636

A modeling
system

for top-down
design

of assembled
products

by M. Méantyla

The design of a mechanical product usually
takes place primarily in a top-down fashion,
where the designer first generates a rough,
overall sketch of the product and its main
components. Later, the designer refines the
sketch to a detailed level while taking into
account the relevant requirements posed by
strength, cost, manufacturability, serviceability,
and other similar considerations. Current
computer-aided design (CAD) systems provide
only limited support for this kind of work. For
instance, they cannot deal with geometric or
other information at varying levels of detail, nor
do they capture explicitly geometric
relationships among components intended to be
joined together in an assembly. This paper

©Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

M. MANTYLA

describes early results of ongoing research on
supporting top-down design of mechanical
products and discusses the major requirements
for CAD systems used for top-down design. A
prototype design system is described that
provides the following characteristics not usually
found in ordinary CAD systems: structuring of
product information in several layers, according
to the stage of the design process;
representation of geometric information about
components at several levels of detail; and
representation and maintenance of geometric
relationships of components by means of a
constraint-satisfaction mechanism.

1. Introduction

o CAD and geometry

Computer-aided design (CAD) systems have become
accepted almost universally as central engineering design
tools for a variety of applications in mechanical, civil,
and electrical engineering. In these areas, CAD systems
have boosted design productivity by enabling more

IBM J. RES. DEVELOP. VOL. 34 NO. 5 SEPTEMBER 1990

rigorous engineering analysis, enhancing the accuracy
and quality of design documentation, reducing errors,
and bridging the notorious gap between design and
manufacturing. In some areas, such as the design of
integrated circuits, the complexity of the designed objects
could hardly be managed without the use of CAD
systems and the related analysis tools.

The success of CAD systems is related to the fact that
many important engineering design tasks are concerned
primarily with the geometric shape of a product. This has
resulted in the proliferation of various techniques of
geometric modeling, intended for the capture,
representation, and utilization of geometric shape
information, which currently form the nucleus of CAD
systems. After shape information of the product has been
captured in a geometric model, CAD systems permit the
utilization of a wide variety of analysis, visualization, and
manufacturing planning tools through appropriate data
conversion and interfacing modules, in addition to the
production of engineering drawings and other design
documentation. Geometric models can also be archived
and re-utilized in later redesign projects, or transmitted to
other CAD systems (e.g., to subcontractors) by using
standardized CAD data interchange formats. The
geometric modeling methodology required in the various
tasks is to a large degree independent of the particular
application, making it possible to construct generic
geometric modeling tools and utilities that can be shared
by several application-oriented modules of a CAD
system.

Unfortunately, current CAD systems are far less
attractive in applications where the shape information of
the product plays a less prominent role or where the
geometric information must be augmented with related
nongeometric information. In fact, most engineering
analyses belong to this group. For instance, in addition to
shape information, engineering analysis with the finite
element method (FEM) requires information on the
intended use of the component being studied. In
mechanical analyses, for example, this information may
be translated into bending forces applied to the
component.

o Feature models

The shortcomings of ordinary geometric modeling
techniques outlined above and, hence, of ordinary CAD
systems have led to a widespread interest in various kinds
of augmented geometric modeling techniques that can
capture and represent certain types of nongeometric
information in addition to the basic geometric shape.
During the last few years, so-called feature models have
received particularly strong attention in the CAD
research community. The basic motivation of feature
models is the observation that most types of

IBM J. RES. DEVELOP. VOL. 34 NO. 5 SEPTEMBER 1990

nongeometric information of interest in CAD
applications seem to be naturally associated with groups
of related geometric entities, instead of single entities
such as points, lines, and arcs typically utilized in simple
geometric modeling systems, or with solid blocks,
cylinders, and spheres utilized in more advanced systems.

The basic approach of feature-based modeling systems
is to replace simple geometric elements as the primary
building blocks of product models with higher-level
modeling elements that more directly correspond to
shapes of engineering significance. The misnomer
“feature” has become the trade expression used to denote
such entities. Hence, the basic modeling vocabulary of a
feature-based modeling system consists of a taxonomy of
feature types; in mechanical engineering applications,
such a taxonomy would include feature types such as
holes, bosses, slots, and pockets. Product representations
are constructed by creating instances of feature types and
placing them in the model. Nongeometric information
can be associated with the feature instances. On the basis
of a feature model, geometric modeling techniques can
be utilized to perform operations similar to those
available in conventional CAD systems. In addition,
various kinds of data or knowledge bases can be
organized on the basis of the feature taxonomy to
support applications that require special engineering
information.

As might be expected, the success of feature modeling
techniques is largely determined by whether a useful
taxonomy of feature types can be identified and
organized in a modeling system, and whether
application-oriented data and knowledge bases can
conveniently be organized on the basis of the taxonomy.
So far, the best results have been demonstrated in
applications where the domain of feature types of interest
is somehow naturally limited. For instance, several
researchers (including the author) have reported on
feature-based machining process planning systems [1-7],
where the family of interesting feature types is
determined by the available machining processes and
machining tools. In this case, feature types would be
associated with a data base containing information on the
available materials, machining tools, and fixtures.

So far, much less progress has been reported in the
application of augmented geometric modeling techniques
in actual design applications than in manufacturing-
oriented applications such as process planning. One
reason for the relative scarcity of convincing results is
simply the difficulty of identifying and organizing a
complete taxonomy of modeling entities of interest to a
designer. However, there also seem to be more
fundamental problems in the straightforward application
of primarily geometric modeling techniques (including
feature modeling) to design proper.

637

M. MANTYLA

638

e Role of geometry in the design process
To understand the problems of applying geometric
modeling techniques in design, we must take into
account the varying roles that geometric information
plays in engineering design. Typically, an engineering
design process proceeds through a number of identifiable
phases, each with somewhat different goals. During the
early phases of design, decisions are made concerning the
desired characteristics and the overall function of the
product. In the later phases, the specifications generated
during the early phases are refined to make sure that the
product indeed fulfills the specifications and that it can
be manufactured efficiently. Finally, the detailed
descriptions are transmitted for downstream phases of the
design—manufacturing process, such as process and
assembly planning. Often, the composition of the design
process in phases also corresponds to the organizational
composition of the design personnel involved in the
design process.

In most engineering design processes, the following
three major phases of design can be distinguished:

1. Functional design, where the primary focus of the
designer is on specifying the desired outcome of the
design process.

2. Conceptual design, where the primary focus is on the
selection of a collection of components and
subassemblies, and the specification of their
relationships such that, together, they will deliver the
desired function.

3. Detail design, where the primary focus is on refining
the individual components to a sufficient level while
taking into account all restrictions and requirements
posed by the applicable engineering analyses (strength,
heat transfer, electrical properties, etc.) and by the
available manufacturing technologies.

Of the three major phases, functional design (also
called strategic design) is least concerned with product
geometry, being involved instead with a broad variety of
issues, including marketability, suitability for company
strategy, and competitive situation. Nevertheless, some
overall geometric restrictions and constraints (such as
desired size and weight of the product) may already be set
at this stage.

As we reach the phase of conceptual design, geometric
product information receives more designer attention. As
observed by Libardi, Dixon, and Simmons in their
valuable survey of computer-aided assembly design [8],
most designers follow the top-down design approach
while carrying out conceptual design. In this approach,
the designer begins with an abstract specification of the
product and decomposes it into subsystems and
subassemblies until the level of primitive components

M. MANTYLA

and parts is reached. In order to facilitate preliminary
analysis of the design, abstract geometry is often
introduced, even during the early stages of conceptual
design, with the understanding that the geometric
information is still incomplete and subject to change
during the later phases. The abstract geometry typically
focuses on the overall geometric arrangement of the
major parts and subassembilies and leaves unspecified the
exact geometric details of the individual components and
their mechanical linkages. Nevertheless, it is not
uncommon that some parts of the design are refined to a
much greater degree than others, even during early
design, if they are critical to delivering the desired
function of the product.

