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Built-in self-test
support in the
IBM Engineering
Design System

by B. L. Keller
T. J. Snethen

To evaluate the effectiveness of built-in self-test
(BIST) for logic circuits, the test design
automation (TDA) group within the IBM
Engineering Design System (EDS) has
developed tools to support BIST. This paper is
an overview of that support. The specific
hardware approaches taken are described
briefly, and a short description is given of the
major tools that have been developed and the
methodology for using them. The performance
of the system is shown for two sample circuits.

Introduction
Many different implementations of built-in self-test
(BIST) have been used throughout the industry and
within IBM as well [1-3]. Previous BIST designs within
IBM have been accomplished without much design
automation support. However, as IBM and the industry
in general have become more interested in BIST, the
need for design automation support of BIST has become
more important.

BIST design automation support has been developed
by the test design automation (TDA) mission of the IBM
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Engineering Design System (EDS). The tools provided by
this support and described in this paper assume that
linear feedback shift registers (LFSRs) are used to
generate random patterns and to compress output
responses into signatures.

The STUMPS self-test architecture

BIST tools were developed to support the STUMPS
architecture' as shown in Figure 1; however, they were
also defined to include support for the more general
random-pattern testing environment [4] (Figure 2). This
paper deals with the BIST support based upon the
STUMPS circuit architecture.

The architecture for STUMPS is built upon the IBM
level-sensitive scan design (LSSD) approach for designing
testable circuits. In fact, the support requires that a
circuit have (at least) two states—the LSSD state and the
self-test state.

LSSD circuit design concepts are well known [5]. The
self-test design structure discussed in this paper refers to
the general BIST architecture supported by EDS. The
LSSD design rules ensure that every latch in the circuit is
scannable. The only memory elements not required to be
scannable are those inside a random-access memory
(RAM). The self-test design rules allow certain latches to
have specific functions in the BIST operation; these
latches are not scannable in the self-test state. Also,
certain latches are allowed to be fixed in value (once they

' STUMPS is a multilevel acronym which stands for Self-Test Using MISRs and
Parallel SRSGs; it was defined by Paul Bardell and William McAnney in 1982 [1].
MISR and SRSG stand respectively for Multiple-Input Signature Register and Shift
Register Sequence Generator (see acronym definition list).
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are initialized). These latches, called “fixed-value” latches,
are loaded with the appropriate value during an
initializing LSSD load before entering the self-test state of
the circuit. Channel gating latches (required for
generation of channel signatures) are an example of why
one would use such latches.

The basic STUMPS circuit comprises three types of
shift registers:

1. STUMPS channels—ordinary LSSD shift registers
with channel scan inputs and outputs. Each channet
can span a portion of a chip, an entire chip, or
multiple chips.

2. Pseudorandom pattern generator (PRPG)—a linear
feedback shift register (LFSR) used to generate the
random patterns to be shifted into the channels. The
original STUMPS design called this a parallel shift
register sequence generator (PSRSG).

3. Multiple-input signature register (MISR)—an LFSR
used to compress all channel outputs into a single
signature.

The EDS system requires that there be an LSSD state
in addition to the self-test (STUMPS) state, because the
initial values for all latches are loaded using the LSSD
scan operation (including any fixed-value latches). Once
the initial values are loaded, the self-test state is entered,
and the self-test operations begin. Because we define the
self-test state also to be a boundary-scan internal state, no
external inputs to the circuit (except for the clocks and
other primary inputs which establish and run the self-
test) can influence the final signature in the MISR. This
1s the essence of the STUMPS approach to BIST.

The STUMPS architecture as shown in Figure 1
provides for an optional exclusive-OR tree network
between the PRPG and the channel inputs. The
exclusive-OR trees provide each channel input with a
different exclusive-OR function of some number of the
PRPG outputs. This can be used to prevent channels
from having highly correlated values and is desirable
when more than one channel can feed the same logic.

