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A modeling 
system 
for top-down 

by M. Mantyla 

design 
of assembled 
products 

The design  of  a  mechanical  product  usually 
takes  place  primarily in a  top-down  fashion, 
where  the  designer first generates  a  rough, 
overall  sketch of the  product  and its main 
components.  Later,  the  designer  refines  the 
sketch to a  detailed level while taking into 
account  the  relevant  requirements  posed  by 
strength,  cost,  manufacturability,  serviceability, 
and  other  similar  considerations.  Current 
computer-aided  design (CAD) systems  provide 
only limited support  for this kind of  work.  For 
instance,  they  cannot  deal  with  geometric  or 
other  information  at  varying levels of  detail,  nor 
do  they  capture  explicitly  geometric 
relationships among  components  intended to be 
joined  together in an  assembly.  This  paper 

describes  early  results of ongoing  research  on 
supporting  top-down  design  of  mechanical 
products  and  discusses  the  major  requirements 
for CAD systems  used  for  top-down  design.  A 
prototype  design  system is described  that 
provides  the  following  characteristics  not  usually 
found in ordinary CAD  systems: structuring of 
product  information in several  layers,  according 
to the  stage  of  the  design  process; 
representation  of  geometric  information  about 
components at several levels of detail;  and 
representation  and  maintenance  of  geometric 
relationships  of  components  by  means  of  a 
constraint-satisfaction  mechanism. 

1. Introduction 
"Copyright 1990 by International Business Machines Corporation. 
Copying in printed form  for  private use  is permitted without 
payment of royalty  provided that ( I )  each reproduction is done 
without alteration and (2) the Journal reference and IBM copyright 
notice are included on the first  page. The title and abstract, but no 
other portions, of this paper may  be  copied or distributed royalty 
free without further permission by computer-based and other 
information-service systems.  Permission to republish any other 
portion of this paper must be obtained from the Editor. 

0 CAD and geometry 
Computer-aided  design  (CAD)  systems  have  become 
accepted almost universally as central engineering  design 
tools  for a variety of applications in mechanical,  civil, 
and electrical  engineering. In these  areas, CAD systems 
have  boosted  design productivity by enabling more 
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rigorous  engineering  analysis, enhancing the accuracy 
and quality of design documentation, reducing  errors, 
and bridging the notorious gap  between  design and 
manufacturing. In  some  areas,  such  as the design  of 
integrated  circuits, the complexity of the designed  objects 
could  hardly  be  managed  without the use  of CAD 
systems and the related  analysis  tools. 

The success  of CAD systems  is  related to the fact that 
many important engineering  design  tasks are concerned 
primarily  with the geometric  shape of a product. This has 
resulted  in the proliferation of various techniques of 
geometric modeling, intended for the capture, 
representation, and utilization of geometric  shape 
information, which  currently  form the nucleus of CAD 
systems.  After  shape information of the product has  been 
captured in a geometric  model, CAD systems permit the 
utilization of a wide  variety  of  analysis,  visualization, and 
manufacturing planning tools through appropriate data 
conversion and interfacing  modules, in addition to the 
production of engineering  drawings and other design 
documentation. Geometric models can also be archived 
and re-utilized in later redesign  projects, or transmitted to 
other CAD systems  (e.g., to subcontractors) by using 
standardized CAD data interchange formats. The 
geometric  modeling  methodology  required in the various 
tasks  is to a large  degree independent of the particular 
application, making it possible to construct generic 
geometric  modeling  tools and utilities that can be  shared 
by several  application-oriented  modules of a CAD 
system. 

Unfortunately, current CAD systems are far  less 
attractive in applications where the shape information of 
the product plays a less prominent role or where the 
geometric information must  be augmented with  related 
nongeometric information. In  fact,  most  engineering 
analyses  belong to this group. For instance, in addition to 
shape information, engineering  analysis  with the finite 
element method ( E M )  requires information on the 
intended use  of the component being studied. In 
mechanical  analyses,  for  example, this information may 
be  translated into bending  forces  applied to the 
component. 

Feature models 
The shortcomings of ordinary geometric  modeling 
techniques outlined above and, hence, of ordinary CAD 
systems  have  led to a widespread  interest in various kinds 
of augmented  geometric  modeling techniques that can 
capture and represent  certain  types of nongeometric 
information in addition to the basic  geometric  shape. 
During the last few years,  so-called feature models have 
received  particularly  strong attention in the CAD 
research community. The basic motivation of feature 
models is the observation that most  types of 
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nongeometric information of interest in CAD 
applications seem to be naturally associated  with  groups 
of related  geometric  entities,  instead of  single entities 
such  as  points,  lines, and arcs  typically  utilized in simple 
geometric  modeling  systems, or with  solid  blocks, 
cylinders, and spheres  utilized in more advanced  systems. 

The basic approach of feature-based  modeling  systems 
is to replace  simple  geometric elements as the primary 
building  blocks of product models  with  higher-level 
modeling elements that more directly  correspond to 
shapes of engineering  significance. The misnomer 
“feature” has  become the trade expression  used to denote 
such  entities.  Hence, the basic  modeling  vocabulary of a 
feature-based  modeling  system  consists of a taxonomy of 
feature types; in mechanical  engineering applications, 
such a taxonomy would include feature  types  such as 
holes,  bosses,  slots, and pockets. Product representations 
are constructed by creating instances of feature types and 
placing them in the model.  Nongeometric information 
can be associated  with the feature instances. On the basis 
of a feature model,  geometric  modeling techniques can 
be utilized to perform operations similar to those 
available in conventional CAD systems.  In addition, 
various kinds of data or knowledge  bases can be 
organized on the basis  of the feature taxonomy to 
support applications that require special  engineering 
information. 

techniques is  largely determined by whether a useful 
taxonomy of feature types can be  identified and 
organized in a modeling  system, and whether 
application-oriented data and knowledge  bases can 
conveniently  be  organized on the basis  of the taxonomy. 
So far, the best  results  have  been demonstrated in 
applications where the domain of feature types of interest 
is  somehow  naturally limited. For instance, several 
researchers (including the author) have reported on 
feature-based machining process planning systems [ 1-71, 
where the family of interesting feature types  is 
determined by the available machining processes and 
machining  tools. In this case, feature types  would be 
associated  with a data base containing information on the 
available  materials, machining tools, and fixtures. 

So far,  much  less  progress  has  been reported in the 
application of augmented  geometric  modeling techniques 
in actual design applications than in manufacturing- 
oriented applications such  as  process planning. One 
reason  for the relative  scarcity of convincing  results  is 
simply the difficulty  of  identifying and organizing a 
complete taxonomy of modeling entities of interest to a 
designer.  However, there also  seem to be more 
fundamental problems in the straightforward application 
of primarily  geometric  modeling techniques (including 
feature  modeling) to design  proper. 

As might  be  expected, the success  of feature modeling 

M. MANTYLA 

637 



0 Role of geometry in the design process 
To understand the problems of applying  geometric 
modeling techniques in design, we must take into 
account the varying  roles that geometric information 
plays in engineering  design.  Typically, an engineering 
design  process  proceeds through a number of identifiable 
phases,  each  with  somewhat  different  goals. During the 
early  phases  of  design,  decisions are made concerning the 
desired  characteristics and the overall function of the 
product. In the later phases, the specifications  generated 
during the early  phases are refined to make sure that  the 
product indeed  fulfills the specifications and  that it can 
be manufactured efficiently.  Finally, the detailed 
descriptions are transmitted for downstream phases of the 
design-manufacturing  process,  such as process and 
assembly  planning.  Often, the composition of the design 
process  in  phases  also  corresponds to the organizational 
composition of the design  personnel  involved in the 
design  process. 

three major phases of  design can be  distinguished: 
In  most  engineering  design  processes, the following 

1. Functional design, where the primary focus of the 
designer  is on specifying the desired outcome of the 
design  process. 