Detailed geometry becomes the focus only in the detail
design phase, where the aim of the designer is to optimize
the design under the constraints set by the desired
performance of the design, various engineering analyses,
and the ability of the product to be assembled and
manufactured. In this phase, drastic changes to the
abstract geometry introduced during conceptual design
are not uncommon. For instance, manufacturability
issues may dictate that the number of distinct
components introduced during the top-down
decomposition process be reduced by a composition
process in which previously separate parts are combined
into a single component that serves multiple subfunctions
in the design. This bottom-up optimization of the design
may continue later, during production engineering of the
product; for instance, manufacturing cost may be
decreased by replacing a subassembly of machined parts
with a single cast part.

o Shortcomings of ordinary geometric models for design
Ordinary CAD systems are primarily geared toward the
generation and utilization of the detailed geometric
information. Generally, they do not offer much support
for other uses of geometric information during the design
process, such as the introduction of abstract geometry for
preliminary studies, the generation of altered or idealized
geometric information according to the viewpoints of
various engineering analyses, or the drastic restructuring
of the geometry that may be required during the bottom-
up composition stage.

One reason for the relative weakness of ordinary
geometric modeling techniques in these applications is
that geometric models typically can represent the
nominal shape of the product at only a single level of
abstraction. That is, they cannot make a distinction
between the essential geometric information of a part
(such as that concerning mating surfaces between major
components) and the unessential geometric information
(such as that concerning fillets and fairings). This results
in a form of overspecification: The essential geometric

IBM J. RES. DEVELOP. VOL. 34 NO. 5 SEPTEMBER 1990

information must be embedded in a formally complete
model, even though the detailed geometry should still be
treated as vague or incomplete. While offering
improvement in several other respects discussed above,
feature models are also too low-level to provide a good
basis for supporting all phases of the design process. In
particular, geometric features that directly correspond to
some surfaces or volumes of the part are often oriented
toward certain detail design solutions or manufacturing
techniques. If they were used for recording the results of
early design phases, premature commitment to certain
detail solutions would again result.

Ordinary geometric modeling techniques also lack the
capability of recording the progression of the design
process during the various phases and tasks. They do not
preserve the abstract geometric information created
during the conceptual design phase as an idealization of
the detailed geometric models of the detail design phase,
nor do they link the abstract geometry with the still more
abstract functional specifications the geometry
implements. As a consequence, geometric modeling
systems do not, in general, capture the design intent of
the designer, i.e., the reasons for a particular geometry
being in the model in the first place. This limits the
usefulness of geometric models as a resource for redesign
and also makes difficult the interpretation of geometric
models in manufacturing planning applications.

o Scope and goals of the research

The problems of ordinary geometric modeling techniques
for design applications have been widely recognized, and
various higher-level models have been proposed for
representing incomplete or vague assemblies and parts, or
assemblies and parts on a symbolic level, without
reference to geometry [9, 10]. Graphlike symbolic
structures have been used by several authors for the
design of mechanisms; references [8, 11, 12] provide good
reviews of current research into modeling techniques for
assembly design and modeling. Nevertheless, these early
results do not generally indicate how the various levels of
information should be integrated into a model that not
only provides a good basis for design but also can be
interrogated and manipulated during the later phases of
the design process.

The research reported in this paper (begun while the
author was a World Trade Visiting Scientist at the IBM
Thomas J. Watson Research Center in 1989) is pointed
precisely in this direction. The overall goal is to develop
modeling techniques that can support conceptual design of
mechanical assemblies according to the top-down
approach. We are also interested in modeling techniques
that permit the restructuring and idealization of geometric
information, as may be required during detail design.
Another subgoal of the research is to make it possible for

IBM J. RES. DEVELOP. VOL. 34 NO. 5 SEPTEMBER 1990

later applications such as process planning or assembly
planning to investigate and manipulate the model
information in the course of their analyses of the product.

The main body of this paper describes the current
status of this ongoing research. It is organized as follows:
First, in Section 2, we elaborate on the detailed goals of
this research. Section 3 provides an overview of the
prototype modeling system developed during the
research. Sections 4, 5, and 6 give additional detailed
information on the modeling techniques chosen for the
prototype, namely Aierarchical part-of graphs, geometric
Sfeature models, and geometric constraint management,
respectively. Finally, directions for further work are
indicated, and conclusions are given.

The problems of top-down design are illustrated
further in the Appendix.

2. Requirements for a CAD system for top-down
design

The abstract specification of a design can usually be
captured in a structure consisting of the major
components or subsystems of the desired product and
their desired interfaces, relationships, and constraints. In
some design domains, the specification may be expressed
by means of numerical performance parameters and
expressions; generally, however, nonnumerical,
qualitative specifications are also needed. We believe
that the design system should provide facilities for
modeling the designed object on a purely abstract level—
as a structure of model entities, their relationships, and
their properties. We also believe that some kind of
general annotation mechanism for abstract models is
required.

After the initial specification, the design process
proceeds from the abstract to the concrete. Abstract
concepts are decomposed into more concrete ones, and
new interfaces, relationships, and constraints are created
among them. At some stage, it becomes useful to use a
geometric representation to express the desired
relationships between the concepts introduced. The initial
geometry can be mainly dimensionless, concentrating
instead on the general geometric arrangement of the
main components and their geometric interaction.
Except for a few values critical for delivering the desired
function of the design, the actual dimensions and
coordinate values are unimportant; the geometry mainly
serves to specify the geometric constraints among the
parts. We believe that the design system should support
the creation of abstract geometry, where important and
less important characteristics of the geometry are
explicitly distinguished from each other, and the designer
can choose the level of detail of the representation
according to the particular requirements of the design
task.

M. MANTYLA

640

During the later stages of the design process, new,
increasingly concrete concepts and their relationships are
introduced, and the abstract geometry is modified to take
them into account. In this process, the aspects of the
abstract geometry which initially were treated as being
unimportant are refined and more precisely defined. The
critical aspects of the geometry, which were already
specified, are observed as rigid constraints. Hence, the
previously fixed characteristics of abstract geometry must
be treated as further design constraints for the future
refinement of the less detailed and unspecified
characteristics. At the same time, the abstract geometry
must not unnecessarily limit the freedom of the designer
in the later stages.

One important aspect of top-down design is that it
permits the designer to concentrate on one subproblem
of the design at a time. During the design process, the
focus of the designer shifts from conceptual design to the
basic design of the various subsystems involved in the
conceptual solution and, finally, to the detailed design of
each subsystem and each component. The sequence of
focus changes can be interpreted as an instance of the
design methodology that the designer applies to this
design; therefore, to enhance the value of the resulting
model, the shifts of focus should be made explicit in the
model. We believe that the design system must support
Jocusing on some particular aspects of the design and, in
particular, capture the sequence of focus changes in the
model representation.

Iteration is, of course, an important practical
characteristic of engineering design: All successful
products are redesigned at some time, the most successful
ones the soonest. As exemplified by the case study
presented in the Appendix, a redesign may penetrate
deeply into the previous design and result in a completely
reworked product. We believe that the design system
should capture and preserve the design history for later
examination and redesign. Full support of iterative
redesign also requires that the design system support
several alternative elaborations from a common starting
point.

In addition to the goals emphasized above, the design
system should also possess several other desirable, if less
fundamentally important, characteristics. For instance,
the capability of introducing special technological
knowledge into the system is helpful. The focus of the
present work is not on applying artificial intelligence
techniques to construct “intelligent CAD systems™;
nevertheless, the accommodation of such techniques in
the system should, of course, be possible if and when they
become available.

We may summarize the desired capabilities of a
modeling system for top-down design of assemblies as
follows. The modeling system should

M. MANTYLA

1. Provide support for representing the assembly
information on several levels of abstraction (e.g.,
function, overall geometry, and detail geometry).

2. Represent design intent by preserving the “reason” for
the existence of various model entities by means of
the sequence of stages and the history of the design. In
particular, the system should make it possible to
retrace the steps from geometry to the functions that
the geometry implements.

3. Make explicit the level of commitment of the designer
to various properties of the design. In particular,
strongly committed details must be treated as
constraints for following design steps. Similarly, the
system should support default geometry that
represents parts of the design when no commitment to
a particular solution has yet been made.

4. Support redesign in various ways, e.g., by supporting
parallel refinements of a single starting model.
Naturally, it should always be possible to retrace the
steps to an earlier design stage.

5. Provide documentation tools for capturing functional
specifications, for use by later phases in the design—
manufacture process, and for redesign. For instance, it
should provide a general annotation mechanism.

Some of the above requirements are domain-
independent and are valid for top-down design in, e.g.,
software development and IC design. Mechanical design
is made different from such domains by the special role
of geometry: In mechanical design, geometry acts both as
a medium for expressing design goals and constraints and
as a medium for expressing the result of the design,
whereas in software engineering different representations
can be used at different levels of the design. Hence, the
interface between geometry and other design
representations must be more complex than the
interfaces between various design object representations
in those other disciplines.

