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Described here is an electromagnetic approach
for the analysis of high-performance computer
packages such as the thermal conduction
module (TCM) used in the IBM 3080 and 3090
processor units. Modeling of signal paths and
limitations of previous methods are discussed.
Numerical results are presented for propagation
characteristics associated with signal lines and
vias, and for coupled noise between signal lines.
The resuits are compared with those obtained
by means of test vehicles, scale models, and
capacitance calculations.
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Introduction

For early computers there was little need for a
sophisticated model of the module-level or card-level
wiring used to interconnect computer circuits. The rise
times of the waveforms generated by the circuits were
either many times the propagation delay between the
circuits, or the machine cycle time was so large that
multiple reflections of the signal waveforms in the
module-level and card-level wiring were permitted. For
the former, the various signal-line reflections which
occurred did so within the rise time; for the latter, the
receiver output was sampled after the reflections
subsided. In either case, the capacitance and perhaps
series resistance of the signal-line segments were the only
parameters that needed to be characterized. In more
recent computers [1-3], such as the IBM 3080 and 3090,
rise times are often much shorter than the propagation
delay between circuits on different chips. Furthermore, to
avoid delay penalties that would impact the cycle time,
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waveform and not after multiple reflections have
occurred. This has led to a number of package-related
concerns [4].

Specifically, because of the short rise times, the
reflections have become distinct. The amplitudes of these
reflections must be minimized so that they do not cause
receivers to switch falsely [4]. Accordingly, the signal
lines must be treated as transmission lines, and the
various connections to them, such as stubs and vias,
must be treated as discontinuities. Appropriate models,
mostly involving the use of distributed RLC networks,
have been used to represent the signal lines; and lumped
networks have been used to represent the various
discontinuities that are present along the signal paths.

Furthermore, the shorter rise times lead to an increase
in the noise which is coupled between driven and quiet
signal lines. Such noise or crosstalk, due to the parasitic
coupling between neighboring signal lines, must be taken
into consideration to avoid false switching of receivers on
the quiet lines [4]. In addition, the signal waveforms on a
line are also affected by nearby conductive elements, such
as vias and other signal lines which may not be in direct
contact with the line. Such other lines and vias (OLVs)
slow the propagation of signals by increasing the
inhomogeneity of the signal-line environment and
affeoting associated impedances and coupling parameters.
Thus, the electrical design of a computer package
generally requires information regarding

¢ Propagation delays and characteristic impedances
associated with the signal lines.

¢ Equivalent circuits for the stubs and other
discontinuities which may be present.

¢ Propagation delays and impedances associated with
the vias.

o Crosstalk between the signal lines.

¢ Changes in the above resulting from the presence
of OLVs.

In an effort to model these effects, some excellent
computer programs have been developed. The programs
calculate the capacitance, inductance, and resistance of
two-dimensional signal lines [5, 6] and their three-
dimensional discontinuities [7, 8]. Virtually any geometry
of interest can be analyzed, and most of the few
remaining restrictions are being removed through
continuing refinements in the programs. Because
accuracy is limited only by the numerical grid size
specified by the user, which in turn is limited by the
computer resources available, highly accurate circuit
models can be obtained. This circuit approach, however,
has some fundamental limitations.

In a circuit model, all coupling effects appear
instantaneously; they do not display the true physical
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time retardation associated with the finite velocity of
light. To correctly model structures having transverse
dimensions comparable to the wavelengths that compose
the signal waveform, significant modifications such as the
inclusion of retarded effects may be required [9]. Further,
a discontinuity modeled through lumped elements
contains various electrical nodes at which the circuit
elements are connected. This artificial constraint of
forcing current to flow through nodes is often not
suitable for structures where current flow and coupling
are distributed over large areas. A further difficulty is that
both capacitive and inductive models must be generated
and then merged; the resulting LC model may be unduly
complex.

For example, consider a perfectly conducting signal
line having uniform cross section and situated in a
homogeneous medium above a ground plane. Such a
structure is known to support a transverse
electromagnetic (TEM) wave, viz., no electric or
magnetic field components exist along the direction of
propagation, and the wave travels at the velocity of light
in the dielectric [10]. The equivalent circuit of this
structure is a uniform transmission line having per-unit-
length capacitance C and per-unit-length inductance L;
absolutely no coupling is present. Yet a model generated
by sectioning the structure along its length and using 3D
capacitance and inductance calculations would display
coupling capacitances and inductances between all
sections. If the structure were recognized as supporting a
TEM wave, the self and coupling capacitances could be
merged, as could the inductances, with the final result
being the same C and L discussed above. When
discontinuities are introduced along the signal line,
however, the structure will no longer support a purely
TEM wave. In many cases the geometry and frequency
range are such that, to within engineering accuracy, the
above merging of circuit elements is still justified. In
other cases, where signal lines meander and perhaps run
over holes in the ground plane or run near large floating
conductors, the sections may be so tightly and intricately
coupled that it is not worth the time and effort even to
attempt simplification. Provided that the circuit model,
after any required modifications, is valid, the preferred
course of action may be to leave the model in its
unsimplified and thus unduly complex form. Another
concern is the zero gap between adjacent sections of the
same conductor, which may cause difficulties in
calculating associated capacitances and require that the
model be carefully generated.

The above LC modeling approach, despite its
limitations, has been and will almost certainly continue
to be a primary means for the analysis of computer
packages. The package geometries and frequencies
associated with today’s, and even projected, systems in
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most cases can be accommodated by the LC approach.
Nevertheless, to provide solutions at the higher
frequencies, to handle unconventional package structures
not especially suited to circuit approaches, or to handle
non-TEM structures such as waveguides and their
discontinuities, alternative techniques must be developed.
One alternative involves the use of a full-wave
electromagnetic analysis (the term full-wave refers to a
rigorous use of Maxwell’s equations). Thus, all coupling
and retarded effects are implicitly included. We now
describe such an approach, based in the frequency
domain, and use it to model a high-performance TCM.
In the following, the time dependence is e’ where w is
the angular frequency and ¢ is time.