The PRPGs and MISRs are implemented using
LFSRs. The EDS tools support two different kinds of
LFSRs: multiplier and divisor, as shown in Figure 3 and
Figure 4. The size and number of feedback taps used can
be arbitrary; however, a maximal-length LFSR should be
used. A maximal-length LFSR of # bits will cycle through
2" —1 different states before repeating. Failure to use a
maximal-length LFSR for the PRPG may cause a drop in
test coverage which would be shown by simulation.
Failure to use a maximal-length LFSR for the MISR may
cause faults to be masked out as the signatures are being
generated; however, simulation will not detect such
occurrences, since it assumes that a fault is detected as
soon as its effect has been shifted into the MISR.
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Throughout the tool design, an effort was made to be
as general as possible. Whereas the tools require a
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é Multiplier type of linear feedback shift register. Several bits of
¢ the LFSR are exclusive-ORed and fed back into the leftmost bit
:

as they shift.

several other bits as they shift.

,g’;

STUMPS circuit in the self-test state, there are no

packaging restrictions as to how this is implemented. The

STUMPS architecture may be implemented on a chip,
module, card, or board. The tools specifically support
processing of a circuit containing several independent
STUMPS circuits (e.g., a module of ten chips each with
STUMPS built into them).

In addition, when the circuit being processed is in the
boundary-scan internal state, the resulting signatures and
test coverage are valid regardless of where the tests are
being applied. BIST may be applied in manufacturing
(during module, card, board, or system test), after
manufacturing (during power-on self-test in the
customer’s office), or both.

Requirements

As mentioned earlier, IBM has used many different self-
test designs. Before the start of design of the EDS tools,
requirements were gathered from design laboratories and
manufacturing sites throughout IBM. The following list
contains requirements deemed necessary for design
automation support tools.
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Divisor type of linear feedback shift register. The rightmost bit of the
LFSR is fed back into the leftmost bit and exclusive-ORed into

Design rules checking This is required to ensure
that the logic design follows all of the applicable rules.
If the rules are not followed, many things can go
wrong—including having signature mismatches even
though the part is good.

Testability analysis ~ 1BM requires high test coverage
of stuck faults. It is therefore required that design
automation tools indicate what test coverage will be
attainable for a given design and a given number of
applied patterns.

Signature generation Since it is very difficult to
obtain the response signatures for a correct part, it is
desirable that design automation tools provide them. If
a part is already known to be good, it can be used to
determine the expected signatures; however, finding the
first good part is not easy and is somewhat exposed to
error (i.e., a bad part may be assumed good if it
happens to be one of several parts which all yield the
same signature).

In addition, the following design automation support
items were deemed to provide a significant benefit.

Support for individual channel signatures ~ This is
desirable when there is a need to diagnose a failure as
belonging to individual channels or individual latches
within a channel. This support requires that it be
possible to gate out each channel independently of

the other channels feeding the MISR. This is

usually implemented by using a fixed-value latch

for each channel to gate its connection to the MISR
input. These latches are called “channel gating
latches.”

Interactive analysis of untested faults ~ Although a
circuit may be intrinsically testable with deterministic
test patterns, it may be very difficult to test with
random patterns. An interactive analysis tool can

help determine the reasons for low testability. Once
the reasons are known, circuit modifications can

be made to enhance the testability to any desired

level.

Support for RAM initialization and RAM test To
generate repeatable signatures, a self-tested circuit must
either have all its memory elements initialized, or mask
the uninitialized memory elements to prevent their
being observed during the logic test. For many designs,
gating the RAMS in this way is not practical; therefore,
support is useful in ensuring that the RAMs are
initialized—preferably to random values. Allowing
RAMs to be tested via self-test is a natural extension of
the logic self-test support. It is not required that RAMs
be tested in this manner—instead, they can be tested
via a functional self-test or by some other deterministic
method.
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System overview
The major software functions supplied for self-test
support are the following:

1. Checking the logic design for adherence to the self-test
design rules and limitations.

2. Accepting user input of clocking sequences used for
self-test.

3. Checking the validity of user-entered array’
initialization and array test sequences.

4. Analyzing the logic for its random-pattern
testability.

5. Calculating good-machine signatures.

These and other key steps shown in the system flow
diagram in Figure 5 are discussed in the following
sections,

& Structure processing

The structure-processing step extracts the logic
description from the EDS data base, expands the
technology-specific books into the primitive blocks which
are recognized by TDA programs, and assembles all chip
or module data to create the current packaging-level view
of the circuit. These programs extract other pertinent
information such as PRPG and MISR identification.
Information on how to enter the LSSD, self-test, or
array-scan state is derived from the data base and stored
in tables associated with the logic model.

