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Pythagorean
hodographs

by R. T. Farouki
T. Sakkalis

The hodograph of a plane parametric curve

r(t) = {x(t), y(t)} is the locus described by the
first parametric derivative r’ (t) = {x’(t), y " (t)}
of that curve. A polynomial parametric curve

is said to have a Pythagorean hodograph if there
exists a polynomial ¢(t) such that x’2(t) + y " %(t)
= o2(t), i.e., (x’(t), y’(t), o(t)) form a
“Pythagorean triple.” Although Pythagorean-
hodograph curves have fewer degrees of
freedom than general polynomial curves of the
same degree, they exhibit remarkably attractive
properties for practical use. For example, their
arc length is expressible as a polynomial
function of the parameter, and their offsets are
rational curves. We present a sufficient-and-
necessary algebraic characterization of the
Pythagorean-hodograph property, analyze its
geometric implications in terms of Bernstein-
Bézier forms, and survey the useful attributes it
entails in various applications.

1. Introduction

The representation of curves and surfaces in a form
amenable to efficient, systematic computation is a basic
issue in computer-aided design. Those representations
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that have won widespread acceptance in practical use are
almost exclusively parametric formulations, based on
(piecewise) polynomial functions (see [1] and references
therein). Plane curve segments, for example, are usually
defined in a form equivalent to

x) =Y at,
k=0

wey= % bt

k=0

for t € [0, 1]. (1)

Such segments may be pieced together with various
orders of continuity to form spline curves for smooth
data interpolation; they are easily rendered by uniformly
incrementing  and evaluating the polynomials (1); and
algorithmic procedures are available for computing their
intersections (see [2]). An immediate shortcoming of the
form (1)—its inability to accommodate conic loci other
than the parabola [3]—may be remedied by allowing the
rational form r(t) = {X()/W(t), Y(¢)/ W(¢)}, where
X(1), Y(¢), and W(¢) are polynomials. (Obviously, the
polynomial curves are a proper subset of the rational
curves; the extension to rational forms does not incur any
significant computational difficulties—see [1].)

Despite these attractive features, however, polynomial
parametric curves have certain inherent limitations that
degrade their overall utility in practical design
applications. Our aim is to identify a subset of the
polynomial curves for which these limitations are
relaxed, and to highlight the useful properties that ensue.
To facilitate this, we appeal to the notion of the
hodograph of a plane curve r(?) = {x(¢), y(¢)}, i.e., the
locus described by the parametric derivative r’ (¢) =
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{x’(t), v’ (1)} of that curve [4]. If f represents time, the
hodograph describes the velocity vector of the trajectory
r(¢) (see Figure 1). Hodographs are useful, for example,
in assessing a priori whether two parametric curve
segments intersect [5]. Here we are concerned with
hodographs of a certain special form, rather than with
their use in particular algorithms.

Before proceeding, let us be more specific about some
of the shortcomings of polynomial curves alluded to
above. When such a curve is rendered by evaluation at a
uniform sequence of parameter values {z, }, the resulting
geometric points {r,} are not uniformly spaced along the
curve, since its “parametric flow” is necessarily uneven if
it is not merely a straight line. To compensate for this
requires a determination of the functional relation
between the arc length s along the curve and the
parameter . In general, s(¢) is an integral that cannot be
resolved into elementary functions of ¢, and resorting to
numerical quadrature to approximate this integral is
inefficient and potentially error-prone.

Another problem arises with regard to “offset” curves.
In applications such as numerical-control machining,
tolerance analysis, and path planning, one is interested in
the curve r () = r(¢) + dn(¢) at a fixed distance d from a
given polynomial curve r(z), in the direction of its unit
normal n(¢). The offset r,(¢) is not, in general, a
polynomial (or rational) curve. In fact, it was recognized
more than a century ago [6] that if r(¢) is of degree n, the
offsets at distance +d to it, taken together, constitute an
irreducible algebraic curve with an implicit equation
f.(x, ) = 0 of degree 4n — 2 in general (see also [7]).
This fact has prompted the formulation of several

IBM J. RES. DEVELOP. VOL. 34 NO. 5 SEPTEMBER 1990

(a) A differentiable parametric curve segment, and (b) sampled derivative or ‘‘velocity’’ vectors along that segment. (¢) The hodograph
is the locus generated by translating the continuum of these vectors to the origin.

heuristic piecewise-polynomial approximation schemes
for offset curves [8-12].

The polynomial curves we identify below overcome
these deficiencies. Their arc lengths are merely
polyromial functions of the parameter, while their offsets
at distances +d and —d are individually rational curves of
relatively low degree (namely, 2# ~ 1). In view of the
diverse practical uses of offset curves, this latter property
is especially significant. Rational forms are the ubiquitous
canonical representation scheme of geometric modeling
systems, and the possibility of describing offset curves
precisely in terms of them facilitates robust processing
(rendering, subdivision, transformations, intersections,
etc.) of such loci within an existing algorithmic
infrastructure.

2. Pythagorean polynomial triples
It is no doubt safe to assume that the reader is familiar
with the theorem of Pythagoras,

a+b =7, )
relating the length ¢ of the hypotenuse of a right-angle
triangle to the lengths ¢ and b of the other sides.
Likewise, it is common knowledge that whereas Equation
(2) always yields a real value for ¢ when a and b are
assigned arbitrary real values, it can be satisfied only in
certain special cases—the “Pythagorean triples”—when
a, b, and ¢ are integers [13].

In this paper we are primarily concerned with the
special solutions to an analogous problem, in which the
quantities a, b, and ¢ in (2) are (real) polynomials in a

given variable ¢, and with the implications of those 737
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solutions for the design and processing of parametric
curves,

We now recall a particularly simple characterization
for the Pythagorean triples of polynomials that will
facilitate our investigations:

Theorem (Kubota)

Three real polynomials a(z), b(¢), and c(t), where

max [deg(a), deg(b)] = deg(c) > 0, satisfy the
Pythagorean condition a’(¢) + b°(¢) = ¢*(¢) if and only if
they can be expressed in terms of real polynomials u(t),
v(t), and w(¢) in the form

a(t) = w)i’ @) — v* @),
b(t) = 2w(u(t)v (),
c®) = w () + 2° 0. 3)

Proof See Kubota [14]. Although the sufficiency of the
form (3) for a(z), b(t), and c(¢) to satisfy the Pythagorean
condition is obvious, its necessity is rather subtle. Kubota
actually proves this theorem in a far more general
context-—namely, that of an arbitrary unique
factorization domain D of characteristic p # 2, such that
the element 2 is either prime or invertible in D. Here we
are concerned exclusively with the case where D is the
ring of polynomials in ¢, over the field of real numbers as
coefficients. Wl

We assume henceforth that in (3) the polynomials
u and v are relatively prime, since otherwise the factor
[GCD (4, v))’ could simply be absorbed into w to render
them so. Likewise, we assume that w is a monic
polynomial, i.e., its leading coefficient is +1, since if that
coefficient were k 5 1 we could absorb the constant vk
into each of u# and v (the assumption that £ > 0 is
justified insofar as the elements (a, b, ¢) of a Pythagorean
triple are considered to be of indeterminate sign).

