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Built-in self-test 
support  in the 
IBM- Engineering 
Design  System 

by B. L. Keller 
T. J. Snethen 

To evaluate  the  effectiveness of built-in  self-test 
(BIST)  for  logic  circuits,  the  test  design 
automation  (TDA)  group  within  the  IBM 
Engineering  Design  System  (EDS)  has 
developed  tools  to  support  BIST.  This  paper  is 
an  overview  of that  support.  The  specific 
hardware  approaches  taken  are  described 
briefly,  and  a  short  description  is  given of the 
major  tools  that  have been  developed  and  the 
methodology  for  using  them.  The  performance 
of the  system  is  shown  for  two  sample  circuits. 

Introduction 
Many different implementations of built-in self-test 
(BIST) have been used throughout the industry and 
within IBM as well [ 1-31. Previous BIST  designs within 
IBM  have  been accomplished without much design 
automation support. However, as IBM and the industry 
in  general  have become more interested in BIST, the 
need  for  design automation support of  BIST has become 
more important. 

BIST design automation support has been developed 
by the test  design automation (TDA) mission  of the IBM 
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Engineering Design  System (EDS). The tools provided by 
this support and described in this paper assume that 
linear feedback shift registers (LFSRs) are used to 
generate random patterns and  to compress output 
responses into signatures. 

The STUMPS self-test  architecture 
BIST tools were developed to support the STUMPS 
architecture' as shown in Figure 1; however, they were 
also defined to include support for the more general 
random-pattern testing environment [4] (Figure 2). This 
paper deals with the BIST support based upon the 
STUMPS circuit architecture. 

The architecture for STUMPS is built upon the IBM 
level-sensitive scan design  (LSSD) approach for  designing 
testable circuits. In fact, the support requires that a 
circuit have (at least) two states-the  LSSD state and the 
self-test state. 

LSSD circuit design concepts are well known [ 5 ] .  The 
self-test  design structure discussed in this paper refers to 
the general BIST architecture supported by  EDS. The 
LSSD  design rules ensure that every latch in the circuit is 
scannable. The only memory elements not required to be 
scannable are those inside a random-access memory 
(RAM). The self-test  design  rules  allow certain latches to 
have  specific functions in the BIST operation; these 
latches are not scannable in  the self-test state. Also, 
certain latches are allowed to be  fixed in value (once they 

' STUMPS is a multilevel acronym which stands for  Self-Test  Using MlSRs and 
Parallel  SRSGs;  it  was  defined by Paul  Bardell and William  McAnney  in 1982 [ I ] .  

Register  Sequence Generator (see acronym definition list). 
MER and SRSG stand respectively for Multiple-Input Signature Register and Shih 
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are  initialized).  These  latches,  called  "fixed-value''  latches, 
are loaded  with the appropriate value during an 
initializing LSSD load  before entering the self-test state of 
the circuit. Channel gating  latches (required for 
generation of channel signatures) are an example of  why 
one  would  use  such  latches. 

The basic  STUMPS  circuit  comprises three types of 
shift  registers: 

1. STUMPS  channels-ordinary  LSSD  shift  registers 
with channel scan inputs and outputs. Each channel 
can span a portion of a chip, an entire chip, or 
multiple  chips. 

feedback  shift  register (LFSR) used to generate the 
random patterns to be shifted into the channels. The 
original STUMPS design  called  this a parallel  shift 
register  sequence  generator  (PSRSG). 

3, Multiple-input signature  register (M1SR)"an LFSR 
used to compress  all channel outputs into a single 
signature. 

2 .  Pseudorandom pattern generator  (PRPG)-a  linear 

The EDS  system  requires that there be an LSSD state 
in addition to the self-test  (STUMPS) state, because the 
initial values  for  all  latches are loaded  using the LSSD 
scan  operation  (including any fixed-value  latches).  Once 
the initial values are loaded, the self-test state is entered, 
and the self-test operations begin.  Because  we  define the 
self-test state also to be a boundary-scan internal state, no 
external inputs to the circuit  (except  for the clocks and 
other primary inputs which  establish and run the self- 
test) can influence the final signature in the MISR. This 
is the essence  of the STUMPS approach to BIST. 

The STUMPS architecture as  shown in Figure 1 
provides  for an optional exclusive-OR tree network 
between the PRPG and the channel inputs. The 
exclusive-OR  trees  provide  each channel input with a 
different  exclusive-OR function of some number of the 
PRPG outputs. This can  be  used to  prevent channels 
from  having  highly  correlated  values and is  desirable 
when more than one channel can feed the same logic. 