Electromagnetic approach
Though numerous approaches exist for
electromagnetically modeling three-dimensional
structures, the author has selected one that employs a
current expansion and moment-method techniques [11].
To make use of this approach, four steps must be taken.
First, a suitable set of basis functions must be chosen.
The current is expressed through a linear combination of
coeflicients (which serve as the unknowns) multiplied by
these basis-function elements. Second, an appropriate
field quantity, such as, in this case, electric field, must be
expressed as a function of the current density, and thus
in terms of the unknown coefficients. Third, a test
criterion must be decided upon and applied in a
sufficient number of ways to generate a matrix equation.
If P current basis functions and thus P unknown
coefficients exist, P independent tests are generally
performed. In our case we choose to apply the electric
field boundary condition, namely that the tangential
component of electric field vanishes over P regions of a
lossless conductor. Fourth, the resulting P-by-P matrix
equation must be solved for the current, which in turn
can be used to find equivalent electrical parameters.
This procedure is quite similar to that which has been
used in 3D capacitance algorithms [7]. There, charge is
represented as a linear combination of 2D pulse basis
functions. The voltage, in terms of the unknown
coefficients of the basis functions, is evaluated at a
sufficient number of locations to generate a matrix
equation. The solution of the matrix equation is the
charge density, which is then used to obtain the
capacitances. The 2D pulse functions are subsectional,
since each is nonzero over a different rectangular region.
Such subsectional basis functions facilitate the
representation of irregularly shaped structures; they are
used in a manner analogous to tiles covering an odd-
shaped floor. As described shortly, a similar but smoother
set of basis functions is preferred for the electromagnetic
approach.
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Approximation of current bending around a corner by means of pulse
. functions.

Though only currents are involved, the charge and all
its related effects are implicitly included and related to
the current through the continuity equation [10], which
for current flowing on a surface may be expressed as

V.- J = —jop,, )

where J_ is the surface current density and p_ is the
surface charge density. We assume that the conductors
are embedded in a homogeneous dielectric medium.
Furthermore, the conductors are assumed to be lossless;
thus, current flows only on the outside surfaces of the
conductors, so that the internal regions need not be
considered. We next discuss the four aspects of the
electromagnetic solution.

Selection of basis functions
The basis functions that represent the current must be
carefully chosen so that the calculated current
distribution approximates the true physical flow.
Consider, for example, the L-shaped section of conductor
shown in Figure 1, where current bends around the
corner of the L. In this example, we are not interested in
the exact details of the current flow; rather, we simply
want to examine what happens when different basis
functions are used to approximate the current
distribution. To do so, we first try to approximate this
current flow through a linear combination of 2D pulse
functions.

Over each rectangular region that a pulse function
covers, the current flows in one direction and has a
constant value given by its coefficient. Outside the
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Approximation of current bending around a corner by means of
rooftop functions.
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rectangular region, the current is zero. Because the
current flow is two-dimensional, sets of x-directed and
y-directed pulses are required. The x and y sets of pulses
may overlap, or may be offset as in Figure 1.
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Independent of any offset, for current to change from the
X to the y direction, or in other words bend around a
corner, the current along x must discontinuously end and
then continue again in the y direction. As shown in
Figure 1, x-directed pulse functions a and b, and
y-directed pulse functions ¢ and d, each carry a current I.
As dictated by Equation (1), line segments supporting a
total charge (also shown in the figure) Q = I/jw are
generated. Because such charge is fictitious (it does not
physically exist), the electromagnetic field it produces
may lead to erroneous results. This is especially true at
low frequencies, where charge is the dominant
contributor to the electric field. Though a procedure for
representing the current and testing the field using pulse
functions could perhaps be developed that would avoid
such pitfalls, it is not clear that the procedure would work
in every case. To avoid potential problems, the rooftop
basis function [12], which has a triangle shape in one
direction and a pulse shape in the other direction (Figure
2), is chosen.

From Equation (1) and the mathematical description
of the rooftop function given in the Appendix, a rooftop
function that carries a current 7 gives rise to two charges,
uniformly distributed over adjacent rectangular areas.
The first is —Q, which appears over the rectangle
associated with the rising half of the rooftop function,
and the second is +Q, over the rectangle associated with
the falling half. Because the charges associated with the
x-directed rooftop function b and y-directed rooftop
function c¢ are equal and opposite over the rectangle
where they overlap, no fictitious charge results. The
smoother shape and overlap (as many as four rooftop
functions may overlap a given rectangular region) give
rise to this more physical representation. These rooftop
functions are perhaps the simplest functions that
adequately model the physical current in typical
computer packages.

The rooftop functions are placed over each conductive
surface. At corners, where half-rooftop functions exist,
corresponding half-rooftop functions are combined (by
making their coefficients dependent) to form corner
functions, as are half-rooftop functions a and b in Figure
3. Current is continuous around corners, preventing
artificial line charges at edges. A further choice must be
made regarding the boundary conditions of the structure
that is to be modeled.

We would like to calculate the propagation
characteristics of a signal-carrying structure that is not
obscured by the presence of source or termination
regions. Such end regions, being electromagnetically
coupled to the rest of the structure, modify its
propagation characteristics. For instance, it would be
difficult to determine how much of the inductance is due
to a signal line and how much is due to its attached
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source and termination, Furthermore, the variations in
the shape or other attributes of the end regions would
inevitably yield some difference in results; considerable
interpretation might be required to extract the correct
signal-line parameters. The author chooses to enforce
periodic boundary conditions so that end regions need
not be included.

