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Computer-aided
design of slider
bearings

in magnetic
disk files

by K. L. Deckert

This paper reviews the application of lubrication
theory to slider bearings in magnetic disk files.
For more than thirty years, slider bearings have
been used to maintain close and precise
spacings between recording transducer and
recording medium in disk files. Computer
modeling has been central to the design and
performance analysis of these systems. The
topics covered are the basic design, sensitivity
and tolerance analysis, dynamic characteristics,
and response to disk excitations from the disk.
The main purpose of this paper is to review the
use of computer modeling in design of slider
bearings; however, the discussion of slider
modes in the slider dynamics section is new.

Introduction

More than one hundred years have passed since the
publication of Osborne Reynolds’ seminal paper on the
theory of hydrodynamic lubrication [1]. Since then, the
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application of hydrodynamic lubrication theory has
played a major role in the development of the
mechanical systems that are so important for the
functioning of modern society. This paper is about an
application of hydrodynamic lubrication theory to a
critical part of the magnetic disk storage devices used by
most of today’s computers.

A fixed-disk drive has one or more metal disks stacked
on a rotating spindle. The disk surfaces are coated with a
thin magnetic material on which data can be recorded
and read. A transducer, or read/write head, records or
reads the data from narrow concentric tracks of the
magnetic material. The transducer, in turn, is attached to
a “slider” suspended close to the recording surface by a
mechanism that can find and follow the recorded data
tracks. The spacing between slider and disk is controlled
very precisely by a lubricating film of air that forms
between them. The combination of slider, air film, and
moving disk surface is an air-lubricated slider bearing
and is commonly called a slider bearing or an air bearing.

It is possible to design the slider so that it operates
reliably with a spacing of a fraction of a micrometer. In
general, higher data recording densities require smaller
head-to-disk spacings; at the same time, smaller spacings
impose tighter tolerances on the smoothness of the disk
surface in order to avoid failure due to excessive contact
between the slider and disk. The problem for designers of
slider bearings in disk files is to satisfy the competing
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requirements of high-density recording and reliability of
the slider-disk interface.

The magnetic disk storage drive was first developed by
IBM and introduced as the IBM 305 RAMAC system in
1957 [2]. This first system used a hydrostatic bearing
(pressurized by an external air source), but succeeding
drives soon switched to hydrodynamic bearings
(pressurized by the boundary layer of air moving with the
rotating disk surface). The most common air bearing in
use today is based on the so-called taper-flat bearing, in
which the air bearing surfaces consist of two or more
narrow rails resembling skis, with short leading taper
sections followed by longer, flat portions. This is the type
of bearing that first appeared in 1973 in the IBM 3340
disk file, which was developed with the internal code
name “Winchester.” Figure 1 is a photograph of the
Winchester slider and suspension.

When the first disk files were being developed, it was
recognized that computer modeling was needed to help
in the design of sliders, and pioneering work was done by
Gross [3] and Michaels [4] at IBM. The computer
program they created has been continually modified and
improved. It was, and still is, a very important tool for
slider bearing design. Details of the evolution and
innovations in slider design can be found in the 25th
anniversary issue of this journal [5].

Theoretical considerations

Figure 2 is a sketch of a two-rail, taper-flat slider,
showing the coordinate system and slider position
variables. The flying height 4, is the distance between the
read/write element and the disk surface. The spacing
function A(x, y, t) between disk and air bearing surface
depends upon the geometry of the slider, the flying
height, and the slider pitch and roll angles ¢ and ¢. The
air pressure between slider and disk is governed by the
time-dependent compressible Reynolds equation

a "
1247 (ph) =Y - (K pVp + 6X,p, "V = 6uVph), (1)
where

p(x, v, t) = bearing pressure,

h(x, y, t) = bearing spacing,

V(x, y) = disk surface velocity vector,
u = viscosity of air,

A, = mean free path of air molecules,

a
p, = ambient air pressure.

