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Computer-aided 
design of slider 
bearings 
in  magnetic 
disk files 

by K. L. Deckert 

This  paper  reviews  the  application  of  lubrication 
theory  to  slider  bearings  in  magnetic  disk  files. 
For  more  than  thirty  years,  slider  bearings  have 
been  used to maintain  close  and  precise 
spacings between  recording  transducer  and 
recording  medium  in  disk  files.  Computer 
modeling  has  been  central  to  the  design  and 
performance  analysis of these systems.  The 
topics  covered are the  basic  design,  sensitivity 
and  tolerance  analysis,  dynamic  characteristics, 
and  response  to  disk  excitations  from  the  disk. 
The  main  purpose  of  this paper  is to  review  the 
use of  computer  modeling  in  design of slider 
bearings;  however,  the  discussion of slider 
modes  in  the  slider  dynamics  section  is  new. 

Introduction 
More than one hundred years  have passed  since the 
publication of Osborne Reynolds’ seminal paper on the 
theory of hydrodynamic lubrication [I] .  Since then, the 
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application of hydrodynamic lubrication theory  has 
played  a major role in the development of the 
mechanical  systems that are so important for the 
functioning of modern society. This paper  is about an 
application of hydrodynamic lubrication theory to a 
critical part of the magnetic  disk  storage  devices used  by 
most of today’s computers. 

A fixed-disk  drive  has one or more  metal  disks  stacked 
on a rotating spindle. The disk  surfaces are coated  with  a 
thin magnetic  material on which data can be  recorded 
and read. A transducer, or readjwrite head,  records or 
reads the data from  narrow concentric tracks of the 
magnetic material. The transducer, in turn, is attached to 
a  “slider”  suspended  close to the recording  surface by a 
mechanism that can find and follow the recorded data 
tracks. The spacing  between  slider and disk  is  controlled 
very  precisely  by  a lubricating film  of air that forms 
between them. The combination of slider, air film, and 
moving  disk  surface is an air-lubricated  slider bearing 
and is commonly called  a  slider  bearing or an air bearing. 

It is possible to design the slider so that  it operates 
reliably  with  a  spacing  of  a  fraction  of  a micrometer. In 
general,  higher data recording  densities require smaller 
head-to-disk  spacings; at the same time, smaller  spacings 
impose  tighter  tolerances on the smoothness of the disk 
surface in order to avoid  failure due to excessive contact 
between the slider and disk. The problem  for  designers of 
slider  bearings in disk files  is to satisfy the competing 
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requirements of high-density recording and reliability of 
the slider-disk interface. 

The magnetic disk  storage drive was  first developed by 
IBM and introduced as  the IBM 305 RAMAC system in 
1957 [2] .  This first  system  used a hydrostatic bearing 
(pressurized by an external air source), but succeeding 
drives soon switched to hydrodynamic bearings 
(pressurized by the boundary layer of air moving with the 
rotating disk surface). The most common air bearing in 
use today is based on the so-called taper-flat bearing, in 
which the air bearing surfaces consist of two or more 
narrow rails resembling skis, with short leading taper 
sections followed  by longer, flat portions. This is the type 
of bearing that first appeared in 1973  in the IBM 3340 
disk  file,  which  was  developed  with the internal code 
name “Winchester.” Figure 1 is a photograph of the 
Winchester slider and suspension. 

When the first disk files  were being developed, it was 
recognized that computer modeling was needed to help 
in the design of sliders, and pioneering work  was done by 
Gross [3] and Michaels [4] at IBM. The computer 
program they created has been continually modified and 
improved. It was, and still  is, a very important tool for 
slider bearing design. Details of the evolution and 
innovations in slider design can be found in the 25th 
anniversary issue  of this journal [5]. 

Theoretical  considerations 
Figure 2 is a sketch of a two-rail, taper-flat slider, 
showing the coordinate system and slider position 
variables. The flying  height h, is the distance between the 
read/write element and the disk surface. The spacing 
function h(x, y ,  t )  between disk and air bearing surface 
depends upon the geometry of the slider, the flying 
height, and the slider pitch and roll  angles 0 and 6. The 
air pressure between  slider and disk is governed by the 
time-dependent compressible Reynolds equation 

12p-(ph)=V * [h3pVp + 6X,pahZVp - 6pVph], ( I )  
a 
at 

where 

p(x ,  y ,  t )  = bearing pressure, 
h(x, y ,  t )  = bearing spacing, 
P(x,  y )  = disk surface velocity vector, 
g = viscosity  of air, 
Xa = mean free path of air molecules, 
pa = ambient air pressure. 