3. Fundamental aspects of Pythagorean-
hodograph curves

The hodograph r’ (¢) = {x’(2), ¥’ (¢)} of a polynomial
curve is said to be Pythagorean if its components

are members of a Pythagorean polynomial triple
(x’(2), ' (t), a(t)). From the discussion of Section 2 we
note that Pythagorean hodographs must be of the form

x' () = wt)lu'@t) — v*@)),
Y (@) = 2w(u(t)v(z). 4)

(There is no loss of generality in identifying x’ () with
a(t) and y’ (¢) with b(¢) here, since the converse
corresponds merely to a rotation of the coordinate axes.)
By a “Pythagorean-hodograph curve” we mean any
polynomial curve whose derivative is of the form (4).
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We begin by dispensing with certain special instances
of the hodograph form (4) that are of little practical
interest:

a. If either w(z) = 0 or u(z) = v(t) = 0, Equations (4)
reduce to x’ (z) = y’(¢) = 0, and the corresponding
real curve locus degenerates to a single point.

b. If u(t), v(¢), and w() are all constants, and if w and at
least one of u and v are nonzero, the real locus
defined by Equations (4) is a “uniformly
parameterized” straight line, which exhibits the
Pythagorean-hodograph property in a trivial sense.

¢. If u(t) and v(z) are constants, not both zero, but w(¢)
1s not a constant, the real locus given by (4) is again
linear (infinite or semi-infinite according to whether
w(?) 1s of even or odd degree), but its parametric flow
is nonuniform: In fact, it will be “multiply traced”
over parameter intervals delineated by the real roots
of w(t) of odd multiplicity.

d. Nonuniformly parameterized linear loci can also arise
when w(t) # 0 and either u(t) = +v(¢) or one of u(¢)
and v(¢) is zero—the former case, which is eliminated
by ensuring that GCD (u, v) = 1, yields loci parallel to
the y-axis, the latter loci parallel to the x-axis.

Henceforth we shall consider only cases where the
polynomials u(z), v(t), and w(t) are all nonzero, u(¢) and
v(¢) being relatively prime and not both constants. (These
constraints serve merely to eliminate the simpler
degenerate forms enumerated above; identifying multiply
traced polynomial curves is, in general, a subtle problem
[15] beyond our present scope.) The Pythagorean-
hodograph curves r(¢) = {x(¢), y(¢)} that satisfy these
conditions are necessarily of degree » = max [deg(x),
deg(y)] = 3.

We now examine some of the basic characteristics of
Pythagorean-hodograph curves.

Lemma

The polynomial curve corresponding to the Pythagorean
hodograph (4) is of degree n = A + 2u + 1, where

A = deg(w) and u = max [deg(x), deg(v)].

Proof On integrating Equations (4), we observe that
deg(x) =< deg(w) + 2 max [deg(u), deg(v)] + 1, (5a)
deg(y) = deg(w) + deg(u) + deg(v) + 1. (5b)

We give only a bound on deg(x) because of the possibility
of cancellation in the leading terms of uz(t) - vz(t). Now
if deg(u) # deg(v), no such cancellation may occur, and
deg(x) = A + 2u + 1 > deg(y), whereas if deg(u) =
deg(v), we have deg(y) = A + 2u + 1 = deg(x) regardless
of whether or not cancellation occurs. Hence
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n = max [deg(x), deg(y)] is given by A + 2u + |
in all cases. W

Lemma

Pythagorean-hodograph curves of degree » have (at most)
n + 3 degrees of freedom, i.e., n — 1 fewer than the

2(n + 1) degrees of freedom associated with general
polynomial curves of the same degree.

Proof If p = max[deg(u), deg(v)] (=1 by assumption),
the two polynomials u(z) and v(¢) are specified by at
most u + 1 coefficients each. If A = deg(w), however, we
associate only X coefficients with w(z), since this
polynomial is assumed to be monic. Thus we may freely
choose at most A + 2(u + 1) coefficients in specifying the
polynomials u(z), v(t), and w(¢) that define a
Pythagorean hodograph. The constants of integration in
(4) yield two further degrees of freedom, making a total
of A\ +2u+4=n+3,sincen=xA+ 2x+ 1 by the
preceding lemma. H

These degrees of freedom are not all available for
manipulating the intrinsic shape of a curve. Three are
accounted for in assigning a plane coordinate system (two
for choosing an origin and one for orienting the axes),
and another two correspond to freedoms in the
parameterization, since the curve r(r) resulting from the
substitution t = pr + g in r(¢) has precisely the same
point locus as the latter (g specifies where 7 is measured
from, while p determines the parametric speed).

Discounting the five freedoms corresponding to rigid
motions and reparameterizations (the Pythagorean-
hodograph property being invariant under the exercise of
these freedoms), we may say that general polynomial
curves of degree n enjoy 2n — 3 “shape freedoms,” while
Pythagorean-hodograph curves of the same degree have
justn— 2.

Definition

A polynomial curve r(z) = {x(t), y(¢)} has an irregular
point' at each parameter value £ for which its hodograph
traverses the origin, i.e., for which x’(§) = y"(¢) = 0.

Evidently the parameter values of the (real) irregular
points are the (real) roots of ¢(z) = GCD (x'(¢), ¥’ (¢)).
For Pythagorean-hodograph curves, the real irregular
points coincide with the real roots of w(t), since it is
impossible that u”(£) — v>(§) = u(£)v(£) = O for any £
when GCD (u(t), v()) = 1.

'An irregular point is, of course, a singular point in the usual sense of algebraic
geometry (i.e., if f(x, y) = 0 is the implicit algebraic equation of r(t) = {x(¢), y(£)},
then f, = f, = 0 at that point [16]). However, among the singular points of f(x, y) = 0
we must also count its self-intersections, which do not (in general) correspond to
passages of the hodograph through the origin. A special term is thus desirable to
distinguish the latter.
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If £ is just a simple root of ¢(t), the irregular point is
an ordinary cusp, i.e., a point where the curve tangent
reverses abruptly. Furthermore, if £ is of general
multiplicity m, then r(¢z) will either suffer a sudden
tangent reversal or be tangent-continuous at ¢ = £
according to whether m is odd or even. In the latter case
the point ¢ = ¢ is still regarded as irregular on r(f), since
the curvature and its derivatives are, in general,
unbounded in magnitude there.

The presence of irregular points diminishes somewhat
the (global) features of Pythagorean-hodograph curves
that are attractive in practical use (see Sections 6 and 7
below). If only finite curve segments are of interest, one
can ensure that the chosen parameter domains are devoid
of such points. For most applications, however, it is
anticipated that the choice w(z) = 1 will be adopted and
curves constructed from the (relatively prime)
polynomials () and v(¢) only. Note that the
corresponding Pythagorean-hodograph curves are
necessarily of odd degree.