2. Conceptual design, where the primary focus  is on the 
selection  of a collection of components and 
subassemblies, and the specification  of their 
relationships  such that, together,  they will deliver the 
desired function. 

3. Detail  design, where the primary focus  is on refining 
the individual components to a sufficient  level  while 
taking into account all  restrictions and requirements 
posed  by the applicable  engineering  analyses  (strength, 
heat  transfer,  electrical  properties, etc.) and by the 
available manufacturing technologies. 

Of the three major phases, functional design  (also 
called strategic design) is  least  concerned  with product 
geometry,  being  involved  instead  with a broad variety  of 
issues,  including  marketability,  suitability  for company 
strategy, and competitive situation. Nevertheless,  some 
overall  geometric restrictions and constraints (such as 
desired  size and weight  of the product) may  already  be set 
at this stage. 

As we reach the phase  of conceptual design,  geometric 
product information receives more designer attention. As 
observed by Libardi,  Dixon, and Simmons in their 
valuable  survey of computer-aided assembly  design [8], 
most  designers follow the top-down design approach 
while  carrying out conceptual design. In this approach, 
the designer  begins  with an abstract specification of the 
product and decomposes it  into subsystems and 
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and parts is reached. In order to facilitate preliminary 
analysis of the design, abstract geometry is  often 
introduced, even during the early  stages of conceptual 
design,  with the understanding that the geometric 
information is  still incomplete and subject to change 
during the later phases. The abstract geometry  typically 
focuses on the overall  geometric arrangement of the 
major parts and subassemblies and leaves  unspecified the 
exact  geometric details of the individual components and 
their mechanical linkages.  Nevertheless, it is not 
uncommon that some parts of the design are refined to a 
much  greater  degree than others, even during early 
design,  if  they are critical to delivering the desired 
function of the product. 

Detailed  geometry  becomes the focus only in the detail 
design  phase,  where the aim of the designer  is to optimize 
the design under the constraints set  by the desired 
performance of the design, various engineering  analyses, 
and the ability  of the product to be assembled and 
manufactured. In this phase, drastic changes to the 
abstract geometry introduced during conceptual design 
are not uncommon. For instance, manufacturability 
issues may dictate that the number of distinct 
components introduced during the topdown 
decomposition  process be reduced by a composition 
process in which  previously separate parts are combined 
into a single component that serves multiple subfunctions 
in the design. This bottom-up optimization of the design 
may continue later, during production engineering  of the 
product; for instance, manufacturing cost may be 
decreased by replacing a subassembly of machined parts 
with a single  cast  part. 

Shortcomings of ordinary  geometric models  for design 
Ordinary CAD systems are primarily  geared  toward the 
generation and utilization of the detailed  geometric 
information. Generally,  they do not offer much support 
for other uses  of  geometric information during the design 
process, such as the introduction of abstract geometry  for 
preliminary  studies, the generation of  altered or idealized 
geometric information according to  the viewpoints of 
various  engineering  analyses, or the drastic restructuring 
of the geometry that may  be required during the bottom- 
up composition stage. 

One reason for the relative  weakness  of ordinary 
geometric  modeling techniques in these applications is 
that geometric  models  typically can represent the 
nominal shape of the product at only a single  level  of 
abstraction. That is, they cannot make a distinction 
between the essential  geometric information of a part 
(such  as that concerning mating surfaces  between major 
components) and the unessential  geometric information 
(such as that concerning fillets and fairings). This results 
in a form of overspecification: The essential  geometric 
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information must be  embedded in a formally  complete 
model, even though the detailed  geometry  should  still  be 
treated as vague or incomplete.  While  offering 
improvement in several other respects  discussed  above, 
feature  models are also too low-level to provide a good 
basis  for supporting all  phases of the design  process. In 
particular, geometricfeatures that directly  correspond to 
some  surfaces or volumes of the part are often  oriented 
toward certain detail design solutions or manufacturing 
techniques. If they were  used  for  recording the results of 
early  design  phases, premature commitment to certain 
detail solutions would  again  result. 

Ordinary geometric modeling techniques also  lack the 
capability of recording the progression  of the design 
process during the various  phases and tasks.  They do not 
preserve the abstract geometric information created 
during the conceptual design  phase as an idealization of 
the detailed  geometric  models of the detail design  phase, 
nor do they link the abstract geometry  with the still more 
abstract functional specifications the geometry 
implements. As a consequence,  geometric  modeling 
systems do not, in general, capture the design intent of 
the designer,  i.e., the reasons  for a particular geometry 
being in the model in the first  place. This limits the 
usefulness  of  geometric  models as a resource  for  redesign 
and also  makes  difficult the interpretation of  geometric 
models  in manufacturing planning applications. 

0 Scope  and  goals of the research 
The problems of ordinary geometric  modeling techniques 
for  design applications have  been  widely  recognized, and 
various  higher-level  models  have  been  proposed  for 
representing incomplete or vague  assemblies and parts, or 
assemblies and parts on a symbolic  level, without 
reference to geometry  [9, 101. Graphlike symbolic 
structures have  been  used  by  several authors for the 
design  of mechanisms;  references  [8, 11, 121 provide  good 
reviews  of current research into modeling techniques for 
assembly  design and modeling.  Nevertheless,  these  early 
results do not generally indicate how the various levels  of 
information should be integrated into a model that not 
only  provides a good  basis  for  design but also can be 
interrogated and manipulated during the later phases of 
the design  process. 

The research  reported in this paper  (begun  while the 
author was a World Trade Visiting  Scientist at the IBM 
Thomas J. Watson  Research Center in 1989)  is  pointed 
precisely in this direction. The overall  goal  is to develop 
modeling techniques that can  support  conceptual  design of 
mechanical assemblies according to the top-down 
approach. We are also  interested in modeling techniques 
that permit the restructuring and idealization of geometric 
information, as may  be required during detail design. 
Another subgoal  of the research  is to make it possible  for 
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later applications such as process planning or assembly 
planning to investigate and manipulate the model 
information in the course of their analyses  of the product. 

The main body  of this paper describes the current 
status of this ongoing  research.  It  is  organized as follows: 
First, in Section 2, we elaborate on the detailed  goals  of 
this research.  Section 3 provides an overview  of the 
prototype modeling  system  developed during the 
research.  Sections 4, 5, and 6 give additional detailed 
information on the modeling techniques chosen  for the 
prototype,  namely hierarchicalpart-of graphs, geometric 
feature models, and geometric constraint management, 
respectively.  Finally, directions for further work are 
indicated, and conclusions are given. 

The problems of top-down  design are illustrated 
further in the Appendix. 

2. Requirements for a CAD system  for  top-down 
design 
The abstract specification of a design can usually  be 
captured in a structure consisting of the major 
components or subsystems of the desired product and 
their desired  interfaces,  relationships, and constraints. In 
some  design domains, the specification  may  be  expressed 
by means of numerical performance parameters and 
expressions;  generally,  however, nonnumerical, 
qualitative specifications are also  needed. We believe 
that the design system should provide facilities for 
modeling the designed  object on a purely abstract  level- 
as a structure of model entities, their relationships, and 
their properties. We also  believe that some kind of 
general annotation mechanism for abstract models is 
required. 