For most problems, the slider, constrained by the
suspension, has but three degrees of freedom of motion
given by the z motion of the pivot point together with the
pitch and roll motions, # and ¢. The equations of motion
of the slider are then given by

IBM J. RES. DEVELOP. VOL. 34 NO. 5 SEPTEMBER 1990

Winchester slider and suspension.

Disk motion

(xp, Y zp)

Read/write
element

! Slider and disk showing the coordinate system.

mz+kz=L + f(p — p,) dxdy,
B

Li+ko=P + f(p = pX, ~ x) dxdy + 8.z,
B

de;+k¢¢=Rs+ f(p_pa)(y_yp) dXdy+SyZP’
B

sl 2 h \ph + %apa)] dxdy, @

where

B = air bearing surface,
(m, 1,,1,)= slider mass and pitch and roll inertias,
(k,, k,, k,) = suspension spring stiffnesses,
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(L,, P, R,) = suspension load and pitch and roll
moments,
(X,» ¥,» 2,) = suspension pivot coordinates,
(S,, S,) = § = air drag on the air bearing
surface.

Equation (1) contains the term 6, pah2 V p, which is not
in the classical Reynolds equation. This term appears
when the lubricating fluid, in this case, air, “slips” relative
to the air bearing surface instead of sticking to the
surface, as in the classical case. It was first derived by
Burgdorfer [6], who assumed that molecules of air are
diffusely reflected from the surfaces. In more detailed
analysis, molecular reflection depends on the type of
surface [7]. A fundamental assumption in the derivation
of the Reynolds equation is that the mean free path, X, of
a molecule of the lubricating fluid is small compared with
the spacing between the bearing surfaces. As the bearing
spacing is reduced to meet ever-higher recording density
requirements, this assumption is violated, and the
validity of the Reynolds equation becomes suspect. The
equation with slip was designed to improve the validity at
smaller spacings, and experience shows that the results it
gives are better than expected [8]. More accurate
solutions at very small spacings involve the solution of
the Boltzmann equation [9].

Since these equations have no general analytic
solutions, they must be solved numerically. The
numerical solution of Equation (1) has a long history of
its own, which is not covered in detail here. Successful
programs have been written to compute solutions based
on finite differences [10] and finite elements [11, 12]. At
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IBM, the main slider design program that has evolved
through the years solves the steady-state form of the
equations, obtained by setting time-dependent terms to
zero. This finite difference program, subsequently
referred to as the Steady State Air Bearing Program, is
based on a technique discussed in the review paper of
Castelli and Pirvics [13]. A separate program for solving
the time-dependent equations, subsequently referred to as
the Dynamic Air Bearing Program, is used to study slider
dynamics.

In what follows, four of the many possible uses of these
programs in slider design are discussed. These are the
design of the air bearing geometry, sensitivity and
tolerance analysis, slider air bearing resonant frequencies,
and the response of the system to disk runout. The
ultimate goal of the air bearing designer is to produce a
design that meets magnetic recording requirements with
maximum reliability of operation and minimum cost of
production.

Air bearing geometry

One important function of the slider in a disk file is to
support the magnetic read/write element at a prescribed
flying height from the disk surface, which is determined
by the magnetic properties of the recording surface, the
desired recording density, and the minimum allowable
error rate. It should be noted that errors in recording are
corrected by redundancy coding, so that the probability
of final error is extremely small. In addition to flying
height, the designer may have requirements for the slider
flying pitch and roll angles. The combination of steady-
state flying height and pitch and roll angles (4,, 0, ¢) is
called the flying attitude of the slider.

The Steady State Air Bearing Program is most useful
for finding a desirable air bearing geometry. Most often,
the designer works within a set of constraints, such as
overall slider dimensions, placement of the read/write
element, and shapes preferred for manufacturability. The
design process is usually evolutionary, in that a previous
design is modified to account for changes in disk
rotational speed, suspension characteristics, or new
flying-attitude requirements.