We now proceed to a more detailed analysis of the
Pythagorean-hodograph property in the context of certain
low-degree curves. For this purpose, it is convenient to
couch the discussion in terms of the standard Bernstein—
Bézier form of a polynomial curve, which affords a
numerically stable representation for finite arcs [17]:

x(0) = X pby0),
k=0

n
where b}(t) = <k>(1 ) (6)

The coefficients {p,} of r(¢) in this representation are
known as the “control points” of the curve; they define
the vertices of its “control polygon” (see [1] for a review).
It is useful to recall some basic properties of the Bernstein
basis functions b;(¢) in (6), namely, that their indefinite
integrals satisfy the relation

n

1 "
;2 bj(t)

Jj=k+1

[orwa=

fork=0,1,---,n—1 @)

(see [18]), and that they exhibit the partition-of-unity
property,

™ =

bit) = 1. ®)

k=0

The hodograph of the curve (6) may be written in
Bernstein-Bézier form as
n—~1

r'() = Y nApb (), )

k=0

where Ap, denotes the kth forward-difference p,,, — p,
fork=0,---,n—1.
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It is worth mentioning that while the Bernstein—-Bézier
form (6) focuses attention on the parameter interval
t € [0, 1], the Pythagorean-hodograph property is
fundamentally global in nature. Thus, any constraint on
the Bézier control polygon {p,} over ¢ € [0, 1] that arises
from the Pythagorean-hodograph property must be
regarded as applying with equal force to the control
polygon over any finite parameter span ¢ € [a, b].

4. Pythagorean-hodograph (Tschirnhausen)
cubics

According to the discussion of Section 3, the simplest
(nontrivial) Pythagorean-hodograph curves are the cubics
with X = deg(w) = 0 and p = max [deg(«), deg(v)] = 1.
These curves have only one shape freedom, as compared
to three for the general cubic. We now give a more
detailed analysis of these curves, especially with regard to
the implications of the Pythagorean-hodograph property
for their Bernstein-Bézier forms.

Remark

For a robust construction or verification of the
Pythagorean-hodograph property, it is desirable that the
coefficients of the polynomials we deal with be specified
precisely as elements of the field of rational numbers or
an algebraic extension thereof (see the examples below).
If they are treated only as floating-point approximations
to real numbers, the polynomial nature of the quantity

Vx'*(t) + y"*(¢) is almost invariably destroyed.

Consider two linear polynomials #(z) and v (¢) given in
Bernstein-Bézier form as

u(t) = uby(t) + u,b,(0),
v(t) = v,bo(t) + v,b(t), (10)
where we assume that the ratios #,: u, and vy v, are
unequal. The Pythagorean hodograph defined by (10)
and w(z) = 1 may be expressed as
Wty — v7(t) = () — vDbA) + (upu, — v,0,)b(t)
+ () = v)by ), (11a)

2u(tyu(t) = 2uyu,bi(t) + (Ugv, + w,v)b’(2)

+ 2u,v,b3(2). (11b)

In integrating Equations (11), it is convenient to invoke
the partition-of-unity property of the Bernstein basis
functions and multiply the constants of integration x,
and y, by the left-hand side of (8). Thus, on making use
of (7), we may deduce that the Bernstein-Bézier
representations of Pythagorean-hodograph cubics,

3

0= [ ") - i) di= 3 5B, (12a)

k=0
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3
v = [ 2uaw@ de= T ybi0), (120)

k=0

must have control points p, = (x,, ¥,) of the form

1

p, =D, + g(uf) - vp, 2uyv,), (13a)
1

p,=p, + g(uoul — U, Ugy, + U Y,), (13b)
1

p,=p,+ g(uf -, 2uv,), (13¢)

where p, is arbitrary, corresponding to the constants of
integration. Now the expressions (13) are perhaps not the
most palatable characterization of the Pythagorean-
hodograph cubics (especially for design engineers).
Indeed, we can derive a much more intuitive formulation
for these curves in terms of simple geometric parameters
describing their control polygons.

Theorem

For a plane cubic r(¢) with Bézier control points {p,} let
L,, L,, L, be the lengths of the control-polygon legs, and
let 6,, 8, be the control-polygon angles at the interior
vertices p,, p,. Then the conditions

L,=<LL, and 6,=9, (14)

are sufficient and necessary to ensure that r(f) has a
Pythagorean hodograph.

Proof Let x(t) be a Pythagorean-hodograph cubic with
control points of the form (13), and let d;, denote the
distance between p; and p, (j # k), so that L, = d,,,

L,=d,,,and L, = d,, (see Figure 2). From (13) we see
that

u(z) + v;
=T
\/(u(z) + vé)(uf + vf)
dlZ = 3 s
uf + vf
dy, = —3—, (15)

and these expressions clearly imply the first condition
L, = VL, L, given in (14). Further, by the cosine law we
may write

d(fl +d 122 - d(fz

o8 = ——————

2d,,d,, ’
dlz2 + d223 - a’f3
cos 6, T odd. d,d, s (16)
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where, according to Equations (13), d,, and 4, are given
by

1
dgy = gt + vo)l(aty + )" + (w5 + v,)'],

dy = é(uf + oDy + Y + (vy+ v,)’]. (17)

On substituting (15) and (17) into (16) we obtain

—(uu, + vyv,)
cosf, = cosf, = ———— , (18)
V@l + v )l + 0))

from which we may infer that either §, = ¢, or

8, = 2w — 6,. To distinguish between these possibilities,
we observe that they imply sin 8, = sin 8, and

sin §, = —sin 8,, respectively. We may compute the sines
of the angles ¢, and 8, as follows:

(Ap, X Ap,) - z

sing, = ,
! d12d01

sin 6 _M'_z (19)
2 d23d12 ’

where z is a unit vector orthogonal to the plane of r(z). If
we substitute Equations (13) and (15) into the expressions
(19), we find that

. . Uty — Uyt
sinf, = sin g, = , (20)
V(@ + v + v7)

so that (18) and (20) together imply that 8, = 6,.

Conversely, let r(¢) be any plane cubic whose control
polygon satisfies 8, = 4, (= 6, say). We may adopt a
coordinate system in which the control-polygon legs have
the form

Ap, = L (1, 0),
Ap, = L,(—cos 8, sin §),
Ap, = L,(cos 26, —sin 26), 21)

and it is then readily verified that the Bernstein
coefficients {c,} of the quartic polynomial x2@) +y
are given by

¢ = 9Lf, ¢, =—9L L, cos¥,
¢, = 6L + 3L, L, cos 26,
¢, = ~9L,L,cosb, c,=9L3. (22)

Thus, if the control polygon of r(¢) also satisfies
L, = v L,L,, we find that the coefficients (22) of
x2) + y'z(l‘) coincide with those of the perfect
square of the quadratic

o(t) = 3[L,bX(t) — L, cos 8 b3(t) + L b3(1)], (23)
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? The geometric parameters L, L,, L, and 6,, 6, defining the
. shape of the Bézier control polygon for a plane cubic.

so r(t) does indeed exhibit a Pythagorean hodograph
whenever conditions (14) hold. Il

Recall (Section 3) our earlier remark that Pythagorean-
hodograph curves of degree » have just n — 2 “shape
freedoms.” Although we expect the Pythagorean-
hodograph cubics to exhibit only one shape freedom,
there are, according to (14), apparently three associated
with the corresponding Bézier control polygons. Two of
the three lengths L,, L,, L, can be freely chosen, as can
the angle ¢ (= 6, = 6,). However, two of these freedoms
are not essential shape freedoms, being expended by the
possibility of reparameterization.