The PRPGs and MISRs are implemented using 
LFSRs. The EDS tools support two  different kinds of 
LFSRs:  multiplier and divisor,  as  shown in Figure 3 and 
Figure 4. The size and number of  feedback taps used can 
be arbitrary; however, a maximal-length  LFSR  should  be 
used. A maximal-length  LFSR of n bits will  cycle  through 
2" - 1 different  states  before  repeating.  Failure to use a 
maximal-length LFSR  for the PRPG may  cause a drop in 
test  coverage  which  would  be  shown by simulation. 
Failure to use a maximal-length LFSR for the MISR  may 
cause  faults to be  masked out as the signatures are being 
generated;  however, simulation will not detect such 
occurrences,  since it assumes that a fault  is  detected  as 
soon  as  its  effect  has  been  shifted into the MISR. 
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Throughout the tool  design, an effort  was made to be 
as  general as possible.  Whereas the tools require a 
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1 Multiplier  type of linear  feedback  shift  register.  Several  bits of 
r; the LFSR are  exclusive-ORed  and fed back  into  the  leftmost bit 

as they shift. 

Design rules checking This is required to ensure 
that the logic  design  follows  all  of the applicable rules. 
If the rules are not followed, many things can go 
wrong-including  having signature mismatches even 
though the part is good. 
Testability  analysis IBM requires high  test  coverage 
of stuck faults. It is therefore required that design 
automation tools indicate what test coverage will  be 
attainable for a given  design and a given number of 
applied patterns. 

obtain the response signatures for a correct part, it is 
desirable that design automation tools provide them. If 
a part is already known to be  good,  it can be  used to 
determine the expected signatures; however, finding the 
first  good part is not easy and is somewhat exposed to 
error (i.e., a bad part may  be assumed good if it 
happens to be one of  several parts which all yield the 
same signature). 

Signature generation Since it is  very  difficult to 

i Divisor type of linear feedback shift register.  The  rightmost bit of the 
1 LFSR i s  fed back into  the  leftmoat bit and  exclusive-ORed  into 
: several other  bits a5 thev shift. 

STUMPS circuit in the self-test state, there are no 
packaging restrictions as to how this is implemented. The 
STUMPS architecture may be implemented on a chip, 
module, card, or board. The tools specifically support 
processing  of a circuit containing several independent 
STUMPS circuits (e.g., a module of ten chips each with 
STUMPS built into them). 

In addition, when the circuit being  processed  is in  the 
boundary-scan internal state, the resulting signatures and 
test  coverage are valid  regardless  of  where the tests are 
being applied. BIST  may  be applied in manufacturing 
(during module, card, board, or system test), after 
manufacturing (during power-on  self-test  in the 
customer’s office), or both. 

Requirements 
As mentioned earlier, IBM has used many different  self- 
test designs.  Before the  start of design  of the EDS tools, 
requirements were gathered from design laboratories and 
manufacturing sites throughout IBM. The following  list 
contains requirements deemed necessary for dzsign 
automation  support tools. 
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In addition, the following  design automation support 
items were deemed to provide a significant  benefit. 

Support for individual channel signatures This is 
desirable when there is a need to diagnose a failure as 
belonging to individual channels or individual latches 
within a channel. This support requires that it be 
possible to gate out each channel independently of 
the other channels feeding the MISR. This is 
usually implemented by using a fixed-value latch 
for each channel to gate its connection to the MISR 
input. These latches are called “channel gating 
latches.” 

circuit may  be intrinsically testable with deterministic 
test patterns, it may be  very  difficult to test with 
random patterns. An interactive analysis tool can 
help determine the reasons for low testability. Once 
the reasons are known, circuit modifications can 
be made to enhance the testability to any desired 
level. 

Interactive analysis of untested faults Although a 

Support for  RAM initialization and RAM test To 
generate repeatable signatures, a self-tested circuit must 
either have all its memory elements initialized, or mask 
the uninitialized memory elements to prevent their 
being  observed during the logic test. For many designs, 
gating the RAMs in this way is not practical; therefore, 
support is  useful in ensuring that the RAMs are 
initialized-preferably to  random values.  Allowing 
RAMs to be tested via  self-test  is a natural extension of 
the logic  self-test support. It is not required that RAMs 
be tested in this manner-instead, they can be tested 
via a functional self-test or by some other deterministic 
method. 
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System overview 
The major software functions  supplied for self-test 
support  are the following: 

1. Checking the logic design for  adherence to  the self-test 
design rules and limitations. 

2 .  Accepting user input of clocking sequences used for 
self-test. 

3 .  Checking the validity of user-entered array’ 
initialization and array  test sequences. 