The most general calculation performed by the steady-
state program is finding the flying-attitude values so that
the resulting hydrodynamic pressure, integrated over the
air bearing surface, gives a lifting force and pitch and roll
moments that balance the external forces and moments
from the suspension. The result is called a full steady-
state flying-attitude solution. In some cases, all that the
user requires are the force and moments for a given set of
flying-attitude values. These are called fixed-attitude
solutions. In addition, the designer can choose to
calculate a partial steady-state flying-attitude solution in
which one or more of the flying-attitude values are held
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fixed. A good example is the case in which the roll angle
is held fixed at zero and the disk velocity is assumed
constant over the width of the slider. Then, for
symmetric air bearing geometries, the pressure has
symmetries that can be exploited to significantly reduce
the required computation. The usefulness and value of
the steady-state program as a design tool is greatly
enhanced by the availability of a wide variety of such
options.

Once a design is found that produces the desired flying
attitude, the steady-state program can be used to
calculate useful performance characteristics. Some
possibilities include calculation of flying attitude versus
such variables as disk surface velocity, suspension load
force, or taper angle. Figure 3 is an example of a curve of
flying height versus velocity for the slider used in the
IBM 3380 disk drive. This curve can be used to
determine the so-called take-off/landing velocity of the
disk, which affects the time that the slider is in contact
with the disk during start/stop.

Static air bearing stiffnesses can be found by
calculating the change in lift force and moments of the
bearing from fixed-attitude solutions that are close to the
steady-state solution.

Sensitivity and tolerance analysis
There are a surprising number of physical parameters
that influence the flying attitude of a slider. During the
fabrication of the slider, these parameters will vary
statistically from their design values; thus, the flying
attitude of a sample of those sliders will also have a
statistical distribution. The slider designer must
understand the parameters that influence the slider flying
attitude. He needs to know their sensitivities and their
expected statistical distribution in the fabrication process.
From these data he can determine the relative
importance of each parameter and make more intelligent
decisions in specifying their design values.

Let X be a vector whose components are the important
slider parameters, and let the dependence of the flying
height /# on the parameters be 4 = f(X). Then the first-
order approximation to the change in flying height Ah
due to small changes in the parameters Ax; is given by

of of of

Ah=—L Ax, + = Ax, + - +
ax, N ax, %2

Y Ax, . 3)

n

The partial derivatives in the above equation are called
sensitivity coefficients. The Steady State Air Bearing
Program can be used to estimate the sensitivity
coefficients by computing the change in flying height due
to a small change in each parameter individually and
then forming the corresponding difference quotients.
Sensitivity coefficients for the pitch and roll flying
attitudes can be computed at the same time.
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The sensitivity coefficients are used in tolerance
analysis, which is the determination of how the
fabrication tolerances of individual slider parameters
affect the final flying-attitude tolerances. The allowable
tolerance of the flying attitude of the sliders that are built
into the disk file is determined by performance and
reliability considerations. Once these are given, the slider
designer and process engineers determine the tolerances
of each individual parameter so as to maximize the
quality of the finished product while minimizing the
fabrication cost.

Experience shows that the statistical variation of each
process parameter can be approximated by a normal
distribution. If ¢, is the standard deviation of one of these
parameters, then the flying-height deviation due to this
parameter alone would be

_of

6=, @

When normal distributions are combined, the variances
or squares of the standard deviations add linearly, so an
equation for the total flying-height variance resulting
from individual parameter variances can be written

) if 2 ﬂ 2 <af >2
trh—(ax U;) +<6x2 az> + .-+ o O] - 5)

n

Details can be found in a paper [14] that reports on
results using an experimental slider at the IBM GPD
Development Laboratory in San Jose. Figure 4 shows the
histogram of flying-height measurements of a sample of
the sliders studied in that paper, together with a fitted
normal distribution. The value of flying-height standard
deviation as calculated in [14], using Equation (5), is
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(a) Pivot, (b) pitch, and (c) roll impulse response of 3380-type
slider.

state with initial velocities given to the flying-attitude
parameters. Mathematically, the resulting solution is
identical to the solution using zero initial velocities and
an impulsive forcing function. Figure 5 shows the z
motion at the pivot, the pitch motion, and the roll
motion due to simultaneous pitch and roll impulses for a
3380-type slider operating at 40 meters per second.
Because the system is nonlinear, the strength of the
impulse used must be less than unity in order to keep the
amplitude of the resulting motion small. It can be seen
that the pivot and pitch motions contain two or more
frequencies, while the roll motion contains essentially
one frequency. This is characteristic of symmetric sliders
operating on large disks. Asymmetries, such as rails of
different widths or the suspension pivot point offset from
center, will increase the coupling of the roll motion with
pitch and spacing motions.