& Design rules checking

The design rules checking function is required in order to
ensure that specific testability design rules have been
followed. Many rules must be checked to ensure that a
circuit satisfies LSSD requirements: No races may exist;
all latches must be included in a shift register; the shift
registers must be configured correctly, etc. In addition to
checking design rules, the checker provides information
in its output files which is useful to subsequent
programs.

A major addition to the existing design rules checking
function was checking for adherence to the self-test rules
and producing information about the SRL (STUMPS)
channels. This information includes on-product LFSR
definitions (i.e., polynomials used) and tester LFSR
definitions [to support the more general random-pattern
testing environment where the tester provides PRPGs for
each primary input and a single-input signature register
(SISR) for each primary output]. The information also
defines each shift register channel and notes the length of
the longest channel.

The self-test rules being checked include (but are not
limited to) the following:

*In this paper, the terms “array” and RAM are used synonymously.
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& Ensure that no unknown values can propagate into a

signature register (no X-state propagation). If the self-
test state is also a boundary-scan internal state, all
primary inputs which are not test-function primary
inputs are considered to be sources of unknown values,
and therefore are checked to ensure that their values
cannot be observed.

Ensure that each channel is fed by a PRPG and feeds
to a signature register.

Ensure that any shift-register latches (SRLs) defined to
be “fixed-value” SRLs do in fact maintain their initial
value once the self-test circuit state is entered.
Optionally check for correct channel gating logic
(between the channel outputs and an on-product
MISR) for those designs which require the ability to
collect individual channel signatures for better
diagnostics.

& Ensure predictable operation of all three-state drivers.

Random patterns are not permitted to cause a three- 409
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state driver to “burn out,” or to produce an observable,
unpredictable state. This check verifies, for all internal
three-state drivers that are not inhibited during the self-
test state, that they cannot be driven to both zero and
one simultaneously. It also verifies that if a three-state
driver can go to high impedance, it must be terminated
to produce either a soft O or 1, or it cannot be observed
when it is in a high-impedance state.

If the circuit has embedded random-access memory
(RAM), the design rules checker determines whether or
not the RAM can be observed during the self-test. The
design rules checker indicates that each RAM that is not
blocked from observability must be initialized (via a
RAM initialization sequence). If at least one RAM must
be initialized, the design rules checker looks for the
existence of an array-scan state for the circuit, because
any array-initialization sequence applied to the circuit for
the purpose of initializing RAM must be applied in the
array-scan state.

If the circuit possesses an array-scan state, the self-test
rules checker performs most of the same checks applied
to the self-test state in the array-scan state. The main
difference between the two states is that the array-scan
state may have certain SRLs removed from the channels
for use as address steppers. The address steppers are
required to guarantee that every address will be initialized
(or tested).

The most important check performed by the self-test
rules checker is to prohibit unknown values from
propagating into the signature. Most designs work well
given their functional input patterns, but some do not
behave as well when given a nonfunctional pattern.
Because random patterns generated during BIST are
almost certain to include nonfunctional patterns, the
design rules checker must point out any potential
problems that could be caused by nonfunctional patterns.

o Fault model build

The test coverage for BIST is based upon the same stuck-
fault model used for deterministic test generation,
implying that ignorable3 faults and equivalence classes
have been identified. However, the fault model build
function performs some fault analysis uniquely for
circuits under self-test, This analysis is called “a priori
fault mark-off.” Because of the high confidence that faults
in some classes of logic are certain to be detected, and
because there is no diagnostic fault dictionary built for
random-pattern self-test, these faults are flagged as
“detected a priori.” This has the advantage of saving time
in the more expensive steps of testability analysis (such as
fault simulation).