In terms of (u,, u,) and (v,, v,), we see that the
polynomial () that completes the Pythagorean triple
with x’ (¢) and y’ (¢) given by (11) has the Bernstein—
Bézier form

o(t) = (up + v2)bL(t) + (Upt, + v,0,)b}(t)
+ (1} + v)ba), (24)

which is clearly equivalent to expression (23) given in
terms of the geometric parameters L,, L,, L,, and 6.

Examples

The condition L, = v L, L, implies that the lengths L,
L,, and L, of the control-polygon legs are either identical
or mutually distinct. In examples (a), (b), and (c) below,
we have L, = L, = L, = 1, while for (d) and (e),

R. T. FAROUKI AND T. SAKKALIS
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Lp2=L,=2L,=1and2L /3=L,=3L,/2=1,
respectively. These examples are illustrated in Figure 3.

(@ p,=00,0), p =(@/545),

p, = (8/5,4/5), py=(11/5,0).
by p,=0,0, p =01,
p,=(,1), p;=(1,0)
© p,=(5/13,0), p,=(0,12/13),
p, =(1,12/13),  p,=(8/13,0).
(d p,=0,0, p=0@20),
p,=21), p,=03/21).

© p,=(0,0), p,=(510,6/5),
p, = (19/10,6/5),  p, =(23/10, 2/3).

An important common property of these cubic arcs is
apparent in Figure 3, namely their convexity. This
property is, in fact, intrinsic to the Pythagorean-
hodograph cubics:

Corollary
Pythagorean-hodograph cubics have no real inflection
points.

Proof The absence of inflections on the finite arc

t € [0, 1] follows immediately from the “variation-
diminishing” property of the Bernstein—-Bézier form (see
[1]), since the condition 8, = §, ensures that the control
polygons of Pythagorean-hodograph cubics are convex.
As noted in Section 3, this feature must generalize to
arbitrary spans t € [a, b] of a Pythagorean-hodograph
cubic. (Alternately, on substituting the forms

(11) for x’ (¢) and y’ (¢) into the standard expression
k=" @xr"®)] - z/| r’(t)|3 for the curvature, we
may observe that the numerator is quadratic in ¢ with
discriminant —4 (v, — ulvo)z, which is necessarily
negative since #,: u, # v,:v, by assumption.) l

Now it is well known [19] that every plane polynomial
(or rational) cubic has a single double point, which may
be “at infinity.” This double point is necessarily real and
is either a node or a cusp, according to whether the curve
exhibits distinct or coincident tangents there. Nodes are
further categorized as crunodes or acnodes according to
whether their tangents are real or complex conjugates—
the former correspond to self-intersections of the real
curve locus, the latter to isolated real points of the curve
where conjugate branches of its complex locus cross (see
also [20]).

Lemma
Every Pythagorean-hodograph cubic has a crunode, the
curve crossing itself at the two distinct real parameter

R. T. FAROUKI AND T. SAKKALIS

values given by

(U +v2) = (ugit, +vyv,) = \/g(uovl - uv,)

25
(u,—~ “0)2 + (v, —vo)2 23)

Proof We remark first that, according to the discussion
of Section 3, the possibility of an (affine) cusp has been
precluded by the choice w(f) = 1. Now the double point
of a general cubic is identified by parameter values ¢ and
t + 7 such that

Xt )= x0) _ éx”’ 0 + %x”(t)r +x'(t)y =0,
(26a)

e+ TT) — 0 _ %y’”(t)r2 + %y”(t)f +y' =0,
(26b)

where the division by 7 eliminates the trivial solution
r=0tox(t+7)— x(t)=0and y(t + 7) — y(t) = 0 for
any ¢. The condition on ¢ such that Equations (26) are
simultaneously satisfied for some value of 7 is given by
the vanishing of their resultant

R()

x(t+7)—x(t) yt+7)— y(t)) @7

T T

= Resultant <

with respect to =, which may be expressed as the Sylvester
determinant [21):

1 ” l ” 7
6x 2x X 0
1 1
0 gx n Exll x ’
R = (28)
1 n ” ’
34 7Y y 0
1 ” l ” ’
0 34 7Y y

It may be verified that, due to a cancellation of leading
terms, R(¢) is (at most) quadratic in ¢. Thus, if A denotes
its discriminant, we may identify A > Q (distinct real
roots) with a crunode, A = 0 (coincident roots) with a
cusp, and A < 0 (complex conjugate roots) with an
acnode. In particular, when r(z) has control points of the
form (13) corresponding to a Pythagorean hodograph,
the resultant (28) assumes the form R(¢) =

klc,t* + 2¢,t + ¢,), where k = (uyv, — u,v,)°/9 # 0,

and the coefficients ¢,, ¢,, ¢, are given by
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(e)

gons (d), (e).

¢ = [, = u)’ + (v, — v,)'T, (29a)

¢ = L, = up) + (v, = v N, + vyv, — U = v,
(29b)

¢ = [uyu, +vyv, ~ uf, - vf)]2 = 3(u,v, — ulvo)z. (29¢)

Thus A = ¢} — ¢,c, = 4/2T)[(4, — 4,) + (v, — v, )T -
(Uyv, — u,vO)G, and clearly A > 0 if it is assumed

that uyv, — 4,v, # 0 and (1, — 1)’ + (v, — v, # 0,
i.e., that the linear polynomials u(¢), v(¢) are
relatively prime and not both constants. The double
point is therefore a crunode, and its two parameter
values (25) are simply the standard (real) solutions
(—¢, £ VA)/c, of the quadratic equation R(t) = 0. B
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Three Pythagorean-hodograph cubics with symmetric Bézier control polygons (a), (b), (c), and two examples with asymmetric poly-

When dealing with finite cubic Bézier arcs, it is usually
desirable that Equations (12) define a simple curve
segment, devoid of self-crossings. This can be guaranteed
a priori by ensuring that the parameter values (25) do not
both lie on the interval [0, 1] for the chosen values u,, u,
and v, v,.

Now the existence of a crunode is only a necessary
condition for a cubic to exhibit the Pythagorean-
hodograph property. The crunodal cubic f(x, y) =
X=x+ y2 = 0 [16], for example, admits the
parameterization x(f) = 1 — £, y(t) = t — £, and in this
case we see that x (1) + y'2(t) = 9* — 2/ + 1 # ¢°(¢)
for any real polynomial ¢(¢). We now formulate a simple
sufficient condition for a crunodal cubic to have a
Pythagorean hodograph.
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% Crunodal plane cubics in standard form, corresponding to a choice
g of scale factors p = g = 1 in Equation (30) and the sequence of
%
¢

values @ = 0.0, 0.5, 1.0, 1.5, 2.0 for the parameter of the
x-axis intercept.

Definition
The standard form of a crunodal plane cubic r(f) =
{x(2), y(2)} is given by

x(t) = p(¢® - 1),
¥ =gt — o) = 1), (30)

which corresponds to a special choice of coordinates and
parameterization.