For small-amplitude oscillations, one can model this
system as a linear, three-degree-of-freedom system of
masses, springs, and dampers. The general impulse
response of such a system can be written as

3
=3 aq,e " sin V1 - § wt,

Jj=1

N
|

3 ——
f=3 a,e " sin Ji- O owt,
J=1

3
o= 3 a,e " sinV1l - {7 wt, (6)

14.34 nanometers. This compares very well with the
measured value of 13.95 nanometers.

Slider dynamics
The Dynamic Air Bearing Program solves Equations (1)
and (2) for a variety of forcing functions and conditions
not included in these equations. For a force applied at
the suspension pivot equal to that applied by the actuator
when moving the slider from one data track to another,
one can study the resulting flying-height variations and
dynamics. If a given non-flat disk surface function
s(x, y, t) is included in the calculation of the spacing
function A(x, y, t), one can study the effect of the disk
surface on the slider dynamics. These are forced motions
of the system, which can be better understood if the free
vibrations or resonant modes of the system are known.
The resonant modes of the slider air bearing system
can be found by analysis of the system impulse response.
The Dynamic Air Bearing Program produces impulse
responses by solving the equations starting from steady
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a,; = amplitude coefficient,
, = resonant frequency,
{, = damping factor.

The amplitudes, frequencies, and damping coefficients
that give a best fit to the impulse responses from the
Dynamic Air Bearing Program can be found by the use
of a nonlinear least-squares fitting technique [15]. When
this is applied to the data shown in Figure 5, the follow-
ing frequencies and damping factors are obtained (note
that the frequencies are given in hertz rather than radians
per second):

f = 25250,
¢, = 0.033,

f, = 16 800,
¢, = 0.055,

f, = 24 350,
¢, = 0.016. 7)

One can gain insight into the normal modes of the slider
by solving Equation (6) for the damped sinusoids in
terms of z, #, and ¢. First define the dimensionless vector
g, with three components

g, = e 9" sin V1 — {f !

Thus,

forj=1,2,3. (8)
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3
z=% a,,q;,

Jj=1
3

6 = 2 a2jqj’

j=1
3
¢= 2 a,,4. 9)
j=1
Then rewrite Equations (6) in terms of the vector 4 and
solve the equations for the vector ¢ in terms of z, 4, and
¢. When the amplitude coefficients q,; from the best fit of
the data shown in Figure 5 are substituted, the result is
given by

—3.48 x 10°(z — 0.0816 — 0.351¢)
g=| 474 x 10°(z + 0.2150 + 0.003¢) (10)

—3.37 % 10°(z — 0.0830 + 0.040¢)

To understand these equations, one should consider the
expression for the displacement from steady state d(x, y)
of a given point on the slider as a function of the slider
attitude. The angles involved are of the order of
microradians, so that the tangent of an angle can be
approximated by the angle; therefore,

dix, y) =z —(x=x)0 + (¥ — y,)0. (1n

Note that the negative sign for the 8 term results from the
choice of coordinates and slider orientation in Figure 2.
Comparing (10) with (11) reveals that the modes g, for

j =1, 2, 3 can be thought of as motions of distinct points
on the slider. For example, the first mode, g, , is the
motion of a point whose X, y coordinates are given by

-0.081 = —(x - x,),

-0.351=(y - »). (12)

