
Pythagorean 
hodographs 

by R. T. Farouki 
T. Sakkalis 

The hdograph of  a  plane  parametric  curve 
r(t) = (x ( t ) ,  y ( t ) f  is the  locus  described  by  the 
first parametric  derivative r’ ( t )  = ( x ’  ( t ) ,  y ’ ( t ) )  
of  that  curve. A polynomial  parametric  curve 
is said to have  a  Pythagorean  hodograph if there 
exists a  polynomial a(t)  such  that x t 2 ( t )  + y ” ( t )  

“Pythagorean  triple.”  Although  Pythagorean- 
hodograph  curves  have  fewer  degrees  of 
freedom  than  general  polynomial  curves of the 
same  degree,  they exhibit remarkably  attractive 
properties  for practical use.  For  example, their 
arc  length is expressible  as  a polynomial 
function  of  the  parameter,  and  their offsets are 
rational curves.  We present  a  sufficient-and- 
necessary  algebraic  characterization  of  the 
Pythagorean-hodograph  property,  analyze its 
geometric  implications in terms  of  Bernstein- 
Bezier  forms,  and  survey  the useful attributes it 
entails in various  applications. 

~ ‘ ( t ) ,  i.e., ( x ’  ( t ) ,  y ’ ( t ) ,  a( t ) )  form  a 

1. Introduction 
The representation of curves and surfaces in a  form 
amenable to efficient,  systematic computation is  a  basic 
issue in computer-aided  design.  Those representations 
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that have won  widespread  acceptance in practical use are 
almost  exclusively parametric formulations, based on 
(piecewise)  polynomial functions (see [ 11 and references 
therein). Plane  curve  segments, for example, are usually 
defined in a  form equivalent to 

” 
x(t) = aktk, 

k=O 

n 

y ( t )  = 1 bktk for t E [0, 11. 
k=O 

Such  segments  may  be  pieced  together  with various 
orders of continuity to form spline curves for smooth 
data interpolation; they are easily rendered by uniformly 
incrementing t and evaluating the polynomials (1); and 
algorithmic  procedures are available for computing their 
intersections (see [ 2 ] ) .  An immediate shortcoming of the 
form (1)-its inability to accommodate conic loci other 
than the parabola [3]-may  be remedied by allowing the 
rational form r(t) = (X(t) /W(t) ,   Y( t ) /  W(t)) ,  where 
X( t ) ,  Y( t ) ,  and W(t) are polynomials.  (Obviously, the 
polynomial  curves are a proper subset  of the rational 
curves; the extension to rational forms does not incur any 
significant computational difficulties-see [ 11.) 

Despite  these attractive features,  however,  polynomial 
parametric curves  have certain inherent limitations that 
degrade their overall  utility in practical design 
applications. Our aim  is to identify  a subset of the 
polynomial  curves for which  these limitations are 
relaxed, and to highlight the useful  properties that ensue. 
To facilitate  this, we appeal to the notion of the 
hodograph of a plane curve r(t) = (x(t) ,  y ( t ) ] ,  i.e., the 
locus  described by the parametric derivative r ’ ( t )  = 
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(a) A differentiable parametric curve  segment,  and (b) sampled derivative  or  “velocity” vectors along that segment. (c) The hodograph F .  . .  

(x’ ( t ) ,  y ’ ( t ) l  of that curve [4]. If t represents time, the 
hodograph  describes the velocity  vector of the trajectory 
r(t) (see Figure 1). Hodographs are useful,  for  example, 

segments  intersect [5  1. Here we are concerned with 
hodographs of a certain special form, rather than with 
their use  in particular algorithms. 

Before  proceeding,  let  us  be  more  specific about some 
of the shortcomings of polynomial  curves alluded to 
above.  When  such a curve  is  rendered by evaluation at a 
uniform  sequence of parameter values ( t k ] ,  the resulting 
geometric points {r,) are not uniformly  spaced  along the 
curve,  since  its “parametric flow”  is  necessarily  uneven  if 
it  is not merely a straight  line. To compensate for this 
requires a determination of the functional relation 
between the arc length s along the curve and the 
parameter t. In  general, s ( t )  is an integral that cannot be 
resolved into elementary functions oft, and resorting to 
numerical quadrature to approximate this integral  is 
inefficient and potentially error-prone. 

Another problem  arises  with  regard to “offset”  curves. 
In applications such as numerical-control machining, 
tolerance  analysis, and path planning, one is interested in 
the curve r,(t) = r(t) + dn( t )  at a fixed distance d from a 
given polynomial  curve r(t), in the direction of  its unit 
normal n(t). The offset r,(t) is not, in general, a 
polynomial  (or rational) curve. In fact, it was  recognized 
more than a century ago [6] that if r(t) is  of  degree n, the 
offsets at distance +d to it, taken together, constitute an 
irreducible  algebraic  curve  with an implicit equation 

~ in  assessing a priori whether  two parametric curve 

I f,(x, y )  = 0 of  degree 4n - 2 in general  (see  also [7]). 
This fact  has prompted the formulation of  several 
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heuristic  piecewise-polynomial approximation schemes 
for offset curves [ 8- 121. 

The polynomial  curves we identify below overcome 
these  deficiencies. Their arc lengths are merely 
polynomial functions of the parameter, while their offsets 
at distances +d and -dare individually rational curves of 
relatively  low  degree  (namely, 2n - 1). In view of the 
diverse  practical uses  of  offset curves, this latter property 
is  especially  significant. Rational forms are the ubiquitous 
canonical  representation  scheme of geometric  modeling 
systems, and the possibility  of  describing offset curves 
precisely in terms of them facilitates  robust  processing 
(rendering,  subdivision, transformations, intersections, 
etc.) of such  loci  within an existing algorithmic 
infrastructure. 

2. Pythagorean  polynomial  triples 
It  is no doubt safe to assume that the reader  is  familiar 
with the theorem of Pythagoras, 

a + b  = e ,  (2)  

relating the length c of the hypotenuse of a right-angle 
triangle to the lengths a and b of the other sides. 
Likewise, it is common knowledge that whereas Equation 
( 2 )  always  yields a real  value for c when a and b are 
assigned arbitrary real  values, it can be  satisfied  only in 
certain  special  cases-the  “Pythagorean trip1es””when 
a, b, and c are integers [ 131. 

In this  paper we are primarily concerned with the 
special solutions to an analogous  problem, in which the 
quantities a, b, and c in ( 2 )  are (real) polynomials in a 
given variable t ,  and with the implications of those 
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solutions for the design and processing of parametric 
curves. 

We  now recall a particularly  simple characterization 
for the Pythagorean  triples of polynomials that will 
facilitate our investigations: 

Theorem (Kubota) 
Three real  polynomials a(t), b(t), and c(t), where 
max  [deg(a),  deg(b)] = deg(c) > 0, satisfy the 
Pythagorean condition a2( t )  + 6’0)  = c2( t )  if and only if 
they  can be  expressed in terms of  real  polynomials u(t) ,  
v(t ) ,  and w(t )  in the form 

a(t) = w(t)[u’(t)  - v2(t ) l ,  

b(t) = 2w(t)u(t )v( t ) ,  

c(t) = w(t)[u’(t) + v2( t ) ] .  (3) 

Proof See Kubota [ 141. Although the sujiciency of the 
form (3) for a@), b(t), and c(t) to satisfy the Pythagorean 
condition is obvious,  its necessity is rather subtle. Kubota 
actually  proves this theorem in a  far more general 
context-namely, that of an arbitrary unique 
factorization domain D of characteristic p # 2, such that 
the element 2 is either prime or invertible in D. Here we 
are concerned  exclusively with the case  where D is the 
ring  of  polynomials in t, over the field  of real numbers as 
coefficients. 