After the initial specification, the design  process 
proceeds from the abstract to  the concrete. Abstract 
concepts are decomposed into more concrete ones, and 
new interfaces,  relationships, and constraints are created 
among them. At some  stage, it becomes  useful to use a 
geometric representation to express the desired 
relationships  between the concepts introduced. The initial 
geometry can be mainly  dimensionless, concentrating 
instead on the general  geometric arrangement of the 
main components and their geometric interaction. 
Except  for a few  values  critical  for  delivering the desired 
function of the design, the actual dimensions and 
coordinate values are unimportant; the geometry  mainly 
serves to specify the geometric constraints among the 
parts. We believe that the design system should support 
the creation of abstract geometry, where important and 
less important characteristics of the geometry are 
explicitly distinguishedfrom each other, and the designer 
can  choose the level of detail of the representation 
according to the particular requirements of the design 
task. 
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During the later stages of the design  process,  new, 
increasingly concrete concepts and their relationships are 
introduced, and  the abstract geometry is  modified to take 
them  into account. In this process, the aspects of the 
abstract geometry which initially were treated as being 
unimportant are refined and more precisely  defined. The 
critical aspects of the geometry, which  were already 
specified, are observed as rigid constraints. Hence, the 
previouslyJixed characteristics of abstract geometry must 
be treated as further design constraints for  the  future 
re3nement of the less detailed and unspecified 
characteristics. At the same time, the abstract geometry 
must not unnecessarily limit the freedom of the designer 
in the later stages. 

One important aspect of top-down design  is that it 
permits the designer to concentrate on  one subproblem 
of the design at a time. During the design  process, the 
focus of the designer shifts from conceptual design to the 
basic  design  of the various subsystems involved in the 
conceptual solution and, finally, to the detailed design of 
each  subsystem and each component.  The sequence of 
focus  changes can be interpreted as an instance of the 
design methodology that  the designer applies to this 
design; therefore, to enhance the value of the resulting 
model, the shifts of focus should be made explicit in the 
model. We  believe that the design system must support 
focusing on some particular aspects of the design and, in 
particular, capture the sequence of focus changes in  the 
model representation. 

Iteration is,  of course, an important practical 
characteristic of engineering design: All successful 
products are redesigned at some time, the most successful 
ones the soonest. As exemplified by the case study 
presented in the Appendix, a redesign  may penetrate 
deeply into  the previous design and result in a completely 
reworked product. We believe that the design system 
should capture and preserve the design history for later 
examination and redesign. Full support of iterative 
redesign  also requires that the design system support 
several alternative elaborations from a common starting 
point. 

In addition to the goals emphasized above, the design 
system should also possess  several other desirable, if less 
fundamentally important, characteristics. For instance, 
the capability of introducing special technological 
knowledge into the system is helpful. The focus of the 
present work  is not on applying artificial  intelligence 
techniques to construct “intelligent CAD systems”; 
nevertheless, the accommodation of such techniques in 
the system should, of course, be possible if and when they 
become available. 

We may summarize the desired capabilities of a 
modeling  system for top-down design  of  assemblies as 
follows. The modeling system should 
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1. Provide support for representing the assembly 
information on several  levels  of abstraction (e.g., 
function, overall geometry, and detail geometry). 

2.  Represent design intent by preserving the “reason” for 
the existence of various model entities by means of 
the sequence of stages and the history of the design. In 
particular, the system should make it possible to 
retrace the steps from geometry to the functions that 
the geometry implements. 

3. Make  explicit the level  of commitment of the designer 
to various properties of the design. In particular, 
strongly committed details must be treated as 
constraints for following  design  steps. Similarly, the 
system should support default geometry that 
represents parts of the design when no  commitment to 
a particular solution has yet been made. 

4. Support redesign in various ways,  e.g.,  by supporting 
parallel refinements of a single starting model. 
Naturally, it should always be possible to retrace the 
steps to  an earlier design  stage. 

5. Provide documentation tools for capturing functional 
specifications, for use  by later phases in  the design- 
manufacture process, and for redesign. For instance, it 
should provide a general annotation mechanism. 

Some of the above requirements are  domain- 
independent and are valid for top-down design in, e.g., 
software development and IC  design. Mechanical design 
is made different from such domains by the special role 
of  geometry: In mechanical design, geometry acts both as 
a medium for expressing  design  goals and constraints and 
as a medium for expressing the result of the design, 
whereas  in  software engineering different representations 
can be  used at different levels  of the design. Hence, the 
interface between geometry and other design 
representations must be more complex than the 
interfaces between various design object representations 
in those other disciplines. 

3. Overview of the  prototype  modeling  system 
A prototype modeling system was built as our initial 
attempt  to achieve the overall  goals  set forth in  the 
previous section. Because  of the experimental nature of 
the prototype, it was desirable to use a software 
development environment that provided for rapid 
prototyping and development of  software, had good 
support for graphical interaction, and allowed extensive 
reorganization of the developed software as it became 
necessary. To achieve these goals, the Smalltalk V/286’ 
programming environment [ 131 was chosen. We call the 
current implementation of the system  WA YT, for Why- 
Are- You- There? 

’ Smalltalk V/286 is a registered  trademark of Digitalk, Inc. 
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Smalltalk  is the grandparent of various  object-oriented 
programming environments. Following the style  of  this 
environment, the prototype system  consists of three 
major model structures, each  realized as a Smalltalk class 
hierarchy, and three related, interlinked programs 
(“Browsers”). The major components are the following: 

1. Design Browser [ 141, which can be  used to represent 
hierarchical part-ofgraphs at several  levels  of  detail, 
and with  several  parallel  elaborations. 

associate geometric feature models with the design 
entities in a design  model  created by means of the 
Design  Browser. 

3. Constraint Browser [ 161, which can be used to create 
and edit geometric constraints describing the mating 
conditions and other positional and dimensional 
restrictions among the parts of an assembly. 

2.  Geometry Browser [ 151, which can be used to 

In the following  sections,  each  of the major 
components is  described in turn, and its relation to the 
overall  goals  of the system  is  explained. 

4. Hierarchical part-of graphs 

0 Concepts 
One of the major requirements for a modeling  system  for 
top-down  design  is a facility  for conceptual, 
nongeometric  modeling,  which  is  mainly concerned with 
decomposing the product to be designed into 
subcomponents and their interfaces. To satisfy this 
requirement, WAYT  makes  use of  so-called part-of 
graphs. 

A part-of  graph  is a way  of representing the breakdown 
of some entities of interest into more primitive entities. 
For instance, the entity “book” consists of the lower-level 
entities “front matter,” “chapters,” and “back matter,” 
which, in turn, consist of still  more primitive entities 
such as “title,” “section,” and “index.”  Technically, a 
part-of  graph  consists of a set of nodes representing the 
entities of interest, connected by directed arcs 
representing the “part-of” (or “consists-of”) relations 
between the nodes. Figure 1 is a simple  part-of  graph that 
represents the breakdown of a table lamp into more 
primitive components. 

we allow an entity to have  several  parallel, alternative 
breakdowns into more primitive entities, and a 
component entity to appear in all or just some of the 
breakdowns.  Each  breakdown  is  itself a part-of  graph. We 
may interpret the parallel  breakdowns as varying  “views” 
of the entity represented. For instance, Figure 2(a) shows 
a “structural” view  of the table lamp of Figure 1; observe 
that some new nodes have  been  included, and the part-of 

A more  general formulation of part-of graphs results  if 
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f Simple part-of graph of  a lamp. 

relationships  have  been  modified.  In a similar way, 
Figure 2(b) gives a “functional” view of the lamp. 