3. Overview of the prototype modeling system
A prototype modeling system was built as our initial
attempt to achieve the overall goals set forth in the
previous section. Because of the experimental nature of
the prototype, it was desirable to use a software
development environment that provided for rapid
prototyping and development of software, had good
support for graphical interaction, and allowed extensive
reorganization of the developed software as it became
necessary. To achieve these goals, the Smalltalk V/286'
programming environment [13] was chosen. We call the
current implementation of the system WAYT, for Why-
Are-You-There?

' Smalltalk V/286 is a registered trademark of Digitalk, Inc.

IBM J. RES. DEVELOP. VOL. 3¢ NO. 5 SEPTEMBER 1990

Smalltalk is the grandparent of various object-oriented
programming environments. Following the style of this
environment, the prototype system consists of three
major model structures, each realized as a Smalltalk class
hierarchy, and three related, interlinked programs
(“Browsers”). The major components are the following:

1. Design Browser [14], which can be used to represent
hierarchical part-of graphs at several levels of detail,
and with several parallel elaborations.

2. Geometry Browser [15], which can be used to
associate geometric feature models with the design
entities in a design model created by means of the
Design Browser.

3. Constraint Browser [16], which can be used to create
and edit geometric constraints describing the mating
conditions and other positional and dimensional
restrictions among the parts of an assembly.

In the following sections, each of the major
components is described in turn, and its relation to the
overall goals of the system is explained.

4. Hierarchical part-of graphs

e Concepts

One of the major requirements for a modeling system for
top-down design is a facility for conceptual,
nongeometric modeling, which is mainly concerned with
decomposing the product to be designed into
subcomponents and their interfaces. To satisfy this
requirement, WAYT makes use of so-called part-of
graphs.

A part-of graph is a way of representing the breakdown
of some entities of interest into more primitive entities.
For instance, the entity “book” consists of the lower-level
entities “front matter,” “chapters,” and “back matter,”
which, in turn, consist of still more primitive entities
such as “title,” “section,” and “index.” Technically, a
part-of graph consists of a set of nodes representing the
entities of interest, connected by directed arcs
representing the “part-of ” (or “consists-of) relations
between the nodes. Figure 1 is a simple part-of graph that
represents the breakdown of a table lamp into more
primitive components.

A more general formulation of part-of graphs results if
we allow an entity to have several parallel, alternative
breakdowns into more primitive entities, and a
component entity to appear in all or just some of the
breakdowns. Each breakdown is itself a part-of graph. We
may interpret the parallel breakdowns as varying “views”
of the entity represented. For instance, Figure 2(a) shows
a “structural” view of the table lamp of Figure 1; observe
that some new nodes have been included, and the part-of

IBM J. RES. DEVELOP. VOL. 34 NO. 5 SEPTEMBER 1990

i Simple part-of graph of a lamp.

relationships have been modified. In a similar way,
Figure 2(b) gives a “functional” view of the lamp.

Hierarchical part-of graphs in WAYT result from
organizing the different views of a part-of graph into a
tree structure and enforcing consistency rules among
them. A view of a part-of graph may itself have any
number of views, each representing a particular
refinement of the parent view. A subview cannot
eliminate any nodes that it has received from its parent
view. However, it can introduce new nodes and part-of
relationships into the graph, and it can modify the part-of
relationships of the nodes it has received from the parent.
For instance, the views of Figure 2 are subviews of Figure
1. This hierarchical relationship is shown in Figure 3.
Observe that all nodes of Figure 1 are present in the
views of Figure 2. The design models of the Appendix
give further examples of part-of graphs and views.

o MultiTree data structure
WAYT represents hierarchical part-of graphs by means
of instances of two Smalltalk classes:

1. Nodes are represented with instances of class
MuitiTreeNode. A MultiTreeNode records the set of
component nodes, the parent node (if any), and some
attribute information such as the label of the node and
its position on a video display.

2. Views are represented with instances of class
MultiTree. A MultiTree consists of attribute
information and references to its MultiTreeNode(s).

M. MANTYLA

641

642

@

(a) Structural and (b) functional view of the lamp.

Basic
lamp

Structural Functional
view view

Hierarchical relationship of views of the lamp.

A node appearing in several views can either be
represented as a single shared MultiTreeNode, or be
explicitly copied in each of the views. Explicit copying is
used if the views associate different structure or attribute
information with the node; as we shall see, this capability
is used to provide support for abstract geometry in
WAYT. Further details of the data representation are
given in [14].

o Design model entities

The MultiTree classes outlined above were intentionally
left void of any particular semantics; hence, they should
be capable of modeling any kind of hierarchical

M. MANTYLA

decomposition of things consisting of other things.
According to the principles of object-oriented
programming, the actual specialization of MultiTree
classes for assembly design modeling was done by
deriving new subclasses of the existing classes. These
classes add new instance variables and functionality to
the basic classes. The design model classes currently used
in WAYT are given in Figure 4. In the figure,
indentation is used to indicate the class structure.
Instance variables of each class are listed in parentheses.
In fact, WAYT views are instances of class
DesignContext, which adds the capability of recording
annotations and a geometric model to the view. The
abstract class MultiTree has no direct instances. The
abstract class DesignEntity can store annotations and a
list of geometric constraints, in addition to the instance
variables of the basic class MultiTreeNode. The nodes
actually used in WAY'T are DesignFeature, which is used
1o represent a range of conceptual entities such as a
subassembly, a component, or a significant geometric
detail of a component, and DesignRelation, with its
subclasses that represent various kinds of binary
relationships between entities. Mechanical joints are
modeled as a special kind of relation. The joint classes
provide methods that “automatically” insert the
geometric features needed for realizing the joint.

o Design Browser

The Design Browser is an interactive editor that provides
access to the above entities. A sample display of the
browser is shown in Figure 5. The browser includes

IBM J. RES. DEVELOP. VOL. 34 NO. 5 SEPTEMBER 1990

Browse FI'-2b

MultiTree(name treeRoots superTree subTrees)
DesignContext(annotation model)
MuttiTreeNode(name loc parent children tree superNode subNodes)
DesignEntity(annotation constraints)
DesignFeature(relations geometry)
DesignRelation(from to)
DesignConstraint()
GeometricConstraint()
Joint(fromFeature toFeature
fromJointFeature toJointFeature)
SimpleJoint()
PlanarJoint()
ScrewdJoint(auxParts)
CSHoleCBHoleJoint()
CylindricalJoint()
CompounddJoint(nU nV deltaU deltaV) TR Wy B S|

Instrunent i/f

% Design entity classes of WAYT. i Design Browser.

aGridPatternt aGridPattern2

g Simple feature model.
643

M. MANTYLA

IBM J. RES. DEVELOP. VOL. 34 NO. 5 SEPTEMBER 1990

644

GeometricModel (name designContext parts
constraintNetwork annotation)

GeometricEntity(copyOf)
GeometricFeature(designEntity relations xi.eft yTop
xDim yDim originX originY
otherVariables direction anchors)
CompoundFeature()
Combination()
StepHole(length)
CounterSinkHole()
PatternFeature()
GridPattern(nU nV deltal deltaV)
SimpleFeature()
Hole(radius length)
Boring()

Sink()

ConeSink(sinkAngie bottomRadius)
FreeHole()

BlindHole()
ConeBlindHole(bottomAngie)
PlaneBlindHole()

ThruHole()

PrismaticFeature(width iength)
Block()
Boss()
Relief()
Slot()

ThruSlot()

Surface()
GeometricRelation{from to)

ConsistsOf()

OnTheBottomOf()

PatternOf(nU nV deltaX deltaY)

% Geometric feature classes.

operations for adding, removing, and manipulating views
and nodes. Currently available views are indicated in a
list (partially visible) on the left side of the display; the
selected view is displayed in a large window on the right
side. The browser can initiate new, parallel instances of
itself for editing lower-level views, thus simulating a
parallel design environment in which several designers
are concurrently working on various aspects of a design,
or a single designer shifts from one aspect of design to
another.

5. Geometric feature models

The design entities of Figure 4 can directly represent only
the logical structure of a product. Another class hierarchy
that implements a feature-based representation of simple
two-dimensional objects is used to represent the
geometric information of the product.