The length unit of the Dynamic Air Bearing Program is
centimeters, so ¢, represents a point located 0.081 cm in
x and —0.351 cm in y from the pivot point. Mode points
associated with the other two components of ¢ are
similarly defined. Suppose the initial conditions were
chosen so that only one of the modes was activated, with
the amplitude of the other two modes being zero. Then
the points on the slider associated with the inactive
modes would have zero displacement, and, since the
slider is a rigid body, its motion would be a rotation
about an axis passing through these inactive-mode points.
Figure 6 is a sketch of the slider showing the three
mode points and the resulting axes of rotation for each
mode. It can be seen that mode 1 is a roll mode, mode 2
is a pitch mode, and mode 3 is a combined pitch and roll
mode. In general, the force-free motion of the slider is a
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linear combination of these three modes. This analysis
gives significant insight for understanding experimental
measurements.

Response to disk runout

One purpose of the air bearing is to keep the slider from
contacting the disk during operation. Contact does occur
during the starting and stopping phases when the slider
“takes off” from and “lands” on the disk surface. An
interesting simulation of start/stop operation can be
found in Benson and Talke [16]. The subject of the
following is the effect of disk motion on the performance
of the bearing.

The steady-state program assumes an ideal, perfectly
flat disk; however, real disks are not perfect, and the disk
surface as seen by the slider will move in the z direction
depending on the disk surface geometry and the method
of attaching the disk to the spindle. This motion is called
runout, and its magnitude is of the order of micrometers.
Since the dimensions of the slider are of the order of
millimeters, the disk surface in the air bearing can be
represented by a second-order approximation as follows:

SGoyy=c+ 5y 4% +62—Sx2+———625x +a—2§2
=TS T o™ T axay? T e

(13)

Each term in this expansion can be associated with a
corresponding term of /(x, y, t) in Equation (1). The
constant term ¢ is an overall change of flying height; the
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first partial derivatives are slopes in the x and y
directions, thus equivalent to slider pitch and roll; and
the second partial derivatives are related to curvature.
The second partial derivative with respect to x multiplied
by x” is commonly called the crown, and the second
partial derivative with respect to y is known as camber or
cross-curvature. The remaining mixed partial derivative
term represents the twist of the surface. Therefore, the
effect of a moving disk surface can be modeled by adding
time-dependent spacing, pitch, roll, crown, camber, and
twist terms to /(x, y, t). The time-dependency can be
represented as sines and cosines, with amplitude,
frequency, and phase determined by the type of disk
runout (e.g., warped disks or imperfect spindle bearings).

The disk runout observed experimentally occurs at
frequencies well below the air bearing resonant
frequencies. At low frequencies, the stiffness of the air
bearing causes the slider to follow the spacing, pitch, and
roll of the disk surface except for a small component due
to the inertia of the slider. To estimate the magnitude of
the inertial component, recall that in a simple harmonic
oscillator the amplitude of forced oscillations at a
frequency much lower than the resonant frequency w, is
given by F' /(mwj ), where F is the magnitude of the
applied force. Disk runout is not a force, but since F/m is
an acceleration, the amplitude of the spacing modulation
can be estimated by é/wg, where Z is the disk surface
vertical acceleration. For a sinusoidal surface motion of
amplitude 4 and frequency w, the amplitude of the
acceleration is Aw’. Thus, the amplitude of response is
A(w/wo)z. Experimental data reported by Zhu and Bogy
[17] show that this is but a small part of the observed
spacing modulation; consequently, the most important
time-dependent disk surface features are related to
second-degree surface curvature terms. As a result, slider
modulation due to low-frequency disk runout can be
modeled by measuring the effective disk curvature across
the air bearing and multiplying this by the corresponding
air bearing curvature sensitivity coefficient.

Concluding remarks

For more than thirty years, computer modeling has been
of primary importance in the design of slider bearings in
magnetic disk files. Flying attitude, tolerances, and
dynamic performance of slider bearings in magnetic disk
files can be calculated by computer programs based on
solving the Reynolds equation. The results of such
calculations are used to specify the design parameters,
and predict the performance of slider bearings.
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