For most problems, the slider, constrained by the 
suspension, has but three degrees of freedom of motion 
given  by the z motion of the pivot point together with the 
pitch and roll motions, 0 and 6. The equations of motion 
of the slider are then given  by 

4 I Winchester slider and suspension. 

z V 

B 
$Pitch 

Disk motion 

Readwrite’ *Flying height ho \ 

where 

B = air bearing surface, 
(m, Z,, Z,) = slider mass and pitch and roll inertias, 
(kz ,  k,, k,) = suspension spring stiffnesses, 
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Velocity ( d s )  

IBM, the main slider  design  program that has  evolved 
through the years  solves the steady-state  form of the 
equations, obtained by setting time-dependent terms to 
zero. This finite  difference  program,  subsequently 
referred to as the Steady State Air  Bearing  Program,  is 
based on a technique discussed in the review paper of 
Castelli and Pirvics [ 131. A separate program  for  solving 
the time-dependent equations, subsequently  referred to as 
the Dynamic Air  Bearing  Program,  is  used to study slider 
dynamics. 

In  what follows, four of the many possible  uses  of  these 
programs in slider  design are discussed.  These are the 
design  of the air bearing  geometry,  sensitivity and 
tolerance  analysis,  slider air bearing resonant frequencies, 
and the response of the system to disk runout. The 
ultimate goal  of the air bearing  designer is to produce a 
design that meets  magnetic  recording requirements with 
maximum reliability of operation and minimum cost of 
production. 

(Ls, P,, R,) = suspension  load and pitch and roll 

(xp, yp, zp) = suspension  pivot coordinates, 
(S,, S,) = = air drag on the air bearing 

moments, 

surface. 

Equation (1) contains the term 6Xap,h2 V p ,  which  is not 
in the classical  Reynolds equation. This term appears 
when the lubricating fluid, in this case, air, “slips”  relative 
to the air bearing  surface  instead of sticking to the 
surface, as in the classical  case.  It  was  first  derived by 
Burgdorfer [6], who  assumed that molecules of air are 
diffusely  reflected  from the surfaces.  In more detailed 
analysis,  molecular  reflection depends on the type of 
surface [7]. A fundamental assumption in the derivation 
of the Reynolds equation is that the mean free path, X, of 
a molecule of the lubricating  fluid is small compared with 
the spacing  between the bearing  surfaces. As the bearing 
spacing  is  reduced to meet  ever-higher  recording  density 
requirements, this assumption is  violated, and  the 
validity of the Reynolds equation becomes  suspect. The 
equation with  slip  was  designed to improve the validity at 
smaller spacings, and experience shows that the results it 
gives are better than expected  [8].  More accurate 
solutions at very small  spacings  involve the solution of 
the Boltzmann equation [9]. 

Since  these equations have no general analytic 
solutions,  they  must be  solved  numerically. The 
numerical solution of Equation (1)  has a long  history  of 
its  own,  which  is not covered in detail here.  Successful 
programs  have  been  written to compute solutions based 

662 on finite  differences [ 101 and finite elements [ 1 1, 121.  At 

Air bearing  geometry 
One important function of the slider in a disk file is to 
support the magnetic  read/write element at a prescribed 
flying height  from the disk  surface,  which is determined 
by the magnetic  properties of the recording  surface, the 
desired  recording  density, and the minimum allowable 
error rate.  It should be noted that errors in recording are 
corrected by redundancy coding, so that  the probability 
of  final error is  extremely  small.  In addition to flying 
height, the designer  may  have requirements for the slider 
flying pitch and roll  angles. The combination of steady- 
state flying height and pitch and roll  angles (&, 0, 4) is 
called the flying attitude of the slider. 

The Steady State Air  Bearing  Program is most  useful 
for  finding a desirable air bearing  geometry.  Most often, 
the designer  works  within a set  of constraints, such as 
overall  slider dimensions, placement of the read/write 
element, and shapes  preferred  for manufacturability. The 
design  process  is  usually  evolutionary, in  that a previous 
design  is  modified to account for  changes in disk 
rotational speed,  suspension  characteristics, or new 
flying-attitude requirements. 