4. Analyzing the logic for its random-pattern 
testability. 

5. Calculating  good-machine signatures. 

These and  other key steps shown  in the system flow 
diagram in Figure 5 are discussed in the following 
sections. 

Structure processing 
The structure-processing step  extracts the logic 
description from  the EDS data base, expands the 
technology-specific books into  the primitive blocks which 
are recognized by TDA programs, and assembles all chip 
or module data  to create the  current packaging-level view 
of the circuit. These  programs  extract other  pertinent 
information  such  as PRPG  and MISR  identification. 
Information on how to enter the LSSD, self-test, or 
array-scan state is derived from the  data base and stored 
in tables associated with the logic model. 

Design rules checking 
The design rules checking function is required in  order  to 
ensure that specific testability design rules have been 
followed. Many rules must be checked to ensure that a 
circuit satisfies LSSD requirements: No races may exist; 
all latches must be included  in a shift register; the shift 
registers must be configured correctly, etc. In addition to 
checking design rules, the checker provides information 
in its output files which is useful to subsequent 
programs. 

A major addition to  the existing design rules checking 
function was checking for adherence to the self-test rules 
and producing  information about  the  SRL (STUMPS) 
channels.  This  information  includes  on-product LFSR 
definitions (i.e., polynomials used) and tester LFSR 
definitions [to support  the  more general random-pattern 
testing environment where the tester provides PRPGs for 
each primary input  and a single-input signature register 
(SISR) for each  primary output].  The  information also 
defines each shift register channel and notes the length of 
the longest channel. 

The self-test rules being checked include (but  are  not 
limited  to) the following: 

‘ I n  this paper, the terms  “array” and RAM are used synonymously. 
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Ensure that  no  unknown values can propagate into a 
signature register (no X-state  propagation). If the self- 
test state is also a  boundary-scan internal state, all 
primary inputs which are  not test-function  primary 
inputs  are considered to be  sources of  unknown values, 
and therefore are checked to ensure that  their values 
cannot be observed. 

0 Ensure that each channel is fed by a PRPG  and feeds 
to a  signature register. 

0 Ensure that any shift-register latches (SRLs) defined to 
be “fixed-value”  SRLs do  in fact maintain  their initial 
value once  the self-test circuit  state is entered. 
Optionally  check for correct channel gating logic 
(between the  channel  outputs  and  an  on-product 
MISR) for those designs which require the ability to 
collect individual channel signatures  for  better 
diagnostics. 
Ensure predictable operation of all three-state drivers. 
Random patterns are  not permitted to cause  a  three- 
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state driver to  “burn  out,” or to produce an observable, 
unpredictable state. This check  verifies,  for  all internal 
three-state drivers that are not inhibited during the self- 
test state, that they cannot be driven to both zero and 
one simultaneously. It also  verifies that if a three-state 
driver can go to high impedance, it must be terminated 
to produce either a soft 0 or 1, or it cannot be observed 
when  it  is in a high-impedance state. 

If  the circuit has embedded random-access memory 
(RAM), the design  rules checker determines whether or 
not the RAM can be observed during the self-test. The 
design  rules checker indicates that each RAM that is not 
blocked  from  observability must be initialized (via a 
RAM initialization sequence). If at least one RAM must 
be initialized, the design rules checker looks for the 
existence of an array-scan state for the circuit, because 
any array-initialization sequence applied to the circuit for 
the purpose of initializing RAM must be applied in the 
array-scan state. 

If the circuit possesses an array-scan state, the self-test 
rules checker performs most of the same checks applied 
to the self-test state in the array-scan state. The main 
difference  between the two states is that the array-scan 
state may have certain SRLs removed from the channels 
for  use as address steppers. The address steppers are 
required to guarantee that every address will  be initialized 
(or tested). 

The most important check performed by the self-test 
rules  checker  is to prohibit unknown values from 
propagating into the signature. Most  designs work well 
given their functional input patterns, but some do not 
behave as  well when  given a nonfunctional pattern. 
Because random patterns generated during BIST are 
almost certain to include nonfunctional patterns, the 
design  rules checker must point out any potential 
problems that could be caused by nonfunctional patterns. 

9 Fault tnodel build 
The test  coverage for BIST is  based upon the same stuck- 
fault model  used for deterministic test generation, 
implying that ignorable3 faults and equivalence classes 
have  been  identified.  However, the fault model build 
function performs some fault analysis uniquely for 
circuits under self-test. This analysis is called “ a  priori 
fault mark-off.’’  Because  of the high confidence that faults 
in some classes  of  logic are certain to be detected, and 
because there is no diagnostic fault dictionary built for 
random-pattern self-test, these faults are flagged as 
“detected a priori.” This has the advantage of  saving time 
in the more expensive steps of testability analysis (such as 
fault simulation). 

