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Results are presented for a variation on a built-
in self-test (BIST) technique based upon a
distributed pseudorandom number generator
derived from a one-dimensional cellular
automata (CA) array. These cellular automata
logic block observation (CALBO) circuits provide
an alternative to conventional design for
testability circuitry such as built-in logic block
observation (BILBO) as a direct consequence of
reduced cross-correlation between the bit
streams which are used as inputs to the logic
unit under test. The issue of generating
probabilistically weighted test patterns for use in
built-in self-test is also addressed. The
methodology presented considers the suitability
of incorporating structures based on cellular
automata, a strategy which, in general, improves
test pattern quality. Thus, CA-based structures
qualify as attractive candidates for use in
weighted test pattern generator design. The
analysis involved in determining and statistically
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evaluating these potential models is discussed,
and is compared with that for previous as well
as statistically independent models. Relevant
signature analysis properties for elementary
one-dimensional cellular automata are also
discussed. It is found that cellular automata with
cyclic-group rules provide signature analysis
properties comparable to those of the linear
feedback shift register. The results presented
here are based upon simulation.

Introduction
Design for testability (DFT) techniques attempt to deal
with the complexity of the VLSI testing problem by
incorporating testability as a primary component of the
design process [1]. A common feature of DFT techniques
is the reconfiguration of a sequential circuit so that at test
time it can be considered combinational. This is
accomplished by using the sequential circuit latches to
apply appropriate test vectors and accumulate the
resulting response vectors. The latches are tested
indirectly as they verify the combinational logic of the
circuit under test. Level-sensitive scan design (LSSD) [2]
is an example of such an approach.

In LSSD and similar approaches such as Scan Path [3],
Random Access Scan [4], and Scan/Set [5], a test set
must be determined, together with the valid responses, in

advance of the test. At test time each test vector must be 389
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(a) A simple one-dimensional cellular automaton. (b) Null boundary
conditions. (¢) Cyclic boundary conditions.

serially scanned into the circuit, and the corresponding
response serially scanned out. While this type of
approach greatly reduces the complexity of sequential
circuit testing, there are three difficulties:

1. An appropriate test set must be determined, which
can require significant computation.

2. The time required to scan the test vectors in and the
circuit responses out can be excessive.

3. The correct responses must be stored and compared to
the observed responses to determine whether there is a
detected fault.

Built-in self-test (BIST) techniques attempt to address
these points. In a BIST design, the generation and
application of the test vectors and the analysis of the
resulting response are part of the circuit (or system)
under test. As in scan-path techniques, a sequential
circuit is rendered combinational, with the sequential
circuit latches used as an integral part of the test.

A BIST design requires a mechanism for generating an
appropriate set of test vectors. For cases where an
exhaustive test set is prohibitive, a pseudorandomly
selected subset of the possible inputs to the circuit under
test is used. This requires an on-chip pseudorandom
sequence generator which, in order to reduce the
overhead required for BIST, should consist largely of the
sequential circuit latches. An example of such a
technique is built-in logic block observation (BILBO) [6],
which typically employs a linear feedback shift register
(LFSR) with maximal cycle length as the pseudorandom
sequence generator.
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The LFSR-based test pattern generator is formed by
the addition of exclusive-or gates to the sequential latches
with appropriate control logic so that the latches can
perform their normal circuit function as well as be
reconfigured for testing. The positioning of the exclusive-
or gates is given by the primitive polynomial over GF(2)
required to form a maximal-cycle-length LFSR [7]. A
potential difficulty is the requirement of a feedback path
from the most significant to the least significant cell in
the LFSR, which further complicates the layout of the
register and in some cases may degrade performance.

New pseudorandom number generators (PRNGs)
based on cellular automata (CA) are discussed and
examined using the same metrics as those for the LFSR.
It is shown that these CA-based generators provide an
alternative to conventional LFSR-based generators. In
addition to improved randomness properties, these new
pseudorandom test pattern generators can be designed to
require only adjacent neighbor communication.

Also discussed is weighted test pattern generation using
CA-based driving engines. The concept of weighted test
pattern generation was first initiated to increase the
detectability of hard-to-detect or pseudorandom-test-
pattern-resistant faults [8-10]. By weighting the input
probability distribution, an attempt is made to expose the
hard-to-detect faults, thereby rendering them random-
pattern-testable. In other words, an optimal input
probability distribution is desired in order to maximize
fault coverage and minimize test length. (This is basically
an extension of earlier work concerning equiprobable,
unbiased, pseudorandom test patterns, with the single
stuck-at fault model assumed in the derivation of test
quality measures.) Overall, there exists a class of
combinational networks whose testability may be
significantly improved by utilizing a weighted probability
distribution.

BIST also requires a mechanism for reducing the
response data to a simple pass/fail result using some form
of data compaction. Once again, the common suggestion
is to employ an LFSR to form a signature for the output
data. The use of a CA-based signature register instead of
one based on an LFSR would then be a natural extension
mn a CA-based BIST scheme. Analysis of the effectiveness
of some CA-based data compactors [11] indicates that
aliasing properties comparable to those of the LFSR are
possible.