M. MANTYLA

e Feature taxonomy

The feature model used in WAYT is based on a more
elaborate model used in HutCAPP, a feature-based
process planner constructed by the author and others at
the Helsinki University of Technology [6, 7]. In this
model, all geometric objects are represented by means of
a tree structure, in which the nodes correspond to various
kinds of volume features. The collection of feature types
includes both subtractive features that correspond to
material removed from the parent feature (e.g., slots) and
additive features that represent material added to the
parent (e.g., bosses). Arcs of the tree represent various
kinds of geometric relationships between the features.

A simple feature model of a part discussed in the
Appendix is shown in Figure 6. The part is described in
terms of six features: a rectangular block feature (aBlock),
a slot feature (aSlot), and two pattern features
(aGridPattern1 and aGridPattern2), each consisting of
two instances of a boss feature (aBoss1 and aBoss2,
respectively).

The feature types are implemented in a straightforward
fashion as Smalltalk classes; the current collection of
feature and relationship classes included in WAYT is
listed in Figure 7. As indicated in the figure, features are
either simple features (e.g., holes) or compounds
consisting of simple features (e.g., a countersink hole,
which consists of a cone sink and a through-hole).
Pattern features consisting of several instances of a
feature are also included. Some intermediate classes, such
as StepHole and Boring, are included for future growth
and compatibility with HutCAPP. The class
GeometricModel is included for simplifying the
interfacing of design models and geometric feature
models.

Instance variables of the various classes contain mainly
the “natural” parameters of each feature; for instance,
holes are expressed in terms of the radius and the length
of axis. Similarly, all prismatic features are expressed in
terms of length and width. Instance variables originX,
originY, and direction indicate the location of the origin
of the feature and its orientation.

o Inheritance of geometric models

Recall that the copies of a design entity appearing in
several views are represented in terms of separate nodes
in the underlying data structure and that each copy can
have its own associated attribute information. WAYT
makes use of this to implement the requirement of
supporting abstract geometry.

The approach chosen for WAYT is based on the
inheritance of geometric information from parent view to
subviews. If a copy of a design entity is not directly
associated with geometric information (i.e., its instance
variable geometry is empty), the geometry of the copy of

IBM J. RES. DEVELOP. VOL. 34 NO. 5 SEPTEMBER 19%0

Sample

Parent view

Subview

Inheritance of geometry.

the design entity in the parent view is used (if such a
copy exists). If the parent’s geometry is empty, the search
continues to higher levels.

If the geometry inherited in this fashion is modified in
a subview (e.g., new features are inserted in the
geometry), WAYT creates a copy of the geometry
inherited from the parent view and assigns it as the
geometry of the appropriate node in the subview. In
order to enforce the compatibility between the original
geometry and the copied geometry, the copied features
are tagged with a reference to the corresponding original
geometry. In particular, when copied geometry is edited,
features tagged as copies cannot be deleted. Similarly, if
the designer changes geometry which has been copied
elsewhere, a confirmation is first requested.
Consequently, the designer can add only new features to
inherited geometry. Naturally, the designer can also
change the dimensions and locations of inherited features
(within the degrees of freedom provided by geometric
constraints, as detailed in the next section).

IBM J. RES. DEVELOP. VOL. 34 NO. 5 SEPTEMBER 1990

A simple example of geometry inheritance is shown in
Figure 8, which consists of a parent view and a subview.
The parent view consists of three design entities, Sample,
Box, and Cover. The geometry associated with these
nodes is shown on the right. In the subview, shown
below, a relationship entity (called fix) representing a
mechanical joint between the box and the cover has been
added to the design model. The geometry of the parent
view has been copied as the geometry of the subview, and
new features have been added to represent the details of
the mechanical joint between the two parts. Observe that
some dimensions and locations of the inherited geometry
have also been changed.

& Geometry Browser

The actual manipulation of geometric feature models is
done with the Geometry Browser. With this browser, it is
possible to create, modify, and delete geometric feature
instances. The browser can edit several parts
simultaneously (for instance, both geometries associated

M. MANTYLA

645

646

Browse Conceptual dénign’ geonetry

Geometry Browser.

hX.hY

g

Block and through-hole.

with a DesignRelation, or all gecometries associated with a
whole DesignContext). The browser is typically started by
the Design Browser for editing (or creating) the geometry
of a design model node; if necessary, the geometry of a
parent view is first copied.

A sample display of the Geometry Browser is shown in
Figure 9.

6. Geometric constraint management
The geometric feature representation and the geometry
inheritance mechanism described in the previous section

M. MANTYLA

are not sufficient for satisfying the requirements set in
Section 3 of this paper. The copied geometry is protected
against deletion only; the dimensions and locations of the
various parts are all changeable in the subview.
Furthermore, it is not possible to express the needed
mating conditions between parts, nor the detailed
relationships among the features of a part.

However, WAYT manages all required tasks, and
some others, by means of geometric constraints. In
particular, geometric constraints are used to represent
and manage the following;

1. Dependencies between instance variables of geometric
features.

2. Dependencies between features forming compound
geometric features.

3. Dependencies between geometric attributes of features
within a part.

4. Mating and other dependencies between parts.

5. The degree of commitment that the designer has to
any of the dependencies or constraints of the above
types.

e DeltaBlue: An incremental constraint-satisfaction
algorithm

Many of the dependencies and constraints listed above
can be represented in terms of simple equations involving
geometric attributes of the parts considered. For instance,
the constraints that a through-hole h must reside at the
center of a rectangular block b and extend all the way
through the block can be translated to the following
collection of equations (see Figure 10 for nomenclature):

h.Y =b.Y,
h.X =b.X + b.Len/2,
h.Len = b.Wid.

Actual assignments of dimensions and locations to the
entities can be modeled as further constraints:

b.X =4,

b.Y =3,
b.Len = 18,
b.Wid = 10,
h.Rad = 1.

The problem of enforcing such constraints while still
providing the user with facilities for changing the
numerical values of the constrained geometric attributes
is best solved by means of a constraint-satisfaction
algorithm that can represent numerical constraints of the
above type and construct a procedure for satisfying the
constraints (if possible). A review of constraint-

IBM J. RES. DEVELOP. VOL. 34 NO. 5 SEPTEMBER 1990

satisfaction techniques is beyond the scope of this paper;
for an overview, see [17]. Instead, we limit the discussion
to the particular algorithm chosen for the present work.

DeltaBlue [18, 19] is a simple algorithm for constraint
satisfaction that is applicable to acyclic linear numerical
equality constraints; this simple domain was deemed
sufficient for the prototype. DeltaBlue is based on
constructing an explicit representation of the numerical
equations corresponding to the constraints. The internal
representation is a multigraph whose nodes represent the
constrained values; in the above example, each geometric
attribute would be represented as a variable. Arcs of the
multigraph represent the constraints. For instance, the
multigraph representation of the example of Figure 10 is
shown in Figure 11.

Every arc of the multigraph is associated with
alternative procedures that can satisfy the corresponding
constraint when executed. For instance, the constraint

a=b+c

would typically be associated with the procedures

a:=b+c,
b:=a-c,
c:=a-—b,

where := denotes assignment, in contrast to =, which
denotes the equality constraint. Given the multigraph,
DeltaBlue will find a sequence of procedures that, when
executed sequentially, will result in a set of values for
which as many constraints as possible are satisfied.

The algorithm is based on the concept of “strength.”
All constraints have a strength attribute given by the
creator of the constraint (in our case, WAYT). The
strength of a variable whose value is (yet) undetermined
by constraints is the absolute minimum; otherwise, the
strength of the variable is the minimum of the strength of
the constraint that determines the value of the variable
and the strengths of the input variables of the
corresponding procedure.

DeltaBlue works by considering one constraint at a
time and constructing an intermediate solution at each
step. When a new constraint is added to the muitigraph,
the algorithm selects the weakest associated variable as
the potential output. If the constraint is stronger than the
variable, the constraint can be satisfied by assigning a
value to the variable by means of the corresponding
procedure. Other variables act as input variables for the
procedure. Otherwise, i.e., if the constraint is weaker than
the weakest associated variable, the constraint cannot be
satisfied. If a previously satisfied constraint is overridden,
the algorithm will try to satisfy it recursively. A detailed
description of the algorithm is given in [19].

IBM J. RES. DEVELOP. VOL. 34 NO. 5 SEPTEMBER 1990

(blen) (bwd)

() () (Chead) (Chien)

|

Multigraph representation of constraints of Figure 10.

A solution to the constraint graph of Figure 11 is
shown in Figure 12. In the figure, arrowheads are used to
indicate the chosen procedure of each constraint, and
numbers indicate the evaluation order of the procedures.

