 1 does  not  imply 
that the problem of  finding a (P, K)-approximation for 
this restricted input is NP-complete, but it does  imply 
that any  algorithm that solves the restricted  problem 
must  exploit the input restrictions.  Another  alternative is 
an algorithm that can  find  a (P, K)-approximation for 
any set  of  polygons  which  has  a (P, K/2)-approximation. 
It might be possible to find  a  polynomial-time  algorithm 
for  these or other restricted  problems. This is  a  topic  for 
future research. 

Another  avenue of exploration, which is  related to the 
previous  one, is to  turn to heuristics.  Here,  a  heuristic is 
an algorithm that accepts arbitrary sets  of input polygons 
and in polynomial time either computes the desired 
(P, K)-approximation or reports that it cannot do it. In 
the latter case,  we know  nothing about whether or not 
the desired approximation exists,  only that this particular 
algorithm cannot find  it. The difference  between  this 
approach and the previous one is that we might not be 
able to characterize  concisely the sets  of input polygons 
for  which the algorithm will  succeed.  However,  if the 
algorithm  succeeds  for  most inputs encountered  in 
practice, it might  nevertheless  be  useful in the following 
scenario.  Suppose that all operations on  polygons  are 
implemented in arbitrary (but finite)  precision  arithmetic. 
When the coordinates of the polygons  become too long 
for  efficient computation, we run the rounding operation 
to try to find  a (P, K)-approximation for  some  suitable 
values of P and K. If the algorithm  fails to find an 
approximation, we increase P and/or K and try again. 
Either we succeed after some  small number of attempts, 
or we continue working  with  full  precision, but with 
some  performance  penalty. If the algorithm  succeeds  for 
most inputs, the overall  performance  penalty  might be 
acceptable.  This, too, is  a  topic  for future research. 

fundamental way. In Section  2 we argue that the notion 
of combinatorial structure is more natural than the 

The fourth alternative is very  different, in a 
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stronger notion of order type. Perhaps there is an even 
weaker  type  of structure that is  still  useful  for  practical 
applications. It might be  possible to devise a polynomial- 
time algorithm that preserves this weaker structure. (This 
differs from  Sugihara’s hyperplane rounding algorithm, 
summarized in Section 1, in  that his algorithm does not 
attempt to preserve  any  definable structure, aside  from 
the number of hyperplanes.)  Milenkovic [ 1 11 gives a 
polynomial-time algorithm that replaces  each edge  of a 
polygon  with the shortest  polygonal path that has  nearly 
the same combinatorial relationship with  every other 
edge. By “nearly” we mean that some new vertices  may 
be introduced, causing  what was originally an edge to 
become a path. This process  is illustrated in Figure 14, in 
which  edge AB becomes path ACDB. This approach 
allows the combinatorial structure to change, but it does 
not allow  polygons to interpenetrate. Whether or not this 
technique preserves  enough structure for practical 
applications is another topic for future research. 

6. Conclusion 
We have  shown that  to round polygons and polyhedra 
while  preserving combinatorial structure is a difficult 
problem. We have not shown,  however, that rotation 
with  limited  precision  growth  is  necessarily  difficult, 
because this would  require  showing that the polygon  used 
in the reduction can result from the rotation of a P-bit  set 
of simple  polygons.  However, we have  shown that one 
cannot solve the problem  of rotations by solving the 
general  problem  of rounding. Any technique for rotation 
must either increase the number of bits required to 
represent  each  coefficient, or it must change the 
combinatorial structure, or it must exploit the fact that 
the polygons or polyhedra to be rounded result  from a 
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rotation. A technique based on the third approach may 
exist, but it will not generalize to other operations that 
require  rounding. 
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