Cellular automata

A cellular automaton evolves in discrete steps, with the
next value of one site determined by its previous value
and that of a set of sites called the neighbor sites. The
extent of the neighborhood can vary, depending among
other factors upon the dimensionality of the CA under
consideration. Figure 1 illustrates three simple one-
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dimensional CAs, where the next value at a site depends
only on its present value and the values of the left and
right neighbors [Figure 1(a)]; the CA register may possess
null boundary conditions (i.e., the first and last sites
consider their missing neighbor site to always have a zero
value) [Figure 1(b)]; or the CA register may be cyclically
connected (i.e., the CA forms a ring, thereby making the
first and last sites neighbors) [Figure 1(c)]. Here, only
binary one-dimensional CAs with two neighbor sites (left
and right) are considered, but in general it is possible to
use any desired modulus, dimension, or neighbor set. For
a binary CA of this type, each site must determine its
next value on the basis of the eight possible combinations
of its own present value and those of its left and right
neighbors (i.e., 000, 001, 010, - . .). The next-state values
corresponding to each possible input form a number
which is referred to as the “rule number” under the
classification scheme of Wolfram [12]. As an example,
for the CA rule 90 (see Table 3, shown later), the next
value of a site is the sum modulo 2 of its neighboring
sites. The evolution of a CA is often shown using a state-
time diagram, as in Figure 2, which shows the evolution
for a rule 90 CA with 17 sites, for 40 time steps. The
state-time diagrams presented in this paper show the
evolution of numbers in the CA (or LFSR) by assigning
each bit in the CA to a horizontal pixel and assigning the
pixel black if the corresponding bit is a logical 1. The
time axis runs vertically, thereby showing successive
values in the CA. Therefore, in Figure 2 the first number
is a single-bit logical 1 in the middle of the CA. On the
next time step, there are two bits of value 1 to the left
and right of the original bit, which is now 0. This
continues with a new line for each time step of the LFSR
or CA. There are in general at least two distinct methods
of initializing a CA. One method is to begin with a
simple state such as a nonzero value at a single central
site; the other method is to begin with each site randomly
initialized to O or 1 with p(0) = p(1) = 0.5. Figure 2 was
initialized with a single nonzero site.

Pseudorandom test pattern generation for BIST

e LFSR-based pseudorandom sequence generators

The most popular hardware pseudorandom sequence
generator is the linear feedback shift register. The binary
sequence at cell  is generally considered to display
attributes of a pseudorandom binary sequence. The
sequence has a cycle length of 2" — 1 using an #-bit shift
register, provided the polynomial describing the register is
primitive over GF(2) [7]. Here we consider the two most
popular methods for generating pseudorandom sequences
using LFSRs. The serial-in parallel-out method forms
m-bit pseudorandom numbers by collecting m bits in
sequence from bit i in the LFSR. This means that it takes
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State-time diagram for CA rule 90 of 17 sites, for 40 time steps.
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m shifts, or clock cycles, to form the pseudorandom
number. To overcome this time penalty (the m shifts)
and area penalty (the m-bit register), the bits of the LFSR
are sometimes used in parallel, so that a new
pseudorandom word is formed on each clock cycle. This
is the method used extensively in the application of
LFSRs to built-in self-test circuits [1].

Testing of these two types of LFSR-based generators
using standard random-number tests shows that the
serial-in parallel-out method provides good m-bit-word
pseudorandom sequences. However, the parallel LFSR
method (using any number of different primitive
polynomials) does not yield output sequences which
could be considered pseudorandom [11, 13]1. This can

"Itis possible to use an XOR network on the LFSR outputs to perform a transform
in one clock cycle of the initial state of the LFSR to that which would occur after m
shifts [13]. We do not consider this method here because of the size and complexity of
the XOR network and the reduced cycle length of the output sequence.
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correlation of bit sequences in the parallel LLFSR method.

readily be seen in the state-time diagram of the parallel
LFSR implementation given in Figure 3, where there is
considerable regularity in the paraliel LFSR output
pattern. The only criterion for pseudorandomness met by
the parallel LFSR method is the equidistribution test.
The most evident failure of the parallel LFSR method
is in the bit-sequence correlation (this is the feature which
creates the stripes in Figure 3). A correlation figure such
as Figure 4 can be used to show both the autocorrelation
and cross-correlation of bits in word sequences produced
by the parallel LFSR. Here the correlation figures display
the results for 30-bit words using a three-dimensional
figure. The vertical axis is the magnitude of the
correlation, while the x and p axes give the time
displacement, i.e., number of shifts, and sequence
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displacement, i.e., number of LFSR cell positions, from
the reference time and sequence, respectively.