We may interpret the standard form as follows: Taking
the double point as origin, we force x(¢) and y(¢) to
possess a common quadratic factor with distinct real
roots, corresponding to the two parameter values of the
crunode. Now the parameterization may be fixed by
assigning parameter values to any two points, so if we
take ¢ = +1 for the crunode, the common quadratic
factor will be #° — 1. The components of r(f) then
have the form x(¢) = a(t2 — 1)t — a)and y(t) =
b(t* — 1)(¢ — B), and a rotation about the origin may be
invoked to reduce the factor 1 — « in x(¢) to a constant,
giving the form (30). With this orientation, any
horizontal line has either one or three real intersections
with r(z), while any vertical line has just zero or two
{counted with multiplicity).

R. T. FAROUKI AND T. SAKKALIS

Figure 4 illustrates some representative standard-form
crunodal cubics. Apart from the independent scale
factors p and g for the x- and y-directions, these curves
are distinguished by one basic “shape” parameter,
namely, the parameter value w of the x-axis intercept. If
w = 0 the curve is symmetric about the x-axis, whereas it
becomes increasingly skewed as | w | increases. We now
show that the Pythagorean-hodograph property coincides
with a special instance of the symmetric case, defined by
the ratio p/q = V3 of the scale factors.

Theorem

In standard form, the cubic Pythagorean-hodograph
curves correspond to instances of the “Tschirnhausen
cubic” defined by

x(t) =’ = 1),

v = 2L - 1), 31)
3

Proof Consider the generic standard-form crunodal
cubic (30), for which x’ () = 2pt and y’(¢) =

q(3t> = 2wt — 1). The square of the hodograph
magnitude may be written as

O+ Y 0 =419 - 120
+(Af + 40" = 6) + 4wt + 1], (32)

where f'= p/q. If (32) is to be the perfect square of, say,
g(A7” + Bt + C), we must have

A°=9, 24B = -120,
24C + B =417 + 40° — 6, (33a)
2BC=4w, C’=1. (33b)

The first three conditions (33a) may be regarded as giving
the values A = +3, B = F2w, C = £[(2/3)f* - 1].
Enforcing consistency of these values with the last two
conditions (33b) then gives constraints on the quantities
D, g, and w for the standard form (30) to exhibit the
Pythagorean-hodograph property.

Substituting for B and C into the first equation in
(33b), we have —w[(2/3)f” — 1] = w, and since f# 0 by
assumption, this can be satisfied only if w = 0. Further,
on substituting for C into the second equation in (33b)
we have (2/3)/°[(2/3)f” — 2] = 0, which implies that
fP=pYg° =3iff#0. Thusp=+ \/Eq, where the
choice of signs corresponds merely to a reversal of the
parametric flow. Hence, in standard form, the
Pythagorean-hodograph cubics are given by (31),
with the quantity —r representing the x-axis
intercept. H
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The Tschirnhausen cubic’ has apparently aroused
interest on several occasions, being known also as
I’Hopital’s cubic and the trisectrix of Catalan (see [23]
and [24] for further details—however, these references
offer no hint of its unique “Pythagorean-hodograph”
nature). It is evident from (31) that the single shape
freedom of Pythagorean-hodograph cubics corresponds
merely to a choice of the uniform scale factor r (see
Figure 5).

5. Higher-order curves

An important application of parametric cubics is the
interpolation of ordered sequences of points in the plane
by smooth (C %) piecewise-cubic curves, i.e., cubic splines.
The arcs comprising such a spline are usually considered
in Hermite form, since the interpolation problem then
reduces to solving a tridiagonal system of linear equations
for the parametric derivatives at the data points [25].
Unfortunately, the Pythagorean-hodograph cubics are too
inflexible for general C ? interpolation; they cannot
interpolate with curvature continuity discrete data whose
“shape” implies inflections.

To achieve sufficient flexibility for general free-form
design applications while retaining the advantages of
Pythagorean hodographs, we must appeal to curves of
higher degree. For such curves, however, it would be a
difficult and protracted task to provide as complete an
analysis as that given in Section 4 for the cubics. Such an
analysis would have the following principal aims:

a. To formulate intuitive geometric constraints (such as
(14) in the case of cubics) on the control polygon that
will guarantee the Pythagorean-hodograph property,
or otherwise to provide simple geometric construction
procedures for Pythagorean-hodograph curves (i.e., not
just substituting chosen polynomials u(¢), v(¢), w(t)
into x’ (t) = w(O)[u’(@) = v*(©)), ¥ (1) =
2w(t)u(t)v(t) and integrating).

b. To classify the essential shape freedoms of
Pythagorean-hodograph curves of a given degree
(e.g., the identification of the cubics with instances of
Tschirnhausen’s curve), by the analysis of their
singular points and the identification of “standard
forms,” and to assess the suitability of these shape
freedoms for use in representative design problems.

For the sake of brevity, we confine ourselves here to
just a brief sketch of some of the salient features of
quartic and quintic Pythagorean-hodograph curves, and
defer a more systematic analysis to a subsequent paper.

According to the arguments of Section 3, the
Pythagorean-hodograph quartics are cuspidal curves

% Weaver [22] quotes 1690 as the date of Tschirnhausen’s identification of this curve;
it was also studied by I’Hopital in 1696.
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}; Instances of the Tschirnhausen cubic [Equation (31)] with the
values 0.5, 1.0, 1.5, 2.0, 2.5 for the uniform scale parameter r.

corresponding to the case A = p = 1. Thus, it is
convenient to write the monic linear polynomial w(¢) in
the Bernstein-Bézier form

w(t) = —£by(t) + (1 — £)b,(1), (34)

since we can immediately identify ¢ = ¢ as the location of
the cusp. With u(¢) and v(¢) as in Equation (10), it may
be verified that the Pythagorean-hodograph quartics must
have control points of the form

P =Py~ f(uf, — vg» gy, (352)
1 —
p,=p + { 125—)(14(2, — vy, 2uyv,)
- g(uoul — vyv,s Ugv, t UT,), (35b)
[ =
=D, t (_6_8_)("‘0”1 = vy, Uy, + UY,)
- £ ) 35
lZ(u' el P ulvl), ( C)
[ —
D= b, + (—4—5)(147 — o, 2uw), (35d)

where again the initial point p, is arbitrary. Note that the
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(b)

(@)

(©)

Examples of Pythagorean-hodograph quartics: For (a) and (c) the
parameter value ¢ of the cusp lies outside the interval [0, 1],
whereas for (b) we choose £ = 1/2.

control polygon degenerates if we choose £ =0 or § = 1
(p, = p, in the former case, and p, = p, in the latter).
Indeed, this should have been expected, since from (9) we
infer that r' (0) = 4(p, — p,) and r’ (1) = 4(p, — p,), and
we must haver’(0) =0orr’'(1)=0ift=0ort=1isa
cusp.

Some examples of the Pythagorean-hodograph quartics
are illustrated in Figure 6. These were generated by
making arbitrary choices for the parameters (1, ,),

(vy> v,), and &, and integrating the resulting expressions
for x'(¢) and y’ (¢). Obviously, this approach offers
little a priori insight regarding the shape of the resulting
curve.