Hierarchical part-of graphs in WAYT  result from 
organizing the different views of a part-of  graph  into a 
tree structure and enforcing  consistency rules among 
them. A view  of a part-of graph may  itself  have  any 
number of  views, each  representing a particular 
refinement of the parent view. A subview cannot 
eliminate any  nodes that it has  received from its parent 
view.  However, it can introduce new nodes and part-of 
relationships into the graph, and it can modify the part-of 
relationships of the nodes it has received  from the parent. 
For instance, the views of Figure 2 are subviews of Figure 
1. This hierarchical relationship is  shown in Figure 3. 
Observe that all  nodes of Figure 1 are present in the 
views  of Figure 2.  The design  models  of the Appendix 
give further examples of part-of graphs and views. 

0 MultiTree data structure 
WAYT  represents  hierarchical  part-of graphs by means 
of instances of  two  Smalltalk  classes: 

1. Nodes are represented  with instances of  class 
MultiTreeNode. A MultiTreeNode records the set  of 
component nodes, the parent node  (if any), and some 
attribute information such as the label  of the node and 
its  position on a video  display. 

2. Views are represented  with instances of  class 
MultiTree. A MultiTree consists of attribute 
information and references to its MultiTreeNode(s). 
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(a)  Structural and (b) functional view of the lamp. 

I T 1  Basic 

Hierarchical  relationship of views of the lamp. 

A node appearing in several  views can either be 
represented as a  single  shared MultiTreeNode, or be 
explicitly  copied in each of the views. Explicit  copying is 
used  if the views associate  different structure or attribute 
information with the node; as we shall  see, this capability 
is  used to provide support for abstract  geometry in 
WAYT. Further details of the data representation are 
given  in [ 141. 

Design model entities 
The MultiTree classes outlined above were intentionally 
left  void  of any particular semantics;  hence,  they  should 
be capable of modeling any kind of hierarchical 
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decomposition of things  consisting of other things. 
According to the principles of object-oriented 
programming, the actual specialization of MultiTree 
classes  for  assembly  design  modeling  was done by 
deriving new  subclasses  of the existing classes. These 
classes add new instance variables and functionality to 
the basic  classes. The design  model  classes currently used 
in  WAYT are given in Figure 4. In the figure, 
indentation is  used to indicate the class structure. 
Instance variables of each  class are listed in parentheses. 

Designcontext, which adds the capability of recording 
annotations and a  geometric  model to  the view. The 
abstract class MultiTree has no direct instances. The 
abstract class DesignEntity can store annotations and a 
list of geometric constraints, in addition to the instance 
variables of the basic  class MultiTreeNode. The nodes 
actually  used in WAYT are DesignFeature, which  is  used 
to represent  a  range of conceptual entities such as a 
subassembly,  a component, or a  significant  geometric 
detail of  a component, and DesignRelation, with its 
subclasses that represent  various kinds of binary 
relationships  between entities. Mechanical joints are 
modeled  as  a  special  kind of relation. The  joint classes 
provide methods that “automatically” insert the 
geometric  features  needed  for  realizing the joint. 

In  fact,  WAYT views are instances of  class 

Design  Browser 
The Design  Browser  is an interactive editor that provides 
access to the above entities. A  sample  display of the 
browser  is  shown in Figure 5. The browser includes 
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MultiTree(name  treefloots  superTree  subTrees) 

MultiTreeNode(name  loc  parent  children  tree  superNode  subNodes) 
DesignContext(annotati0n model) 

DesignEntity(annotati0n  constraints) 
DesignFeature(re1ations  geometry) 
DesignRelation(fr0m to) 

Designconstraint() 
Geometricconstraint0 

Joint(fromFeature  toFeature 
fromJointFeature  toJointFeature) 

PlanarJointO 
SimpleJoint() 

ScrewJoint(auxParts) 
CSHoleCBHoleJoint() 

CylindricaMoint() 
CompoundJoint(nU  nV  deltaU delta4 
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GeometricModel (name designcontext parts 
constraintNetwork annotation) 

GeornetricEntii(copyOf) 
GeornetricFeature(designEntity relations x b f t  yTop 

xDirn  yDirn  originX  originY 
othervariables  direction  anchors) 

CompoundFeature() 
Cornbination() 

StepHole(1ength) 
CcunterSinkHole() 

PatternFeatureO 
GlidPattern(nU  nV  deltaU deltav) 

SimpleFeature() 
Hole(radius length) 

Sink() 

FreeHde() 

Boring0 

ConeSink(sinkAngle  bottornRadius) 

BlindHole() 
ConeBlindHole(bottornAngle) 
PlaneBlindHole() 

ThruHoleO 
PrismaticFeature(width length) 

Bow) 
Relief() 
Slot0 

ThruSlOt() 
Surface() 

ConsistsOf() 
OnTheBottomOf() 
PatternOf(nU nV deltaX  deltaY) 

GeometricRelation(frorn to) 

Geometric  feature  classes 

operations for adding,  removing, and manipulating views 
and nodes. Currently available views are indicated in a 
list  (partially  visible) on the left  side  of the display; the 
selected view is  displayed in a large  window on the right 
side. The browser can initiate new, parallel instances of 
itself  for editing lower-level  views, thus simulating a 
parallel  design environment in which  several  designers 
are concurrently working on various  aspects of a design, 
or a single  designer  shifts  from one aspect of  design to 
another. 

5. Geometric  feature  models 
The design entities of Figure 4 can directly  represent  only 
the logical structure of a product. Another class  hierarchy 
that implements a feature-based representation of simple 
two-dimensional  objects  is used to represent the 

644 geometric information of the product. 

Feature taxonomy 
The feature  model used  in  WAYT  is  based on a more 
elaborate  model used  in  HutCAPP, a feature-based 
process planner constructed by the author and others at 
the Helsinki  University of Technology [6 ,  71. In this 
model,  all  geometric  objects are represented by means of 
a tree structure, in  which the nodes  correspond to various 
kinds of volume  features. The collection of feature types 
includes  both subtractive features that correspond to 
material  removed  from the parent feature (e.g.,  slots) and 
additive  features that represent  material  added to the 
parent (e.g.,  bosses).  Arcs  of the tree represent  various 
kinds of geometric  relationships  between the features. 

A simple feature model of a part discussed in the 
Appendix  is  shown in Figure 6. The part is  described in 
terms of  six features: a rectangular  block feature (aBlock), 
a slot feature (aslot), and two pattern features 
(aGridPattern1 and aGridPattern2), each  consisting of 
two instances of a boss feature (aBossl and aBoss2, 
respectively). 

fashion as Smalltalk  classes; the current collection of 
feature and relationship  classes  included in WAYT  is 
listed in Figure 7. As indicated in the figure,  features are 
either simple  features  (e.g.,  holes) or compounds 
consisting of simple  features (e.g., a countersink hole, 
which consists of a cone sink and a through-hole). 
Pattern features  consisting of  several instances of a 
feature are also included. Some intermediate classes,  such 
as StepHole and Boring, are included  for future growth 
and compatibility with HutCAPP. The class 
GeometricModel is  included  for  simplifying the 
interfacing of  design  models and geometric feature 
models. 

the “natural” parameters of each feature; for instance, 
holes are expressed in terms of the radius and the length 
of  axis. Similarly,  all prismatic features are expressed  in 
terms of length and width. Instance variables origin>(, 
originY, and direction indicate the location of the origin 
of the feature and its orientation. 

The feature  types are implemented in a straightforward 

Instance variables of the various  classes contain mainly 

Inheritance of geometric models 
Recall that the copies of a design entity appearing in 
several  views are represented in terms of separate nodes 
in the underlying data structure and that each  copy can 
have  its  own  associated attribute information. WAYT 
makes  use  of this to implement the requirement of 
supporting abstract geometry. 