WM is one that would obviocusly not affect the function of the circuit.

This includes faults blocked by TIEd logic or faults on dangling logic. It does not
include identification of redundant faults.

B. L. KELLER AND T. J. SNETHEN

The faults marked a priori belong to the following
classes of logic:

Most of the faults within PRPGs and MISRs.

Faults along the BIST channel scan data paths.

Some faults on the BIST shift clock paths.

Faults in any exclusive-OR logic between the channels
and LFSRs.

5. Faults between RAM inputs and the last fan-in blocks
that feed the array.

BN =

The percentage of the total faults marked “a priori
tested” differs from part to part and is dependent upon
the percentage of the circuit in the shift registers. This
percentage may range from as low as 5 percent to as high
as 30 percent (for circuits made up mostly of latches).

o Pattern sequence entry

BIST support provides an automatic pattern-sequence-
generation tool for those designs not constrained as to
how the clocks to the circuit can be applied. However,
some self-test designs can apply only a limited set of
clocking sequences; for these situations, manually entered
sequences must be generated. Array initialization and
array-test sequences are also manually entered.

Pattern sequences are entered using a full-screen CRT
interface. Nets to be inclnded in operations are listed on
the left side of each row, while the operations to be
applied are listed across the top of the columns. As an
example, the “pulse clocks” operation can be coded in a
column, and the desired clocks can be identified by
placing “P” (for pulse) in the row pertaining to each
clock.

Besides the BIST circuit design rules, some clocking
sequence rules have also been established; these are used
to ensure that

1. No race conditions occur.

2. The TDA Compiled Logic Simulator can be used for
high-speed good-machine and faulty-machine
simulation.

3. Consecutive patterns can be simulated in parallel.

4, Post-test diagnostic simulation can be performed
efficiently [6-8].

The pattern sequence entry program checks that the
sequences do not violate constraints 1 or 2. If a sequence
violates any of the other constraints, the sequence is so
flagged; it may cause less efficient processing by TDA
simulators or diagnostic simulators.

o Array sequence checking

As mentioned above, there is a tool for verifying whether
an array initialization sequence does in fact initialize
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every RAM cell that can be observed during the logic
self-test. This program can also verify whether an array-
test sequence will test every port and all the cells of every
RAM in the circuit. These checks are performed by a
type of simulation and can be quite expensive to run.

If all (or even just the “large”) RAMs are gated from
being observed, an array initialization sequence is not
required (or can be much shorter in length).

o Testability analysis
BIST testability analysis is performed under the control
of the Testability Analysis for Random Patterns (TARP)
control program. The TARP control program was
designed to allow many different testability analysis tools
to “plug in” as they became available. It provides the
basic functions that are required of any analysis tool;
those functions not generic across tools must be
implemented by the tool requiring the function.

Four basic functions run under TARP:

1. Automatic test-sequence generation.
2. Signature generation.

3. Test-coverage calculation.

4. Testability analysis.

The main tool currently in use is the Complied Logic
Simulator (CLS), used in conjunction with the LFSR
Simulation Monitor (LFSRSIM). This is a hybrid
simulator implementing the low-level logic simulation via
compiled object code (CLS) and the simulation of the
channel-scanning and signature-generation operations via
high-level (LFSR) simulation. This hybrid simulator,
called CLS-LFSRSIM, is discussed in more detail in the
next section.

The CLS-LFSRSIM simulator performs good-machine
simulation for signature generation and fault simulation
to calculate test coverage. Signature generation and fault
simulation are normally done simultaneously, although
the two functions can be selected independently by the
user.

Another tool available under TARP is used when it
would be prohibitively expensive to fault-simulate the
total pattern set to be applied to the circuit. This tool
does not perform pattern simulation—rather, it takes a
more analytical approach to determining the random-
pattern testability of the circuit. The tool is named
CARPET (Circuit Analysis for Random-Pattern
Extensive Testing).