We assume  henceforth that  in (3) the polynomials 
u and v are relatively prime, since  otherwise the factor 
[GCD (u, v)]’ could  simply  be  absorbed into w to render 
them so. Likewise,  we assume that w is a monic 
polynomial, i.e., its  leading  coefficient is + 1 , since if that 
coefficient  were k # 1 we could absorb the constant 4 
into each of u and u (the assumption that k > 0 is 
justified  insofar as the elements (a, b, c )  of a  Pythagorean 
triple are considered to be  of indeterminate sign). 

3. Fundamental  aspects of Pythagorean- 
hodograph  curves 
The hodograph r’(t)  = { ~ ’ ( t ) ,  y ’ ( t ) ]  of a  polynomial 
curve  is  said to be Pythagorean if its components 
are members of a  Pythagorean  polynomial triple 
(~ ’ ( t ) ,  y’ ( t ) ,  ~ ( t ) ) .  From the discussion of Section 2 we 
note that Pythagorean  hodographs must be  of the form 

x’(t) = w(t)[u’(t)  - v 2 ( t ) ] ,  

y ’ ( t )  = 2w(t)u(t )v( t ) .  (4) 

(There is no loss of generality in identifying x’ ( t )  with 
a( t )  and y’(t)  with b( t )  here,  since the converse 
corresponds  merely to a rotation of the coordinate axes.) 
By a  “Pythagorean-hodograph curve” we mean any 
polynomial  curve whose derivative  is of the form (4). 

We  begin  by dispensing  with certain special instances 
of the hodograph  form (4) that are of little practical 
interest: 

a.  If either w ( t )  = 0 or u(t)  = u ( t )  = 0, Equations (4) 
reduce to  x’(t) = y ’ ( t )  = 0, and the corresponding 
real  curve  locus  degenerates to a  single point. 

b.  If u(t), v( t ) ,  and w ( t )  are all constants, and if w and  at 
least one of u and v are nonzero, the real  locus 
defined by Equations (4) is a “uniformly 
parameterized”  straight  line,  which  exhibits the 
Pythagorean-hodograph property in a  trivial  sense. 

c. If u(t)  and v ( t )  are constants, not both zero, but w ( t )  
is not a constant, the real  locus  given by (4) is  again 
linear (infinite or semi-infinite  according to whether 
w ( t )  is of even or odd degree), but its parametricflow 
is nonuniform: In  fact, it will  be “multiply traced” 
over parameter intervals delineated by the real roots 
of w ( t )  of odd multiplicity. 

d. Nonuniformly parameterized linear loci can also  arise 
when w ( t )  # 0 and either u( t )  = +v( t )  or one of u(t)  
and v ( t )  is  zero-the former case,  which is eliminated 
by ensuring that GCD (u, v )  = 1, yields  loci  parallel to 
the y-axis, the latter loci  parallel to  the x-axis. 

Henceforth we shall consider only  cases  where the 
polynomials u(t), u ( t ) ,  and w( t )  are all nonzero, u( t )  and 
v ( t )  being  relatively prime and not both constants. (These 
constraints serve  merely to eliminate the simpler 
degenerate forms enumerated above;  identifying multiply 
traced  polynomial  curves is, in general,  a subtle problem 
[ 151 beyond our present  scope.) The Pythagorean- 
hodograph  curves r ( t )  = {x(t), y ( t ) ]  that satisfy  these 
conditions are necessarily  of  degree n = max  [deg(x), 
deg(y)l 2 3. 

We now examine some of the basic  characteristics of 
Pythagorean-hodograph  curves. 

Lemma 
The polynomial curve corresponding to the Pythagorean 
hodograph (4) is  of  degree n = X + 2 p  + 1, where 
X = deg( w ) and p = max  [deg( u), deg(v)]. 

Proof On  integrating Equations (4), we observe that 

deg(x) I deg(w) + 2 max[deg(u), deg(v)] + 1, (sa) 

deg(y) = deg(w) + deg(u) + deg(v) + 1. (5b) 

We  give only  a bound on deg(x) because  of the possibility 
of cancellation in the leading terms of u2( t )  - v2( t ) .  Now 
if deg(u) # deg(v), no such cancellation may occur, and 
deg(x) = X + 2 p  + 1 > deg( y ) ,  whereas if deg(u) = 
deg(v), we have  deg( y )  = X + 2 p  + 1 2 deg(x) regardless 
of whether or not cancellation  occurs. Hence 
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n = max  [deg(x), deg( y ) ]  is given by X + 2p + 1 
in  all  cases. 

Lemma 
Pythagorean-hodograph  curves of  degree n have (at most) 
n + 3 degrees  of  freedom,  i.e., n - 1 fewer than the 
2(n + 1) degrees of freedom  associated  with  general 
polynomial  curves of the same  degree. 

Proof If p = max [deg(u), deg(v)] ( r l  by assumption), 
the two  polynomials u( t )  and v ( t )  are specified by at 
most p + 1 coefficients  each.  If h = deg(w),  however, we 
associate  only X coefficients  with w(t ) ,  since this 
polynomial  is  assumed to be monic. Thus we may  freely 
choose at most X + 2(p + 1) coefficients in specifying the 
polynomials u(t) ,   v( t ) ,  and w ( t )  that define a 
Pythagorean hodograph. The constants of integration in 
(4) yield  two further degrees  of  freedom, making a total 
o f X + 2 p + 4 = n + 3 , s i n c e n = X + 2 p +  lby the  
preceding lemma. W 

These  degrees  of  freedom are not all  available for 
manipulating the intrinsic shape of a curve. Three are 
accounted for in assigning a plane coordinate system  (two 
for choosing an origin and one for orienting the axes), 
and another two  correspond to freedoms in the 
parameterization, since the curve r(T) resulting  from the 
substitution t = p~ + q in r ( t )  has  precisely the same 
point locus as the latter ( q  specifies  where 7 is  measured 
from, while p determines the parametric speed). 

Discounting the five freedoms corresponding to rigid 
motions and reparameterizations (the Pythagorean- 
hodograph  property  being invariant under the exercise  of 
these  freedoms), we may  say that general  polynomial 
curves of  degree n enjoy 2n - 3 “shape  freedoms,”  while 
Pythagorean-hodograph  curves of the same degree  have 
just n - 2. 

Dejnition 
A polynomial  curve r ( t )  = (x(t), y ( t ) )  has an irregular 
point‘ at each parameter value [ for which its hodograph 
traverses the origin,  i.e.,  for  which x/([) = y ’ ( [ )  = 0. 

Evidently the parameter values  of the (real) irregular 
points are the (real) roots of d ( t ) =  GCD ( ~ ’ ( t ) ,  ~ ’ ( t ) ) .  
For Pythagorean-hodograph  curves, the real  irregular 
points coincide  with the real roots of w(t ) ,  since it is 
impossible that u2(F)  -TI’(.$) = u ( . $ ) v ( [ )  = 0 for any [ 
when GCD (u(t) ,  v ( t ) )  = 1. 