The approach chosen  for  WAYT  is  based on the 
inheritance of geometric information from parent view to 
subviews.  If a copy of a design entity is not directly 
associated  with  geometric information (i.e.,  its instance 
variable geometry is empty), the geometry of the copy  of 
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Parent view 

I I 

Subview 

f Inheritance of geometry. 

the design entity in  the parent view is  used  (if such a 
copy  exists). If the parent’s geometry is empty, the search 
continues to higher  levels. 

If the geometry inherited in this fashion is  modified in 
a subview  (e.g.,  new features are inserted in the 
geometry), WAYT creates a copy of the geometry 
inherited from the parent view and assigns  it as the 
geometry of the appropriate node in  the subview. In 
order to enforce the compatibility between the original 
geometry and  the copied geometry, the copied features 
are tagged  with a reference to the corresponding original 
geometry. In particular, when copied geometry is edited, 
features tagged as copies cannot be deleted. Similarly, if 
the designer changes geometry which has been copied 
elsewhere, a confirmation is  first requested. 
Consequently, the designer can add only new features to 
inherited geometry. Naturally, the designer can also 
change the dimensions and locations of inherited features 
(within the degrees of freedom provided by geometric 
constraints, as detailed in the next section). 

A simple example of geometry inheritance is shown in 
Figure 8, which consists of a parent view and a subview. 
The parent view consists of three design entities, Sample, 
Box, and Cover. The geometry associated with these 
nodes is shown on the right. In the subview, shown 
below, a relationship entity (called fix) representing a 
mechanical joint between the box and the cover has been 
added to the design model. The geometry of the parent 
view has been copied as the geometry of the subview, and 
new features have been added to represent the details of 
the mechanical joint between the two parts. Observe that 
some dimensions and locations of the inherited geometry 
have  also been changed. 

Geometry Browser 
The actual manipulation of geometric feature models is 
done with the Geometry Browser. With this browser, it is 
possible to create, modify, and delete geometric feature 
instances. The browser can edit several parts 
simultaneously (for instance, both geometries associated 645 
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[ Geometry Browser. 

b.X,b.Y  h.X,h.Y 

Block and through-hole. 

with a DesignRelation, or all  geometries  associated  with a 
whole Designcontext). The browser  is  typically started by 
the Design  Browser  for editing (or creating) the geometry 
of a design model  node; if necessary, the geometry of a 
parent view is  first  copied. 

Figure 9. 
A sample display of the Geometry Browser is shown in 

6. Geometric  constraint  management 
The geometric  feature  representation and the geometry 

646 inheritance mechanism  described in the previous  section 
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are not sufficient  for  satisfying the requirements set in 
Section 3 of this paper. The copied  geometry is protected 
against deletion only; the dimensions and locations of the 
various parts are all  changeable in the subview. 
Furthermore, it is not possible to express the needed 
mating conditions between  parts, nor the detailed 
relationships among the features of a part. 

However,  WAYT  manages  all required tasks, and 
some others, by means of geometric constraints. In 
particular, geometric constraints are used to represent 
and manage the following: 

1. Dependencies  between instance variables of geometric 

2. Dependencies  between features forming compound 

3. Dependencies  between  geometric attributes of features 

4. Mating and other dependencies  between  parts. 
5. The degree of commitment that the designer has to 

any of the dependencies or constraints of the above 
types. 

features. 

geometric  features. 

within a part. 

DeltaBlue: An incremental constraint-satisfaction 
algorithm 
Many of the dependencies and constraints listed  above 
can be  represented in terms of simple equations involving 
geometric attributes of the parts considered. For instance, 
the constraints that a through-hole h must reside at the 
center of a rectangular  block b and extend all the way 
through the block can be translated to  the following 
collection of equations (see Figure 10 for  nomenclature): 

h.Y = b.Y, 

h.X = b.X + b.Len/2, 

h.Len = b.Wid. 

Actual  assignments of dimensions and locations to the 
entities can be  modeled as further constraints: 

b.X = 4, 

b.Y = 3, 

b.Len = 18, 

b.Wid = 10, 

h.Rad = 1. 

The problem of enforcing  such constraints while  still 
providing the user  with  facilities for changing the 
numerical  values of the constrained geometric attributes 
is  best  solved  by means of a constraint-satisfaction 
algorithm that can represent numerical constraints of the 
above  type and construct a procedure for satisfying the 
constraints (if possible). A review  of constraint- 
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satisfaction techniques is beyond the scope of this paper; 
for an overview,  see [ 171. Instead, we limit the discussion 
to the particular algorithm  chosen  for the present  work. 

DeltaBlue [ 18, 191 is a simple  algorithm  for constraint 
satisfaction that is  applicable to acyclic linear numerical 
equality constraints; this simple domain was deemed 
sufficient  for the prototype.  DeltaBlue is  based on 
constructing an explicit  representation of the numerical 
equations corresponding to the constraints. The internal 
representation  is a multigraph whose nodes  represent the 
constrained  values;  in the above  example,  each  geometric 
attribute would  be  represented as a variable.  Arcs of the 
multigraph  represent the constraints. For instance, the 
multigraph  representation of the example of Figure 10  is 
shown  in Figure 11. 

alternative procedures that can  satisfy the corresponding 
constraint when executed. For instance, the constraint 

Every arc of the multigraph  is  associated  with 

a = b + c  

would  typically  be  associated  with the procedures 

a := b + c, 

b := a - c, 

c := a - b, 

where := denotes assignment,  in contrast to =, which 
denotes the equality constraint. Given the multigraph, 
DeltaBlue will  find a sequence of procedures that, when 
executed  sequentially, will  result in a set  of  values  for 
which as many constraints as possible are satisfied. 

All constraints have a strength attribute given by the 
creator of the constraint (in our case,  WAYT). The 
strength of a variable whose  value  is (yet) undetermined 
by constraints is the absolute minimum; otherwise, the 
strength of the variable is the minimum of the strength of 
the constraint that determines the value of the variable 
and the strengths of the input variables of the 
corresponding  procedure. 

DeltaBlue  works by considering one constraint at a 
time and constructing an intermediate solution at each 
step. When a new constraint is  added to the multigraph, 
the algorithm  selects the weakest  associated  variable  as 
the potential output. If the constraint is  stronger than the 
variable, the constraint can  be  satisfied by assigning a 
value to the  variable by means of the corresponding 
procedure. Other variables  act  as input variables  for the 
procedure.  Otherwise,  i.e., if the constraint is  weaker than 
the weakest  associated  variable, the constraint cannot be 
satisfied. If a previously  satisfied constraint is  overridden, 
the algorithm will try to satisfy  it  recursively. A detailed 
description of the algorithm  is  given in [ 191. 

The algorithm  is based on the concept of “strength.” 

b 
:: 

1 Multigraph  representation of constraints of Figure 10. 

A solution to the constraint graph of Figure 1 I is 
shown in Figure 12. In the figure,  arrowheads are used to 
indicate the chosen procedure of  each constraint, and 
numbers indicate the evaluation order of the procedures. 

WAYT  capitalizes on several particular properties of 
DeltaBlue.  First, the procedure outlined above can be 
shown to find a best  possible solution to the constraint 
graph in the sense that the constraints are satisfied in 
decreasing order of their strength. Hence,  DeltaBlue  also 
behaves  properly in overconstrained situations. Second, 
the incremental nature of the algorithm  is well suited  for 
interactive  use,  where constraints are added and removed 
by the designer. Third, as we shall see, the concept of the 
strength of constraints can be  readily  utilized  for 
modeling the degree  of commitment to a constraint held 
by the designer. 