Figure 6 suggests that the Pythagorean-hodograph
quartics might also share the convexity property of the
cubics, and indeed it is not difficult to verify that this is
the case. The polynomial [r’ (f) X r”(£)] - z is nominally
of degree 4 when r(¢) is a quartic, but since r’ (£) = 0, the
cusp incurs a quadratic factor (z — 2)2 in this polynomial,
and the remaining quadratic factor has the discriminant
A=—4uyu, — ulvo)z, which is necessarily negative.

R. T. FAROUKI AND T. SAKKALIS

Thus, the Pythagorean-hodograph quartics have no real
inflections.

In the quartic case, the control polygon is described by
seven geometric parameters: the lengths L,, L,, L,, L, of
its four legs and its three interior angles 8, 6,, 6,. The
discussion of Section 3 suggests that we should be able to
identify from (35) three independent constraints on these
parameters that characterize the Pythagorean-hodograph
property for quartics (note that these quartics have only
two shape freedoms, however). Our attempts to generate
such constraints proved to be somewhat disappointing,
insofar as the resulting equations did not admit as
intuitive an interpretation as the conditions (14) for the
cubic case. For example, from (35) we deduce the rather
obscure condition

£L, (311 — ¢|LS — |£1L,L,)
=(1-¢’LG3IEIL, - |1 = £|L,L,) (36)

relating the lengths of the four control-polygon legs and
the cusp location ¢. Additional (independent) constraints,
involving the control-polygon angles, proved to be even
more cumbersome and enigmatic.

Of course, there is no unique set of constraints, and
more sophisticated analyses (e.g., Grobner basis
reductions) might still reveal a geometrically satisfying set
of conditions for the control polygon. The problem of
verifying the sufficiency of any such conditions for the
Pythagorean-hodograph property becomes increasingly
difficult as we proceed to higher-order curves, however. It
may be that control-polygon constraints are not, in
general, a fruitful means of characterizing the higher-
order Pythagorean-hodograph curves for practical use;
alternate characterizations and/or construction
procedures, which offer insight into the curve shape,
would then be desirable.

Regarding the shape freedoms of the Pythagorean-
hodograph quartics, we observe that since they are
rational curves, their singularities must be “equivalent”
to three double points [16]. Thus, if we compute the
polynomial R(¢) defined by (27) for a generic
Pythagorean-hodograph quartic, it will be of degree 6.
However, we are already aware that £ must be (at least) a
double root of R(¢), and the problem thus reduces to
characterizing the nature and distribution of the
singularities corresponding to the roots of the quartic
equation R(1)/(t — 5)2 = (, relative to the cusp at = £.
In principle, this may be achieved by invoking Ferrari’s
method [21], but since the calculation is quite laborious
we do not pursue it here.

The Pythagorean-hodograph quintics are reatized by
choosing either A =0, u =2 or A = 2, u = 1. The curves
corresponding to the former case are devoid of irregular
points, while those corresponding to the latter have either
two ordinary real cusps, one real second-order irregular
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point, or no real irregular points at all, according to
whether the discriminant of w(t) is positive, zero, or
negative.

When w(t) is a constant and u(¢), v(¢) are quadratic,
the control points have the form

1

p,=p t+ g(u(z, - vé, 2uyv,), (37a)
1

p,=p + 5("0“1 = v, Uy, + UY,), (37b)
2

p=pt E(u? - 7’12’ 2u,v))

1
+ E(uou2 = UgUy, Ugly + Uy1,), (37¢)

1

p,=p+ g(uluZ — U0, U, + Uu), (37d)
| P 2

p;=p,+ g(u2 — vy, 2U,v,). (37e)

We mention just one simple constraint on the lengths of
the control-polygon legs that arises from expressions
(37) in a straightforward manner, namely

L/L,=vL/L,. (38)

On the other hand, if w(¢) is quadratic and u(z), v(¢) are
linear, the control points become

Wo 2 2
P = P + 5 (U — v, 2U50,), (39a)
Wo
p,=p + 'l—o(uoul = Uov,, Uyv, + U,1,)
Wi 2 2
+ T6(uo = Uy 2uovo), (39b)
w,
p;,=p,+ g-og(uf - vf, 2uv,)
2w,
+ TS_(u°u‘ = vy, Ugv, + U Y,)
w.
+ gé(u(z) - 'U(Z), 2u0vo)a (39C)
w
p4 = p3 + l_(;(uf - 'Uf, 2ulvl)
W,
+ 'I—O(uoul = v,, Uyv, + U ;) (3594)
w.
p,=p, + f(uf -}, 2uv,). (39%)
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Examples of Pythagorean-hodograph quintics: (a) and (b)
correspond to the case A = 0, u = 2, while for (c) and (d) we
have A = 2, u = 1. For (c), the roots &, &, of w(r) are distinct,
giving two cusps, whereas for (d) we set § = £, resulting in
just one tangent-continuous irregular point of infinite curvature.
Note the inflection in (a).

e —,

If £, and &, are the parameter values of the two cusps,
the Bernstein coefficients of w(z) in (39) are given by
Wo = £1£29 w, = _[(1 - El)gz + (1 - 52)51]/2,

w, = (1- El)(l - Ez)

Examples of both the cuspidal and noncuspidal
Pythagorean-hodograph quintics are shown in Figure 7.
Again, these were generated “blind” by freely choosing
the parameters (u,, u,), (v,, v,), and (&, &,), or
(44, u,, u,) and (v,, v,, v,), as appropriate.

Now the polynomial [r’(z) X r”(f)] - z is of degree 6
for a quintic, and in the cuspidal case it must contain
the factors (¢ — £, Y and (£ — £ Y, the discriminant
of the remaining quadratic term again being
A= —4(uyv, — “1”0)2 < 0. The cuspidal quintics are
therefore necessarily convex, but it is evident from
Figure 7(a) that the noncuspidal quintics are the
lowest-order Pythagorean-hodograph curves that exhibit
real inflections. (When cusps occur, we interpret
“convex” to mean that the center of curvature lies
consistently to the left or right as we traverse the curve in
the sense of its parameterization; see Figure 7(c).)

For quintics, the polynomial (27) is of degree 12 in
general, and in the cuspidal case £, and £, are (at least)
double roots of R(r). Here the analysis of the singular
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points of Pythagorean-hodograph quintics—and its
implications for the shape freedoms of these curves—is
more difficult, since we cannot solve by radicals for the
parameter values of the singular points, in terms of the
coefhicients of u(z), v(¢), and w(?).

6. Arc length
The arc length along a polynomial curve r(¢) =
{x(¢), y(t)} increases at the rate

L= 0+ 0 (“0)

with respect to the parameter ¢. Measuring s from the
point ¢ = 0, we may write

s(t) = fo "X + v ) d, @1)

but this integral does not, in general, admit a closed-form
expression in terms of elementary functions.” Computing
the arc lengths of polynomial curve segments thus usually
entails an approximation by means of numerical
quadrature, in specific instances.