The most  general  calculation  performed by the steady- 
state program is finding the flying-attitude  values so that 
the resulting hydrodynamic pressure,  integrated  over the 
air bearing  surface, gives a lifting  force and pitch and roll 
moments that balance the external forces and moments 
from the suspension. The result  is  called a full  steady- 
state flying-attitude solution. In some  cases,  all that the 
user  requires are the force and moments for a given  set  of 
flying-attitude  values.  These are called  fixed-attitude 
solutions. In addition, the designer can choose to 
calculate a partial steady-state  flying-attitude solution in 
which one or more of the flying-attitude  values are held 

K. L. DECKERT IBM I. RES. DEVELOP. VOL. 34 NO. 5 SEPTEMBER 1990 



fixed. A good example is the case in which the roll  angle 
is  held  fixed at zero and the disk  velocity  is  assumed 
constant over the width of the slider. Then, for 
symmetric air bearing  geometries, the pressure  has 
symmetries that can be  exploited to significantly  reduce 
the required computation. The usefulness and value of 
the steady-state  program  as a design tool is  greatly 
enhanced by the availability of a wide  variety of such 
options. 

attitude, the steady-state  program can be  used to 
calculate useful performance  characteristics.  Some 
possibilities include calculation of  flying attitude versus 
such  variables as disk  surface  velocity,  suspension  load 
force, or taper angle. Figure 3 is an example of a curve of 
flying  height  versus  velocity  for the slider  used in the 
IBM 3380 disk  drive. This curve can be  used to 
determine the so-called  take-off/landing  velocity of the 
disk, which affects the time that the slider is in contact 
with the disk during start/stop. 

calculating the change in lift  force and moments of the 
bearing  from  fixed-attitude solutions that are close to the 
steady-state solution. 

Once a design  is found that produces the desired flying 

Static air bearing  stiffnesses can be found by 

Sensitivity and tolerance analysis 
There are a surprising number of  physical parameters 
that influence the flying attitude of a slider. During the 
fabrication of the slider,  these parameters will  vary 
statistically  from their design  values; thus, the flying 
attitude of a sample of those  sliders will also  have a 
statistical distribution. The slider  designer must 
understand the parameters that influence the slider flying 
attitude. He needs to know their sensitivities and their 
expected  statistical distribution in the fabrication process. 
From these data he can determine the relative 
importance of  each parameter and make more intelligent 
decisions in specifying their design  values. 

Let 2 be a vector whose components are the important 
slider  parameters, and let the dependence of the flying 
height h on the parameters be h = f(2). Then the first- 
order approximation to the change in flying  height Ah 
due  to small  changes in the parameters Axi is  given by 

The partial derivatives  in the above equation are called 
sensitivity  coefficients. The Steady State Air  Bearing 
Program  can  be used to estimate the sensitivity 
coefficients by computing the change in flying height due 
to a small  change in each parameter individually and 
then forming the corresponding  difference quotients. 
Sensitivity  coefficients  for the pitch and roll flying 
attitudes can be computed at the same time. 

40 
Sample size = 419 
Mean = 268.1 nm 
(r = 13.95 nm I 30 

% 2 Q  
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B 
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Flying height (nm) 

Flying  height  distribution  with normal fit. 

The sensitivity  coefficients are used in tolerance 
analysis,  which  is the determination of  how the 
fabrication  tolerances of individual slider parameters 
affect the final  flying-attitude  tolerances. The allowable 
tolerance of the flying attitude of the sliders that are built 
into the disk file  is determined by performance and 
reliability  considerations. Once these are given, the slider 
designer and process  engineers determine the tolerances 
of  each individual parameter so as to maximize the 
quality of the finished product while minimizing the 
fabrication  cost. 

Experience  shows that the statistical variation of  each 
process parameter can be approximated by a normal 
distribution. If ui is the standard deviation of one of these 
parameters, then the flying-height deviation due  to this 
parameter alone would  be 

a f  
axi Oh = - ui . 

When normal distributions are combined, the variances 
or  squares of the standard deviations add linearly, so an 
equation for the total flying-height  variance  resulting 
from individual parameter variances can be  written 

Details can be found in a paper [ 141 that reports on 
results  using an experimental slider at the IBM GPD 
Development Laboratory in San  Jose. Figure 4 shows the 
histogram of  flying-height measurements of a sample of 
the sliders studied in that paper, together  with a fitted 
normal distribution. The value of  flying-height standard 
deviation as calculated in [ 141, using Equation ( 5 ) ,  is 663 
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(a) Pivot, (b) pitch, and (c) roll impulse response of 3380-type 
slider. 