On the negative  side,  DeltaBlue does not provide 
support for constraints that correspond to inequalities. 
For instance, in the above example the additional useful 
constraint 

b.Len > 2 * h.Rad 

cannot be represented or enforced. 

0 Constraints and  features 
The constraint mechanism  is  integrated  with other 
components of  WAYT  by making all instance variables 647 
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& (F) 

b. 

&Radius 

Natural parameterization of ConeSink. 

representing dimensions and locations of geometric 
features instances of a class that represents constrained 

648 variables instead of  plain numbers. This opens the door 
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to using  geometric constraints for  expressing various 
aspects  of the desired behavior of  features. 

of the fixed parameterization of geometric features 
implied by Figure 7. For instance, instead of  using the 
top left point, it might sometimes be more convenient for 
the designer to use the center point of a rectangular block 
to specify its position. With the help  of the constraints, it 
is straightforward to state that 

b.Xcenter = b.X + b.Len/2, 

b.Ycenter = b.Y + b.Wid/2, 

and then let the user  assign  values to Xcenter and 
Ycenter instead of X and Y. 

A more complex example is  given  by the cone sink, 
which  has a redundant set  of “natural” parameters (see 
Figure 13), bound by the following constraint: 

sinkRadius - bottomRadius 
tan (sinkAnglel2) 

One useful application of constraints is the relaxation 

length = 

By including this expression as a constraint, WAYT can 
let the user  select any three of the four parameters that 
may  be convenient. 

dimensioning of features with  respect to one another. In 
simple  cases, the constraints are inserted “automatically,” 
with no further user input. For instance, if the user 
creates a slot within a block, the constraint that  the slot 
must  reside  along the edge  of the block  is generated by 
WAYT. Joint features in mating parts are also 
constrained to reside in the proper relative positions with 
respect to each other. In more complex cases, the user 
must add the constraints himself. 

Finally,  WAYT  also  uses constraints for representing 
the positioning of parts with  respect to one another. 

Figure 14 gives an example of positioning constraints 
for three parts discussed in the Appendix. The two parts 
PL and PR, drawn in darker gray, are constrained to 
reside on top of the third part, M. The length  of the slot S 
must combine with the lengths  of PL and PR as  shown. 
These positioning constraints are expressed  with the 
following: 

M.X = PL.X, 

PR.X + PR.Len = M.X + M.Len, 

S.X = M.X + PL.Len, 

S.X + S.Len = PR.X. 

WAYT  also  uses constraints to express the 

Specification of constraints relating two parts requires 
that a relation node connecting the respective  design 
entities be  defined. Certain often-used constraints (e.g., 
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“part A is positioned on the  top edge  of part B”) can be 
inserted simply by selecting the needed constraint from a 
menu. Other constraints must be edited by means of the 
Constraint Browser described  below. 

possible through a simple  menu-based  user interface or 
with the Constraint Browser. 

Naturally, parametric editing of the geometry  is 

Inheritance of constraints 
In order to protect abstract geometry defined in a parent 
view against  changes, the system  makes a local  copy  of it 
before  any modifications are performed. Naturally, the 
copied  geometry should still  behave according to the 
constraints that have  been  set in the parent view(s). To 
accomplish this, the original  geometry and its copies 
share their geometric instance variables. For example, 
even though a feature and its copy are two  different 
entities, the x-coordinates of both the feature and its copy 
are represented  with the same single entity. Consequently, 
all constraints that relate to the x-coordinate are still  in 
effect in the subview and for the copied  geometry. 

Of course, constraints set  for a copied geometry in a 
subview should not affect the original geometry in the 
parent view. To provide the expected behavior, all 
constraints set in a view are stored in the corresponding 
local  copies of the nodes  of the view; in particular, all 
constraints related to a single part are stored in the 
corresponding DesignFeature, while constraints 
expressing relationships between parts are stored in the 
corresponding DesignRelation. As a result, the “local” 
constraints defined in a subview can be  removed from 
the constraint graph  when the parent view  is browsed. 
Hence, at any time, only  those constraints defined in the 
currently active view and its parent views are in  effect. 

rn Level of commitment 
The relative importance of constraints is modeled 
naturally with the help of the strength concept of 
DeltaBlue.  When a value  is  assigned to a geometric 
variable,  WAYT currently makes a distinction among 
three levels  of commitment to the value: 

1. Anchored value The designer  is  strongly committed 
to a particular value of a variable. This is  modeled by 
means of a “strong” equality constraint of the type 
aVariable = constant. 

2 .  Default value The designer  has  assigned a value to 
the variable, but is not committed to this particular 
choice. This is modeled by means of a “weak” 
equality constraint. 

3. Don’t  care The designer  is not interested in the value 
of the variable and has not provided any explicit  value 
for it. The value  of the variable  may be determined by 
constraints, if any. 

I_ PL.kn ‘f S.Len TI_ PR.Len 1 

t i Horizontal positioning  constraints. 

These concepts are easily modeled with the strength 
attribute of constraints. The strength attribute is recorded 
as a nonnegative integer,  where 0 denotes the absolutely 
weakest strength. By convention, we  use the value 999 as 
the absolutely  strongest strength. 

In the root view  of a design  model, strong and weak 
constraints are assigned strengths 999 and 1, respectively. 
In order to protect anchored values  while providing 
access to default values, the strengths of strong and weak 
constraints in a subview are set to s - 1 and w + 1, 
where s and w are the strengths of the strong and weak 
constraints in the corresponding parent view, 
respectively. Hence, a subview cannot  ovemde anchored 
values  set by any of its parent views. However, it is 
capable  of either assigning a new default value to a weak 
variable by ovemding  the existing constraint (in which 
case a subsequent subview can ovemde  the new default 
value) or assigning an anchored value for the variable (in 
which  case the new value cannot be overridden). 

Currently, WAYT treats all constraints relating several 
variables as being “strong” ones. It would  be 
straightforward to extend the above classification to those 
constraints as well. 

Constraint Browser 
Browsing and editing variables and their constraints is 
accomplished  with the Constraint Browser, a simple 
editor for  DeltaBlue constraints and variables. 

A sample display  of the browser  is  given in Figure 15. 
The browser  displays a scrollable  selection  list of variables 
on the left  edge  of the display. The two  windows on the 649 
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s DeltaBlue  Browser 
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1 Constraint Browser. 

right  display the value  of the currently selected  variable, 
the method  chosen  for  assigning the value  (if any), and a 
scrollable  list of the constraints currently referring to the 
variable. The browser  provides operations for adding and 
removing constraints and variables. 

the entity whose constraints are browsed. For a 
DesignFeature, variables of the geometry of the design 
entity are  listed,  while  for a DesignRelation, the variables 
of both parts are shown.  It  is  also  possible to invoke the 
browser  while  editing the geometry of a part with the 
Geometry Browser;  in this case,  only the variables 
pertaining to the currently selected feature are shown. 

The selection  list of variables  is  set  according to 

7. Directions  for  further  work 
The research  described in this paper  is  still under way, 
and there are several  areas  where further work  is  required 

650 or contemplated. 
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The multitree data structure is  based on several 
simplifying assumptions. Any sharing of  design entities 
among parallel views  is  based on inheritance-that is, 
two  views cannot share an entity unless  they inherit it 
from a common parent view. This is  clearly too 
restrictive. The current implementation of the multitree 
representation and its editing protocols  also  assumes that 
a single  set  of  features  is  sufficient  for  expressing  all  views 
of the design. This also  may be too restrictive; in 
particular, the model manipulation protocols must be 
relaxed and generalized in the future. 

that the “existence constraint” of  design entities and 
geometric  features is always  strict: A subview must 
include  all inherited nodes and their geometries.  With the 
help of a more elaborate mechanism for  dealing  with 
views, the modeling  expressiveness  of  WAYT  could  be 
greatly  increased. An alternative mechanism is offered  by 

Another problem  with the current view mechanism is 
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various truth maintenance systems  (TMS), which  would 
make it possible to model  explicitly the constraints for 
the existence of an entity in the model. Outstanding 
examples of TMS in advanced CAD systems are given in 
[20,21]. Reference  [22]  describes the use  of a TMS in 
combination with a powerful  logic-based constraint- 
satisfaction  system. 