A region of the original structure is selected and
periodically repeated along the x and y directions; the
repeated region is designated as a unit cell. We now
choose and in fact force the direction of propagation to
be in the x direction by representing the current in each
unit cell by the same linear combination of rooftop
functions that is further multiplied by ™", The
parameter k_ is referred to as the propagation constant
and essentially gives the propagation velocity of the wave.
The current distribution, which is a periodic function
multiplied by the above exponential factor, automatically
satisfies Floquet’s (Bloch’s) theorem [13] and is thus a
legitimate choice. Further, because the above exponential
dependency is precisely that expected in a TEM structure
and roughly that expected in many quasi-TEM structures
(which include most computer packages), it makes sense
to include this factor explicitly. The unit cell must
include at least two paths continuous along the x
direction so that signal and return current can flow along
the x direction. "

The periodicity along the x direction is necessary for
waves to propagate. The periodicity along the y direction,
however, gives rise to coupling between unit cells that is
generally undesirable but can be minimized. For
instance, if we wish to analyze an isolated signal line
above a mesh plane, we define a unit cell having a
y-periodicity much greater than the height of the signal
line above the mesh plane; thus, the coupling between
signal lines in neighboring unit cells is small. If we wish
to model two adjacent signal lines that run parallel along
the x direction, we may define a unit cell that has three
adjacent signal-line channels and leave one of these
channels vacant. Thus, coupling is essentially limited to
those adjacent lines that reside within the same unit cell.

Expressing and testing the electric field

The electric field is calculated using Maxwell’s equations
and facilitated, because the structure is periodic, by a
Fourier analysis. The process is described in [14-16] for
structures composed of conductors that have zero
thickness and lie in the x-y plane, and in [17] for 2D
signal lines that have cross sections lying in the x-z
plane. For general 3D structures the process is more
complicated, because rooftop functions may lie in the
x-y, y-z, and x-z planes. Once expressed, the electric
field is then tested by integrating the electric field over
line intervals that overlap the rooftop functions (Figure
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3). This involves satisfying the electric field boundary
condition

E -JR =0, )

where E, is the tangential electric field and R_ is either a
surface or sheet impedance associated with the
conductor. For perfect conductors, R_ is zero. Line
intervals were chosen because at the same time they
provide, through Maxwell’s equations, a test of the
normal component of magnetic field wherever four line
intervals form a closed rectangle. This consequence is
believed by the author to yield stability in the numerical
solution at low frequencies. By forcing the tangential
component of the electric field to vanish over each
rooftop function, we obtain a matrix equation having the
form

Z(k )1 = 0, 3)

where I is a column vector of current coefficients having
length P and Z is an order-P matrix of impedances. For
the convenience of the reader, a derivation of the
elements of the Z matrix is given in mathematical detail
in the Appendix.

Solving the matrix equation

To find the current, we first recognize that the matrix
equation (3) represents an eigenvalue problem, with k_ as
the eigenvalue and I as the eigenvector. The values of k_
that satisfy Equation (3), from elementary linear algebra,
are those for which the determinant of Z vanishes. A
Newton search [15] may be used to find k. Substitution
of k_back into Equation (3) gives L.

For structures involving only a single signal line and
one reference conductor (that is, two nontouching
conductors that are continuous along the x direction),
only one quasi-TEM solution exists. (A reference
conductor, which represents a return current path, must
be specified to guarantee that transmission line
propagation can exist.) If multiple signal lines are present,
as is the case in a crosstalk analysis, multiple solutions
generally exist [16]. The current distribution associated
with each different propagation constant is referred to as
a mode. For a structure consisting of N noncontacting
conductors that are continuous along the x direction, in
general N — 1 quasi-TEM modes are possible. The actual
solution consists of that linear combination of modes
that satisfies the boundary conditions at the source and
termination regions. This is analogous, for N=3,toa
circuit having two independent capacitances, where two
modes (exponential in shape) are possible. The charges
initially stored on the capacitors determine how much of
each mode appears in the circuit’s output response. If,
however, multiple reference conductors exist (which

occurs, for example, when two or more mesh planes 589
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surround a signal line), they must be shorted together
through conductive straps to preclude the presence of
such multiple (and undesirable) modes. (In practice, such
modes are precluded because the mesh planes of a TCM
are tied together either directly through vias or indirectly
through paths that may include vias, pins, circuits, and
capacitors.)

For most computer package structures, the nature and
distribution of the discontinuities are such that the curve
for propagation constant vs. frequency, known as the
dispersion curve, is linear up to and beyond the highest
frequency of interest; only one frequency needs to be
considered. Thus, the propagation velocity » is equal to
the phase velocity of the propagating wave, w/k_; the
propagation delay #, relative to that of light may be
expressed as 7, = ¢/v, where ¢ = 1/ @ is the speed of
light in the dielectric medium, u, is the permeability of
free space, and ¢ is the dielectric constant of the medium.
Voltages, which for non-TEM structures are path-
dependent, may be found by integrating the electric field.
Effective values of per-unit-length capacitance C and per-
unit-length inductance L may be calculated, for lossless
structures, through ¢, = VLC and Z,= VL/C, where Z,
is the characteristic impedance (defined in the Appendix).
For structures involving multiple signal lines, the
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IMlustrative view of chip—~TCM-board configuration showing electrical connections. From [20], reproduced with permission.

propagation constants and associated current and electric
field distributions may be used to find the capacitance
and inductance matrices, and the near- and far-end
coupled noises [16].

An equivalent circuit model for a finite size
discontinuity can be inferred from computations
performed on two signal-line models, one having the
discontinuity and the other not. The electrical model of a
stub, for instance, could be obtained by analyzing two
distinct signal-line structures, one with stubs and the
other without. The differences in capacitance and in
inductance are due to the stub, and represent its excess
capacitance and inductance. This procedure of tying a
discontinuity to a signal line is physically justified, since
the surrounding environment of the discontinuity must
be taken into account. Almost any computer package
structure can be represented through a unit cell for
subsequent analysis.