If the curve r(¢) has a Pythagorean hodograph,
however, there exists a polynomial ¢(z) such that
x'z(t) + y'z(t) = az(t), 50 (41) can be rewritten in the
form

s =] o) dt. (42)

Indeed, if r(¢) has been constructed by choosing
polynomials #(¢), v(¢), w(¢) and integrating the forms
(4), we already know that o(f) = w()[t’(t) + v°(1)].
Now the need to take the absolute value of «(¢) in
evaluating (42) can be a considerable inconvenience, so
we consider first those cases where ¢(¢) does not change
sign.

Since o(f) = w(t)[#’(t) + v (#)] and GCD (u, v) = 1 by
assumption, o(¢) will have no real roots, and may be
assumed positive for —co < ¢t < +o0, when w(f) has no
real roots. In particular, if w(t) = constant, ¢(z) will be of
degree n — 1 and may be written in the form

n—1
o) =3 a'klk >0

k=0

for —oo < < +o0, (43)

when r(¢) is a Pythagorean-hodograph curve of degree n.
The arc length s of r(¢), measured from ¢ = 0, is then
simply the polynomial function

3 Classically, the problem of determining arc lengths was known as “rectification,” and
a parametric curve was said to be rectifiable if its arc length could be expressed by
elementary functions of the parameter [26]. Thus, the family of curves identified in
Section 3 might just as well be termed the “rectifiable polynomial curves”

(M. A. Sabin, Cambridge, England, personal communication, 1989).
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S P 4 k
st) =
05 %
of the parameter ¢, In this case, s(¢) is clearly monotone-
increasing with ¢, since its derivative o(¢) is positive
for all ¢.

(44)

Example

We content ourselves with a very simple example: the
Tschirnhausen cubic (31), for which we have x’ (¢) = 2rt,
y'(6) = £r(3 = 1)/4/3, and o(2) = | | (36 + 1)/V/3.
On integrating, we see that the arc length of this curve,
measured from the x-axis intercept, is given by the simple

polynomial expression
s(t) = Irl 1+ 1). (45)
V3

For a Pythagorean-hodograph curve, finding the
parameter value £, at which a prescribed total arc length
S, is attained entails only the determination of the real
root of the polynomial equation s(z) — s, = 0 (where s(?)
is given by (44)—note that the monotonicity of s(¢)
ensures that there is exactly one such root). This should
be compared with the problem of determining, by means
of numerical quadrature, when the integral (41) attains
the desired value s, as its upper limit of integration is
varied.

Similarly, determining a sequence {¢,} of parameter
values corresponding to points spaced at uniform arc-
length intervals As along the curve requires the solution
of the sequence of polynomial equations s(¢) — kAs = 0
for k=1, 2, - - - (each of which has a unique real root). If
¢, is the solution to the kth equation, it is expected that
the expression ¢, + As/o(2,) will provide an excellent
starting approximation for an iterative (e.g., Newton—
Raphson) scheme to solve for ¢,,, when As is sufficiently
small.

Suppose now that w(¢) is not a constant. In that case,
we need only concern ourselves with the real roots of
w(t) of odd multiplicity, since it is only at those values
that o(¢) changes sign (the curve always suffers a tangent
reversal at such points). Thusif ¢, . - -, ¢, denote, in
ascending order, the real odd-multiplicity roots of w(t),
we must break up the integral (42) at those values {z,}
that lie within the range of integration and then sum the
integrals of ¢(z) over the resulting subintervals with
alternating signs. Clearly, the arc-length computation is
more involved in cases where w(¢) # constant, since it
necessitates computing the roots of w.

Finally, it should be noted that if the curve r(z) is
multiply traced over part or all of its real locus (a
possibility that cannot easily be eliminated in our
construction procedures for Pythagorean-hodograph
curves), the arc-length computation will reflect this
behavior.
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7. Offset curves

If n(¢) is the unit normal vector to a polynomial curve
r(z) = {x(¢), y(t)} at each point, the offset to that curve at
(signed) distance d is the locus defined by r (¢) =

r(t) + dn(t). Explicitly, the components of r_(r) may

be written as

a0 = xt) + —2O
Vx () + v
) =y - —2=0 (46)

Vx0) + ¥

Although Equations (46) constitute a precise description
of the offset curve, the presence of the radical

Vx"*(t) + y"*(t) is unfortunate from the perspective of
modeling systems that adhere to polynomial and
rational forms as their canonical representation. The
geometric algorithms of such systems are often crucially
dependent on unique attributes of these forms
(convergent subdivision algorithms, the variation-
diminishing property, etc.), and their robustness may be
severely compromised in attempting to accommodate
(46) ad hoc.

It is possible to describe offsets by implicit polynomial
equations, if we are prepared to accept representations
that simultaneously describe the offsets at distances +d
and —d from a given polynomial or rational curve r(¢).
For example, the offsets to the parabola r(¢) = {z, t2}
constitute an irreducible algebraic curve of degree 6,
given by [7]:

fix, 1) = 16X + %) = 8%y (5% + 4y°)
— (484" ~ x* ~ 32(d” — ¥y’
+16y" +2(4d° - )Xy — 8(4d” + 1)y’
+4d°(12d° = 507 + (4d> = 1y°
+8d°(4d” + 1)y — d°(4d’ + 1) =0. (47)

Equation (47) is actually the simplest (nontrivial) implicit
equation for the offset to a polynomial curve; in general
J(x, y) is of degree 4n — 2 or 6n — 4, according to
whether r(¢) is a polynomial or rational curve of degree n
(see [7]).

Considerable attention has recently been devoted to
piecewise-polynomial approximation schemes for offset
curves (see references cited in Section 1). However, such
an approach, although perhaps unavoidable in many
practical circumstances, is fundamentally alien to the
desire for truly robust geometric algorithms. The
Pythagorean hodographs identify a family of curves
whose offsets may be represented precisely in terms of
rational forms and are thus fully compatible with the
geometric functionality of contemporary modeling systems.

IBM J. RES. DEVELOP. VOL. 3¢ NO. 5 SEPTEMBER 1990

If r(z) = {x(2), ()} is a polynomial curve of degree n
with a Pythagorean hodograph of the form (4) such that
w(t) has no real roots, then o(?) = Vx’*(r) + y’?(t) must
be a polynomial of degree n — 1 that is positive for all
real ¢. The offset r_(¢) at distance d to r(t) may then be
expressed in the rational form {X(2)/ W (), Y(£)/W(8)},
where

2n—1

X(0) = o)x@) + dy'(t) = T Xb2' (), (482)
k=0
Y()) = o()y(t) — dx’ (1) = T Y,.b;'), (48b)
k=0
W) =o(t)= Y Wb \(@). (48c)
k=0

At least one of X(¢), Y(¢) is of proper degree 2n — 1, and
W (t) is of proper degree n — 1 (the latter being expressed
in the degree-elevated form (48c) so as to give an explicit
description of the offset r (¢) in terms of its 2r control
points p, = (X,/W,, Y,/W,) and associated “weights”
W)

Now if r’ (¢) = {x’ (), y’ (¢)} is expressed in the form
(9) and ¢(¢) has Bernstein coeflicients ¢, « - -, 0,_,, W€
may invoke the degree-elevation and arithmetic
procedures for polynomials in Bernstein form [18] to give
the control points of the rational offset curve (48)
explicitly as

(Xk: Yk’ Wk)

n n-—1
min(n—1,k) k — J ]
= 2 e ——————
Jj=max(0,k—n) <2n - l>
k

X [o;(X_j> Viey» 1) + dn(Ay;, —Ax;, 0)] (49)

fork=0,---,2n—1.