The restriction to two-dimensional  geometry and  to a 
fairly  simple  collection  of  geometric  features is obviously 
a severe limitation in the current system. In the future, 
we contemplate interfacing  WAYT  with HutCAPP [6,7], 
which provides a three-dimensional  version of a feature 
library similar to the one  used in WAYT and also 
includes access to a powerful  solid  modeling  system  [23]. 

An original  goal of  WAYT, not explicitly mentioned 
above, was to provide an “intelligent explanation” of  why 
some  geometric feature is included in the model. For 
instance, a geometric  feature  might  serve the purpose of 
implementing a geometric joint, and the joint would 
implement a mechanical  linkage, which in turn would 
implement a design requirement for certain relative 
motion of parts.  While the basic information for 
answering  such queries is to a large extent available in the 
model, no such functionality has yet  been implemented. 

Other areas  where improvement would  be  possible and 
desirable  include the following: 

1. Constraint editor Currently, the constraint- 
satisfaction  algorithm  knows about constraints only 
from a fixed (albeit easily programmable) selection. 
With the help of a computer algebra  system, it might 
be  possible to allow constraints to be  specified  simply 
in terms of their defining equations and to construct 
the satisfaction  procedures  on-line. 

satisfaction and propagation  mechanism  (such as in, 
e.g., [24,25]) will  be  needed  eventually. 

3. Geometric transformations WAYT currently deals 
only  with rotations that are multiples of 90 degrees. 
This obviously  should  be  relaxed. 

DesignFeature of one view must correspond to single 
DesignFeatures in other views. This may not be 
sufficient  for  expressing  conveniently more complex 
mechanical  assemblies. 

improved  in  several ways  in order to make it more 
convenient and efficient. The most fundamental 
improvement would  be a facility  for “cutting and 
pasting”  design entities and geometric  features  from 
one  design to the other, or from a prescribed  library of 
standard solutions. The main  difficulty  with this 
extension  is the preservation of the constraints defined 
for the moved  entities. 

2. Constraint satisfaction A more elaborate constraint- 

4. Relationships of parallel views Currently, a 

5. Cutting and pasting The user  interface can be 
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6. Large models The current implementation does not 
scale  well to large  models,  where thousands of parts 
must  be  managed.  While the basic algorithm for 
constraint satisfaction should deal  gracefully  with a 
large number of constraints, another technique should 
be  used for massive  changes  where  large numbers of 
constraints are manipulated in a single step. 

8. Conclusion 
We have  described a modeling  system  for the design  of 
assembled products that possesses  several  characteristics 
not found in current commercial or  research  systems. 
These include 

1. Support for  hierarchical views  of the designed  object. 
2. Support for abstract geometry. 
3. Support for  geometric constraints for modeling the 

design intent and the mating of parts of the assembly, 
and also  for parametric design of feature models. 

The techniques used to implement these  characteristics 
are well known and relatively  simple to implement and 
interface  with  existing  modeling  systems. We believe that 
future CAD systems will commonly include techniques 
such as those  described  herein. 

Despite the fact that the implementation of Smalltalk 
used  is  based on interpretation, the system  is quite 
responsive. The heaviest computational load occurs  when 
the current view is changed and many constraints must 
be  removed or reinserted. The largest model constructed 
with the system so far  has 7 16 variables and 608 
constraints. On a PS/2’  Model 80 personal computer, it 
takes  nearly 50 seconds to remove or reinsert  all 
constraints. Ideally,  WAYT  would be implemented as a 
compiled module of a general-purpose mechanical CAD 
system; in this case, a speed improvement of one order of 
magnitude can be  expected. 

WAYT, as currently implemented, is directed more at 
capturing the design  process than  at being an active 
design  tool.  Nevertheless,  even a limited-purpose  system 
such as WAYT can be  useful. We believe that 
understanding the issues  involved  with the representation 
of functional and conceptual design information forms a 
sound basis for providing  active support during early 
phases of design. 

Appendix: A case study of top-down  design 
This appendix illustrates the modeling problems of top- 
down  design  with the design  process of a real product: an 
instrument designed and manufactured at the Thomas J. 
Watson  Research Center. The design study illustrates the 
design  principles, central design  phases, and major design 

PS/2 is a  registered  trademark of International Business Machines Corporation. 
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1 Functional model of generic  positioner device. 

decisions  regarding the device; detailed information may 
be obtained from the original documentation3 [ 1-51. 

A simplified  design model for the instrument is 
developed, compatible with the modeling  facilities 
described in the main body of this paper. 

Design principles and functional specijication 
The Fine Positioner (FP) is a robotic planar positioning 
device intended for various manufacturing, laboratory 
measurement, and instrumentation tasks. It can be 
positioned  within 0.2 pm  of the desired point over a total 
movement range of  1.8 mm. The three-degree-of- 
freedom  version  of the FP also  provides 1.75 degrees  of 
rotation. The  FP is  expected to be  used  as the terminal 
wrist  of an ordinary robot arm  that provides the coarse 
motion. Since its initial design in 1984, the  FP has  gone 
through extensive  design and engineering  changes and 
has  now  reached a state where it can  be mass-produced. 

A positioner, in general, is a device that moves an 
armature with  respect to a body, according to the 
instructions of external control. In turn, the armature is 
connected to the device  being positioned, e.g., a 
measurement probe. 

The preceding description provides a superficial 
statement of what the product to be  designed must be 
like. There are two major external interfaces: the linkage 
with the robot arm and the linkage  with the control unit. 
Similarly, there are two major internal parts linked  with 
each other: the body and the armature. 

The general functional specification  of the positioner 
can be translated into the diagram  shown in Figure A l .  
The diagram  uses three constructs: 

1. Rectangles containing text  represent a hierarchy  of 
entities corresponding to the product, its 

652 York, personal communication, 1989. 
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subassemblies, its components, and, ultimately, its 
geometric  features. For simplicity, we  use the term 
part to denote these entities. 

2.  Unlabeled arcs drawn with  heavy lines represent 
hierarchical part-of relationships between  parts. 

3. Thin arcs with  parallelogram  label  boxes  represent 
binary constraints between  two parts. We use  these 
entities liberally to represent all interface, 
dimensioning, assembly, and kinematic constraints. 

The specification  shown in Figure A 1 attempts to 
capture the generic properties of  all  conceivable 
positioners. We speculate that such a specification could 
be contained in a large  library of engineering idioms 
included as a resource of a future-generation CAD 
system. 

product is a refinement of the generic  specification  of 
Figure A 1. Such a refined description would indicate the 
required relative motion for the two major parts, the 
desired  speed and acceleration of the motion, the 
payloads that must be handled, and  the desired  size and 
weight  of the product. In  the case  of the FP, the desired 
motion was initially specified to be planar (x-y) 
translation. Later, rotation around  the z-axis was also 
desired.  An important practical design constraint for the 
FP was a requirement for contamination-free operation: 
Because the FP is intended for delicate manufacturing or 
laboratory measurement tasks, it must not itself produce 
noise, vibration, or particles that might harm the product 
being  assembled or the experiment being performed. 