’ An  irregular  point is, of course,  a  singular  point  in  the usual sense of algebraic 
geometry (i.e., if/(x, y )  = 0 is the  implicit  algebraic  equation of r(r) = Ix(t), y ( f ) l ,  
then = f = 0 at  that  point [ 161). However,  among  the  singular  points off(x, y )  = 0 
we  must alk count  its  self-intersections, which do nor (in general)  correspond  to 

distinguish the  latter. 
passages of the  hodograph  through  the  origin. A special  term  is thus desirable  to 

If .$ is just a simple root of +( t ) ,  the irregular point is 
an ordinary cusp, i.e., a point where the curve tangent 
reverses  abruptly. Furthermore, if [ is  of  general 
multiplicity m, then r ( t )  will either suffer a sudden 
tangent  reversal or be tangent-continuous at t = 
according to whether m is odd or even. In the latter case 
the point t = [ is  still  regarded as irregular on r(t), since 
the curvature and its  derivatives  are, in general, 
unbounded in magnitude there. 

the (global)  features of Pythagorean-hodograph  curves 
that are attractive in practical  use  (see Sections 6 and 7 
below).  If  only  finite  curve  segments are of interest, one 
can ensure that the chosen parameter domains are devoid 
of such  points. For most  applications,  however, it is 
anticipated that the choice w ( t )  = 1 will be adopted and 
curves constructed from the (relatively prime) 
polynomials u( t )  and v ( t )  only. Note that the 
corresponding  Pythagorean-hodograph  curves are 
necessarily of odd degree. 

We  now  proceed to a more detailed  analysis of the 
Pythagorean-hodograph property in the context of certain 
low-degree  curves. For this purpose, it is convenient to 
couch the discussion in terms of the standard Bernstein- 
Bkzier form of a polynomial  curve,  which  affords a 
numerically  stable representation for  finite arcs [ 171: 

The presence of irregular points diminishes somewhat 

n 

k=O 

The coefficients ( p k  ] of r ( t )  in this representation are 
known as the “control points” of the curve;  they  define 
the vertices  of  its “control polygon”  (see [ 11 for a review). 
It  is  useful to recall  some  basic  properties of the Bernstein 
basis functions b i ( t )  in (6), namely, that their indefinite 
integrals  satisfy the relation 

1 “  b i - l ( t )  dt = - 2 by(t) 
J = k + l  

fork=O, l , . . . , n -  1 (7) 

(see [ 1 SI), and that they  exhibit the partition-of-unity 
property, 
n 

k=O 

The hodograph of the curve (6) may  be written in 
Bernstein-BCzier form as 

n -  I 

r ’ ( t )  = 2 nAp,b$’(t), (91 
k=O 

where Apk denotes the kth forward-difference p k + ,  - pk 
f o r k = O , . . . , n -  1. 
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It  is  worth mentioning that while the Bernstein-Bezier 
form (6) focuses attention on the parameter interval 
t E [0, 11, the Pythagorean-hodograph property is 
fundamentally global in nature. Thus, any constraint on 
the BCzier control polygon ( pk ] over t E [0, 11 that arises 
from the Pythagorean-hodograph property must be 
regarded  as  applying  with equal force to the control 
polygon over any finite parameter span t E [a, b]. 

4. Pythagorean-hodograph  (Tschirnhausen) 
cubics 
According to the discussion of Section 3, the simplest 
(nontrivial) Pythagorean-hodograph  curves are the cubics 
with X = deg(w) = 0 and p = max[deg(u), deg(v)] = 1. 
These  curves  have  only one shape freedom, as compared 
to three for the general  cubic. We now  give a more 
detailed  analysis of these  curves,  especially  with  regard to 
the implications of the Pythagorean-hodograph property 
for their Bernstein-Bkzier forms. 

-u k=O 

must have control points pk = (xk,  y k )  of the form 

1 2  2 

3 PI = Po + -(uo - VrJ’ 2u,v,), 

where po is arbitrary, corresponding to the constants of 
integration. Now the expressions ( 13) are perhaps not  the 
most  palatable characterization of the Pythagorean- 
hodograph  cubics  (especially  for  design  engineers). 
Indeed, we can derive a much more intuitive formulation 
for  these  curves in terms of simple  geometric parameters 
describing their control polygons. 

Remark 
For a robust construction or verification of the 
Pythagorean-hodograph  property, it is  desirable that the 
coefficients  of the polynomials we deal  with  be  specified 
precisely as elements of the field  of rational numbers or 
an algebraic  extension  thereof  (see the examples  below). 
If they are treated only  as  floating-point approximations 
to real numbers, the polynomial nature of the quantity 
d x ” ( t )  + y”(t)  is  almost  invariably  destroyed. 

Theorem 
For a plane cubic r ( t )  with  Bkzier control points (p,) let 
L, ,   L2 ,  L, be the lengths of the control-polygon legs, and 
let 8, , 19, be the control-polygon  angles at the interior 
vertices p, , p 2 .  Then the conditions 

L, = a3 and 0, = 8 ,  (14) 

are sufficient and necessary to ensure that r(t) has a 
Pythagorean  hodograph. 

Consider  two  linear  polynomials u( t )  and v ( t )  given in 
Bernstein-Bbier form  as Proof Let r(t)  be a Pythagorean-hodograph  cubic with 

control points of the form (1 3), and let djk denote the 
distance  between pj and pk ( j  # k), so that L, = dol ,  
L, = dl,, and L3 = dZ3 (see Figure 2). From (13) we  see 
that 

where  we assume that the ratios uo : u, and vo : v I are 
unequal. The Pythagorean  hodograph  defined by ( 10) 
and w(t  ) = 1 may  be  expressed as 

u2(t) - v’(t)  = (ui  - vi)bi( t )  + (uOu, - v,v,)b:(t) 

2u(t)v(t) = 2u0v0b;(t) + (uov, + u,vo)b;(t) 

+ ( 4  - v:)b:(t), ( 1 la) 

+ 2u,v, b:(t). (1 Ib) 

In integrating Equations (1 l), it is convenient to invoke 
the partition-of-unity property of the Bernstein  basis 
functions and multiply the constants of integration x, 
and yo  by the left-hand  side of (8). Thus, on making  use 
of (7), we may deduce that the Bernstein-Bkzier 
representations of Pythagorean-hodograph  cubics, 

X ( [ )  = $’ u’(t) - v’( t )  dt = X&&), 
k=O 

uo + v0 do, = - 
2 2  

3 ’  

d(ui + v,’)(u; + v ; )  

u: + a; 

dl2 = 3 5 

d23 = - 3 ’  

and these  expressions  clearly  imply the first condition 
L, = ./L,L, given in (14). Further, by the cosine law  we 
may  write 
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where,  according to Equations (1 3),  do, and d l ,  are given 
by 

d;, = ,(u: + v; ) [ (u0  + u,), + (vo + ~ , ) ~ l ,  1 

d:, = G(U; + v:) [ (u0 + u,Y + (vo+ v , ) , ] .  (17) 

On substituting (1 5 )  and (1 7) into (1 6) we obtain 

1 

from which  we  may infer that either 8, = 8 ,  or 
8, = 21r - 8,. To distinguish  between  these  possibilities, 
we observe that they  imply  sin 8, = sin 8, and 
sin 8 ,  = -sin e,, respectively. We may compute the sines 
of the angles 8, and 8, as  follows: 

where z is a unit vector orthogonal to the plane of r(t). If 
we substitute Equations (1 3) and (1 5 )  into the expressions 
( 19), we find that 

so that (1 8) and (20)  together  imply that 8, = 8,. 
Conversely,  let r ( t )  be any plane cubic  whose control 

polygon  satisfies 8, = 8, (= 8, say). We may adopt a 
coordinate system in which the control-polygon legs have 
the form 

APO = LI(1, O), 

Ap, = L,(-cos 8, sin e),  
Ap, = L,(cos 28, -sin 28),   (2 1) 

and it is then readily  verified that the Bernstein 
coefficients (c,) of the quartic polynomial x”( t )  + y’,(t) 
are given by 

C, = 9 ~ ; ,  C, = - 9 ~ ,  L, COS e, 

C, = -~L,L, COS e, C, = 9 ~ : .  (22)  

c, = 6L: + 3L,L, cos 28, 

Thus, if the control polygon of r(t) also  satisfies 
L, = &&, we find that the coefficients (22)  of 
~ ’ ~ ( t )  + y ( t )  coincide  with  those of the perfect 
square of the quadratic 

u ( t )  = 3[~,b;(t)  - L, COS e b:(t) + ~,bz(t) l ,  (23) 

so r(t) does  indeed  exhibit a Pythagorean  hodograph 
whenever conditions (14) hold. 