This includes faults blocked by  TIEd logic or faults on dangling logic. It does not 
An ignorable  fault  is one that would obviously not affect the function oftbe circuit. 

410 include identification of redundant faults. 

The faults marked a priori belong to the following 
classes  of  logic: 

I .  Most of the faults within PRPGs and MISRs. 
2. Faults along the BIST channel scan data paths. 
3. Some faults on  the BIST shift clock paths. 
4. Faults in  any exclusive-OR  logic  between the channels 

5. Faults between RAM inputs and the last fan-in blocks 
and LFSRs. 

that feed the array. 

The percentage of the total faults marked “u  priori 
tested” differs from part to part and is dependent upon 
the percentage of the circuit in  the shift registers. This 
percentage may  range from as low as 5 percent to as high 
as 30 percent (for circuits made up mostly of  latches). 

9 Pattern  sequence entry 
BIST support provides an automatic pattern-sequence- 
generation tool for those designs not constrained as to 
how the clocks to the circuit can be applied. However, 
some self-test  designs can apply only a limited set  of 
clocking sequences; for these situations, manually entered 
sequences must be generated. Array initialization and 
array-test sequences are also manually entered. 

Pattern sequences are entered using a full-screen CRT 
interface. Nets to be inclltded in operations are listed on 
the left side of each row,  while the operations to be 
applied are listed  across the top of the columns. As an 
example, the “pulse clocks” operation can be coded in a 
column, and the desired  clocks can be identified by 
placing “P” (for pulse) in the row pertaining to each 
clock. 

Besides the BIST circuit design  rules, some clocking 
sequence rules have also been established:  these are used 
to ensure that 

1. No race conditions occur. 
2. The TDA Compiled Logic Simulator can be  used for 

high-speed good-machine and faulty-machine 
simulation. 

3. Consecutive patterns can be simulated in parallel. 
4. Post-test diagnostic simulation can be performed 

efficiently [6-81. 

The pattern sequence entry program checks that  the 
sequences do not violate constraints 1 or 2. If a sequence 
violates any of the other constraints, the sequence is so 
flagged; it may cause less  efficient  processing by TDA 
simulators or diagnostic simulators. 

Array sequence checking 
As mentioned above, there is a tool for verifying whether 
an array initialization sequence does in fact initialize 
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every  RAM  cell that can be  observed during the logic 
self-test.  This  program  can  also  verify  whether an array- 
test  sequence will test every port and all the cells of  every 
RAM in the circuit. These  checks are performed by a 
type of simulation and can be quite expensive to run. 

being  observed, an array initialization sequence  is not 
required (or can be  much shorter in length). 

If all (or even just the “large”) RAMs are gated  from 

Testability analysis 
BIST testability  analysis  is  performed under the control 
of the Testability  Analysis  for Random Patterns (TARP) 
control program. The TARP control program was 
designed to allow  many  different  testability  analysis  tools 
to “plug in” as  they  became  available.  It  provides the 
basic functions that are required of any  analysis  tool; 
those functions not generic  across  tools must be 
implemented by the tool  requiring the function. 

Four basic functions run under TARP: 

1. Automatic test-sequence  generation. 
2 .  Signature  generation. 
3. Test-coverage  calculation. 
4. Testability  analysis. 

The main  tool currently in use  is the Complied Logic 
Simulator (CLS),  used  in conjunction with the LFSR 
Simulation Monitor (LFSRSIM). This is a hybrid 
simulator implementing the low-level  logic simulation via 
compiled  object  code  (CLS) and the simulation of the 
channel-scanning and signature-generation operations via 
high-level (LFSR) simulation. This hybrid simulator, 
called  CLS-LFSRSIM,  is  discussed in more  detail in the 
next  section. 

The CLS-LFSRSIM simulator performs good-machine 
simulation for signature  generation and fault simulation 
to calculate  test  coverage.  Signature  generation and fault 
simulation are normally done simultaneously, although 
the two functions can be  selected independently by the 
user. 

Another tool available under TARP is  used  when  it 
would  be  prohibitively  expensive to fault-simulate the 
total pattern set to be  applied to the circuit. This tool 
does not perform pattern simulation-rather, it takes a 
more  analytical approach to determining the random- 
pattern testability of the circuit. The tool  is  named 
CARPET  (Circuit  Analysis  for Random-Pattern 
Extensive  Testing). 