CARPET first determines the detection probability for
any given fault to be considered detected (with 99.999%
confidence), assuming that all the patterns requested to
be applied to the circuit are in fact applied. Then it
estimates the detection probability for each undetected
fault. If the detection probability is high enough,
CARPET marks the fault as detected. Since CARPET
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assumes that the patterns are completely random, it may
not detect any problems associated with correlated (not
completely random) inputs.

Because CARPET may not detect these problems,
because it is expensive to run, and also because it can be
quite pessimistic in its assertions, CARPET is not utilized
as often as CLS-LFSRSIM.

TARP is normally used to process several different
logic test sequences. These sequences can be generated
automatically by TARP, or can be entered manually.

CLS-LFSRSIM simulator

The LFSRSIM portion of the CLS-LFSRSIM simulator
is responsible for interpretively executing the current
clocking sequence. If the logic test were to be preceded by
an array initialization, that too would be simulated.

The main responsibility of LFSRSIM is to perform the
channel-scanning operation at a high level as efficiently
as possible. It computes the new (PRPG-generated)
values scanned into the channels. It also generates the
MISR signature by scanning the current channel contents
into the MISR. If channel signatures are requested,
LFSRSIM computes a separate signature for each
channel. In addition to the final full MISR signature and
individual channel signatures, LFSRSIM can produce
intermediate signatures for use in detecting failures before
all tests have been applied. The number of tests between
intermediate signatures is specified by the user.

When a particular clocking event occurs, LFSRSIM
calls the CLS-compiled object code to simulate that event
at the logic gate level. CLS has good-machine object code
to calculate the good-machine response to a clocking
event. It also has faulty-machine object code to calculate
the response of a fault or group of faults to a clocking
event. The compiled object code provides very high
simulation rates (equivalent to more than 500 million
gate evaluations per second for good-machine simulation
and even higher for faulty-machine simulation). The
compiled code simulation is similar to and was
derived from that of the High Speed Simulator
(HSS) [9].

The use of compiled code for low-level logic and an
LFSR simulator for high-level channel-scan simulation
provides an efficient means of simulating the (potentially)
large number of random patterns usually applied to a
BIST circuit. To make simulation even more efficient,
CLS-LFSRSIM can simulate up to 32 patterns in parallel
for about the cost of simulating one pattem.4

CLS-LFSRSIM assumes that a fault is detected once its
fault effect is latched into a channel. It assumes that the
channel-scan operation will capture the fault effect into

* The CLS-LFSRSIM parallel pattern simulation breaks down when RAMs are

calculated. For this reason, if many RAMs must be calculated (many fault effects must
propagate through RAMs), the cost of simulating patterns in parallel goes up—but
never as high as the cost of simulating the patterns one at a time.
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Table 1 Statistics for the Hardware Test Vehicle.

277,746 Logic gates
3,180 SRLs
166 SRLs in longest
channel
689,070 Stuck faults

8192 Array initialization
cycles
32 Total array initializa-
tions
262,144 Total array initializa-
tion cycles

28,672 Logic test cycles

94.4 % Fault coverage

CPU
minutes
17 Check design rules

Activity

29 Check array

sequences

15 For miscellaneous

87 Total for all simula-
tion and signature
generation

148 Total for all steps

205 RAMs
32 Channels
93,840 RAM cells

443,664 Fault equivalence
classes
29 Clocks per array ini-
tialization cycle

7,602,176 Total array initializa-
tion clock events
(GM simulated)
29 Clocks per logic test
cycle
831,488 Total logic test clack
events (FM simu-

lated)
CPU Activity
minutes
26 Compiling circuit for
simulation

7 CLS-LFSRSIM GM
simulation of
7,602,176 array in-
itialization clock
pulses

54 CLS GM and FM
simulation of
831,488 test
clock pulses

87 Total for all simula-
tion and signature
generation

Note: CPU times given are for an 1BM 3090-600 E processor.

the MISR and will result in a signature different from

that of the good machine.