Recall  (Section  3) our earlier remark that Pythagorean- 
hodograph  curves of  degree n have just n - 2 “shape 
freedoms.”  Although we expect the Pythagorean- 
hodograph  cubics to exhibit  only one shape freedom, 
there are,  according to (14), apparently three associated 
with the corresponding Btzier control polygons.  Two of 
the three  lengths L, , L,,  L, can be  freely chosen, as can 
the angle 8 (= 8, = OZ). However,  two  of  these  freedoms 
are not  essential  shape  freedoms,  being  expended by the 
possibility  of reparameterization. 

In terms of (uo,  u,) and (vo, v1 ) ,  we  see that the 
polynomial u(t )  that completes the Pythagorean triple 
with x’ ( t )  and y’ ( t )  given  by (1 1) has the Bernstein- 
Btzier form 

u( t )  = (24; + v;)b;(t) + (uou, + v o v $ 0 t )  

+ <u: + v:)b:(t), (24)  

which  is  clearly equivalent to expression (23)  given in 
terms of the geometric parameters L,  , L,, L,, and 8. 

Examples 
The condition L, = G3 implies that the lengths L, , 
L,, and L, of the control-polygon legs are either identical 
or mutually distinct. In  examples (a), (b), and (c) below, 
we have L, = L, = L, = 1,  while  for (d)  and (e), 741 
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An important common property of these cubic arcs  is 
apparent in Figure 3, namely their convexity. This 
property is, in fact, intrinsic to  the Pythagorean- 
hodograph  cubics: 

Corollary 
Pythagorean-hodograph  cubics  have no real  inflection 
points. 

Proof The absence of inflections on the finite arc 
t E [0, 11 follows immediately from the “variation- 
diminishing” property of the Bernstein-Bkzier form (see 
[ l]), since the condition 8, = 8,  ensures that the control 
polygons  of  Pythagorean-hodograph  cubics are convex. 
As noted in Section 3, this feature must generalize to 
arbitrary spans t E [a,  b] of a Pythagorean-hodograph 
cubic.  (Alternately, on substituting the forms 
( 1 1) for x’ ( t )  and y’ ( t )  into the standard expression 
~ ( t )  = [ r ’ ( t )  X r”(t)] z/l r ’ ( t )13  forthe curvature, we 
may  observe that the numerator is quadratic in t with 
discriminant -4 (uov, - u , v o ~ ,  which  is  necessarily 
negative  since uo : u, # vo : vI by assumption.) I 

Now it is  well known [ 191 that every  plane  polynomial 
(or rational) cubic has a single double point, which  may 
be “at infinity.” This double point is  necessarily  real and 
is either a node or a cusp, according to whether the curve 
exhibits distinct or coincident tangents there. Nodes are 
further categorized as crunodes or acnodes according to 
whether their tangents are real or complex  conjugates- 
the former correspond to self-intersections of the real 
curve  locus, the latter to isolated  real points of the curve 
where  conjugate branches of its  complex  locus  cross (see 
also  [20]). 

Lemma 
Every Pythagorean-hodograph cubic has a crunode, the 

742 curve  crossing  itself at the two distinct real parameter 
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Proof We remark first that, according to the discussion 
of Section 3, the possibility  of an (affine) cusp has  been 
precluded by the choice w(t)  = 1. Now the double point 
of a general  cubic  is  identified by parameter values t and 
t + 7 such that 

X ( t  + 7) - x(t) - 1 1 - -x”’(t)72 + -x”(t)7 + x’ ( t )  = 0, 
7 6 2 

where the division by 7 eliminates the trivial solution 
7 = 0 to x(t  + 7) - x(t) = 0 and y(t + 7) - y( t )  = 0 for 
any t .  The condition on t such that Equations (26) are 
simultaneously  satisfied  for some value of 7 is  given  by 
the vanishing of their resultant 

= Resultantr 
x(t + 7) - x(t)   y(t  + 7 )  - y( t )  

f 
7 

with  respect to 7 ,  which  may  be  expressed as the Sylvester 
determinant [21]: 

R ( t )  = 

1 1 -x t’’ 
6 2 x’ 0 

It  may be verified that, due to a cancellation of leading 
terms, R ( t )  is (at most) quadratic in t .  Thus, if A denotes 
its discriminant, we may  identify A > 0 (distinct real 
roots)  with a crunode, A = 0 (coincident roots) with a 
cusp, and A -= 0 (complex conjugate roots) with an 
acnode. In particular, when r ( t )  has control points of the 
form (1 3)  corresponding to a Pythagorean  hodograph, 
the resultant (28) assumes the form R ( t )  = 
k[c,t2 + 2c,t + c,], where k = (u0v, - u , v o ~ / 9  # 0, 
and the coefficients c,, c, , co are given  by 
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Three  Pythagorean-hodograph  cubics with symmetric BCzier control  polygons (a), (b),  (c),  and  two  examples  with  asymmetric  poly- 
gons @), (e). 

c2 = [ (u ,  - uJ2 + (VI - V o )  1 , 

c, = [ (u,  - uo)’ + (VI - V,)’l[uou, + VoV, - u, - .001, 

co = [uou, + V0Vl - u; - V;I2 - 3(U0V,  - uIVo)2. (294 

2 2  
(29a) 

2 2  

(29b) 

Thus A = C, - C,C, = (4/27)[(~, - u0) + ( v ,  - v,)’]’. 2 2 

(u0uI - u , ~ ~ ) ~ ,  and clearly A > 0 if it is  assumed 
that u0v, - ulva # 0 and (u,  - uo)’ + ( q  - v0)’ # 0, 
i.e., that the linear polynomials u(t), ~ ( t )  are 
relatively prime and not both constants. The double 
point is  therefore a crunode, and its two parameter 
values (25) are simply the standard (real) solutions 
(-c, k &)/cz of the quadratic equation R(t) = 0. 

When  dealing  with  finite cubic Bkzier arcs, it is usually 
desirable that Equations ( 12)  define a simple curve 
segment,  devoid of  self-crossings. This can be guaranteed 
a priori by ensuring that the parameter values (25) do not 
both  lie on the interval [0, 11 for the chosen  values u,, u, 
and vo, v , .  

Now the existence of a crunode is  only a necessary 
condition for a cubic to exhibit the Pythagorean- 
hodograph  property. The crunodal cubic f ( x ,  y )  = 
x3 - x2 + y 2  = 0 [ 161, for  example, admits the 
parameterization x(t) = 1 - t2, y(t)  = t - t3 ,  and  in this 
case  we  see that x”(t) + y”(t) = 9t4 - 2t2 + 1 # cr2(t) 
for  any  real  polynomial u(t). We  now formulate a simple 
suflcient condition for a crunodal cubic to have a 
Pythagorean  hodograph. 743 
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odal plane cubics in standard form, corresponding to a choice 
ale factors p = q = 1 in Equation (30) and the sequence of I values o = 0.0, 0.5, 1 .O, 1.5, 2.0 for the parameter of the . .  