CARPET  first determines the detection probability  for 
any given fault to be  considered  detected  (with 99.999% 
confidence),  assuming that all the patterns requested to 
be  applied to the circuit are in fact  applied. Then it 
estimates the detection probability  for  each  undetected 
fault. If the detection probability  is high enough, 
CARPET marks the fault as detected.  Since  CARPET 
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assumes that the patterns are completely random, it may 
not detect  any  problems  associated  with  correlated (not 
completely random) inputs. 

Because CARPET  may not detect  these  problems, 
because it is  expensive to run, and also  because it can be 
quite pessimistic in its assertions, CARPET is not utilized 
as  often  as  CLS-LFSRSIM. 

TARP is normally used to process  several  different 
logic  test  sequences.  These  sequences can be  generated 
automatically by TARP, or can be entered manually. 

CLS-LFSRSIM simulator 
The LFSRSIM portion of the CLS-LFSRSIM simulator 
is  responsible  for  interpretively  executing the current 
clocking  sequence. If the logic test were to be  preceded by 
an array initialization, that too would be simulated. 

The main responsibility of LFSRSIM is to perform the 
channel-scanning operation at a high  level  as  efficiently 
as  possible.  It computes the new (PRPG-generated) 
values scanned into the channels. It  also  generates the 
MISR signature by scanning the current channel contents 
into the MISR. If channel signatures are requested, 
LFSRSIM computes a separate signature  for  each 
channel. In addition to the final  full  MISR signature and 
individual channel signatures,  LFSRSIM can produce 
intermediate signatures  for  use in detecting failures  before 
all  tests  have  been  applied. The number of tests  between 
intermediate signatures  is  specified by the user. 

When a particular clocking  event  occurs,  LFSRSIM 
calls the CLS-compiled  object  code to simulate that event 
at the logic  gate  level.  CLS  has  good-machine  object  code 
to calculate the good-machine response to a clocking 
event. It also  has  faulty-machine  object  code to calculate 
the response of a fault or group of faults to a clocking 
event. The compiled  object  code  provides very  high 
simulation rates (equivalent to more than 500 million 
gate evaluations per  second  for good-machine simulation 
and even  higher  for faulty-machine simulation). The 
compiled  code simulation is similar to and was 
derived  from that of the High  Speed Simulator 
(HSS) 191. 

The use  of  compiled  code  for  low-level  logic and  an 
LFSR simulator for  high-level channel-scan simulation 
provides an efficient means of simulating the (potentially) 
large number of random patterns usually  applied to a 
BIST circuit. To make simulation even more efficient, 
CLS-LFSRSIM can simulate up to 32 patterns in parallel 
for about the cost  of simulating one  att tern.^ 

CLS-LFSRSIM  assumes that a fault  is  detected once its 
fault effect  is  latched into a channel. It  assumes that the 
channel-scan operation will capture the fault effect into 

‘The CLS-LFSRSIM  parallel  pattern simulation breaks down when RAMS are 
calculated. For this reason, if many RAMS must be calculated (many fault effects must 
propagate  through RAMs), the cost of simulating patterns in parallel goes up-but 
never  as  high as the cost of simulating the patterns one at a time. 
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Table 1 Statistics for the  Hardware Test Vehicle. 

277,746 Logic gates 205 RAMs 
3,180 SRLs 32 Channels 

166 SRLs  in longest 93,840  RAM cells 
channel 

689,070 Stuck faults 443,664  Fault equivalence 
classes 

8 192 Array initialization 29 Clocks per  array ini- 
cycles tialization cycle 

tions 
32 Total  array initializa- 

262,144 Total  array initializa- 7,602,176 Total  array initializa- 
tion cycies 

28,672 Logic test cycles 

tion clock events 
(GM  simulated) 

cycle 

events  (FM  simu- 
lated) 

29 Clocks  per logic test 

831,488  Total logic test clock 

94.4 % Fault coverage 

CPU Activity 
minutes 

17 Check design rules 

29 Check  array 
sequences 

15 For miscellaneous 

87  Total for all simula- 
tion  and  signature 
generation 

148 Total  for all steps 

CPU Activity 
minutes 

26 Compiling  circuit for 
simulation 

simulation of 
7,602,176 array  in- 
itialization clock 
pulses 

54  CLS GM  and FM 
simulation of 
831,488  test 
clock pulses 

87  Total for all simula- 
tion  and  signature 
generation 

7 CLS-LFSRSIM GM 

Note: CPU limes given are for an IBM 3090-600 E processor. 

the MISR and will result  in a signature  different  from 
that of the good  machine. 

The output from  CLS-LFSRSIM  comprises the 
following: 

1. The test  sequence  used. This includes the 
identification and order of clocks to be  pulsed and any 
other necessary control signals,  as  well  as the number 
of  cycles for which the test  is to be run. 