The output from CLS-LFSRSIM comprises the

following:

1. The test sequence used. This includes the
identification and order of clocks to be pulsed and any
other necessary control signals, as well as the number
of cycles for which the test is to be run.

2. Good-machine signature(s) for the sequence.

3. Cumulative and incremental fault coverage attained

by this simulation.

4. Optionally, good-machine net activity counts. These
are used by the Self-Test Fault Analyzer (discussed
next) in determining the signal probabilities observed

on the nets.

5. Complete good-machine circuit state (including RAM
cells). These can be used as inputs to a subsequent
simulation to be performed after this current sequence
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1s applied. The ability to link each sequence with the

results of the previous sequence removes the need to
re-initialize the RAMs, which in turn speeds up the
simulation and the test application.

Self-Test Fault Analyzer

Attaining adequate test coverage when random patterns
are being applied is not always easy. Some designs are
inherently random-pattern testable, while others are
random-pattern resistant. For very large circuits, there
may exist some portions of the circuit which are easily
tested, whereas other portions are very hard to test with
random patterns. To aid the user in determining where
his logic is random-pattern resistant, EDS provides the
Self-Test Fauilt Analyzer (STFA).

STFA uses the results of CLS-LFSRSIM fault
simulation to determine where faults are being left
behind in “clusters.” A “fault cluster” is simply a group
of faults in a connected area of logic that are not
detected, apparently due to the inability of the random
patterns to generate the appropriate sensitizing
conditions. STFA attempts to find a single net which
may be the largest factor contributing to the existence of
the cluster. For example, STFA would point out that a
certain high-fan-in AND gate (or equivalent) was
inhibiting the detection of (n) faults.

STFA produces a list of clusters in order of decreasing
number of affected faults. The user can evaluate this list
and determine which areas of logic (if any) should be
modified in order to improve its random-pattern
testability. Often just fixing the top ten entries on this list
solves most of the testability problems. Instruction
decode logic and comparator outputs are often found at
the top of cluster lists.

o Saving test results

Each TARP run is considered an experiment. Using his
own criteria, the user can decide whether the experiment
was a success or a failure. If an experiment is considered
a success, the user can save the results permanently by
running the Save Test Results step. All previously

saved experiments are accumulated, and the test
coverage reported is for the combination of all such
experiments.

o Building the test data file
When adequate test coverage is attained, the test data file
(TDF) is built; it includes

The logic model used to derive the test data.

The test sequences to be applied.

The signatures.

The test coverage attained.

Audit information indicating which steps of the flow
failed or which rules failed.

S
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Performance and results

The performance of the BIST support system depends on
the particular circuit being processed. Circuits that have
embedded RAMs gated from observability during the
logic test (and therefore do not require array
initialization) generally require less CPU time to process
than an equivalent circuit with the RAMs participating in
the logic test. These designs usually depend on functional
self-testing means to test the RAMs.

Performance is shown for a benchmark circuit which
was built to test these tools when they were being
developed. The statistics for this circuit (called the
“Hardware Test Vehicle,” or HTV) are shown in
Table 1.

One of the reasons why a circuit such as the HTV can
take so long to process is that it has relatively large logical
RAMs (8K addresses). Since it requires 8192 cycles to
initialize all of the RAMs (some of the smaller RAMs are
initialized multiple times), with each cycle containing 29
clock pulses and a channel-scan operation, it can take a
long time to check the array sequences and to simulate
them.

Another performance factor is the number of RAMs
and how often they must be calculated during
simulation. The RAM simulation within CLS-LFSRSIM
is performed essentially by behavior, not by compiled
code. The more often RAMs must be simulated, the
slower the simulation. The number of faults which must
propagate through RAMs in order to be detected can
have a major influence on the number of times RAMs
must be calculated. Approximately 90% of the fault-
simulation time for the HTV circuit was spent
calculating RAMs due to faults which were fed into
them.