(As in the case of arc-length computation, one should
beware the possibility of real odd-multiplicity roots in
w(t). Since they incur a sudden reversal of the normal
vector n(z) to the original curve, we must expect the offset
curve to suffer a point discontinuity at these parameter
values. It is therefore prudent to break up the original
curve at the real odd-multiplicity roots ¢, - - -, ¢, of w(¢),
thereby ensuring that each curve subsegment will have a
continuous offset.)

Despite its rather daunting appearance, the formula
(49) is not difficult to implement in practice. The offsets
to Pythagorean-hodograph cubics, for example, are
merely rational quintics (an eminently manageable curve
form as compared to the general cubic offset—an
irreducible algebraic curve f,(x, y) = 0 of degree 10
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0.87666... 071

1.5

The offset at distance d = 1 to the Pythagorean-hodograph cubic
of Figure 3(e). The offset curve has a precise rational quintic

‘e

parameterization; the projective coordinate or
Bézier control point is shown.

weight’’ of each

/
g
]
H
7

having 66 terms), and in that case Equations (49)
simplify to

X, Yy W)
= L(x,, ¥, 1) + d(AY,, —AX,, 0), (50a)
X,Y,w)
= [3L,(x,, y,, 1) — 2L, cos 8(x,, ¥,, 1)
+ dQ2Ay, + 3Ay,, —2Ax, — 3Ax,, 0)]/5, (50b)
X,, Yo, W)
= [3L,(x,, ¥,, 1) = 6L, cos8(x,, ¥, 1)
+ Li(xy, ¥y, 1) + d(Ay, + 64y, + 3AY,,
—Ax, — 6Ax, — 3AXx,, 0)]/10, (50c)
X, Y, W)
= [3L,(x,, y,, 1) — 6L, cos (x,, ¥,, 1)
+ L,(x;, y5, 1) + d(Ay, + 6Ay, + 3Ay,,
—-Ax, — 6Ax, — 3Ax,, 0)]/10, (50d)
X, Y. w,)
= [3L,(x,, ¥,, 1) — 2L, cos 8(x;, ¥,, 1)
+ d(2Ay, + 3Ay,, —2Ax, — 3Ax,, 0)]/5, (50e)
X, Y5, Wo) = Li(x;, v, 1) + d(Ay,, —Ax,, 0), (50f)

where we use the form (23) for ¢(¢) in terms of the
geometric parameters L,, L,, L,, and 8 (we drop a
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common factor 3 above, since an arbitrary scaling may
be applied to X(¢), Y(z), W(¢t) without altering the curve).
Figure 8 illustrates the offset to one of the cubic examples
of Section 4, constructed according to Equations (50).

8. Concluding remarks

We have not attempted an exhaustive analysis of
Pythagorean-hodograph curves here; for higher-order
curves, especially, the details are too voluminous for an
introductory paper. Our purpose was rather to outline
basic defining characteristics, construction procedures,
and useful properties for various applications. It is hoped
that this will stimulate further study and assessment of
the practical utility of these special polynomial curves.

In particular, since the Pythagorean-hodograph
quintics appear to enjoy a measure of “shape freedom”
similar to that of general cubics, they may
constitute a viable alternative to the latter in free-form
design applications, affording the attractive attributes
discussed in Sections 6 and 7 at the expense of a modest
increase in degree. (In Section 5 we mentioned the
importance of Hermite forms for the construction of
spline curves; in a forthcoming paper [27] we shall show
that Pythagorean-hodograph quintic Hermite interpolants
exist for arbitrarily chosen end points and derivatives of
an arc. Furthermore, these interpolants are easily
computed and exhibit “shape” properties very similar to
those of their standard cubic counterparts.)

The notion of Pythagorean hodographs for plane
polynomial curves has straightforward generalizations to
other geometric forms that are worthy of detailed
investigation. We conclude by briefly outlining a few of
these.

Rational curves The rational curve r(f) =
{X@)/W(¢), Y(¢)/W(t)} has the hodograph

WX’ (1) — W’ ()X(1)
W (1)

x' (1) =

WY’ () — W ()Y(t)
W) '

y) = 51
(For more on the hodographs of rational curves, see

[28).) Here we are interested in those cases where the
polynomials WX’ — W'Xand WY’ — W'Y are
members of a Pythagorean triple, so that the quantity

ds_N(WX' - W'XY + (WY’ - W'Yy

dt w?

(52)

reduces to a rational function of the parameter ¢. Clearly
WX’ — W’'Xand WY’ — W'Y must be of the form
w(t)[1’(t) — v*(£)] and 2w()u(t)v(¢), and the problem is
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to investigate the implications of these forms for the
polynomials X(¢), Y(¢), W(z) individually, i.e., for the
nature of the rational curves that have rational functions
of ¢t for ds/dt.

Space curves A twisted polynomial curve r(7) =
{x(1), y(1), z(¢)} has a three-dimensional hodograph
r'(t) = {x' (), ¥’ (t), z' (1)}, and we are interested in
the circumstances under which the three elements
of this hodograph give rise to a polynomial ¢(¢) for
the quantity

S T (53)
That the hodograph components be expressible in terms
of four real polynomials A(z), u(z), v(¢), and w(¢) in the

form
x' = hlu’ - vt —w,
y' = 2huv,

z' = 2huw (54)

is evidently a sufficient condition, since then ds/dt = o(¢)
= ([’ (1) + v2(¢) + W' (©)); if h() is generalized to a
rational function it is also necessary. In general, one may
consider curves of any dimension N, and inquire about
the conditions under which the sums of the squares of N
polynomials—the hodograph components—coincide
with the perfect square of some other polynomial.

Surfaces For a parametric polynomial surface
r(u, v) = {x(u, v), y(u, v), z(u, v)}, the analog to the
quantity ds/dt = | £’ (t)| = Vx'*(t) + y'*(t) fora

plane curve is

8°A
_Ir

= Xr
dudy g

u

=V, - x,p) + 0z, - vy + @x, - 2x),
(55)

where partial derivatives with respect to ¥ and v are
denoted by corresponding subscripts. The integral of (55)
over some parametric domain (i, v) € Q gives the
corresponding surface area A,,, while the surface normal
vector

r, X r,

Ir,xXr,| (36)

n(u, v) =
is unitized by dividing by (55). Thus, we are interested in

triples of bivariate polynomials x(u, v), y(u, v), z(u, v})
such that the argument of the radical in (55) is the perfect
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square of some other bivariate polynomial o(i, v). If, in
addition, we could arrange that o(u, v) > 0 over the
entire real plane, the offset surface r_(u, v) =

r(u, v) + dn(u, v) would be rational, an especially
attractive prospect since the broblem of reliably
approximating offset surfaces [29] is qualitatively more
difficult than in the plane curve case.
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