Dejnition 
The standard form of a crunodal plane cubic r(t) = 

w ,  Y(t) l  is  given by 

x(t) = p ( t 2  - l), 

Y O )  = 4 0  - @Kt2 - I), (30) 

which corresponds to a special  choice of coordinates and 
parameterization. 

We may interpret the standard form as follows: Taking 
the double point as  origin, we force x(t) and y ( t )  to 
possess a common quadratic factor  with distinct real 
roots,  corresponding to the two parameter values of the 
crunode. Now the parameterization may  be fixed  by 
assigning parameter values to any  two  points, so if  we 
take t = +. 1 for the crunode, the common quadratic 
factor will  be t2 - 1. The components of r ( t )  then 
have the form x(t) = a(t’ - l)(t - cy) and y( t )  = 
b(t2 - l)(t - ,8), and a rotation about the origin  may  be 
invoked to reduce the factor t - a in x(t) to a constant, 
giving the form (30).  With this orientation, any 
horizontal line has either one  or three real intersections 
with r( t ) ,  while  any  vertical  line  has just zero or two 

744 (counted with  multiplicity). 

Figure 4 illustrates  some  representative standard-form 
crunodal cubics.  Apart  from the independent scale 
factors p and q for the x- and y-directions,  these  curves 
are distinguished by one basic “shape” parameter, 
namely, the parameter value 0 of the x-axis intercept. If 
w = 0 the curve  is symmetric about the x-axis,  whereas it 
becomes  increasingly  skewed  as I w I increases. We  now 
show that the Pythagorean-hodograph property coincides 
with a special instance of the symmetric case,  defined by 
the ratio p / q  = h of the scale  factors. 

Theorem 
In standard form, the cubic  Pythagorean-hodograph 
curves  correspond to instances of the “Tschirnhausen 
cubic”  defined by 

x(t) = r(t2 - I), 

y ( t )  = - t(t - 1). 
J5 
&r 

Proof Consider the generic standard-form crunodal 
cubic (30), for which x ’ ( t )  = 2pt and y ’ ( t )  = 
q(3t2 - 2wt - 1). The square of the hodograph 
magnitude may  be  written as 

X’2(t) + y”(t) = $[St“ - 12wt3 

+ (4s’ + 4w2 - 6)? + 4wt + 11, (32) 

wheref= p/q .  If (32) is to be the perfect square of,  say, 
q(At2 + Bt + C), we must  have 

A’ = 9, 2AB = -1201, 

2AC + B2 = 4f2 + 4 w 2  - 6, (334 

2BC = 4w, C2 = 1. (33b) 

The first three conditions (33a) may be regarded  as  giving 
the values A = &3, B = T20, C = +-[(2/3)f2 - 13. 
Enforcing  consistency of these  values  with the last  two 
conditions (33b) then gives constraints on the quantities 
p ,  q, and w for the standard form (30) to exhibit the 
Pythagorean-hodograph property. 

Substituting for B and C into the first equation in 
(33b), we have -w[(2/3)f2 - 11 = w, and sincefZ 0 by 
assumption, this can  be  satisfied only if w = 0. Further, 
on substituting for C into the second equation in (33b) 
we have (2/3)f2[(2/3)f2 - 21 = 0, which  implies that 
f’ = p 2 / q 2  = 3 iff # 0. Thus p = f h q ,  where the 
choice of signs  corresponds  merely to a reversal of the 
parametric flow. Hence, in standard form, the 
Pythagorean-hodograph  cubics are given  by (31), 
with the quantity -r representing the x-axis 
intercept. 
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The Tschirnhausen cubic2  has apparently aroused 
interest on several  occasions,  being  known  also as 
l’H6pital’s cubic and the trisectrix of Catalan (see  [23] 
and [24] for further details-however, these  references 
offer no hint of its unique “Pythagorean-hodograph” 
nature). It is evident  from (3 1) that the single shape 
freedom of Pythagorean-hodograph  cubics  corresponds 
merely to a choice of the uniform scale  factor r (see 
Figure 5). 

5. Higher-order curves 
An important application of parametric cubics is the 
interpolation of ordered  sequences of points in the plane 
by smooth (C’) piecewise-cubic  curves,  i.e., cubic  splines. 
The arcs  comprising  such a spline are usually  considered 
in Hermite form, since the interpolation problem then 
reduces to solving a tridiagonal system  of linear equations 
for the parametric derivatives at the data points [25]. 
Unfortunately, the Pythagorean-hodograph  cubics are too 
inflexible  for  general C’ interpolation; they cannot 
interpolate with curvature continuity discrete data whose 
“shape” implies  inflections. 

To achieve  sufficient  flexibility  for  general  free-form 
design applications while retaining the advantages of 
Pythagorean  hodographs, we must  appeal to curves  of 
higher  degree. For such  curves,  however, it would  be a 
difficult and protracted task to provide  as complete an 
analysis as that given in Section 4 for the cubics.  Such an 
analysis  would  have the following principal aims: 

a. To formulate intuitive geometric constraints (such as 
(14) in the case  of  cubics) on  the control polygon that 
will guarantee the Pythagorean-hodograph property, 
or otherwise to provide  simple  geometric construction 
procedures  for  Pythagorean-hodograph  curves (i.e., not 
just substituting chosen  polynomials u(t), u(t), w(t )  
into x ’ ( t )  = w(t ) [u2( t )  - v2(t)l, y’(t) = 
2w(t)u(t)v(t) and integrating). 

b. To classify the essential shape freedoms of 
Pythagorean-hodograph  curves of a given  degree 
(e.g., the identification of the cubics  with  instances of 
Tschirnhausen’s  curve), by the analysis of their 
singular points and the identification of “standard 
forms,” and to assess the suitability of these shape 
freedoms  for  use in representative  design  problems. 

For the sake  of  brevity, we confine  ourselves here to 
just a brief  sketch of some of the salient features of 
quartic and quintic Pythagorean-hodograph  curves, and 
defer a more systematic  analysis to a subsequent paper. 

Pythagorean-hodograph quartics are cuspidal  curves 
According to the arguments of Section 3, the 

Weaver [22] quotes 1690 as the date of Tschirnhausen’s  identification of this curve; 
it was also studied by I’H8pital  in 1696. 
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h Instances of the  Tschirnhausen  cubic  [Equation  (31)]  with  the 
values 0.5,  1 .O, 1.5,  2.0, 2.5 for the uniform scale parameter r. 

corresponding to the case X = p = 1. Thus, it is 
convenient to write the monic linear polynomial w(t) in 
the Bernstein-Bbier form 

w ( t )  = -&(t) + (1 - ( )b;( t ) ,  (34) 

since we can immediately identify t = E as the location of 
the cusp.  With u(t)  and u(t) as in Equation (IO), it may 
be  verified that the Pythagorean-hodograph quartics must 
have control points of the form 

p = p - $2 - 
I 0 4 0 ‘0, 2UO’O), 

- E 2  - ‘ I ,  2 2u,v,), 

(1  - E )  2 2 
P4 = P3 + 7 ( u 1  - ‘1,  2U,’I), (354 

where  again the initial point po is arbitrary. Note that  the 
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n 

Examples of Pythagorean-hodograph  quartics:  For (a) and (c) the 
parameter value .$ of the cusp lies outside the  interval [0,  11, 
whereas  for (b) we choose .$ = 1/2. 

control polygon  degenerates if  we choose = 0 or = 1 
(p, = po in the former case, and p4 = p3 in the latter). 
Indeed, this should  have  been  expected,  since  from (9) we 
infer that r’ (0) = 4(p, - po) and r’ (1) = 4(p4 - p,), and 
wemusthaver’(O)=Oorr’( l )=Oift=Oort= l i s a  
cusp. 

are illustrated in Figure 6.  These were generated by 
making arbitrary choices  for the parameters (uo, u, ), 
(uo, v , ) ,  and E ,  and integrating the resulting  expressions 
for x’ ( t )  and y’ ( t ) .  Obviously, this approach offers 
little a priori insight  regarding the shape of the resulting 
curve. 