The parallel LFSR method displays a severe correlation
problem. In fact, the bits in the bit streams are perfectly
correlated in that the value at bit i at time ¢ will appear at
bit j > i at time ¢ + ( j — i). Therefore, one cannot
consider the test pattern sequences used in most built-in
self-test structures to be pseudorandom, since the bits in
succeeding test patterns are fully correlated.

The cross-correlation of the bit streams in the LFSR
yields a number of ¢ircuit faults which cannot be
detected. For example, a simple CMOS NAND gate with
inputs 4 and B has faults which cannot be detected by
[.LFSR-based test patterns. If we assume an open circuit
fault on the B-input p transistor, we induce memory into
the circuit, since the input A = 1, B = 0 results in a
floating output. This situation, in which the last output
value is held, can only be detected by having the input
pattern 10 follow input pattern 1 1. However, this
situation can never arise in LFSR-based testing if the
shift direction is from A4 to B, since the value on input A4
will be on B when the next input pattern is applied.
Therefore, one can never completely test a simple two-
input CMOS NAND gate for stuck-open faults using
single-clocked parallel 1.FSRs. This shows the potential
deficiency of LFSR-based test pattern generation for
BIST due to the correlation between adjacent outputs.

& CA-based pseudorandom sequence generaiors

A number of CA-based pseudorandom sequence
generators are examined in [14]. Here we briefly describe
two interesting CA-based PRNGs.

Rule 30 C'4
Consider a simple one-dimensional CA using rule 30; i.e.,

alt + 1) = a, (1) @ [a(:) U a,,(2)]. (n

The rule 30 CA displays many attributes of a
pseudorandom number generator when connected in a
cyclic configuration. Specifically, the rule 30 CA has
significantly reduced cross-correlation as compared to the
parallel LFSR generator. The principal difficulty with
respect to BIST is that the rule 30 CA is not a maximal-
length sequence generator. The state transition diagram is
actually made up of trees and cycles. An important
consideration in the use of any PRNG is the length of the
sequence produced (i.e., after how many numbers does
the sequence repeat?). The LFSR generators of interest
here have sequence length of 2" — |, where # is the length
of the LFSR. However, the rule 30 CA does not provide
nearly as long a sequence. For rule 30, as the length of
the CA increases, the maximum possible cycle length of
the pseudorandom sequence generally increases, but this
growth is not monotonic; in addition, the initial state
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used in the CA affects the length of the sequence
produced [14, 15].

Rule 90 and 150 hybrid CA

A cellular automaton which yields a maximal-length
binary sequence from each site (i.e., 2" — 1), like the
maximal-length LFSR, is a Aybrid CA (HCA) [16]. The
HCA combines rules 90,

a(t+ 1) =a,_/(1) ®a_ 1), (2)
and 150,
a(t+ H=a_(1)®a)®a,, (. (3)

The ordering of the rules for construction of a maximal-
length binary sequence is irregular, with complexity
similar to that involved in determining the polynomial
for a maximal-length LESR [17]. Table 1 gives a sample
of hybrid constructions for producing HCAs with
maximal cycle length up to length 53. Here, 1 refers to
CA rule 150. Hence, a length-5 maximal-length hybrid
would be constructed by having CA rules 90 and 150 in
the following order: 150, 150, 90, 90, 150. It should be
noted that for many lengths there are several CA rule 90
and 150 hybrid constructions which will yield maximal-
length cycles. Maximal-cycle-length hybrid cellular
automata exist for lengths larger than 53 but must be
found using computer simulation.

Zhang et al. [18] have recently developed an efficient
algorithm to generate minimum-cost maximal-length
HCAG ; at the time of writing, they have produced a table
giving constructions up to length 150. Using this type of
table, construction of the HCA is quite simple. For
example, consider a HCA of length 16. A maximal-length
cycle can be formed by twinning CA rule 150 at one end
of the automaton and then alternating rules 90 and 150
over the rest of the CA. Figure 5 shows the state-time
diagram for a 498-site hybrid over 840 time steps with a
simple initial state. Note that the regular pattern dies out
as the CA evolves in time.

Unlike the LFSR or even the rule 30 CA, adjacent sites
in the HCA are not correlated in time or spacez, as is
evident in the autocorrelation and cross-correlation data
of Figure 6.

The HCA with null boundary conditions has layout
advantages over rule 30, since the first and last sites in
the hybrid need not be connected (i.e., no extended
wiring is required).

Weighted test pattern generation for BIST
Because of the versatility with which pseudorandom
patterns may be distributed in a system and the strikingly

? For the 90/150 maximal-length HCAs, the parallel bit streams are actually the same
{true pseudonoise sequences), except for some unknown phase or time offset [19]. For
test applications the parallel bit streams are effectively uncorrelated.
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State-time diagram for a 498-site hybrid CA, for 840 time steps. Null
boundary conditions; initial state with a single nonzero site.
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Cross-correlation of site values in a 30-site hybrid CA.

high fault-detection capability of these test patterns,
pseudorandom pattern testing is particularly suited for
use in a BIST strategy. Today, there is little argument
that this ideology is applicable to a large class of
combinational circuits. Often, however, there are
instances where the testability of a circuit is hindered by a
relatively small number of hard-to-detect faults. When
ordinary unbiased pseudorandom testing is performed,
these faults, categorically known as pseudorandom-
resistant faults, display very low fault-detection
probabilities. Circuits known to contain such faults are
called pseudorandom-resistant; they must be dealt with

by an advanced form of test. 393
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Table 1 Hybrid constructions necessary to achieve a cellular automaton with maximal cycle length.