In the following, we are not concerned with such
details as the number of Fourier series terms used to find
the matrix elements, the numerical grid required to
obtain accurate results, the details of the Newton search
to find the propagation constants, the paths used to
define the voltages, or the computer code employed.
These issues have been considered in detail in [14-19].
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What we do concentrate on here are the salient package-
related features of this electromagnetic analysis. This
includes defining appropriate unit cells, adequately
specifying the problem, and interpreting associated
numerical results. The accuracy of the approach will
become evident from a comparison of results to those
obtained through scale model and test vehicle
measurements,

Description of package used in the analysis

The TCM [2] used in the IBM 3090 is a 10-cm-square
substrate which contains 36 conductive, molybdenum
layers in an alumina dielectric; the substrate contains the
signal wiring and power distribution to support 100 chips
that are mounted on its surface. lllustrative portions of a
chip-TCM-board configuration are shown in Figure 4,
where chips on two TCMs are interconnected through a
path that includes C4 solder balls, engineering change
(EC) pads, vias, signal lines, harcon connectors, and pins.
The C4 solder balls provide the connections from the
chip input/output (I/O) pads on the surface of the chip to
surface pads on the TCM. A short length of via ties a
surface pad to the redistribution path, which includes
signal-line segments and vias. This redistribution wiring
serves as a space transformer to connect the chip’s power
pads and 96 signal I/O pads, which lie on a partially
dense 0.25-mm grid, to the vias and signal lines in the
TCM that lie on a 0.5-mm grid. The EC pad allows for
voltage test measurements. Through laser deletion of its
attached delete pad and subsequent bonding operations
to insulated wires, engineering changes can be made. The
next section of via provides connection to the signal line,
which may proceed to another chip site on the same
module, or to a chip site on a different module; as shown.
The harcon and pin serve as the connection between
TCM and board. The various aspects of the package are
discussed in more detail in [2, 3]. We concentrate here on
the signal-line region, which includes signal lines, vias,
and mesh reference planes.

Figure 5 focuses on the signal wiring, showing a signal
line, situated between mesh reference planes, that is
connected to a second signal line through a via. (It is
more typical, though, for such vias to interconnect x and
y signal lines that are situated between the same mesh
reference planes.) The various structures are shown as
rectangular because the analysis technique requires that
the structure be defined by steps along the Cartesian axes.
For the TCM used in the 3090, the signal pitch 4, is 0.5
mm. Signal lines have width w = 0.1 mm and thickness
¢ = 0.025 mm. The mesh plane segments, which are
aligned with the signal lines so that their projections on
the x-y plane coincide, are assumed to have the same
dimensions. The vias are centered in the mesh plane
openings, and for the sake of analysis, are approximated
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i Section of TCM showing reference planes and signal lines
! interconnected through a via. From [19], reproduced with

% permission; © 1989 IEEE.

as squares with side » = 0.15 mm. Vertical spacing 4 is
0.2 mm, and the relative dielectric constant is 9.5. The
set of structures we now describe has not been previously
analyzed, either through circuit-based or other
techniques.

Structures analyzed

The basic signal-line structure, as shown in Figure 5,
involves a signal line between two mesh reference planes.
To minimize unwanted coupling to nearby signal lines,
the unit cell includes two vacant signal-line positions. For
modeling purposes and if present, the adjacent vias and
crossing signal lines that constitute the OLVs appear
periodically, unless otherwise noted, at every available
unfilled position within the unit cell. For instance, a
given signal line could have 20 crossing y signal lines per
cm, and as many vias on each side. Because we assume
lossless conductors, the eddy currents (and thus magnetic
field) within the molybdenum conductors are not
modeled. Inductance will be smaller, and other
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propagation parameters related to the inductance will be
affected accordingly.

To calculate the propagation parameters of the via, a
structure that supports propagation must be modeled. We
thus consider a via that runs through an infinite array of
mesh planes; the unit cell is oriented with x along the
length of the via, and y and z as shown in Figure 6(a).
The unit cell must contain two vias, one of which carries
the signal current and the other the return current; a
quasi-TEM wave cannot propagate on a single via. Only
part of the mesh plane is included, to reduce the number
of current elements required for the analysis, and a buffer
region that contains no vias is used to reduce coupling
between unit cells adjacent along the y direction. Since
the propagation parameters are somewhat sensitive to the
return via location, and since return vias cannot always
be identified in actual packages, some differences between
calculated and measured parameters may result. For
instance, when a via is more distant from other vias, its
capacitance decreases and its inductance increases.

For coupled noise calculation, unit cells must include
the signal lines of interest and surrounding mesh planes.
(Mesh planes only imperfectly shield signal lines located
on opposite sides.) The unit cell for coupling between
two signal lines vertically separated by a mesh plane is
shown in Figure 6(b). Here, three mesh planes are
modeled, and some signal-line (shown dashed) positions
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are intentionally left vacant so that coupling is reduced
between unit cells adjacent along the y direction. Signal-
line positions 1 and 2 only are occupied. For the cases
that involve horizontally or diagonally coupled signal
lines, the unit cells are four signal pitches (or 2.0 mm)
wide, and include respectively two and three mesh
planes. For diagonal coupling, signal-line position 1, for
instance, would be shifted a distance d,, along the y
direction. For horizontal coupling, two adjacent signal-
line positions at the same height would be occupied.
When present, vias occupy only the positions between
the signal lines for the horizontal coupling case.

To find the coupling parameters for any of these two-
signal-line structures, it is necessary to find the two
possible solutions or modes, as discussed earlier, and then
to apply the procedure given in [16]. In that procedure,
the propagation constants, total signal-line currents, and
associated signal-line voltages are used to find effective
values for the capacitance and inductance matrix
elements. For the horizontally coupled configuration,
where the structure involves only two signal lines and is
symmetric along the y direction, an even-mode, odd-
mode analysis [19] can be used instead. The saturated
near-end noise, V. (sat), expressed as a percentage of the
signal swing, for instance, can then be approximated as

Vie(sat) = 0.25 (C,,/C,, + L,,/L,),

where C,, and C,, are appropriate self and coupling
capacitances, and L,, and L,, are appropriate self and
mutual inductances.