Figure 6 suggests that the Pythagorean-hodograph 
quartics might  also  share the convexity property of the 
cubics, and indeed it is not difficult to verify that this is 
the case. The polynomial [r’ ( t )  X r”(t)] . z is  nominally 
of degree 4 when r(t) is a quartic, but since r’(E) = 0, the 
cusp incurs a quadratic factor (t - E), in this polynomial, 
and the remaining quadratic factor has the discriminant 
A = -4(uov, - U , V ~ ) ~ ,  which  is  necessarily  negative. 

Some  examples of the Pythagorean-hodograph quartics 
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Thus, the Pythagorean-hodograph quartics have no real 
inflections. 

In the quartic case, the control polygon  is  described by 
seven geometric  parameters: the lengths L, , L,, L,, L4 of 
its  four legs and its three interior angles 8,, e?, 8,. The 
discussion of Section 3 suggests that we should be able to 
identify  from (35 )  three independent constraints on these 
parameters that characterize the Pythagorean-hodograph 
property for quartics (note that these quartics have only 
two shape  freedoms,  however). Our attempts to generate 
such constraints proved to be  somewhat disappointing, 
insofar as the resulting equations did not admit as 
intuitive an interpretation as the conditions (1 4) for the 
cubic  case. For example,  from (35 )  we deduce the rather 
obscure condition 

E2L4(31 1 - EIL: - 1(1L,L4) 

=(1-,$yL,(31E1L:-l1-E1L1L4) (36 )  

relating the lengths of the four control-polygon legs and 
the cusp location E .  Additional (independent) constraints, 
involving the control-polygon  angles,  proved to be  even 
more cumbersome and enigmatic. 

Of course, there is no unique set  of constraints, and 
more  sophisticated  analyses (e.g., Grobner basis 
reductions)  might  still  reveal a geometrically  satisfying  set 
of conditions for the control polygon. The problem of 
verifying the suficiency of any  such conditions for the 
Pythagorean-hodograph property becomes  increasingly 
difficult  as we proceed to higher-order  curves,  however. It 
may  be that control-polygon constraints are not, in 
general, a fruitful means of characterizing the higher- 
order  Pythagorean-hodograph  curves for practical use; 
alternate characterizations and/or construction 
procedures,  which offer insight into  the curve shape, 
would then be desirable, 

Regarding the shape  freedoms of the Pythagorean- 
hodograph  quartics, we observe that since  they are 
rational curves, their singularities must be “equivalent” 
to three double points [ 161. Thus, if  we compute the 
polynomial R( t )  defined by (27) for a generic 
Pythagorean-hodograph quartic, it will  be  of  degree  6. 
However, we are already  aware that ,$ must be (at least) a 
double root of R(t) ,  and the problem thus reduces to 
characterizing the nature and distribution of the 
singularities  corresponding to the roots of the quartic 
equation R(t)/(t - [y = 0, relative to the cusp at t = E .  
In principle, this may be achieved by invoking Ferrari’s 
method  [21], but since the calculation is quite laborious 
we do not pursue it here. 

The Pythagorean-hodograph quintics are realized by 
choosing either X = 0, p = 2 or X = 2, p = 1. The curves 
corresponding to the former case are devoid of irregular 
points,  while  those  corresponding to the latter have either 
two ordinary real  cusps, one real  second-order irregular 
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point, or no real  irregular points at all,  according to 
whether the discriminant of w ( t )  is positive,  zero, or 
negative. 

When w ( t )  is a constant and u(t) ,  ~ ( t )  are quadratic, 
the control points have the form 

1 2  2 
PI = Po + $u0 - V o ,  2U,Vo), 

correspond to the case A = 0, p 2 ,  while for (c) and (d) we 
” 

We mention just one simple constraint on the lengths of 1 have A = 2, p = 1. For (c), the roots [,, .$ of w(t) are distinct, 
the control-polygon legs that arises  from  expressions 1 giving two  cusps, whereas for (d) we set el = t2, resulting in 
(37) in a straightforward manner, namely 1 Just one tangent-continuous irregular point of infinite curvature. 

$ Note the inflection in (a). 

L2/L4 = JL,/L,. (38) 

On the other hand, if w ( t )  is quadratic and u(t), ~ ( t )  are 
linear, the control points become 

(39a) If tI and f Z  are the parameter values  of the two  cusps, 
the Bernstein  coefficients  of w( t )  in (39) are given by 
wo = 5 1 5 2 ,  w, = -[(I - 5I)tZ + (1 - 52)5,1/2, 
WZ = (1  - 5I) (1  - 52). 

Examples of both the cuspidal and noncuspidal 

(39b) Pythagorean-hodograph quintics are shown in Figure 7. 
Again, these were generated “blind” by freely  choosing 

(uo, u , ,  u2) and (v0, uI,  v2), as appropriate. 

for a quintic, and in the cuspidal case it must contain 
the factors ( t  - Ely and (t - t2)’, the discriminant 
of the remaining quadratic term again  being 
A = -4(u0vI - u,v,,)Z < 0. The cuspidal quintics are 

(3gC)  therefore  necessarily  convex, but  it is evident from 
Figure  7(a) that the noncuspidal quintics are the 
lowest-order  Pythagorean-hodograph  curves that exhibit 
real  inflections.  (When  cusps occur, we interpret 
“convex” to mean that the center of curvature lies 
consistently to the left or right as we traverse the curve in 

(394 the sense  of  its parameterization; see Figure  7(c).) 
For quintics, the polynomial (27) is of  degree  12 in 

general, and  in the cuspidal  case and E2 are (at least) 
(39e) double roots of R(t) .  Here the analysis of the singular 

the parameters (uo, ul), (u0, vI) ,  and ( tI ,  t2), or 

Now the polynomial [r’ ( t )  X r” ( t ) ]  . z is of  degree 6 
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points of Pythagorean-hodograph  quintics-and its 
implications for the shape  freedoms of these curves-is 
more  difficult,  since we cannot solve  by  radicals  for the 
parameter values of the singular  points, in terms of the 
coefficients  of u(t), v( t ) ,  and w(t ) .  

6. Arc length 
The arc length  along a polynomial curve r(t) = 
(x@),  y(t)) increases at the rate 

ds 
dt 

with  respect to the parameter t. Measuring s from the 
point t = 0, we may  write 

s ( t )  = I’ Jx”( t )  + ~ ’ ~ ( t )  dt, (41) 

but this  integral  does not, in general, admit a closed-form 
expression in terms of elementary  function^.^ Computing 
the arc lengths of polynomial curve segments thus usually 
entails an approximation by means of numerical 
quadrature, in specific  instances. 