WAYT capitalizes on several particular properties of
DeltaBlue. First, the procedure outlined above can be
shown to find a best possible solution to the constraint
graph in the sense that the constraints are satisfied in
decreasing order of their strength. Hence, DeltaBlue also
behaves properly in overconstrained situations. Second,
the incremental nature of the algorithm is well suited for
interactive use, where constraints are added and removed
by the designer. Third, as we shall see, the concept of the
strength of constraints can be readily utilized for
modeling the degree of commitment to a constraint held
by the designer.

On the negative side, DeltaBlue does not provide
support for constraints that correspond to inequalities.
For instance, in the above example the additional useful
constraint

b.Len > 2 * h.Rad
cannot be represented or enforced.
e Constraints and features

The constraint mechanism is integrated with other
components of WAYT by making all instance variables

M. MANTYLA

647

648

1]

(oLen) (bwid)

5

<‘|W G G

Solution of constraints of Figure 11.

'<— sinkRadius ——»

sinkAngle

bottomRadius

g Natural parameterization of ConeSink.

representing dimensions and locations of geometric
features instances of a class that represents constrained
variables instead of plain numbers. This opens the door

M. MANTYLA

to using geometric constraints for expressing various
aspects of the desired behavior of features.

One useful application of constraints is the relaxation
of the fixed parameterization of geometric features
implied by Figure 7. For instance, instead of using the
top left point, it might sometimes be more convenient for
the designer to use the center point of a rectangular block
to specify its position. With the help of the constraints, it
is straightforward to state that

b.Xcenter = b.X + b.Len/2,
b.Ycenter = b.Y + b.Wid/2,

and then let the user assign values to Xcenter and
Ycenter instead of X and Y.

A more complex example is given by the cone sink,
which has a redundant set of “natural” parameters (see
Figure 13), bound by the following constraint:

_ sinkRadius — bottomRadius
tan (sinkAngle/2)

length

By including this expression as a constraint, WAYT can
let the user select any three of the four parameters that
may be convenient.

WAYT also uses constraints to express the
dimensioning of features with respect to one another. In
simple cases, the constraints are inserted “automatically,’
with no further user input. For instance, if the user
creates a slot within a block, the constraint that the slot
must reside along the edge of the block is generated by
WAYT. Joint features in mating parts are also
constrained to reside in the proper relative positions with
respect to each other. In more complex cases, the user
must add the constraints himself.

Finally, WAYT also uses constraints for representing
the positioning of parts with respect to one another.

Figure 14 gives an example of positioning constraints
for three parts discussed in the Appendix. The two parts
PL and PR, drawn in darker gray, are constrained to
reside on top of the third part, M. The length of the slot S
must combine with the lengths of PL and PR as shown.
These positioning constraints are expressed with the
following:

13

M.X = PL.X,

PR.X + PR.Len = M.X + M.Len,
S.X=M.X + PL.Len,

S.X + S.Len = PR.X.

Specification of constraints relating two parts requires
that a relation node connecting the respective design
entities be defined. Certain often-used constraints (e.g.,

IBM J. RES. DEVELOP. VOL. 34 NO. 5 SEPTEMBER 1990

“part A is positioned on the top edge of part B”) can be
inserted simply by selecting the needed constraint from a
menu. Other constraints must be edited by means of the
Constraint Browser described below.

Naturally, parametric editing of the geometry is
possible through a simple menu-based user interface or
with the Constraint Browser.

o Inheritance of constraints

In order to protect abstract geometry defined in a parent
view against changes, the system makes a local copy of it
before any modifications are performed. Naturally, the
copied geometry should still behave according to the
constraints that have been set in the parent view(s). To
accomplish this, the original geometry and its copies
share their geometric instance variables. For example,
even though a feature and its copy are two different
entities, the x-coordinates of both the feature and its copy
are represented with the same single entity. Consequently,
all constraints that relate to the x-coordinate are still in
effect in the subview and for the copied geometry.

Of course, constraints set for a copied geometry in a
subview should not affect the original geometry in the
parent view. To provide the expected behavior, all
constraints set in a view are stored in the corresponding
local copies of the nodes of the view; in particular, all
constraints related to a single part are stored in the
corresponding DesignFeature, while constraints
expressing relationships between parts are stored in the
corresponding DesignRelation. As a result, the “local”
constraints defined in a subview can be removed from
the constraint graph when the parent view is browsed.
Hence, at any time, only those constraints defined in the
currently active view and its parent views are in effect.

o Level of commitment

The relative importance of constraints is modeled
naturally with the help of the strength concept of
DeltaBlue. When a value is assigned to a geometric
variable, WAYT currently makes a distinction among
three levels of commitment to the value:

1. Anchored value The designer is strongly committed
to a particular value of a variable. This is modeled by
means of a “strong” equality constraint of the type
aVariable = constant.

2. Default value The designer has assigned a value to
the variable, but is not committed to this particular
choice. This is modeled by means of a “weak”
equality constraint.

3. Don’t care The designer is not interested in the value
of the variable and has not provided any explicit value
for it. The value of the variable may be determined by
constraints, if any.

IBM J. RES. DEVELOP. VOL. 3¢ NO. 5 SEPTEMBER 1990

(PRX, PRY)

i Horizontal positioning constraints.

These concepts are easily modeled with the strength
attribute of constraints. The strength attribute is recorded
as a nonnegative integer, where 0 denotes the absolutely
weakest strength. By convention, we use the value 999 as
the absolutely strongest strength.

In the root view of a design model, strong and weak
constraints are assigned strengths 999 and 1, respectively.
In order to protect anchored values while providing
access to default values, the strengths of strong and weak
constraints in a subview are settos — l and w + 1,
where s and w are the strengths of the strong and weak
constraints in the corresponding parent view,
respectively. Hence, a subview cannot override anchored
values set by any of its parent views. However, it is
capable of either assigning a new default value to a weak
variable by overriding the existing constraint (in which
case a subsequent subview can override the new default
value) or assigning an anchored value for the variable (in
which case the new value cannot be overridden).

Currently, WAYT treats all constraints relating several
variables as being “strong” ones. It would be
straightforward to extend the above classification to those
constraints as well.

o Constraint Browser
Browsing and editing variables and their constraints is
accomplished with the Constraint Browser, a simple
editor for DeltaBlue constraints and variables.

A sample display of the browser is given in Figure 15.
The browser displays a scrollable selection list of variables
on the left edge of the display. The two windows on the

M. MANTYLA

649

650

DeltaBlue Browser

Value: 60
Hethod:

r.GridPattern.Deltal

r.GridPattern.DeltaV
Polepiece r.GridPattern.GridPat
Polepiece r.GridPattern.GridPat

Polepiece r.GridPattern.Pattern0fiB.Delta¥ = 1
Polepiece r.GridPattern.Deltal = 68

Polepiece r.GridPattern.PatternOf88.DeltaX = 8
Polepiece r.GridPattern.XDim = Polepiece r.Grid

Magnet

Fit SFLE

)umulu

o S Fit ffCoil 11

/Fit Coil 1n]

IPolepieee 1

13
Fit/A-dCoil r1]

/Fit fedCoil rr}

Polepiece »r

|

|Pole teeth 1 ot/ Dim fadarmatureteeth 1]

I‘Pole teeth rHDin/——lﬂrnatureteeth r]

Constraint Browser.

right display the value of the currently selected variable,
the method chosen for assigning the value (if any), and a
scrollable list of the constraints currently referring to the
variable. The browser provides operations for adding and
removing constraints and variables.

The selection list of variables is set according to
the entity whose constraints are browsed. For a
DesignFeature, variables of the geometry of the design
entity are listed, while for a DesignRelation, the variables
of both parts are shown. It is also possible to invoke the
browser while editing the geometry of a part with the
Geometry Browser; in this case, only the variables
pertaining to the currently selected feature are shown.

7. Directions for further work

The research described in this paper is still under way,
and there are several areas where further work is required
or contemplated.

M. MANTYLA

The multitree data structure is based on several
simplifying assumptions. Any sharing of design entities
among parallel views is based on inheritance—that is,
two views cannot share an entity unless they inherit it
from a common parent view. This is clearly too
restrictive. The current implementation of the multitree
representation and its editing protocols also assumes that
a single set of features is sufficient for expressing all views
of the design. This also may be too restrictive; in
particular, the model manipulation protocols must be
relaxed and generalized in the future.