The system supports two different ways of
circumventing this problem:

1. Break up the RAM into smaller RAMs—initialize in
parallel. If a large logical RAM, e.g., 32K bits by 36
bits, is implemented using thirty-six 32K-bit by 1-bit
RAM macros, the array initialization requires 32K
cycles. If, however, the RAM was implemented using
thirty-six 8K-bit by 4-bit RAM macros, the array
initialization may require only 8K cycles, since it may
be possible to write 144 bits simultaneously. The more
cells that can be written simultaneously, the shorter
the array initialization time.

2. Gate the RAM from being observed during logic self-
test. Circuits with no RAM are simulated very rapidly
through the BIST system. The same performance can
be obtained for circuits with embedded RAMs by
blocking the RAMs from being observed in the self-
test state. If a RAM can be tested using a functional
self-test or by a separate, algorithmic self-test, there is
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Table 2 Statistics for the BIST chip.

39,616 Logic gates 0 RAMs
774 SRLs 4 Channels
416 SRLs in longest 0 RAM cells
channel
104,690 Stuck faults 58,787 Fault equivalence
classes
1,048,576 Logic test cycles 1 Clock per logic test
cycle

1,048,576 Total logic test clock
events (FM simu-

lated)
94.1 % Fault coverage
CPU Activity CPU Activity
minutes minutes
1 Check design rules 3 Compiling circuit for
simulation
0 Check array 0 CLS-LFSRSIM GM
sequences simulation of 0
array initialization
clock pulses
[ For miscellaneous 13 CLS GM and FM
simulation of
1,048,576 test
clock pulses
16 Total for all simula- 16 Total for all simula-

tion and signature
generation

tion and signature
generation
18 Total for all steps

Note: CPU times given are for an IBM 3090-600 E processor.

no need to include it in the logic self-test—it just gets
in the way. The best approach is to have two self-tests,
a logic self-test and an array self-test, and never
overlap them.

Another, relatively small, circuit was processed through
this system. It is a chip with fewer than 40K logic gates,
only four STUMPS channels, and boundary scan. The
channels are longer than the ones on the HTV circuit. A
significant difference between this chip and the previous
circuit is that the chip has no RAM:s. It also has
significantly fewer clocks (8 compared to 29), and they
were only clocked one per test cycle with rotation (i.e., a
different clock was pulsed in each subset of eight test
cycles). This type of clocking was used because it was to
be implemented in the higher-level package used to test
the chip. The statistics for this circuit (identified here as
the “BIST chip”) are shown in Table 2.

The BIST chip required many more cycles to achieve
even 94% test coverage; however, it was being penalized,
since no faults in the 1/0 logic were detected because it
was in boundary-scan internal state. If a boundary-scan
external test were added to ensure that the I/O pins and
logic were tested, the test coverage would be much higher
(about 5%) [10, 11]. It is important to note that an entire
40K -gate chip was processed in about 18 CPU minutes
on an IBM 3090-600 E—including fault simulation of
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Test coverage curve for the BIST chip. This logarithmic coverage
chart is output from the CLS-LFSRSIM simulator. Note that
coverage started at 18% from a priori fault analysis.

over one million random patterns—with signatures also
being generated. This processing time includes the
effective simulation of more than 430 million single-bit
shifts of the STUMPS PRPG, channels, and MISR in
order to generate the patterns and signatures.

The test coverage curve for the BIST chip (Figure 6)
shows some interesting features. A normal (linear)
coordinate system would only show that test coverage
climbs very fast and then flattens out. The logarithmic
chart shows that there are some faults that require a
certain base level of patterns to be applied before they
begin to be detected in any great numbers. Notice that
the chart is steeper in some areas than in others (between
test cycles of 1024 and 2048, less than 3% of the faults
are detected; between test cycles 16 384 and 32 767,

8% of the faults are detected). This may indicate that
there are many faults clustered around some blocking
logic which requires that a certain threshold of patterns
be applied before those faults can propagate through the
blocking logic.