A particular specification  of a particular fine-positioner 

Conceptual design 
The overall  goal of the design  of the FP was to find an 
implementation for the body and  the  armature such that 
the desired  relative motion could  be produced and  the 
desired external interfaces could be provided. This design 
task was complicated by the additional design constraint 
of contamination-free operation, which precluded several 
otherwise  possible solutions for  realizing the relative 
motion (e.g., hydraulic linkages). 

The principal solution chosen was to use a direct-drive 
electromagnetic actuator. A permanent magnet is  used to 
create a magnetic flux path between the body and  the 
armature. In Figure A2, the thick lines indicate the flux. 
The flux can be steered by means of coils wound around 
magnetic pole pieces. As shown in Figure A3(a), when a 
suitable positive current is applied in the coil, the flux on 
the left  side  of the pole  piece  is  increased and  the flux on 
the  right  side  is  decreased. The increased magnetic flux 
forces the  armature to move  with  respect to the body so 
that the small  bosses, or teeth, in the  armature  and  the 
pole  pieces  become  aligned on the left  side. At the same 
time, the teeth on the right  side become disaligned. With 
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a suitable negative current, the opposite takes place 
[Figure A3(c)]. When no current is applied, the rest 
position [Figure A3(b)] is assumed. Intermediate 
positions can be  very accurately  achieved by controlling 
the current. 

We can summarize the above  design in the diagram 
shown in Figure A 4  which  is an amplified  version of 
Figure A 1. (Figure A4 is a redrawing of Figure 5 of the 
main body  of the text.) In the diagram, new entities 
representing the magnet, the two  pole  pieces, and  the 
teeth in the pole  pieces and  armature have  been inserted. 
Electric stuff now includes the four coils  for controlling 
the current. The model  also includes constraints 
representing the dimensional relationships among the 
magnet, the pole  pieces, the coils, and  the teeth in  the 
pole  pieces and in the armature. 

Engineering solution 1: Spring suspension 
The conceptual design of Figure A4 does not yet  specify 
how the armature is  linked  with the body so that  the 
proper distance between the teeth is maintained while the 
desired  relative motion between the body and  the 
armature is allowed. The first prototype of the FP attacks 
this problem by means of a spring suspension [2]. The 
armature  and  the body are connected with a pair of 
flexible  springs, one on  the left  side and one on  the right 
side  of the assembly. The springs must be  flexible enough 
to allow the desired movement and rigid enough to 
maintain the proper separation between the teeth. The 
actual three-dimensional design makes use of two pairs 
of  springs  for providing independent flexing  along both 
x- and y-axes. 

Armature 

I " I 
Magnet 

I Magnetic flux path. 
. .  . . 

The design model shown in Figure A4 has been 
augmented to include two new parts corresponding to the 
springs;  see Figure A5. Observe that the springs are 
organized as "parts of" the link constraint between the 
body and  the  armature. New constraints representing the 
mechanical joints of the springs  with the  armature  are 
also included. 

components. A simplified geometric representation of 
Next, the body  assembly  is detailed, with  several new 
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1 Refined  model of the FP. 

this design  is  shown  in Figure A6 (see  also  Figure 9 in the 
main body  of the text), while Figure A7 gives the 
corresponding  design  model. See [3] for information on 
the analogous three-dimensional design. 

complete the design. The dimensions, tolerances, 
materials,  surface  finish, and plating of  all components 
must be determined to ensure the correct operation of 
the device. The final  shapes of all components must also 
be  selected  while  taking into account the ability of the 
design to be manufactured and assembled. 

The model of Figure A7 must still  be  detailed to 

Engineering  solution 2: Air bearing 
The original  design of the FP was  successful in that a 
series  of  working  prototypes  were manufactured and the 
basic  design  principles  validated.  Nevertheless, the design 
had a number of problems: 

1. The spring  suspension introduces a small amount of 
654 unwanted motion along the z-axis.  Although this 

motion is  predictable, it nevertheless  is a nuisance  for 
development of control algorithms. 

2. The air gap  between the teeth is implemented with a 
long kinematic chain of components and linkages. 
Consequently, the prototype is  difficult to assemble 
and adjust. 

small rotations around the z-axis without even  greater 
assembly and adjustment problems [4]. 

includes 89 parts. 

3. It  is not possible to generalize the design to allow 

4. The product has too many parts; the part list  of [3] 

The spring  suspension  can be identified  as the source 
of the first  two  problems. To improve the design, it must 
be eliminated. As a result, the design  process  must  be 
restarted  from the result of the conceptual design  stage  of 
the FP, shown in Figure A4. 

An alternative engineering solution to  the suspension 
problem,  which  has  all the desired  characteristics and also 
avoids the problem of adjusting the gap  between the 
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Fine  positioner  with  spring  suspension. 

teeth, is to use an air bearing between the body and the 
armature. An air bearing requires two  highly planar 
mating surfaces.  They are separated by a thin layer of air 
blown  through channels and orifices  created in the 
surfaces.  Hence, the various components on the top 
surface of the body of the FP must be integrated into a 
single unit, with a planar, polished top surface.  Similarly, 
the bottom surface of the armature must become a flat, 
polished  surface. 

Instead of being separate components, the pole  pieces 
and the pole teeth are now inserted into a new 
component, the stator plate, by milling  slots into 
nonmagnetic material, inserting the teeth parts, made of 
magnetic material, tightly into  the slots, and covering and 
polishing the result.  Similarly, the armature teeth are 
inserted into the armature plate. The magnet  is  integrated 
into a new component, theflux return plate. Because of 
the larger production volume anticipated, it is  worthwhile 
to design a housing into which the other parts can be 

Geometry of the body. 
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D i m A  Armature teeth right 

Detail design model of spring suspension solution. 

assembled. The housing also provides the interface with 
the robot arm. Finally, some new components are needed 
for maintaining the air flow. A design model that 
includes the above refinements is  shown in Figure A8, 
while Figure A9 shows the corresponding geometric 
arrangement of the major components. 

components, their materials, the mechanical joints 
between the components, and the auxiliary parts needed 
for the assembly must still  be determined. See [5] for 
detailed information. 

Again, the detailed  geometric  shapes of  all 

Notes 
The case study illustrates well  several properties of  design 
processes that are also  discussed in the main paper. 
Throughout the case study, we have  presented the 
progress  of  design in terms of a structure consisting of the 

656 major subsystems, components, and vital details of the 

components. The  important interfaces, relationships, and 
constraints among the components are highlighted  in the 
design  model. The design  models are organized according 
to the hierarchical part-of graph representation discussed 
in the main paper. Observe that Figures A4,  A5, and A7 
are all  consecutive refinements of Figure A 1, while  Figure 
A8  is an alternative subview of the view  of  Figure  A5. 

Abstract  geometry  is introduced to capture information 
on the desired relationships among the components of 
the design and to represent vital dimensions and 
tolerances.  Observe  how some aspects of the geometry 
are specified at a finer  degree  of detail than others; for 
instance, the geometry  of the teeth and  the relationship 
between armature  and pole  piece teeth is already 
represented accurately in Figure A2.  As the design 
progresses, we may observe  how the focus of the 
attention of the designer  shifts from one aspect to 
another: from conceptual solution to suspension to body 
geometry to geometric detailing. 
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Refinement of design for air bearing solution. 

The FP also illustrates the special problems of  redesign. 
Although the two product generations do  not share a 
single component, their actual design  follows a similar 
outline: The problems of armature-body linkage  design 
and body  assembly  design are solved  as separate steps. 
Interestingly, during the redesign of the FP, an 
intermediate prototype that featured air suspension but 
still had a body  assembly  design similar to the original 
prototype was designed and built. 
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