Another problem with the current view mechanism is
that the “existence constraint” of design entities and
geometric features is always strict: A subview must
include all inherited nodes and their geometries. With the
help of a more elaborate mechanism for dealing with
views, the modeling expressiveness of WAYT could be
greatly increased. An alternative mechanism is offered by

. IBM J. RES. DEVELOP. VOL. 34 NO. 5 SEPTEMBER 1990

various truth maintenance systems (TMS), which would
make it possible to model explicitly the constraints for
the existence of an entity in the model. Qutstanding
examples of TMS in advanced CAD systems are given in
[20, 21]. Reference [22] describes the use of a TMS in
combination with a powerful logic-based constraint-
satisfaction system.

The restriction to two-dimensional geometry and to a
fairly simple collection of geometric features is obviously
a severe limitation in the current system. In the future,
we contemplate interfacing WAYT with HutCAPP [6, 7],
which provides a three-dimensional version of a feature
library similar to the one used in WAYT and also
includes access to a powerful solid modeling system [23].

An original goal of WAYT, not explicitly mentioned
above, was to provide an “intelligent explanation” of why
some geometric feature is included in the model. For
instance, a geometric feature might serve the purpose of
implementing a geometric joint, and the joint would
implement a mechanical linkage, which in turn would
implement a design requirement for certain relative
motion of parts. While the basic information for
answering such queries is to a large extent available in the
model, no such functionality has yet been implemented.

Other areas where improvement would be possible and
desirable include the following:

1. Constraint editor Currently, the constraint-
satisfaction algorithm knows about constraints only
from a fixed (albeit easily programmable) selection.
With the help of a computer algebra system, it might
be possible to allow constraints to be specified simply
in terms of their defining equations and to construct
the satisfaction procedures on-line.

2. Constraint satisfaction A more elaborate constraint-
satisfaction and propagation mechanism (such as in,
e.g., [24, 25]) will be needed eventually.

3. Geometric transformations WAYT currently deals
only with rotations that are multiples of 90 degrees.
This obviously should be relaxed.

4. Relationships of parallel views Currently, a
DesignFeature of one view must correspond to single
DesignFeatures in other views. This may not be
sufficient for expressing conveniently more complex
mechanical assemblies.

5. Cutting and pasting The user interface can be
improved in several ways in order to make it more
convenient and efficient. The most fundamental
improvement would be a facility for “cutting and
pasting” design entities and geometric features from
one design to the other, or from a prescribed library of
standard solutions. The main difficulty with this
extension is the preservation of the constraints defined
for the moved entities.

IBM J. RES. DEVELOP. VOL. 34 NO. 5 SEPTEMBER 1990

6. Large models The current implementation does not
scale well to large models, where thousands of parts
must be managed. While the basic algorithm for
constraint satisfaction should deal gracefully with a
large number of constraints, another technique should
be used for madssive changes where large numbers of
constraints are manipulated in a single step.

8. Conclusion

We have described a modeling system for the design of
assembled products that possesses several characteristics
not found in current commercial or research systems.
These include

Support for hierarchical views of the designed object.
2. Support for abstract geometry.

3. Support for geometric constraints for modeling the
design intent and the mating of parts of the assembly,
and also for parametric design of feature models.

—

The techniques used to implement these characteristics
are well known and relatively simple to implement and
interface with existing modeling systems. We believe that
future CAD systems will commonly include techniques
such as those described herein.

Despite the fact that the implementation of Smalltalk
used is based on interpretation, the system is quite
responsive. The heaviest computational load occurs when
the current view is changed and many constraints must
be removed or reinserted. The largest model constructed
with the system so far has 716 variables and 608
constraints. On a PS/22 Model 80 personal computer, it
takes nearly 50 seconds to remove or reinsert all
constraints. Ideally, WAYT would be implemented as a
compiled module of a general-purpose mechanical CAD
system; in this case, a speed improvement of one order of
magnitude can be expected.

WAYT, as currently implemented, is directed more at
capturing the design process than at being an active
design tool. Nevertheless, even a limited-purpose system
such as WAYT can be useful. We believe that
understanding the issues involved with the representation
of functional and conceptual design information forms a
sound basis for providing active support during early
phases of design.

Appendix: A case study of top-down design

This appendix illustrates the modeling problems of top-
down design with the design process of a real product: an
instrument designed and manufactured at the Thomas J.
Watson Research Center. The design study illustrates the
design principles, central design phases, and major design

2 PS/2 is a registered trademark of International Business Machines Corporation.

M. MANTYLA

651

652

Robot Instrument
interface interface
(i) (]

Functional model of generic positioner device.

decisions regarding the device; detailed information may
be obtained from the original documentation’ [1-5].

A simplified design model for the instrument is
developed, compatible with the modeling facilities
described in the main body of this paper.

o Design principles and functional specification

The Fine Positioner (FP) is a robotic planar positioning
device intended for various manufacturing, laboratory
measurement, and instrumentation tasks. It can be
positioned within 0.2 um of the desired point over a total
movement range of 1.8 mm. The three-degree-of-
freedom version of the FP also provides 1.75 degrees of
rotation. The FP is expected to be used as the terminal
wrist of an ordinary robot arm that provides the coarse
motion. Since its initial design in 1984, the FP has gone
through extensive design and engineering changes and
has now reached a state where it can be mass-produced.

A positioner, in general, is a device that moves an
armature with respect to a body, according to the
instructions of external control. In turn, the armature is
connected to the device being positioned, e.g., a
measurement probe.

The preceding description provides a superficial
statement of what the product to be designed must be
like. There are two major external interfaces: the linkage
with the robot arm and the linkage with the control unit.
Similarly, there are two major internal parts linked with
each other: the body and the armature.

The general functional specification of the positioner
can be translated into the diagram shown in Figure Al.
The diagram uses three constructs:

1. Rectangles containing text represent a hierarchy of
entities corresponding to the product, its

R Hammer, IBM Thomas J. Watson Research Center, Yorktown Heights, New
York, personal communication, 1989.

M. MANTYLA

subassemblies, its components, and, ultimately, its
geometric features. For simplicity, we use the term
part to denote these entities.

2. Unlabeled arcs drawn with heavy lines represent
hierarchical part-of relationships between parts.

3. Thin arcs with parallelogram label boxes represent
binary constraints between two parts. We use these
entities liberally to represent all interface,
dimensioning, assembly, and kinematic constraints.

The specification shown in Figure Al attempts to
capture the generic properties of all conceivable
positioners. We speculate that such a specification could
be contained in a large library of engineering idioms
included as a resource of a future-generation CAD
system.

A particular specification of a particular fine-positioner
product is a refinement of the generic specification of
Figure A1. Such a refined description would indicate the
required relative motion for the two major parts, the
desired speed and acceleration of the motion, the
payloads that must be handled, and the desired size and
weight of the product. In the case of the FP, the desired
motion was initially specified to be planar (x-y)
translation. Later, rotation around the z-axis was also
desired. An important practical design constraint for the
FP was a requirement for contamination-free operation:
Because the FP is intended for delicate manufacturing or
laboratory measurement tasks, it must not itself produce
noise, vibration, or particles that might harm the product
being assembled or the experiment being performed.

o Conceptual design

The overall goal of the design of the FP was to find an
implementation for the body and the armature such that
the desired relative motion could be produced and the
desired external interfaces could be provided. This design
task was complicated by the additional design constraint
of contamination-free operation, which precluded several
otherwise possible solutions for realizing the relative
motion (e.g., hydraulic linkages).

The principal solution chosen was to use a direct-drive
electromagnetic actuator. A permanent magnet is used to
create a magnetic flux path between the body and the
armature. In Figure A2, the thick lines indicate the flux.
The flux can be steered by means of coils wound around
magnetic pole pieces. As shown in Figure A3(a), when a
suitable positive current is applied in the coil, the flux on
the left side of the pole piece is increased and the flux on
the right side is decreased. The increased magnetic flux
forces the armature to move with respect to the body so
that the small bosses, or feeth, in the armature and the
pole pieces become aligned on the left side. At the same
time, the teeth on the right side become disaligned. With

1IBM J. RES. DEVELOP. VOL. 34 NO. 5 SEPTEMBER 1990

a suitable negative current, the opposite takes place
[Figure A3(c)]. When no current is applied, the rest
position [Figure A3(b)] is assumed. Intermediate
positions can be very accurately achieved by controlling
the current.