For all of the analyses, the mesh planes must be
shorted together with conductive straps (not shown} for
reasons discussed earlier. The OLVs, if present, are also
shorted to a mesh plane. For the signal-propagation cases,
the mesh planes, as well as any y-lines that may be
present, are shorted together by a 0.1-mm-wide
rectangular strap which lies in the x-z plane; the vias, if
present, are shorted to the uppermost mesh plane by a
0.025-mm-high rectangular strap that lies in the y-z
plane. Such straps are positioned to minimize any
loading, though slight effects inevitably result. The
numerical grid, which determines the number of rooftop
function current elements that represent the structure, is
chosen to be the coarsest one that fits the structure. The
symmetry along the y direction, which is present in all
but the diagonal coupling case, is used to reduce the size
of the Z matrix. To allow for a coarser grid, in the signal
propagation cases, the 0.15-mm-square via is offset along
the x direction by 0.025 mm; in the horizontal coupling
case, it becomes a 0.1-mm-square via which is offset
along the x direction by 0.05 mm. A computer program
has been written to perform the electromagnetic
algorithm for any structure that can be defined through
steps along the Cartesian coordinates.
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Numerical results

Table 1 gives the propagation characteristics of the signal
lines and vias in the TCM used in the IBM 3090. The
propagation delay, #,, was normalized to the delay of light
in the dielectric. The coupled noise is given for the three
cases of horizontally, vertically, and diagonally adjacent
signal lines; a pulse having an amplitude of 1 V and a
rise time of 1 ns was considered, and (conventionally) all
signal lines were assumed to be terminated in their
characteristic impedance. As indicated by the column
labels, the signal environment may include y-lines and/or
vias, The far-end coupled noise V' and saturated near-
end coupled noise V.(sat) were maximum when OLVs
were respectively present and not present.

The vias had a lower impedance but greater
propagation delay than the signal lines. The delay was
not as great as one might expect, however. The additional
capacitance added by running through mesh planes is
offset by a reduction in inductance caused by the eddy
currents that flow around the segments of the mesh
plane. If the analysis had included mesh-plane resistivity,
however, these eddy currents would have been reduced
(depending also on the frequency) and the delay would
have been greater. When adjacent y-lines were
introduced, which corresponds to signal lines running
close to the via, delay was increased by 5% and
impedance was reduced by about 4%.

The signal lines support waves that are nearly TEM.
Even with no OLVs, though, the mere presence of mesh,
as opposed to solid, reference planes caused propagation
delay to exceed the TEM value by 2%. A full array of
crossing y-lines increased the delay to 1.06, while the full
complement of vias increased delay to 1.10. A saturation
effect was noted, since the presence of both vias and y-
lines increased the delay to only 1.11. The corresponding
values of Z,, C, and L are also given in the table.

For the coupled noise, OLVs were considered only for
horizontally adjacent lines. The near-end noise was
greatest for horizontally coupled lines, and least for
diagonally coupled lines. When OLV's were present, the
near-end noise decreased by 41%, but the far-end noise
increased by 315%. Since near-end noise is proportional
to the sum of the capacitive and inductive coupling
coefficients, while far-end noise is proportional to their
difference [21], these results make sense. TEM structures
have capacitive and inductive coupling coefficients that
are equal. OLVs are, from calculation and from
measurements, known to reduce capacitive coupling
dramatically, but to reduce the inductive coupling only
minimally. Thus, near-end noise could be cut in half,
while far-end noise could increase considerably from
zero. The above results, where possible, were compared
to measurements on test vehicles and scale models, and
to capacitance calculations.
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Table 1 Propagation parameters for TCM used in the IBM
3090 processor unit.

Parameter No OLVs  y-lines Vias All
via fo (norm) 1.12 1.17 — —
via Zy (Q) 28.0 26.9 — —
via C (pF/cm) 4.12 4.48 — —
via L (nH/cm) 3.23 3.25 — —
sig 4y (norm) 1.02 1.06 1.10 1.1t
sig Zy () 45.4 43.4 405  39.8
sig C (pF/cm) 2.31 2.51 2.79 2.87
sig L (nH/cm) 4.76 4.73 4.57 4.55
hor Vxefsat) (%) 3.64 —_— — 2.16
hor Veg (mV/cm) —1.01 — —_ -4.19
vert Vng(sat) (%) 0.98 —_ —_ —_
vert Vg (mV/cm) -0.82 — — —
diag Vne(sat) (%) 0.55 — — —
diag Ve (mV/cm) -0.49 — — —_

Comparison of calculated and measured results
The comparison is presented in Table 2, where the
parameters calculated using the method described here
are listed in the column labeled “Electromagnetic.”
Measurements on the test vehicles included those for
signal-line and via capacitance, signal-line impedance,
signal-line coupling capacitance and coupled noise, and
OLYV effects. Measurements on the scale models included
those for via capacitance, signal-line capacitance, and
OLYV effects. The capacitances, characteristic impedance
(from time-domain reflectometry measurements), and
near-end coupled noise were chosen for comparison
purposes because they could be trusted and readily
measured. For the 2D capacitance analysis, the transverse
conducting elements could not be included; capacitances
were smaller than expected, impedances were greater
than expected, and coupling parameters, because of
reduced shielding, were also greater than expected. These
capacitances may be viewed as bounds, and do indeed
appear that way when compared with corresponding data
in the other columns. The scale models, because of
practical considerations in their fabrication, were only
reasonable facsimiles of those TCM regions which were
electromagnetically modeled. Nevertheless, the
differences were relatively minor, and this column should
be given the heaviest weight. Because of process
variations, the test vehicle measurements should be given
less weight.

Both a signal-line scale model (shown in Figure 7) and
a via scale model (not shown) were constructed. The first
model included round vias that contained, consistent
with actual TCMs, bulges which increased OLV
capacitance but which were not included in the analysis.
End effects, associated with a scale model’s finite size,
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Table 2 Comparison of calculated and measured propagation parameters.

Parameter OLVs C(2D) Electromagnetic Scale Test vehicle Test vehicle
models (1979) (1985)
via C (pF/cm) none — 4,12 3.50 3.15-3.29 3.48-3.56
y-lines — 48" — —_ 3.77-3.81
Xx,y-lines — 423 —_ —
sig C (pF/cm) none 221 2.309 2.404 2.25-2.38 2.20-2.36
y-lines -— 2,514 2.654 — —
vias _ 2.791 2.807 — -
all — 2.869 2.942 2.41-2.68" 2.51-2.65"
sig Zy (Q) none 46.5 45.4 — 49.0-50.5 47.3-51.9
all — 39.8 — 44.5-45.5" 46.2-50.1*
hor C, (pF/cm) none 0.188 0.145 0.143 0.096-0.131 —
vert C» (pF/cm) none 0.070 0.027 0.037 0.024-0.028 —
diag Ci» (pF/cm) none 0.038 0.014 —_ 0.011-0.015 —
hor Ci» (pF/cm) all — 0.014 0.031 — —
hor Ve(sat) (%) none 4.23 3.64 — 2.9-3.0 2.18-2.57
vert Vyg(sat) (%) none 1.58 0.98 —_ 0.9-1.0 0.93-0.98
diag Vne(sat) (%) none 0.86 0.55 — 0.5 0.44-0.64

* Adjacent return via,
* Via density of 70%.

were corrected for by calculating C from the difference in
total capacitance of two lines having different lengths.
Nylon supports, which gave the models mechanical
stability, caused slight increases in capacitance. Some of
the measurements involved coupling capacitances that
were difficult to measure accurately because they were
small and subject to interference from objects external to
the scale model. The horizontal coupling capacitance,
with OLVs present, should therefore be given only a
small weight.