2.  Good-machine signature(s) for the sequence. 
3. Cumulative and incremental fault coverage attained 

by this simulation. 
4. Optionally, good-machine net  activity counts. These 

are used  by the Self-Test Fault Analyzer  (discussed 
next) in determining the signal  probabilities  observed 
on the nets. 

5. Complete  good-machine  circuit state (including RAM 
cells).  These can be  used  as inputs to a subsequent 
simulation to be  performed  after this current sequence 
is  applied. The ability to link  each  sequence  with the 

results of the previous  sequence  removes the need to 
re-initialize the RAMs,  which in  turn speeds up the 
simulation and  the test application. 

Self- Test Fault Analyzer 
Attaining adequate test  coverage  when random patterns 
are  being  applied  is not always  easy.  Some  designs are 
inherently random-pattern testable,  while others are 
random-pattern resistant. For very  large  circuits, there 
may  exist some portions of the circuit  which are easily 
tested,  whereas other portions are very hard to test  with 
random patterns. To aid the user in determining where 
his  logic  is random-pattern resistant,  EDS  provides the 
Self-Test Fault Analyzer  (STFA). 

STFA  uses the results of  CLS-LFSRSIM  fault 
simulation to determine where faults are being  left 
behind in “clusters.” A “fault cluster” is simply a group 
of faults in a connected area of  logic that are not 
detected, apparently due to the inability of the random 
patterns to generate the appropriate sensitizing 
conditions. STFA attempts to find a single  net  which 
may  be the largest factor contributing to the existence of 
the cluster. For example, STFA  would point out that a 
certain  high-fan-in AND gate (or equivalent) was 
inhibiting the detection of ( n )  faults. 

STFA produces a list  of  clusters in order of decreasing 
number of  affected  faults. The user can evaluate this list 
and determine which  areas of logic  (if any) should be 
modified in order to improve its random-pattern 
testability.  Often just fixing the top ten entries on this list 
solves  most of the testability  problems. Instruction 
decode  logic and comparator outputs are often found at 
the top of cluster lists. 

8 Saving test results 
Each TARP run is  considered an experiment. Using  his 
own criteria, the user can decide  whether the experiment 
was a success or a failure. If an experiment is  considered 
a success, the user can save the results permanently by 
running the Save  Test  Results step. All  previously 
saved experiments are accumulated, and the test 
coverage reported is  for the combination of all  such 
experiments. 

8 Building the test datajle 
When adequate test  coverage  is attained, the test data file 
(TDF) is built; it includes 

1. The logic  model  used to derive the test data. 
2 .  The test  sequences to be applied. 
3. The signatures. 
4. The test  coverage attained. 
5. Audit information indicating which  steps  of the flow 

failed or which  rules  failed. 
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Performance  and  results 
The performance of the BIST support system depends on 
the particular circuit  being  processed. Circuits that have 
embedded  RAMs  gated  from  observability during the 
logic  test (and therefore do not require array 
initialization) generally  require  less CPU time to process 
than an equivalent  circuit  with the RAMs participating in 
the logic test.  These  designs  usually depend on functional 
self-testing  means to test the RAMs. 

Performance is  shown  for a benchmark circuit which 
was built to test  these  tools  when  they were  being 
developed. The statistics  for this circuit  (called the 
“Hardware Test  Vehicle,”  or HTV) are shown in 
Table 1. 

One of the reasons why a circuit  such  as the HTV  can 
take so long to process  is that it has  relatively  large  logical 
RAMs (8K addresses).  Since it requires 8 192  cycles to 
initialize  all of the RAMs  (some of the smaller  RAMs are 
initialized  multiple  times),  with  each cycle containing 29 
clock  pulses and a channel-scan operation, it can take a 
long time to check the array  sequences and to simulate 
them. 

Another  performance  factor  is the number of RAMs 
and how often  they  must be calculated during 
simulation. The RAM simulation within  CLS-LFSRSIM 
is performed  essentially by behavior, not by compiled 
code. The more  often RAMs must  be simulated, the 
slower the simulation. The number of faults which must 
propagate  through  RAMs in order to be  detected can 
have a major influence  on the number of times RAMs 
must be calculated.  Approximately 90% of the fault- 
simulation time for the HTV circuit was spent 
calculating  RAMs due to faults which  were  fed into 
them. 

circumventing  this  problem: 
The system supports two  different  ways of 

1. Break up the RAM into smaller RAMS-initialize in 
parallel. If a large  logical  RAM,  e.g.,  32K  bits  by 36 
bits,  is implemented using  thirty-six  32K-bit by 1-bit 
RAM  macros, the array initialization requires  32K 
cycles.  If,  however, the RAM  was implemented using 
thirty-six  8K-bit by 4-bit  RAM  macros, the array 
initialization may  require  only 8K cycles,  since it may 
be  possible to write 144 bits  simultaneously. The more 
cells that can be  written  simultaneously, the shorter 
the array initialization time. 