We can summarize the above design in the diagram
shown in Figure A4, which is an amplified version of
Figure Al. (Figure A4 is a redrawing of Figure 5 of the
main body of the text.) In the diagram, new entities
representing the magnet, the two pole pieces, and the
teeth in the pole pieces and armature have been inserted.
Electric stuff now includes the four coils for controlling
the current. The model also includes constraints
representing the dimensional relationships among the
magnet, the pole pieces, the coils, and the teeth in the
pole pieces and in the armature.

o Engineering solution 1: Spring suspension

The conceptual design of Figure A4 does not yet specify
how the armature is linked with the body so that the
proper distance between the teeth is maintained while the
desired relative motion between the body and the
armature is allowed. The first prototype of the FP attacks
this problem by means of a spring suspension [2]. The
armature and the body are connected with a pair of
flexible springs, one on the left side and one on the right
side of the assembly. The springs must be flexible enough
to allow the desired movement and rigid enough to
maintain the proper separation between the teeth. The
actual three-dimensional design makes use of two pairs
of springs for providing independent flexing along both
Xx- and y-axes.

Armature
)]

Pole —] P L Pole
piece piece
S N

o
Magnet

Magnetic flux path.

The design model shown in Figure A4 has been
augmented to include two new parts corresponding to the
springs; see Figure AS. Observe that the springs are
organized as “parts of ” the link constraint between the
body and the armature. New constraints representing the
mechanical joints of the springs with the armature are
also included.

Next, the body assembly is detailed, with several new
components. A simplified geometric representation of

nl

M

@

Steering the flux.

IBM J. RES. DEVELOP. VOL. 34 NO. 5 SEPTEMBER 1990

®) ©

M. MANTYLA

653

654

Pole teeth left l

[Poleteetnright

L\

ﬂH Armature teeth left |

Dim

Armatureteethright |

Refined model of the FP.

this design is shown in Figure A6 (see also Figure 9 in the
main body of the text), while Figure A7 gives the
corresponding design model. See [3] for information on
the analogous three-dimensional design.

The model of Figure A7 must still be detailed to
complete the design. The dimensions, tolerances,
materials, surface finish, and plating of all components
must be determined to ensure the correct operation of
the device. The final shapes of all components must also
be selected while taking into account the ability of the
design to be manufactured and assembled.

o Engineering solution 2: Air bearing

The original design of the FP was successful in that a
series of working prototypes were manufactured and the
basic design principles validated. Nevertheless, the design
had a number of problems:

1. The spring suspension introduces a small amount of
unwanted motion along the z-axis. Although this

M. MANTYLA

motion is predictable, it nevertheless is a nuisance for
development of control algorithms.

2. The air gap between the teeth is implemented with a
long kinematic chain of components and linkages.
Consequently, the prototype is difficult to assemble
and adjust.

3. It is not possible to generalize the design to allow
small rotations around the z-axis without even greater
assembly and adjustment problems [4].

4. The product has too many parts; the part list of [3]
includes 89 parts.

The spring suspension can be identified as the source
of the first two problems. To improve the design, it must
be eliminated. As a result, the design process must be
restarted from the result of the conceptual design stage of
the FP, shown in Figure A4.

An alternative engineering solution to the suspension
problem, which has all the desired characteristics and also
avoids the problem of adjusting the gap between the

IBM J. RES. DEVELOP. VOL. 34 NO. 5 SEPTEMBER 1990

Electric stuff

Pole teeth right L

Fine positioner with spring suspension.

teeth, is to use an air bearing between the body and the
armature. An air bearing requires two highly planar
mating surfaces. They are separated by a thin layer of air
blown through channels and orifices created in the
surfaces. Hence, the various components on the top
surface of the body of the FP must be integrated into a
single unit, with a planar, polished top surface. Similarly,
the bottom surface of the armature must become a flat,
polished surface.

Instead of being separate components, the pole pieces
and the pole teeth are now inserted into a new
component, the stator plate, by milling slots into
nonmagnetic material, inserting the teeth parts, made of
magnetic material, tightly into the slots, and covering and
polishing the result. Similarly, the armature teeth are
inserted into the armature plate. The magnet is integrated
into a new component, the flux return plate. Because of
the larger production volume anticipated, it is worthwhile
to design a housing into which the other parts can be

IBM J. RES. DEVELOP. VOL. 34 NO. 5 SEPTEMBER 1990

Geometry of the body.

M. MANTYLA

ing left

Instrument i/f

Spring right

Magnet plate

Locator plate

Sprin:
[Fx/
| Magnet |

[Fx/f

[Foepecoet 1]

Coilleft 1 |

Fit Coil left 2
Fit Coil right 1

Fit £— Coilright2 |

Pole piece right

| Poletesthleft f——y'Dim A—{ Armature teeth left |

Pole teeth right |—/Dim £—] ~ Armature teeth right |

Detail design model of spring suspension solution.

assembled. The housing also provides the interface with
the robot arm. Finally, some new components are needed
for maintaining the air flow. A design model that
includes the above refinements is shown in Figure A8,
while Figure A9 shows the corresponding geometric
arrangement of the major components.

Again, the detailed geometric shapes of all
components, their materials, the mechanical joints
between the components, and the auxiliary parts needed
for the assembly must still be determined. See [5] for
detailed information.

e Notes

The case study illustrates well several properties of design
processes that are also discussed in the main paper.
Throughout the case study, we have presented the
progress of design in terms of a structure consisting of the
major subsystems, components, and vital details of the

M. MANTYLA

components. The important interfaces, relationships, and
constraints among the components are highlighted in the
design model. The design models are organized according
to the hierarchical part-of graph representation discussed
n the main paper. Observe that Figures A4, A5, and A7
are all consecutive refinements of Figure A1, while Figure
A8 is an alternative subview of the view of Figure AS.

Abstract geometry is introduced to capture information
on the desired relationships among the components of
the design and to represent vital dimensions and
tolerances. Observe how some aspects of the geometry
are specified at a finer degree of detail than others; for
instance, the geometry of the teeth and the relationship
between armature and pole piece teeth is already
represented accurately in Figure A2. As the design
progresses, we may observe how the focus of the
attention of the designer shifts from one aspect to
another: from conceptual solution to suspension to body
geometry to geometric detailing.

IBM J. RES. DEVELOP. VOL. 34 NO. 5 SEPTEMBER 1990

Body / ik f— - Armature Electric stuff
Robot if
/77 hsmymert 1
Flux return plate Fix

ﬂ Circuit board

Fit Coil left 1

Fit Coil left 2
Fit Coil right 1
I Fit Coil right 2

Pole teeth Isft |—Dim £ Armature teeth left |
1
Pole teeth right }—/Dim £—{ ~ Armature teeth right |

Refinement of design for air bearing solution.

The FP also illustrates the special problems of redesign.
Although the two product generations do not share a
single component, their actual design follows a similar
outline: The problems of armature-body linkage design
and body assembly design are solved as separate steps.
Interestingly, during the redesign of the FP, an
intermediate prototype that featured air suspension but
still had a body assembly design similar to the original
prototype was designed and built.

& References for Appendix

1. R. L. Hollis, Jr., “A Planar XY Robotic Positioning Device,”
IBM Thomas J. Watson Research Center, Manufacturing
Research, Yorktown Heights, NY, 1985.

2. R. L. Hollis, Jr., “Precision X-Y Positioner,” U.S. Patent
4,509,002, 1985.

3. R. L. Hollis, Jr., “Geometric Design Processor (GDP) for
Assembly Modeling: Fine Positioner Assembly Sequence,” IBM
Thomas J. Watson Research Center, Manufacturing Research,
Yorktown Heights, NY, July 1984.

4. R. L. Hollis, Jr. and B. Musits, “Electromagnetic X-Y-Theta
Precision Positioner,” U.S. Patent 4,514,674, 1985.

—

Geometry of the air bearing solution.

657

IBM J. RES. DEVELOP. VOL. 34 NO. 5 SEPTEMBER 1990 M. MANTYLA

658

5. R. Hammer and R. L. Hollis, Jr., IBM Patent Disclosure No.
YO887-0604, July 1987, describes an air-bearing-supported
three-degree-of-freedom fine positioner.