From Table 2, it can be seen that the agreement
between the signal-line capacitance calculated and
measured on the scale model was within about 4%. If we
consider the increases in capacitance as y-lines, vias, and
then both are included, the calculated values are
respectively 8.9%, 20.9%, and 24.3%, and the measured
values are 10.4%, 16.8%, and 22.4%. For the vias, the
agreement was not as good. Differences were attributed to
the presence of an adjacent return via in the calculations;
such vias were not present in the scale model and
generally are more distant in actual TCMs. Further, vias
were modeled as square, but were round in the scale
model, as in TCMs.

The last columns in Table 2 give the measurements on
three samples of a specifically designed TCM test vehicle
which were fabricated in 1979, and two more which were
fabricated in 1985. Aside from the layout of their signal
wiring (which was specially designed for parameter
extraction), these test vehicles were actual TCMs, having
electrical characteristics representative of TCMs in
general. Capacitance was measured on roughly 100 signal
lines, characteristic impedance was measured on about
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two dozen signal lines, and signal-line coupling was
measured on even fewer lines. The via capacitance was
obtained by fabricating two lines that were identical
except for the lengths of about ten vias that were
deliberately attached as stubs; the via capacitance was
found from the difference in measured capacitance of
these two lines. Some lines (and vias) were specifically
designed to run through regions having OLVs; others
were isolated from the OLVs. In the electromagnetic
analysis and scale models, the mesh lines were given the
same width as the signal lines. Through physical
sectioning of actual TCMs, however, we know this may

not be realistic.

The measured signal-line capacitances were in good
agreement with those predicted, but displayed less
sensitivity to OLVs, The average signal-line capacitances,
with and without OLVs, were 2.54 pF/cm and 2.31
pF/cm, respectively, for the 1979 test vehicles, and 2.57
pF/cm and 2.30 pF/cm, respectively, for the 1985 test
vehicles. The measured impedances were higher than
predicted, and their sensitivity to the presence of OLVs,
especially for Z; in the 1985 data, were again smaller.
The average characteristic impedances, corresponding to
the above average capacitances, were 45.4 Q, 49.8 Q,
47.4 Q, and 49.0 9, respectively. The measured coupling
capacitances for the vertically and diagonally coupled
lines agreed with those which were predicted, but those
for horizontally coupled lines were smaller than either
calculated or measured on the scale model.

The ranges in measured values were attributed to
normal and expected process variations, especially in line
cross section. Lines in TCMs are approximately oval
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rather than rectangular, and have cross sections that may
vary along their length. Furthermore, the presence of
signal-line resistance and redistribution wiring introduces
waveform effects that preclude the precise determination
of Z, from measurements. Because of design constraints,
vias and crossing lines could not be placed at each
available site. The via density was 70%, meaning that
30% of the possible via positions were vacant. This factor
partly explains the smaller OLV effects observed in the
test vehicles.

Concluding remarks

The electromagnetic formulation has been applied to a
number of canonical structures found in a TCM. As
described, agreement well within engineering accuracy
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was observed when results were compared to
measurements from scale models (which are reasonably
close facsimiles of the structure analyzed). Agreement
with measurements on the test vehicles was not quite as
good, but this is attributed to normal tolerances in
conductor size and shape. In a sensitivity analysis, where
the geometric parameters would be varied and only the
changes in the propagation parameters are needed,
agreement would undoubtedly be far better.

The changes in propagation delay due to the presence
of OLVs would have been difficult to predict by means of
a circuit approach. In such an approach, capacitance and
inductance are calculated independently, and thus may
err in the same direction; if so, errors of several percent

would yield a propagation delay that is also in error by 595
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several percent. With delay varying typically by less than
about 10%, as indicated in Table 1, a several percent
error may be unacceptable. The use of a numerical grid
which is sufficiently fine to provide satisfactory accuracy
may not be practical with present-day computers. In the
electromagnetic approach, the delay is calculated from
the propagation constant associated with a traveling
wave; it is the capacitance and inductance that are
calculated using the delay, and not the other way around.
Convergence studies performed in the references indicate
that calculated delay may be accurate to within a fraction
of one percent.

Though not considered here, such structures as stubs
and right-angle bends of signal lines can be represented
by a suitable unit cell and thus analyzed using this
approach. In fact, the environment need not even be
TCM-like; cables having helix-shaped shields and hollow
waveguides can also be analyzed. Layered dielectrics can
be included through the extension described in [22].

By employing a 3D array of hollow rectangular cells with
appropriate surface impedances assigned to the cell walls
[23], rooftop functions can also be used to model the
polarization current [24] in finite-size dielectric regions.
The above modifications allow the analysis of microstrip
lines and dielectric waveguides [23].

In summary, the value of this approach lies in its full-
wave nature and in its versatility. This single approach
can be used to solve, within engineering accuracy, a large
class of computer-package-related problems. It can save
time and energy, since the alternative may be to search
for or develop a multitude of different approaches and to
piece together the needed results. Finally, and perhaps
most significantly, this approach has provided, for the
first time, an essentially complete electrical analysis of the
TCM used in the IBM 3090 processor unit.