Length n Construction Cycle length
4 0101 15
5 11001 31
6 010101 63
7 1101010 127
8 11010101 255
9 110010101 511
10 0101010101 1,023
11 11010101010 2,047
12 010101010101 4,095
13 1100101010100 8,191
14 O1111101111110 16,383
15 100100010100001 32,767
16 1101010101010101 65,535
17 01111101111110011 131,071
18 010101010101010101 262,143
19 0110100110110001001 524,287
20 1111001110110¢111111 1,048,575
21 011110011000001111011 2,097,151
22 0101010101010101010101 4,194,303
23 11010111001110100011010 8,388,607
24 111111010010110101010110 16,777,215
25 1011110101010100111100100 33,554,431
26 01011010110100010111011000 67,108,863
27 000011111000001100100001101 134,217,727
28 0101010101010101010101010101 268,435,455
29 10101001010111001010001000011 2"—1
30 1110100010011011001010001 11101 2" -1
31 0100110010101101111101110011000 2" =1
32 01000110000010011011101111010101 2"—1
33 000011000100111001110010110000101 2" -1
34 0011110000101101000011000110111010 2"—1
35 01010111101111011001110101001010011 2"~
36 101001100100100011111010110000100011 27—
37 0010010110011110101101011000010110011 2" =1
38 00011100101011110110011001111000010011 2" =1
39 110100010111110110111100110011101101100 2" —1
40 0000111011001010101111100100001011100101 2" -1
41 01101011111110100001011001100011110000111 2"—1
42 001001111110110011100101001001100111100110 2" =1
43 0011101011100010111000100001011010110010010 2"—1
44 00111100111101110101101110000100101011000010 2" —1
45 001101001011001101101001000100110001101001101 2"—1
46 0001001010011001010001101000101100111011010110 2" -1
47 00111001011111100111001010100100010111000001101 2" -1
48 000110000110111110010010100111010001111000001111 2" =1
49 0010110111101100100011001011111000101110110011001 2" -1
50 10011010011011000000110001101000101100100010010110 2" =1
51 000100001011101010100001011010011101000101000010111 2" =1
52 0011001000110111101110111111100010001111010111000110 2" =1
53 100001 11001010001000001001001100101110111110110010101 2" -1
A successful candidate, which maintains many of the [20] and by Waicukauski and Lindbloom [21] has
attributes first introduced by unbiased pseudorandom test  successfully demonstrated that this is, in fact, the case for
pattern generation, is weighted test pattern generation the ISCAS [22] benchmark designs.
(WTPG). This approach involves the application of By using an adaptive weighted test pattern generation
weighted probability distributions in order to enhance the method or a probabilistic fault-grading technique, it is
probability of generating suitable patterns to expose the possible to find the relationship between the fault
pseudorandom-resistant faults [10]. In doing so, the detection and rate of excitation of a circuit. With this
overall test set decreases while the fault coverage knowledge, an appropriate weighted probability
increases, rendering this particular subclass of circuits distribution(s) may then be assigned. Although more
394 weighted-random-pattern-testable. Work by Wunderlich recent advances in WTPG have resulted in some efficient
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heuristics for computing multiple weighted test sets,
earlier work of Chin and McCluskey [10] suffices to
demonstrate, in a simplified manner, the attributes of
WTPG.

e Cellular-automata-based WTPG considerations
Here we consider using driving engines with external
weighting logic for realizing cellular-automata-based
WTPGs. An alternative technique would be to use
conventional and hybrid cellular automata directly.

Past methods of WTPG design incorporate the
maximal-length LFSR as a primary “driving engine,”
supplying pseudorandom patterns to an array of logic
gates performing a weighting operation on incoming
patterns. Naturally, it is expected that if a more capable
pseudorandom, or even random, number generator is
used, the result will be an improvement in the statistical
properties of the WTPG function. For example, if
measures of effectiveness are obtained for a statistical
distribution of independent inputs, the correlation
between expected and observed measures will be greater
using an improved WTPG. For the purpose of achieving
different output probabilities, standard Boolean logic
gates, each with its own unique probability profile, may
be configured to deliver the desired weighting to each
input of the circuit under test.