14.34 nanometers. This  compares very  well with the 
measured value of 13.95 nanometers. 

Slider  dynamics 
The  Dynamic Air Bearing Program solves Equations (1) 
and (2) for  a variety of forcing functions  and  conditions 
not included  in these equations. For a force applied at 
the suspension  pivot equal to that applied by the  actuator 
when moving the slider from  one  data track to  another, 
one can  study the resulting flying-height variations and 
dynamics. If  a given non-flat disk surface function 
s(x, y ,  t )  is included  in the calculation of the spacing 
function h(x, y ,  t ) ,  one can  study the effect of the disk 
surface on  the slider dynamics.  These are forced motions 
of the system, which can be better  understood if the free 
vibrations or resonant modes of the system are known. 

The resonant  modes of the slider air bearing system 
can be found by analysis of the system impulse response. 
The  Dynamic Air Bearing Program  produces  impulse 

664 responses by solving the  equations starting from steady 

state with initial velocities given to  the flying-attitude 
parameters.  Mathematically, the resulting solution is 
identical to the solution using zero  initial velocities and 
an impulsive forcing function. Figure 5 shows the z 
motion at the pivot, the pitch motion,  and  the roll 
motion  due to simultaneous pitch and roll impulses  for  a 
3380-type slider operating at 40 meters  per second. 
Because the system is nonlinear, the strength of the 
impulse used must be less than  unity  in  order  to keep the 
amplitude of the resulting motion small. It can  be seen 
that  the pivot and pitch motions  contain two or  more 
frequencies, while the roll motion  contains essentially 
one frequency. This is characteristic of symmetric sliders 
operating on large disks. Asymmetries, such  as rails of 
different widths or  the suspension  pivot point offset from 
center, will increase the coupling of the roll motion with 
pitch and spacing motions. 

For  small-amplitude oscillations, one  can model  this 
system as a  linear, three-degree-of-freedom system of 
masses, springs, and dampers. The general impulse 
response of such  a system can  be  written as 

where 

a,, = amplitude coefficient, 
uj = resonant frequency, < = damping factor. 

The amplitudes, frequencies, and  damping coefficients 
that give a best fit to  the impulse responses from the 
Dynamic Air Bearing Program  can  be found by the use 
of a nonlinear least-squares fitting technique [ 151. When 
this is applied to  the  data shown  in Figure 5 ,  the follow- 
ing frequencies and  damping factors are obtained (note 
that  the frequencies are given in  hertz  rather than radians 
per  second): 

f; = 25 250, f, = 16 800, f, = 24  350, 

el = 0.033, = 0.055, c3 = 0.016. (7 1 
One can gain insight into  the  normal modes of the slider 
by solving Equation (6) for the  damped sinusoids  in 
terms of z,  8, and 4. First define the dimensionless vector 
4, with three components 
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3 

z =  c a, ,qj ,  

0 = c a2,9,2 

4 = c a3j4,. (9) 

j =  I 

3 

j =  I 

3 

j =  I 

Then rewrite Equations (6) in terms of the vector 4 and 
solve the equations for the vector 4 in terms of z, 0, and 
4. When the amplitude coefficients a,j from the best  fit  of 
the data shown in Figure 5 are substituted, the result is 
given  by 

(i = 4.74 X 105(z + 0.2150 + 0.0034) I (10) 

To understand these equations, one should consider the 
expression  for the displacement  from  steady state d(x, y )  
of a given point on the slider as a function of the slider 
attitude. The angles  involved are of the order of 
microradians, so that the tangent of an angle can be 
approximated by the angle;  therefore, 

I -3.48 X I05(z - 0.0810 - 0.3514) 

-3.37 X 106(z - 0.0830 + 0.0404) 

d(x, Y) = z - (x - Xp)O + (v - Yp)4. ( 1  1 )  

Note that the negative  sign  for the 0 term results  from the 
choice of coordinates and slider orientation in Figure 2. 
Comparing (10) with ( 1  1) reveals that the modes q, for 
j = 1 ,  2, 3 can be thought of as motions of distinct points 
on the slider. For example, the first  mode, q l ,  is the 
motion of a point whose x, y coordinates are given by 

-0.081 = -(x - xp), 

-0.35 1 = ( y - yp). (12) 

The length unit of the Dynamic Air  Bearing  Program  is 
centimeters, so q, represents a point located 0.08 1 cm in 
x and -0.35 1 cm in y from the pivot point. Mode points 
associated with the other two components of 8 are 
similarly  defined.  Suppose the initial conditions were 
chosen so that only one of the modes was activated,  with 
the amplitude of the other two modes being  zero. Then 
the points on the slider  associated  with the inactive 
modes  would  have  zero  displacement, and, since the 
slider  is a rigid body,  its motion would  be a rotation 
about an axis  passing  through  these  inactive-mode  points. 