Appendix: Calculation of Z matrix

o Representation of rooftop function currents

The unit cell is divided into uniform intervals of length
7., 7,, and 7_ along the x, y, and z directions,
respectively, and fitted with full and half-rooftop function
current elements, as discussed earlier and as indicated in
Figure 3. The current in the unit cell is approximated as
a linear combination of these rooftop functions
multiplied by the phase factor ¢, The following are
unit vectors directed along a positive axis direction and
associated with the rooftop function having index o,
where | = a = P’ and P’ is the total number of rooftop
functions. Let a, be along the direction of current flow,
let a,, be normal to the plane containing the rooftop,
and let a,_ be orthogonal to botha, anda, . We
define variables, u, v, w, 7, and 7,_ in terms of X, y,
and z as
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- (xa, + ya, + za),

o
v= a, - (xa + ya, + za,),

w= a, -(xa +ya + za),

T =2, (ra +7a +7a),

Tow = 8, - (1,8, + 72 +7.2), (Al)

where a,, a, a_ are unit vectors along the x, y, z
directions, respectively. The use of the above variables,
alone or in conjunction with the variables x, y, and z,
allows for compact mathematical representations of the
various field quantities. All the following expressions that
involve u, v, and w may be converted to explicit
functions of x, y, and z through the use of Equation (A1).

The volume current density J may be compactly
expressed as

-

J=3 R(x, 5,20 a (A2)
a=1

aue?

where R (x, y, z) is the rooftop function centered at
xX=Xx,y=Yy,z=2z,and I isthe corresponding
complex current coefficient.

Using the same notation as in Equation (A1) to define
u,v,andw,eg,u,=a, (xa +ya +za), the
rooftop function may be expressed as
R(x, ¥y, 2)=gq, (u—u)p, w—v)dw—w,), (A3)

where ¢ () is the triangle function, defined as

1_.
uw={
0

p.(v) is the pulse function, defined as

-TSU=T,

u
T

(Ad)
elsewhere;

—1/2 < v =1/2,

1
p) = { (A5)

0 elsewhere;

and 6(w) is the Dirac delta function. Associated with each
rooftop function « is a line interval, or integration path
(see Figure 3), over which the electric field is tested. This
interval is defined by its end points, located at u = u, ,
v=v,w=w andu=u,,v =1y, w=w, where

U, =u,— 7,02,

@

Wy, = u, + 7,/2. (A6)

Uad

As an example, for a rooftop function that lies in the
y-z plane and has current directed along the y
direction, R (x, y, 2) = 8(x — x )q, (y — y ), (z — z),
u,=y,—~7,/2,and u,, =y, +17,/2. )

The above expressions apply only for a full rooftop
function. For a half-rooftop function that is rising
(falling) along the positive axis direction, the upper
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(lower) bound of the inequality in the triangle definition
(A4) is replaced by 0, and u, (u,,) in Equation (A6) is set
equal to u_.

To find the general matrix term Z,, where § is the row
and « is the column, we consider the current associated
with a single rooftop function o having I, = 1 and
centeredat x =0, y=0,and z=0,

J = g.(x, Ve, . (A7)

Here, the spatial dependencies of the rooftop function
along the x and y directions have been lumped into
g.(x, y) and that along the z direction appears in f(2).
Expressing g_(x, y) as a Fourier series, we obtain

J=3J,(x» 2

_ ~j@rnjd)x _—j(2xmidyy kX
=% G,me e f(z)e"a,,

nm

(A8)

where

d. d,
1 2 1 ) )
Ganm = -‘T-d—f f ga(x, y)el(2"’"/d|)xej(21fm/dz)y ! dy,
142 oy (0

(A9)

and, as given earlier, d, and d, are the periodicities of the
unit cell along the x and y directions, respectively.

o Field equations employed

In the following, z is the normal direction and x and y lie
in the transverse plane. The subscript ¢ indicates that only
the x and y components are involved, so that for a
general vector A, A, = A — 4.a,. The electric field E and
the magnetic field H are decomposed into their
transverse and normal components. We define E, and E,,
as the transverse components of the electric field
produced by currents in the transverse and normal
directions, respectively; E,, and E__ are the normal
components of the electric field produced by currents in
the transverse and normal directions, respectively. The
magnetic field components ,, A,., H,, and A, are
similarly defined.

The electric and magnetic field corresponding to the
current distribution of Equation (A8) must also be
periodic functions multiplied by 7" In any region that
is free of current sources, these fields, which must also
satisfy the Helmholtz equation, can be expressed as

E=%XYE,xy 2)

nm

(A10)

2 KX =jK V=K 21
- 2 E e e e znm
'nm
nm

and
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H= %X H,(x » 2)

= Z I‘_‘I"me—-jkxnxe—jkymye—jkmmlz|, (Al l)
where
2wn

k, =k +="

xn X dl >

2rm

k= s

ym d2
and

kznm = (k; - kfm - kflm)l/z’

and £, and H,,, are vectors that are independent of x, y,
and z. The square root with the negative imaginary part
is taken for k_,,,. Each term corresponding to a given n
and m is referred to as a space harmonic. As mentioned
later, the current source will be placed in the plane z = 0,
so that the above expressions are valid in the source-free
region, z # 0.

The electric field may be expressed in terms of the
transverse component of the magnetic field {25] as

] . Viam¥ inm
- a—Z Emm(x, ¥, 2) = Jwu 1+ -—kz—

- H, (X ¥ z) X a]

meJznm(x’ y ? Z)
+ ——

Gon (A12)
and
1
E,. %y 2)=—1Y,, - [H,,(x » 2) X a]
Jwe
- Jz,,m(xa g Z)L (A13)

where k = w+pg, 1 is a unit dyadic such that
A.-1=1.A=A andV,,  isa gradient operator,
which, for the x and y dependencies given in Equations
(A10) and (A11), can be expressed as

v,.=—Jjk.a + k,.a,). (A14)
We also make use of the magnetic field boundary
condition,
H, (x,y,z=0%-H_(x,yz=0)
0+
= —a, X f J..{x, v, 2) dz, (A15)
-

and that the divergence of the electric field is zero in any
source-free region. The latter allows us to express the
individual space harmonics of E, in terms of those of

E, as 5§97
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Vlnm ) Elnm(x’ ya Z)
Jk

znm

E_(x,y2)==%

nm

; (A16)

where, in Equation (A16) and subsequently, the =+ sign
corresponds to z Z 0.

o Field calculations
The electric field components E,, E_, E_, and E_, will
be found for the current given in Equation (A2) when
[f(2) = 8(z); the corresponding fields for currents having
pulse or triangle dependency along the z direction will be
found by applying convolution.