By connecting various logic gates, forming single-level
or multi-level logic arrays, a number of incremental
output probabilities are attainable. For example, if a 50%
equiprobable driving engine is used, only probability
increments of 1/4 are possible by incorporating a single-
level array of logic. However, if a two-level array of logic
is utilized instead, probability increments of 1/16 are
permitted. Even though still finer increments are possible,
it should be kept in mind that the number of usable
outputs decreases substantially as the number of logic
levels increases. For this reason, the resolution of the
probability increment is limited by the restrictions
imposed upon it by VLSI—in particular, the area
constraint. Recently, Brglez et al. [23] have shown that
multiplexors may also be used to accomplish much the
same task. In addition, the multiplexor technique using
CA outperformed the LFSR-based WTPGs with respect
to fault coverage for their application.

For our purposes here, we are primarily concerned
with the HCA as well as with LFSR driving engines. In
[19] four different driving engines were investigated. They
included a nonlinear random number generatorS, a
pseudorandom maximal-length LFSR, a pseudorandom
maximal-length rule 90/150 HCA, and a pseudorandom
nonmaximal-length rule 30 CA. With the exception of
the pictorial state-time evolutions, where the original

* The nonlinear random number generator is based on a uniform distribution
generated by a nonlinear additive feedback shift register (NLFSR).
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Basic paralle]l WTPG configurations: (a) zero spacing configuration
[/ = 0]; (b) N/2 configuration [J = (N/2) — 1].

driving engines are 53 cells wide (to allow for better
visual presentation), all statistical analysis is performed
on machines based on engines 30 cells wide (because they
are large enough to exhibit global characteristics, but
small enough to allow extensive analysis). Complete
details regarding statistical evaluation and the statistical
estimators used can also be found in [19]. For the HCA
of width 30, the combination

Rule 90/150 HCA:
000001100010000110000100111110 4)

is used, where a “0” represents a rule 90 cell and a “1,” a
rule 150 cell.

o WTPG logical configurations

Several interconnection schemes are feasible, with
varying degrees of complexity and area overhead. A basic
configuration is characterized by the amount of cell
spacing between each consecutive pairing of gates, for a
particular logic level. These basic configurations include a
zero-spacing configuration [J = 0] and an N/2
configuration [J = (N/2) — 1] (see Figure 7). Each logic
level may contain a different basic configuration, but it is
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Space-time evolution of test patterns for (a) N/2 LFSR and (b)
J = 0 HCA weighted to 75%.

T —

the overall logic array itself, made up of one or more
logic levels, which determines the final output probability
assignments. The selection of an appropriate
interconnection scheme (logic array) for a particular
driving engine depends on the statistical qualities
demanded, and the conformity of its implementation to
VLSI. These factors help establish a criterion to make
possible the proper selection among the different WTPG
candidates. For our purposes, we focus our discussion
still further, considering the N/2 LFSR and J = 0 HCA
configurations, which were selected because they
represent the most likely candidates for practical WTPG
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circuits. Complete characterization of all configurations
can be found in [19]. For most of the following
discussion, our interest is in the generation and analysis
of weighted broadside words with the same weight at
each bit position. This facilitates the assignment and
analysis of random variables and the abstraction of
statistical measures. Individual bit-stream tests are also
included for completeness. It should be noted that the
following discussion does not preclude the application of
CA pseudorandom pattern generators with a different
weight at each bit position or group of bits. Statistical
attributes are preserved due to the autonomous nature of
the weighting gates and the apparent statistical
independence of their inputs.

o State-time visualization

A simple apparatus which is often used, albeit with
caution, because of its “unequivocal” ability to
immediately assess the randomness of an emanating
process, is the human eye. As is well appreciated, the eye
sometimes fails to interpret accurately what actually
appears. Keeping this in mind, a strictly qualitative visual
test, with questionable validity, may be performed on a
variety of finite-state-machine state-time evolutions.
Figure 8 shows the state-time evolutions of the weighted
LFSR and HCA driving engines. Throughout the
discussion we consider 75% 1s weighting for illustration
(an OR array performs a 75% weighting).

By searching for some obvious patterns within an
evolution, important pictorial comparisons can be made.
Generally speaking, the appearance of large global, as
opposed to local, patterns is probably damaging to a
system’s subjective randomness. The test itself can thus
be used as a weak pre-test for random behavior. The
figure shows noticeable global nonrandomness for the
LFSR-based configuration; for those based on cellular
automata, only local self-similar structures prevail. For a
more quantitative look into random performance, much
more sophisticated objective analysis is needed.

o Density and average density
The density, d;, of a binary word (test pattern) is defined
here as the actual number of ones per word length, W, or

n(T)
=, )
w
where #, is the number of 1s; the average density,
1 T
D =——34d, (6)

i=0

is merely the average of the densities for some time
evolution T € {0, ..., L — 1}, where L represents the
total number of words in an evolution. The densities
emanating over time reveal information about the
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sophistication of the underlying process. For instance, if a
system possesses total statistical independence, the L
random variables making up the time evolution are
mutually independent and identically distributed (IID).
Thus, graphically, the density evolution will appear
similar to band-limited white noise. Also, because the
statistical characteristics of a discrete independent
temporal process do not change with time (i.e., it is said
to be a discrete-time stationary process), the average
density evolution converges rapidly to some mean, u,
with infinitesimal steady-state error.