For example, a ten-input AND gate with completely
random inputs requires about 4000 patterns as a base
before any reasonable number of fault effects can flow
through that gate. A twelve-input AND requires about
four times that many patterns. High-fan-in OR gates
cause the same problem. The coverage chart produced by
CLS-LFSRSIM gives the user a feel for how often high-
fan-in gates (or equivalent logic) are blocking the
testability of the circuit. Often the high-fan-in function is
distributed over many gates and is not easily found by
inspection of the logic structure. The STFA tool helps
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pinpoint the areas that may be causing problems and
thus helps a designer to identify where circuit
modifications would be effective in improving the
circuit’s random-pattern testability.

Conclusions

The overall performance of the BIST support system is
good. The main bottleneck for the system is large logical
RAMs, which require many initialization cycles to fill
them with random data. The system supports two
different ways of circumventing this problem:

1. Break up a large logical RAM into smaller physical
RAM:s.

2. Gate the RAM from being observed during logic self-
test.

When random-pattern self-test is used, the random
patterns may not provide adequate test coverage when
the target number of patterns is applied. Even when the
design passes all of the LSSD and self-test rules, it may
still not meet the test-coverage requirements without
some modification. This aspect of designing circuits for
random-pattern testability is a new and unfamiliar
problem for logic designers.

The use of the Self-Test Fault Analyzer (STFA) helps
when the circuit must be modified to make it more
random-pattern testable. The STFA helps point out
certain nets that impede the detection of many faults. By
using this tool, it is possible to identify a few key sections
of the logic that must be modified to improve the
random-pattern testability of the circuit.

As logic designers (and logic synthesis programs)
become familiar with the ramifications of random-
pattern BIST, they may be able to foresee problems and
fix them before even running BIST tools. Until then,
however, it will be an ongoing learning experience.

Appendix: Glossary
The following definitions are provided for the acronyms
found in this paper.

& BIST Built-In Self-Test. Features designed into the
circuit that enable it to test itself using pseudorandom
test-pattern generators and signature analysis.

& CARPET Circuit Analysis for Random-Pattern
Extensive Testing. A tool which estimates test coverage
without actually simulating any patterns.

& CLS-LFSRSIM  The Compiled Logic Simulator and
the LFSR Simulation Monitor. The high-speed
simulator used to compute signatures and perform
fault simulation of the self-test patterns.

» EDS The IBM Engineering Design System. This is
a system of design automation tools which includes
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support for logic entry, design verification, physical
design, timing analysis, design rules checking,
automatic test generation, and BIST testability analysis.

e LFSR Linear Feedback Shift Register. Used either
as a pseudorandom pattern source or as a signature
analyzer.

o LSSD Level-Sensitive Scan Design. A circuit design
technique which makes all latches scannable and
ensures that no race conditions will exist in the testing
environment. This technique has been used both
within and outside IBM with much success.

s MISR Multiple-Input Signature Register. This is an
LFSR used as a signature register with multiple parallel
inputs.

s PRPG Pseudo-Random Pattern Generator. This is

an LFSR used as a pseudorandom pattern source,
perhaps with multiple parallel outputs.

e SISR Single-Input Signature Register. This is an
LFSR used as a signature register with a single input
into its leftmost bit.

e SRSG Shift Register Sequence Generator. Another
name for a PRPG.

¢ STFA Self-Test Fault Analyzer. A tool which helps
locate the causes for low test coverage of random-
pattern-resistant logic.

e STUMPS Self-Test Using MISRs and Parallel
SRSGs. A self-test circuit design which connects latch
scan strings between an LFSR pattern source and an
LFSR signature register.

o TARP Testability Analysis for Random Patterns.
The TARP controller provides a single user interface to
several random-pattern-testability analysis tools.

e TDA The Test Design Automation mission within
the EDS organization of IBM. It provides design
automation tools for deterministic test generation, fault
simulation, and self-test.

e TDF Test Data File. This file is the main output
from the TDA system. It contains several subfiles,
including the logic model, fault model, and simulation
results. It is later combined with other data (e.g.,
physical design data) before being sent to
manufacturing.
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