To find E, and E_, a, in Equation (A7) is set to either

a, or a,. Using Equations (A8), (A11), and (A15), and
noting that A, is antisymmetric about z = 0, we find

H,.(x ¥, 2)

1 ik iy i 12

3 Gonne HargHamb g Hemlly i a (A17)
Substituting Equation (A17) and the », mth term of
Equation (A 10) into Equation (A 12), replacing the
operator d/d, by ¥ jk_,,,, and noting that the

z-component of the current density has been set to zero,
we obtain

Why Vlnmvlnm
E,.(x ¥ 2)=— %k 1+ B

a,G, o Hom? gl (A18)
The total field is obtained by summing over # and m. To
find E_, Equation (A18) is substituted into Equation
(A16) and the result summed over n and m.

To find E,, we set a,, = a_ in Equation (A7). The
Fourier series representation for J (A8) is substituted into
Equation (A12), and the resultant expression integrated
along the z direction from z = 0" to z = 0. From
Equation (A15), H, . (x, ¥, z) is continuous about z = 0,
so that the first term in Equation (A12) offers no
contribution. Because E,. is antisymmetric about z = 0,
the left-hand side becomes 2E,, (x, y, z = 0").
Comparing the result with the #n, mth space harmonic in
Equation (A10), evaluated at z = 0%, we find

E,..(x, ¥, 2)

ik, x =ik y —jk. il
g o umY T em EL (A19)

Summing over n and m gives the desired result.

To find E_, we again set a,, = a_, but this time use
Equation (A13). Because f(z) = §(z) in Equation (A7),
only the first term in Equation (A 13) contributes to the
field in the source-free region, z # 0. But E__ may also be
expressed, again in the source-free region, in terms of E,z
through Equation (A16). Thus, E.. may be found for all
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z by substituting Equation (A19) into Equation (A16),
subtracting J_, (X, y, z)/jwe and then summing over

n and m. The first term in Equation (A13), through
Equation (A15), is continuous at z = 0; it introduces no
mathematical difficulties. The second term in Equation
(A13) must be included even though one may argue that
the field could be tested just off the conductor’s surface,
where J is zero. Since we later truncate the infinite series
expressions for all the field quantities, we must include J,
through its individual space harmonics, which exist over
the entire x-y plane. Numerical difficulties have been
observed when this term was omitted. In the context of
dyadic greens functions, the first term corresponds to the
principal-value part and the second term corresponds to
the correction or depolarization factor [26].

If £ (z) in Equation (A7) has a pulse or triangle
dependency, the fields calculated for £ (z) = &(z) are
convolved with either p_(z) or g, (), giving rise to factors
having the form ) )

f S U - 2)

= U - 2) dz (A20)

where U(z) is the unit step function and the sign is taken
as positive for E, and E_, and as negative otherwise. To
account for the actual position of each rooftop function
within the unit cell, x, y, and z in all the above
expressions are replaced by x — x,, y—y,and z— z,.
This concludes the derivation of the electric field
components.

To find Z,,, we then integrate the electric field and
surface impedance components in the electric field
boundary condition corresponding to rooftop function
a over line interval 8, giving

Lors _
Z, = f [E(x, y, 2) = R R(x, y, 2)¢"*"a,,]
U1
- A, du, (A21)

where u,, and u,, are given by Equation (A6). The
integration above is over the unit cell,

Ri(x, y, 2)

q. w—u), w—v) w=w,
“ ) (A22)

0 w#EW ,
and the terms in Equation (A21) are evaluated at

and w=w,.

'U='l)ﬁ 8

The factor (A22) must be so defined because J in
Equation (A2) is the volume current density and not the
surface current density J, appearing in Equation (2). The
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factor R, is the sheet impedance for the conductor
associated with rooftop function « and also appears in
the electric field boundary condition (2); R__ is given in

Q per square and allows for conductor loss. As discussed
in the text, corresponding half-rooftop functions are
combined to form corner functions. This operation
reduces the matrix order by the number of corner
functions formed, from P’ to P. The eigenvalue equation
(3) is then solved for k_and for the P current coefficients
I, which constitute the current eigenvector I of Equation
(3). The current density is found through Equation (A2).

The derivation just given does not culminate here in
the explicit formulas for the Z matrix elements. Because
of the many possible relative orientations between the
rooftop functions and line intervals, factor (A20) and its
subsequent integration in Equation (A21) give rise to
dozens of different expressions. As such, too much space
would be required to give explicit formulas.

To find the characteristic impedance Z;, S additional
line intervals are defined. These line intervals lie in the
plane x = X and form a continuous path from the signal
line to a suitable point on the reference conductor. The
voltage difference V corresponding to this path may be
expressed as

P+S P
V==3 ¥ VA% (A23)
=P+ a=I

where Z;, are the matrix elements after the half-rooftop
functions have been combined to form corner functions.
The total signal-line current may be expressed as

IT=ffJ~axdydz,

where the integration is performed over the signal-line
cross section, and J, which is given by Equation (A2), is
evaluated at x = X. We define the characteristic
impedance as Z, = V/I.. Though V and thus Z, are
uniquely defined only in TEM structures, they display
only minimal spatial variations in typical computer
package structures. As such, they are generally
appropriate and useful parameters.

The infinite series that appear in all the Z/_ elements
are convergent (absolute convergence has been
demonstrated for a subset of these elements in [14]).
Good results have been obtained when the infinite series
are truncated according to the following ratios of
periodicity to subdivision size:

(A24)

d,

and , (A25)

In|

Im| =

1
e — =, %
min (7, 7_) min (7, 7.)

where 7, 7, 7, are the subdivision intervals discussed
earlier and shown in Figure 3. For a structure composed
exclusively of conductors having zero thickness along the
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z direction, the denominators in Equation (A25) are
replaced by 7, and 7, respectively.
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