Figure 9 illustrates the average density evolutions of
the N/2 LFSR and the J = 0 HCA. These original finite-
state machines each consist of 30 sites, and, as indicated
previously, are used as a primary source of
pseudorandom test patterns which feed weighting logic
arrays. For the various gate configurations, the ability of
the original generator to produce high-quality
pseudorandom numbers is critical to the generation of
high-quality weighted random test patterns.

By observing average density evolutions of the various
structures in their different configurations, it is apparent
that the configurations of the cellular-automata-based
structures are attractive in that they resemble more
closely the evolution based on a statistically independent
model.

o Probability mass function

Any discrete-time stochastic process can, in part, be
described by its discrete probability density function, or
probability mass function (PMF). This emphasizes the
importance of deriving a histogram which, at least
approximately, represents the PMF of some random
process. For any finite-state machine, each site position
can take on only one of two values, “0” or “1.” If it is
further stipulated that the process governing the
evolution of a finite-state machine be statistically
independent, each bit position can be completely
specified by a Bernoulli random variable. When the
entire word (width) is examined, a function of W
Bernoulli random variables can be formulated
contributing to the specification of the entire finite-state
machine. For such a system, the densities 4 emanating
over time conform to a discrete binomial or delta PMF.
It is then possible to compare a histogram generated
empirically, by some deterministic finite-state machine,
to a PMF obtained assuming total statistical
independence. Although this comparison does not
provide information as to how independent, or
dependent, a particular deterministic process is, it does
reveal some important aspects of distribution
convergence. Naturally, it is expected that a machine
based on a statistically independent model will converge
rather rapidly to a binomial PMF.
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(b)J = 0 HCA weighted to 75%.

Figure 10 represents the density histogram evolutions
of the N/2 LJSR and the J = 0 HCA configurations at
75%. 1t is evident from these plots that the HCA-based
structure converges more quickly and is thus more
favorable from a statistical standpoint.

o Goodness-of-fit test

The probability mass function, p(X), or probability
distribution function, F(X), completely characterizes the
behavior of the random variable X [24]. Because of this
property, it is of great importance to establish the
“goodness of fit” between a distribution (sampling
distribution) or histogram determined empirically and
that which is proposed or postulated. The best approach
used to substantiate a measure of similarity is to test a
hypothesis regarding some previously known
characteristic. With the benefit of some statistical
measure, a null hypothesis H, may at best be rejected or
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refuted. It has been determined that a x° (chi-square)
statistic is particularly suited for this type of analysis.
Explicitly stated, the x” test is made with the null

hypothesis H,. The data X, X,, - - -, X, are IID discrete
random variables, with a binomial PMF.

According to Knuth [25], the x test is perhaps the best
known of all standard statistical tests. Its potential is best
emphasized by virtue of the fact that it may be used in
conjunction with many other statistical tests.

The x° statistic is used mainly for the purpose of
providing the means by which arbitrary, empirically
determined, data can be compared to some ideal or
“expected” value. This is done by weighting the squares
of the differences between the observed data and the
expected data (determined by some discrete or
continuous probability function) in the form of a
summation. The statistic is expressed in the form

» “VIN, = LPG)Y

X = Z IRy @)
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where L denotes the size of the independently selected
data set, LP(i) the expected number of outcomes, and N
the observed number for some particular category i,
ranging from 0 to k — 1. [For large L, Equation (7) is
approximately X distributed.]

The quantity x2 should be reasonably small for H, to
be refuted; otherwise, if X2 is considered too large, H, will
be rejected outright. By observing tabulated quantities of
a x_ distribution, a corresponding percentage point, or
probability, is obtainable for some degree of freedom
(d.f.). [As a “rule of thumb,” LP(i) = §, so the d.f. is
available as a by-product of the computational process.]
This percentile forms the basis of the determining factor
by which the null, or alternative, hypothesis H,, is
rejected.

A more direct use of the X2 test, as applied to random
number generator testing, involves probabilistically
judging the actual data emanating from a random
number generator. Although this procedure is no more
difficult than that required in the testing of a null
hypothesis for distribution fitting, its implications are
more profound. In the view of Knuth [25], no definitive
statement can be made as to whether or not a sequence is
random; however, what can be stated is the probability or
improbability of certain sequences being randomly
generated. With respect to this outlook, he has suggested
the following interpretation as a means of rating the
randomness of large sequences of “apparently” random
data: If x2 is less than 1% or greater than the 99% entry,
the sequence is “rejected” as not being sufficiently
random; if x2 resides between the 1% and 5% entries, or
the 95% and 99% entries, the sequence is “suspect”; if xz
resides between the 5% and 10% entries or the 90% and
95% entries, the sequence is “almost suspect”; but if the
x” lies somewhere between 10% and 90%, the xz is
thought to be a value which could be produced by a
random sequence.