If the curve r ( t )  has a Pythagorean  hodograph, 
however, there exists a polynomial o( t )  such that 

form 

s( t )  = 1 I u(t)l dt. (42) 

Indeed, if r ( t )  has  been constructed by choosing 
polynomials u(t) ,  v ( t ) ,  w ( t )  and integrating the forms 
(4), we already  know that a( t )  = w(t)[u’(t) + v2( t ) ] .  
Now the need to take the absolute value of u(t)  in 
evaluating (42) can be a considerable inconvenience, so 
we consider  first  those  cases  where a(t) does not change 
sign. 

assumption, a(t)  will have no real  roots, and may be 
assumed  positive for -m < t -= +m, when w ( t )  has no 
real  roots.  In particular, if w( t )  = constant, u(t)  will be of 
degree n - 1 and may  be written in the form 

” - JxV2(t)  + y’2( t )  (40) 

+ ~ ’ ~ ( t )  = a2(t) ,  so (41) can be rewritten in the 

Since a(t) = w(t) [u2(t )  + v 2 ( t ) ]  and GCD (u, v )  = 1 by 

n- 1 

a( t )  = uktk > o for -m < t +w, (43) 
k=O 

when r ( t )  is a Pythagorean-hodograph curve of  degree n. 
The arc length s of r( t ) ,  measured  from t = 0, is then 
simply the polynomial function 

a parametric  curve  was  said to be rectifiable if its arc  length  could be expressed  by 
elementary  functions of the  parameter [26]. Thus, the  family of curves  identified  in 
Section 3 might just as well be termed  the  “rectifiable  polynomial  curves” 
(M. A. Sabin,  Cambridge,  England,  personal  communication, 1989). 

Classically,  the  problem of determining arc lengths was known as “rectification,”  and 
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ukk- l tk  
s ( t )  = - 

of the parameter t. In this case, s ( t )  is  clearly monotone- 
increasing  with t ,  since  its  derivative a( t )  is  positive 
for  all t. 

Example 
We content ourselves  with a very simple  example: the 
Tschirnhausen  cubic (31) ,  for  which we have x ’ ( t )  = 2rt, 
y’ ( t )  = +r(3t2 - l)/&, and a( t )  = I r ) ( 3 t 2  + I ) /&.  
On  integrating, we  see that the arc length of this curve, 
measured  from the x-axis intercept, is given by the simple 
polynomial expression 

k=  I k (44) 

s ( t )  = - t ( t2  + 1). I rI 
d3 

(45) 

For a Pythagorean-hodograph  curve,  finding the 
parameter value to at which a prescribed total arc length 
so is attained entails only the determination of the real 
root of the polynomial equation s( t )  - so = 0 (where s ( t )  
is  given by (44)-note that the monotonicity of s ( t )  
ensures that there is  exactly one such root). This should 
be  compared  with the problem of determining, by means 
of numerical quadrature, when the integral (41) attains 
the desired  value so as its upper limit of integration is 
varied. 

Similarly, determining a sequence ( t k )  of parameter 
values  corresponding to points spaced at uniform arc- 
length  intervals As along the curve requires the solution 
of the sequence of polynomial equations s ( t )  - kAs = 0 
for k = 1 ,  2, + . (each of  which  has a unique real  root). If 
tk is the solution to the kth equation, it is expected that 
the expression tk + As/a(tk) will provide an excellent 
starting approximation for an iterative (e.g.,  Newton- 
Raphson) scheme to solve  for tk+l when As is sufficiently 
small. 

Suppose  now that w ( t )  is not a constant. In that case, 
we need  only  concern  ourselves  with the real roots of 
w ( t )  of odd multiplicity,  since it is  only at those  values 
that ~ ( t )  changes sign (the curve always  suffers a tangent 
reversal at such  points). Thus if t ,  , 1 - , tN denote, in 
ascending order, the real odd-multiplicity roots of w(t ) ,  
we must  break up the integral (42) at those  values ( t k )  
that lie  within the range of integration and then sum the 
integrals  of a(t)  over the resulting subintervals with 
alternating signs.  Clearly, the arc-length computation is 
more  involved in cases  where w(t )  # constant, since it 
necessitates computing the roots of w. 

Finally, it should  be noted that if the curve r ( t )  is 
multiply traced over part or all  of its real  locus (a 
possibility that cannot easily  be eliminated in  our 
construction procedures  for  Pythagorean-hodograph 
curves), the arc-length computation will  reflect this 
behavior. 
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7. Offset curves 
If n(t) is the unit normal vector to a  polynomial  curve 
r(t) = (x( t ) ,  y ( t ) )  at each point, the offset to  that curve at 
(signed) distance d is the locus  defined by r,(t) = 
r(t) + dn(t). Explicitly, the components of r,(t) may 
be written  as 

x&) = x ( t )  + dy’ ( t )  
3 

J x ’ 2 ( t )  + y”(t) 

Jx”(t) + y”(t) 
Y,( t )  = - 

dx’ ( t )  
(46) 

Although Equations (46) constitute a  precise  description 
of the offset curve, the presence of the radical 
C ( t )  + y”(t) is unfortunate from the perspective of 
modeling  systems that adhere to polynomial and 
rational forms as their canonical representation. The 
geometric algorithms of such  systems are often crucially 
dependent on unique attributes of these forms 
(convergent  subdivision  algorithms, the variation- 
diminishing property, etc.), and their robustness  may be 
severely compromised in attempting to accommodate 
(46) ad hoc. 

equations, if  we are prepared to accept representations 
that simultaneously describe the offsets at distances +d 
and -d from a  given  polynomial or rational curve r(t). 
For example, the offsets to the parabola r ( t )  = (t ,  t 2 )  
constitute an irreducible  algebraic curve of  degree 6 ,  
given  by [7]: 

L(x ,  y )  = 1 6x4(x2 + y’) - 8x2y(5x2 + 4y2) 

- (48d2 - l)x4 - 32(d2 - 1)x2y2 

+ 16y4 + 2(4d2 - 1)x2y - 8(4d2 + l ) y 3  

It  is  possible to describe  offsets by implicit polynomial 

+ 4d2( 1 2d2 - 5)x2 + (4d2 - 1 )2y2 

+ 8d2(4d2 + I)y - d2(4d2 + 1 )2 = 0. (47) 

Equation (47) is  actually the simplest (nontrivial) implicit 
equation for the offset to a polynomial curve; in general 
&,(x, y )  is of degree 4n - 2 or 6n - 4, according to 
whether r(t) is a  polynomial or rational curve of  degree n 
(see [71). 