Acknowledgments

This work is dedicated to the memory of Dr. Markku
Tamminen, The author gratefully acknowledges the
helpful discussions and comments of colleagues at IBM
Research during the early phases of this research,
including Jarek Rossignac, Erik Jansen, and Ramesh
Srinivasan. The help of Bob Hammer during the case
study work was indispensable. The Fine Positioner as a
target for design study was suggested by Lee Nackman.
The author also thanks the anonymous referees for their
insightful remarks on an earlier version of the paper. The
research presented here was done while the author was
visiting the IBM Research Division at the Thomas J.
Watson Research Center. He wishes to thank IBM
Research and IBM Finland for making the visit possible,
and Helsinki University of Technology, which granted
the necessary leave. Financial support was also received
from the Helsinki University of Technology Foundation.

References

1. S. Ansaldi, L. Boato, M. Del Canto, F. Fusconi, and F.
Giannini, “Integration of Al Techniques and CAD Solid
Modelling for Process Planning Applications,” Proceedings,
Computer Applications in Production and Engineering (CAPE
'89), F. Kimura and A. Rolstadas, Eds., North-Holland
Publishing Co., Amsterdam, 1989, pp. 351-364.

2. Y. Descotte and J.-C. Latombe, “GARI: A Problem Solver that
Plans How to Machine Mechanical Parts,” Proceedings of the
International Joint Conference on Artificial Intelligence, IJCAI-
81, Vancouver, B.C., 1981, pp. 766-772.

3. R. Fridshal, “Automatic Generation of NC Instructions from
Geometric Models,” Proceedings of the Symposium on
Computer Integrated Manufacturing, ASME Winter Annual
Meeting, New Orleans, December 1984.

4. K. Iwata and N. Sugimura, “A Knowledge Based Computer
Aided Process Planning System for Machining Parts,”
Proceedings of the Sixteenth CIRP International Seminar on
Manufacturing Systems, Tokyo, 1984, pp. 83-92.

5. D. A. Nau and M. Gray, “SIPS: An Application of Hierarchical
Knowledge Clustering to Process Planning,” Integrated and
Intelligent Manufacturing, PED-Vol. 21, Proceedings of the
Winter Annual Meeting of ASME, Anaheim, CA, December 7-
12, 1986; ASME, New York, 1986.

6. M. Mintyl4, J. Opas, and J. Puhakka, “A Prototype System for
Generative Process Planning of Prismatic Parts,” Modern
Production Management Systems, Proceedings of APMS "87, A.
Kusiak, Ed., North-Holland Publishing Co., Amsterdam, 1987,
pp. 599-611.

7. M. Mintyli and J. Opas, “HutCAPP—A Machining Operations
Planner,” Proceedings of the International Symposium on
Robotics and Manufacturing Systems (ISRAM), ASME, New
York, 1988, pp. 901-910.

8. E. G. Libardi, J. R, Dixon, and M. K. Simmons, “Computer
Environments for the Design of Mechanical Assemblies,”
Engincering with Computers, Vol. 3, Springer-Verlag, New
York, 1988, pp. 121-136.

9. R. J. Popplestone, “The Edinburgh Designer System as a
Framework for Robotics,” Proceedings of the 1987 IEEE
International Conference on Robotics and Automation,
Computer Society Press, New York, 1987, pp. 1972-1977.

M. MANTYLA

10. F. L. Krause, M. Bienert, F. H. Vosgerau, and N. Yaramanoglu,
“Feature Oriented System Design for Geometric Modeling,”
Proceedings of the Conference on Theory and Practice of
Geometric Modeling, University of Tubingen, FRG, October
3-7, 1988; North-Holland Publishing Co., Amsterdam, 1989,
pp. 483-498.

11. J. J. Shah, P. Sreevalsan, M. T. Rogers, R. Billo, and A.
Mathew, “Current Status of Features Technology, 2nd edition,”
Report R-88-GM-04, CAM-I, Inc., Arlington, TX, August 1988.

12. A. Wilson and 1. D. Faux, The Modeling of Assemblies for
Design and Manufacture (Revised), Study on behalf of CAM-I,
Inc., Geometric Modelling Project, Dorset Institute of Higher
Education, Bournemouth, England, February 1988.

13. Smalltalk/V 286 Tutorial and Programming Handbook,
Digitalk, Inc., 9841 Airport Boulevard, Los Angeles, CA 90045,
May 1988.

14. M. Mintyld, “The Design Browser—A Hierarchical Part-Of
Graph Browser,” Research Report RC-15393, IBM Research
Division, Thomas J. Watson Research Center, Yorktown
Heights, NY, January 1990.

15. M. Mintyld, “The Geometry Browser—A Feature Modeler in
Smalltalk,” Research Report RC-15394, IBM Research Division,
Thomas J. Watson Research Center, Yorktown Heights, NY,
January 1990.

16. M. Mintyli, “DeltaBlue—The Implementation of a Constraint
Satisfaction Algorithm,” Research Report RC-15395, IBM
Research Division, Thomas J. Watson Research Center,
Yorktown Heights, NY, January 1990.

17. L. A. Barford, “Representing Generic Solid Models by
Constraints,” Technical Report TR-86-801, Department of
Computer Science, Cornell University, Ithaca, NY, December
1986.

18. B. N. Freeman-Benson, J. Maloney, and A. Borning, “An
Incremental Constraint Solver,” Commun. ACM 33, No. 1,
54-63 (January 1990).

19. B. N. Freeman-Benson and J. Maloney, “The DeltaBlue
Algorithm: An Incremental Constraint Hierarchy Solver,”
Technical Report 88-11-09, Department of Computer Science,
University of Washington, Seattle, November 1988.

20. P. Struss, “Multiple Representation of Structure and Function,”
Expert Systems in Computer Aided Design, J. Gero, Ed.,
Proceedings of IFIP 5.2 Working Conference on Expert Systems
in Computer-Aided Design, Sydney, Australia, February 17-20,
1987; North-Holland Publishing Co., Amsterdam, 1987, pp. 57-
84.

21. H. Suzuki, H. Ando, and F. Kimura, “Synthesizing Product
Shapes with Geometric Design Constraints and Reasoning,”
Proceedings of IFIP WG 5.2 2nd Workshop on Intelligent CAD,
Cambridge, England, September 1988; North-Holland
Publishing Co., Amsterdam, to appear.

22. M. Inui, Y. Jinno, and F. Kimura, “Design Knowledge
Inheritance—A New Approach Toward CAD System for
Variant Products,” Preprints of the Third IFIP WG 5.2 3rd
Waorkshop on Intelligent CAD, H. Yoshikawa and F. Arbab,
Eds., Osaka, Japan, September 26-29, 1989; North-Holland
Publishing Co., Amsterdam, to appear.

23. M. Mintyla, An Introduction to Solid Modeling, Computer
Science Press, Rockville, MD, 1988.

24, A. Borning, “Thinglab—A Constraint-Oriented Simulation
Laboratory,” Technical Report SSL-79-3, XEROX Palo Alto
Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304,
July 1979.

25. K. El Dashan and J. P. Barthes, “Implementing Constraint
Propagation in Mechanical CAD Systems,” Intelligent CAD
Systems II, V. Akman, P. J. W, ten Hagen, and P. J. Veerkamp,
Eds., Proceedings of the Second Eurographics Workshop on
Intelligent CAD Systems, Veldhofen, The Netherlands, April
11-135, 1988; Springer-Verlag, Berlin, 1989, pp. 217-227.

Received December 1, 1989; accepted for publication
February 2, 1990

IBM J. RES. DEVELOP. VOL. 34 NO. 5 SEPTEMBER 1990

Martti Mantyla Helsinki University of Technology, Otakaari 1 A,
SF-02150, Espoo 15, Finland. Dr. Mintyla received his Ph.D. in
1983 from the Helsinki University of Technology. From 1983 to
1984 he was a Visiting Scholar with the Computer Systems
Laboratory at Stanford University, and in 1989 he was a World
Trade Visiting Scientist at the IBM Thomas J. Watson Research
Center. Dr. Mantyla is currently a Professor of Information
Technology with the Laboratory of Information Processing Science
at the Helsinki University of Technology, where he is the head of a
product modeling research team. His research interests include
computer applications in engineering, CAD, CAM, computer
graphics, user interfaces, and data base management. Dr. Mintyla is
an associate editor of the ACM Transactions on Graphics and a
member of the ACM, the IEEE Computer Society, and the
Eurographics Association. He is also a member of Working Groups
5.2, 5.3, and 5.10 of the International Federation for Information
Processing (IFIP).

IBM J. RES. DEVELOP. VOL. 34 NO. 5 SEPTEMBER 1990

M. MANTYLA

659