Typically, a x2 test is performed at least three times on
different sequences of adequate length. Also, it should be
noted that for instances where x’ testing is applicable, it
is only valid asymptotically for independently observed
data. Therefore, tests which check for independence (such
as a serial correlation, tuple, temporal measure entropy,
spectral, lattice, or run test), depending on the kind of
data comprising the sequence, should be performed first,
so that the authenticity of the XZ can be acknowledged.

In order to make quantitative comparisons of density
histogram convergence among the various configurations,
ax_ test can be adequately performed on the histograms
generated from a large test set. Because it is known that
an 11D statistical process dictates ideal behavior, it
should, therefore, represent the postulated, or reference,
function in the form of a binomial PMF. With respect to
this and Equation (7), the X2 metric can then be
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computed for an analytical establishment. Using a test set

of 20 000 vectors, an approximation level between 10%
and 90%, and the criterion that LP(i) = 5, Table 2
clearly illustrates that the LFSR-based configurations
generate density sequences which fail the X2 test, whereas
most of the cellular-automata-based configurations
generate density sequences which can be considered
randomly generated. This overwhelmingly exemplifies
the undesirability of LFSR-based WTPGs, especially
considering the smaller test lengths which are more
commonly associated with weighted random pattern
testing.

o Magnitude spectrum

A measure used to indicate the rate at which densities
change on a global level, within a sample function, can
be made by applying a Fourier transform. Since the
density sample function 4 (i.e., the density evolution of
some discrete-time stochastic process) represents what
can be considered a large set of points, “sampled” with
fixed increments of time 4, it is typical of what the
density evolution looks like for a number of other start-
up “seeds.” Thus, if d; contains L density values, its
discrete Fourier transform can be determined [26] by

L—1
F( fn ) = A E dkeZka'/L’ (8)
k=0
where
d, = d1), 1, = kA, ke{o,1,.--.,L-1}, 9
and
n L L
L_ZZ3 ne{—59"" 2}' (10)
By choosing n € {0, 1, . .-, L/2}, the resulting positive

frequencies of a two-sided power spectral density are
calculated to provide insight into the frequency content,
or magnitude spectrum | F, | of a density time evolution.
For a statistically independent process, the magnitude
spectrum is expected to have an appreciably flat
frequency response. Figure 11 illustrates the magnitude
spectra of the N/2 LFSR and J = 0 HCA configurations
weighted at 75%.

As expected, when the magnitude spectrum of the
LFSR-based configuration is observed, the majority of
the power is found to be contained in the low
frequencies. This trend is similar to what is expected if
the originating density evolution waveforms consist of a
low-frequency fundamental. This behavior is a direct
result of the dependencies among consecutive density
values d;. Upon closer inspection, any succeeding density
can only be the same, or differ at the most by one density
increment (i.e., d;,, € {d; + /W, d, d, — 1/W}). On
the other hand, the magnitude spectrum of the HCA
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Table 2 Chi-square PMF test for the various WTPG
configurations. Engine refers to the original driving engine; [S] refers
to a nearest neighbor sharing configuration.

Configuration  df. NLFSR LFSR HCA CA

R90/150  R30

Engine 18 Pass Fail Pass Pass
[S] 15 Fail Fail Fail Fail
[J=0] 10 Pass Fail Pass Pass
[J=N/2-1] 10 Pass Fail Pass Pass

appears “white” or flat, as would a statistically
independent model.

A serial test, which is basically a generalization of the
x2 test to higher dimensions, is an empirical test which
provides an indirect check on the assumption that
individual d;s are independent [27]. If the d.s are
correlated, the pairs (dy, dr,,) tend to cluster around the
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diagonals of a unit square. The application of a x~ test
will definitively detect this, and, thereby, indicate
nonrandomness in the generation process. Such is the
case for the density evolution of any LFSR-based
configuration, where the predicting mechanism, as
indicated, is rather simplistic. It is evidently the low-
frequency content of the magnitude spectrum which is
most damaging to randomness.

Not surprisingly, HCA-based configurations have far
better suitable magnitude spectra; the HCA
configurations all appear flat.

& Correlation of weighted configurations

As is evident from the space-phase correlation plots
discussed in the previous section, the structures formed
by adding different configurations of weighting logic
appear to have correlations directly related to the original
driving engines. The most noticeable difference is a
“broadening” in some of the original correlation peaks
and/or ridges.

The N/2 LFSR-based configuration has a broadened
space-phase correlation ridge. The HCA shows no
appreciable correlation peaks.

From the correlation analysis, it can be clearly stated
that the CA-based configurations have more attractive
state-time correlation plots than those based on the
LFSR. In particular, the HCA-based configurations have
the most acceptable properties of all the deterministic
machines we have examined, and certainly present
themselves as excellent parallel WTPG candidates. Of
these configurations, the zero-spacing configuration offers
a distinct advantage in the detection of stuck-open faults,
beyond those based previously on the LFSR, with the
added benefit of a nearest-neighbor connection scheme.
Recent transition-fault analysis has demonstrated the
improved coverage of CA-based TPG [28]; we believe
this to be a direct consequence of the reduced cross-
correlation. For this reason, the zero-spacing
configuration is most recommended for implementation
in a weighted-test-pattern-BIST environment. The HCA
sharing configuration offers significant implementation
advantages, and in spite of its increased correlation also
warrants further consideration. To be more definitive,
transition-fault analysis over a large number of
representative circuits is still required.