Figure 6 is a sketch of the slider  showing the three 
mode points and the resulting  axes of rotation for  each 
mode.  It  can be  seen that mode 1 is a roll mode, mode 2 
is a pitch  mode, and mode 3 is a combined pitch and roll 
mode. In general, the force-free motion of the slider  is a 
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linear combination of these three modes. This analysis 
gives  significant  insight  for understanding experimental 
measurements. 

Response  to disk runout 
One purpose of the air bearing is to keep the slider  from 
contacting the disk during operation. Contact does  occur 
during the starting and stopping phases  when the slider 
“takes off” from and “lands” on the disk  surface. An 
interesting simulation of start/stop operation can be 
found in Benson and Talke [ 161. The subject of the 
following  is the effect  of  disk motion on the performance 
of the bearing. 

The steady-state  program  assumes an ideal,  perfectly 
flat  disk;  however,  real  disks are not perfect, and the disk 
surface  as  seen  by the slider  will  move in the z direction 
depending on the disk  surface  geometry and the method 
of attaching the disk to the spindle. This motion is  called 
runout, and its magnitude is  of the order of micrometers. 
Since the dimensions of the slider are of the order of 
millimeters, the disk  surface in the air bearing can be 
represented by a second-order approximation as follows: 

as as a2s a2s a 2 s  
ax ay ax axay ay 

S(x, y )  = c + -x + -y + y x  + -xy + ”$. 

Each term in this expansion can be associated  with a 
corresponding term of h(x, y ,  t )  in Equation (1). The 
constant term c is an overall  change of  flying  height; the 
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first partial  derivatives are slopes in the x and y 
directions, thus equivalent to slider  pitch and roll; and 
the second  partial  derivatives are related to curvature. 
The second  partial  derivative  with  respect to x multiplied 
by x2 is commonly called the crown, and the second 
partial derivative  with  respect to y is known as camber or 
cross-curvature. The remaining  mixed partial derivative 
term represents the twist  of the surface.  Therefore, the 
effect  of a moving  disk  surface can be modeled by adding 
time-dependent spacing, pitch, roll,  crown, camber, and 
twist terms to h(x, y, t ) .  The time-dependency  can  be 
represented  as  sines and cosines,  with amplitude, 
frequency, and phase determined by the type of  disk 
runout (e.g., warped  disks or imperfect  spindle  bearings). 

The disk runout observed  experimentally  occurs at 
frequencies well  below the air  bearing resonant 
frequencies. At  low frequencies, the stiffness of the air 
bearing  causes the slider to follow the spacing, pitch, and 
roll  of the disk  surface  except  for a small component due 
to the inertia of the slider. To estimate the magnitude of 
the inertial component, recall that in a simple harmonic 
oscillator the amplitude of  forced  oscillations at a 
frequency much lower than the resonant frequency w,, is 
given by Fl(mwi),  where F is the magnitude of the 
applied  force.  Disk runout is not a force, but since Flm is 
an acceleration, the amplitude of the spacing modulation 
can be estimated by Z/oi, where Z is the disk  surface 
vertical  acceleration. For a sinusoidal  surface motion of 
amplitude A and frequency o, the amplitude of the 
acceleration is Ao2 .  Thus, the amplitude of response  is 
A(oIuJ2. Experimental data reported by Zhu and Bogy 
[ 171 show that this is but a small part of the observed 
spacing modulation; consequently, the most important 
time-dependent disk  surface  features are related to 
second-degree  surface curvature terms. As a result,  slider 
modulation due  to low-frequency  disk runout can be 
modeled by measuring the effective  disk curvature across 
the air bearing and multiplying this by the corresponding 
air bearing curvature sensitivity  coefficient. 

Concluding  remarks 
For more than thirty years, computer modeling  has  been 
of primary importance in the design  of  slider  bearings in 
magnetic  disk files.  Flying attitude, tolerances, and 
dynamic performance of slider  bearings in magnetic  disk 
files can  be  calculated by computer programs  based on 
solving the Reynolds equation. The results of such 
calculations are used to specify the design parameters, 
and predict the performance of slider  bearings. 
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