2.  Gate the RAM from  being  observed during logic  self- 
test.  Circuits with no RAM are simulated very rapidly 
through the BIST  system. The same  performance can 
be obtained  for  circuits  with  embedded  RAMs by 
blocking the RAMs  from  being  observed in the self- 
test  state. If a RAM  can  be tested  using a functional 
self-test or by a separate,  algorithmic  self-test,  there  is 

Table 2 Statistics  for  the  BIST chip. 

39,6 I6 Logic  gates 
774 SRLs 
4 I6 SRLs  in  longest 

channel 
104,690 Stuck  faults 

1,048,576 Logic  test  cycles 

0 RAMS 

0 RAM cells 
4 Channels 

58,787 Fault  equivalence 
classes 

cycle 
1,048,576 Total logic test clock 

events (FM simu- 
lated) 

1 Clock  per  logic  test 

94.1 % Fault  coverage 

CPU Activity 
minutes 

1 Check  design  rules 

0 Check  array 
sequences 

I For miscellaneous 

16 Total  for  all  simula- 
tion and  signature 
generation 

18 Total for all steps 

CPU Activity 
minutes 

3 Compiling circuit  for 
simulation 

simulation of 0 
array initialization 
clock  pulses 

simulation of 
1,048,576 test 
clock pulses 

16 Total  for  all  simula- 
tion and  signature 
generation 

0 CLS-LFSRSIM GM 

13 CLS GM and FM 

~~~~ ~ 

Note: CPU times given are for an IBM 3090-600 E processor. 

no need to include it in the logic  self-test-it just gets 
in the way. The best approach is to have  two  self-tests, 
a logic  self-test and an array self-test, and never 
overlap them. 

Another,  relatively  small, circuit was  processed through 
this  system. It is a chip  with  fewer than 40K  logic  gates, 
only  four  STUMPS  channels, and boundary scan. The 
channels are longer than the ones on the HTV circuit. A 
significant  difference  between this chip and the previous 
circuit  is that the chip has no RAMs.  It  also  has 
significantly  fewer  clocks (8 compared to 29), and they 
were  only  clocked one per test cycle  with rotation (i.e., a 
different  clock  was  pulsed in each  subset of  eight  test 
cycles). This type of clocking was  used  because it was to 
be implemented in the higher-level  package  used to test 
the chip. The statistics for this circuit  (identified  here as 
the “BIST chip”) are shown in Table 2. 

The BIST chip required many more  cycles to achieve 
even 94% test  coverage;  however, it was  being  penalized, 
since no faults in the 1/0 logic  were  detected  because it 
was in boundary-scan internal state. If a boundary-scan 
external  test were added to ensure that the 1/0 pins and 
logic  were tested, the test  coverage  would  be  much  higher 
(about 5 % )  [ 10, 111. It is important to note that  an entire 
40K-gate chip was  processed in about 18 CPU minutes 
on an IBM  3090-600  E-including  fault simulation of 
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" 0 3 6 1 2 5 1 2 4 8 1 3 6 1 2 5 1  
2 4 2 5 1 0 0 0 1 6 2 5 3 6 2 0  

8 6 2 2 4 9 9 3 7 5   1 2 4 4  
4 8 6 2 8 6 3 0 1 2 8  

4 8 6 7 4 8 5  
2 4 8 7  

Test  cycles  simulated 6 

Test coverage curve for the BIST chip. This logarithmic coverage 
' ator.  Note  that 

over one million random patterns-with  signatures  also 
being  generated. This processing time includes the 
effective simulation of more than 430 million  single-bit 
shifts of the STUMPS PRPG, channels, and MISR in 
order to generate the patterns and signatures. 

The test  coverage  curve  for the BIST chip (Figure 6 )  
shows  some  interesting  features. A normal (linear) 
coordinate system  would  only  show that test  coverage 
climbs very  fast and then flattens out. The logarithmic 
chart shows that there are some  faults that require a 
certain base  level  of patterns to be  applied  before  they 
begin to be  detected in any  great  numbers.  Notice that 
the chart is  steeper in some areas than in others (between 
test  cycles  of 1024 and 2048, less than 3% of the faults 
are detected between  test  cycles 16 384 and 32 767, 
8% of the faults are detected). This may indicate that 
there are many faults  clustered around some  blocking 
logic  which requires that a certain threshold of patterns 
be applied  before  those  faults can propagate  through the 
blocking  logic. 

For example, a ten-input AND  gate  with  completely 
random inputs requires about 4000 patterns as a base 
before  any  reasonable number of fault effects can flow 
through that gate. A twelve-input  AND  requires about 
four  times that many patterns. High-fan-in OR gates 
cause the same problem. The coverage chart produced by 
CLS-LFSRSIM  gives the user a feel for how often  high- 
fan-in  gates (or equivalent  logic) are blocking the 