Considerable attention has  recently  been  devoted to 
piecewise-polynomial approximation schemes  for offset 
curves  (see  references  cited in Section 1). However,  such 
an approach, although perhaps  unavoidable in many 
practical  circumstances,  is fundamentally alien to the 
desire  for truly robust geometric  algorithms. The 
whagorean hodographs identify a  family of curves 
whose  offsets  may  be  represented precisely in terms of 
rational forms and are thus fully compatible with the 
geometric functionality of contemporary modeling  systems. 
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If r(t) = (x@) ,  y ( t ) )  is  a  polynomial curve of  degree n 
with  a  Pythagorean  hodograph  of the form (4) such that 
w ( t )  has no real  roots, then a( t )  = dx”(t )  + y’”t) must 
be a  polynomial of degree n - 1 that is positive  for  all 
real t .  The offset r,(t) at distance d to r(t) may then be 
expressed in the rational form (X( t ) /W( t ) ,  Y(t)/W(t)],  
where 

2n- I 

X ( t )  = a(t)x(t) + dy’( t )  = Xkbr- l ( t ) ,  (48a) 
k=O 

I 2n- 1 

Y( t )  = a( t )y ( t )  - dx’(t) = Ykb;-L(t), (48b) 

W(t)  = u(t)  = w k b y ( t ) .  (484 

k=O 

2n- I 

k=O 

At least one of X(t ) ,  Y ( t )  is  of proper degree 2n - 1, and 
W(t )  is of proper degree n - 1 (the latter being  expressed 
in the degree-elevated  form (48c) so as to give an explicit 
description of the offset r,(t) in terms of its 2n control 
points pk = (Xk/ W,, Yk/ W,) and associated  “weights” 
wk)* 

Now  if r’(t) = ( ~ ’ ( t ) ,  y’( t ) )  is expressed in the form 
(9) and u(t)  has  Bernstein coeficients uo, ., an-,, we 
may  invoke the degree-elevation and arithmetic 
procedures  for  polynomials in Bernstein fornl [ 181 to give 
the control points of the rational offset curve (48) 
explicitly as 

yk, wk) 

rnin(n-I,k) ( k - j )(7) 
= c  

J=rnax(O,k-n) (2” ;  1) 

X [Uj(Xk-,, y k - j ,  1) + dn(Ay,, -AX,, o)] (49) 

f o r k = 0 , . . . , 2 n -  1. 

beware the possibility of real odd-multiplicity roots in 
w(t).  Since  they incur a sudden reversal  of the normal 
vector n(t)  to the original curve, we must expect the offset 
curve to suffer a point discontinuity at these parameter 
values.  It is therefore prudent to break up the original 
curve at the real  odd-multiplicity roots t ,  , 1 . . , tN of ~ ( t ) ,  
thereby ensuring that each curve subsegment will have  a 
continuous offset.) 

Despite its rather daunting appearance, the formula 
(49) is not difficult to implement in practice. The offsets 
to Pythagorean-hodograph  cubics,  for  example, are 
merely rational quintics (an eminently manageable curve 
form  as compared to the general cubic offset-an 
irreducible  algebraic curvef,(x, y )  = 0 of  degree 10 749 

(As in the case  of  arc-length computation, one should 
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The offset at distance d = 1 to the Pythagorean-hodograph cubic 1 of Figure  3(e).  The  offset  curve has a precise  rational  quintic 
parameterization; the projective coordinate or  “weight” of each 

I BCzier control point is shown. 

. . .. . . .. .. . ... ” “. .. .“.I 

having  66  terms), and in  that case Equations (49) 

where we use the form (23) for u(t )  in terms of the 
750 geometric parameters L,  , L,, L3,  and 0 (we drop a 

common factor 3 above,  since an arbitrary scaling  may 
be applied to X @ ) ,  Y(t), W(t) without altering the curve). 
Figure 8 illustrates the offset to one of the cubic examples 
of  Section 4, constructed according to Equations (50). 

8. Concluding remarks 
We have not attempted an exhaustive  analysis of 
Pythagorean-hodograph  curves  here;  for  higher-order 
curves,  especially, the details are too voluminous for an 
introductory paper. Our purpose was rather to outline 
basic  defining  characteristics, construction procedures, 
and useful  properties  for various applications.  It is hoped 
that this will stimulate further study and assessment  of 
the practical  utility of these  special  polynomial  curves. 

quintics appear to enjoy a measure of “shape freedom” 
similar to that of general  cubics,  they  may 
constitute a viable alternative to the latter in free-form 
design  applications,  affording the attractive attributes 
discussed in Sections 6 and 7 at the expense of a modest 
increase in degree. (In Section 5 we mentioned the 
importance of Hermite forms  for the construction of 
spline  curves; in a forthcoming paper [27] we shall  show 
that Pythagorean-hodograph quintic Hermite interpolants 
exist  for arbitrarily chosen end points and derivatives of 
an arc. Furthermore, these interpolants are easily 
computed and exhibit “shape” properties  very similar to 
those  of their standard cubic counterparts.) 

polynomial  curves  has  straightforward  generalizations to 
other geometric  forms that are worthy of detailed 
investigation. We conclude by  briefly outlining a few  of 
these. 

In particular, since the Pythagorean-hodograph 

The notion of Pythagorean  hodographs for plane 

Rational curves The rational curve r(t) = 
{X(t) /W(t) ,  Y(t)/W(t)) has the hodograph 

x’(t) = 
W ( l ) X ’ ( t )  - W’(t)X(t) 

W’(t) 
7 

(For more on  the hodographs of rational curves,  see 
[28].) Here we are interested in those  cases  where the 
polynomials WX’ - W ’ X and WY’ - W ’ Yare 
members  of a Pythagorean  triple, so that  the quantity 

” ds J( WX’ - W’X)’ + (WY’ - W’YY 
dt 
- 

W2 
(52)  

reduces to a rational function of the parameter t .  Clearly 
WX’ - W‘Xand WY’ - W’  Ymust be ofthe form 
w(t)[u’(t) - v 2 ( t ) ]  and 2w(t)u(t)v(t),  and the problem  is 
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to investigate the implications of  these forms for the 
polynomials X( t ) ,  Y(t) ,  W(t )  individually,  i.e.,  for the 
nature of the rational curves that have rational functions 
of t  for dsldt. 

Space curves A twisted  polynomial curve r(t)  = 
{x( t ) ,  y( t ) ,  z ( t ) )  has a three-dimensional  hodograph 
r’(t) = ( ~ ’ ( t ) ,  y ’ ( t ) ,  z f  ( t ) ) ,  and we are interested in 
the circumstances under which the three elements 
of this hodograph give  rise to a polynomial a( t )  for 
the quantity 

ds 
dt 

That the hodograph components be  expressible in terms 
of four real  polynomials h(t),  u(t), v ( t ) ,  and w ( t )  in the 
form 

X ’  = h[u - u - w 1, 

y’ = 2huv, 

z’ = 2huw (54) 

is  evidently a suficient condition, since then dsldt = u(t )  

= h(t)[u2(t)  + v 2 ( t )  + w2(t ) ] ;  if h(t)  is  generalized to a 
rational function it is also necessary. In general, one may 
consider  curves of any dimension N, and inquire about 
the conditions under which the sums of the squares of N 
polynomials-the  hodograph  components-coincide 
with the perfect square of some other polynomial. 

- = J x f 2  + y’2 + z r 2 .  (53) 

2 2 2  

Surfaces For a parametric polynomial  surface 
r(u, v )  = (x(u, v ) ,  y(u, v ) ,  z(u, v ) ) ,  the analog to the 
quantity ds/dt = I r’(t) I = J x l 2 ( t )  + y”(t) for a 
plane  curve is 

where  partial  derivatives  with  respect to u and v are 
denoted by corresponding  subscripts. The integral of (55) 
over  some parametric domain (u, v )  E Q gives the 
corresponding  surface area A,,  while the surface normal 
vector 

is  unitized by dividing by (55). Thus, we are interested in 
triples of bivariate polynomials x(u, v ) ,  y(u, v ) ,  z(u, v )  
such that the argument of the radical in (55) is the perfect 

square of  some other bivariate  polynomial u(u, u).  If, in 
addition, we could arrange that a(u, u )  > 0 over the 
entire real  plane, the offset surface r,(u, u )  = 
r(u, u )  + dn(u, v )  would  be rational, an especially 
attractive prospect  since the problem of  reliably 
approximating offset surfaces [29] is qualitatively more 
difficult than in the plane curve  case. 
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