testability of the circuit.  Often the high-fan-in function is 
distributed over  many  gates and is not easily found by 
inspection of the logic structure. The STFA tool helps 
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pinpoint the areas that may  be  causing  problems and 
thus helps a designer to identify  where  circuit 
modifications  would  be effective  in improving the 
circuit's random-pattern testability. 

Conclusions 
The overall  performance of the BIST support system  is 
good. The main bottleneck for the system is large  logical 
RAMs,  which  require many initialization cycles to fill 
them with random data. The system supports two 
different  ways  of circumventing this problem: 

1. Break up a large  logical  RAM into smaller  physical 

2. Gate the RAM  from  being  observed during logic  self- 
RAMs. 

test. 

When random-pattern self-test  is  used, the random 
patterns may not provide adequate test  coverage  when 
the  target number of patterns is  applied. Even  when the 
design  passes all of the LSSD and self-test  rules, it may 
still not meet the test-coverage requirements without 
some  modification. This aspect of  designing circuits for 
random-pattern testability is a new and unfamiliar 
problem for logic  designers. 

when the circuit  must  be  modified to make it more 
random-pattern testable. The STFA helps point out 
certain  nets that impede the detection of many  faults. By 
using this tool, it is  possible to identify a few  key sections 
of the logic that must  be  modified to improve the 
random-pattern testability of the circuit. 

As  logic designers (and logic  synthesis  programs) 
become familiar with the ramifications of random- 
pattern BIST, they  may  be able to foresee  problems and 
fix them before  even running BIST tools. Until then, 
however, it will  be an ongoing  learning  experience. 

The use  of the Self-Test Fault Analyzer  (STFA)  helps 

Appendix: Glossary 
The following  definitions are provided  for the acronyms 
found in this paper. 

BIST Built-In  Self-Test. Features designed into the 
circuit that enable it  to test  itself  using pseudorandom 
test-pattern generators and signature analysis. 

Extensive  Testing. A tool which estimates test  coverage 
without  actually simulating any patterns. 
CLS-LFSRSIM The Compiled  Logic Simulator and 
the LFSR Simulation Monitor. The high-speed 
simulator used to compute signatures and perform 
fault simulation of the self-test patterns. 
EDS The IBM Engineering  Design  System. This is 
a system  of  design automation tools which  includes 

CARPET  Circuit  Analysis for Random-Pattern 
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support for logic entry, design verification, physical 
design, timing analysis, design rules checking, 
automatic test generation, and BIST testability analysis. 
LFSR Linear Feedback Shift Register. Used either 
as  a  pseudorandom  pattern  source  or as a signature 
analyzer. 
LSSD Level-Sensitive Scan Design. A circuit design 
technique which makes all latches scannable and 
ensures that  no race conditions will exist in the testing 
environment.  This  technique has been used both 
within and outside IBM with much success. 
MISR Multiple-Input  Signature Register. This is an 
LFSR used as a signature register with multiple parallel 
inputs. 
PRPG Pseudo-Random  Pattern  Generator.  This is 
an LFSR used as  a  pseudorandom  pattern source, 
perhaps with multiple parallel outputs. 
SISR Single-Input Signature Register. This is an 
LFSR used as  a signature register with a single input 
into its leftmost bit. 
SRSG Shift Register Sequence Generator.  Another 
name for a PRPG. 
STFA Self-Test Fault Analyzer. A tool which helps 
locate the causes for low test coverage of random- 
pattern-resistant logic. 
STUMPS Self-Test Using MISRs and Parallel 
SRSGs. A self-test circuit design which connects latch 
scan strings between an LFSR pattern source and  an 
LFSR signature register. 
TARP Testability Analysis for Random Patterns. 
The  TARP controller provides a single user interface to 
several random-pattern-testability analysis tools. 
TDA  The Test Design Automation mission within 
the EDS organization of IBM. It provides design 
automation tools for deterministic test generation, fault 
simulation, and self-test. 
TDF Test Data File. This file  is the  main output 
from the TDA system. It  contains several subfiles, 
including the logic model, fault model, and simulation 
results. It is later  combined with other data (e.g., 
physical design data) before being sent to 
manufacturing. 
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