& Bit-sequence tuple lengths

Before a bit sequence can be considered effectively
random, it must possess apparent statistical
independence. This is to say, besides conforming to the
appropriate distribution, the emanating bits must appear
as if they were generated independently. If this is the
case, the number of “k-tuples” contained within a given
sequence length should, by Equation (11), be relatively
consistent.
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The number of k-tuples, as defined here, includes the
occurrence of overlapping tuples. For example, within a
single run of four 1s, there are four k-tuples of length
one, three k-tuples of length two, two k-tuples of length
three, and one k-tuple of length four. (A so-called “run”
is a contiguous sequence of 1s isolated by one or more 0s.)

The expected number of k-tuples, T(Lk), found in the
evolution of a single Bernoulli random variable can be
obtained by

EITY1=(L-k+1).p (11)

where p is the probability of generating a 1 (1 — p is the
probability of generating a 0), L is the number of
successive Bernoulli trials, and & is the tuple length. In
accordance with Equation (11), an absolute, or expected,
tuple profile may be used as a basis on which
comparisons among a variety of machines and
configurations can be made.

For a maximal-length LFSR, it is on/y for the N/2
configuration that the tuple profile coincides with that
which is expected. These findings also happen to be
independent of the chosen bit sequence, due to the fact
that every consecutive bit sequence is identical, with the
exception of an accompanying phase shift. The necessity
of using a spacing of / = N/2 — 1, in order to achieve
proper LFSR-generated tuple profiles, has been addressed
by Chin and McCluskey [10]. They discuss the rationale
behind the selection of the N/2 configuration for the case
of a 25% weighted random bit sequence which is readily
extended to the 75% case.

When the tuple profiles of a maximal-length /=0
HCA configuration are examined, we find that the results
are no longer completely independent of the selected bit
sequence. For the J = 0 HCA configuration, the general
trend is that the bit sequences farthest from the end sites
provide the better tuple profiles. However, if rule 150
cells are used in place of the rule 90 cells at the end sites
of the original generator, there is a great improvement in
the tuple profile of bit sequence at the ends of the arrays.
In fact, it appears as good as any of the other tuple
profiles.

If the HCA is reconfigured in the N/2 configuration,
only moderate gains are made in the tuple profiles. In
light of this, and the potential advantage in overall circuit
performance because of reduced wiring complexity, it is
the zero-spacing (J = 0) configuration of the HCA which
lends itself for use in BIST.

Comparison of CA and LFSR

The rule 30 and hybrid CA and the LFSR all display
reasonably good spatial distribution of the pseudorandom
output words, the LFSR being the least acceptable from a
statistical viewpoint. The advantages of cellular automata
arise from the much-reduced cross-correlation associated
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with the CA compared to that of the LFSR. As discussed
previously, single-bit outputs from the LFSR and CA are
pseudorandom, but in most BIST applications the test
patterns are generated by taking many bits of the register
in parallel. This leads to nonpseudorandom sequences for
the LFSR because of the correlation. Application of
standard random-number tests to both the parallel LFSR
and CA PRNGs shows that the CA-based PRNGs are
much more pseudorandom than the parallel LFSR

[11, 19]. An especially important result occurs in tests
which measure the distribution of test pattern pairs,
triples, and quadruples. We observe good distribution
using the CA-based generators, whereas in the LFSR,
pairs, triples, and quadruples are not at all well
distributed.

Another concern arising from the fact that LFSRs are
poor pseudorandom generators is that much of the
analysis for BIST assumes a random or pseudorandom
test pattern source, so when an LFSR is used as the
source, it should not be expected that the fault coverage
and other calculated measures will be entirely accurate.
This does not imply that the fault coverage of the LFSR
will be degraded, but only that the analysis in which it is
considered to be random is inaccurate.

A disadvantage of some CA-based schemes is reduced
cycle length and starting value dependence. For example,
the rule 30 CA has maximal-length cycles which are
much smaller than those of the LFSR. In addition, rule
30 is starting-value-dependent, whereas the LFSR is not
(other than the zero state). The only CA discussed here
with maximal-length cycles like those of the LFSR is the
rule 90/150 HCA. Therefore, if cycle length is important,
the LFSR or HCA should be considered. One additional
point is worth noting concerning CA test circuits: We
have found that the most favorable HCAs are ones
constructed with a good mix of rule 90 and 150 cells.

In spite of these differences, the LFSR has proved to be
an excellent BIST pattern generator on a wide variety of
circuits. The somewhat surprising consequence is that
important statistical attributes associated with generating
good pseudorandom patterns may be of little
consequence from the perspective of circuits (particularly
if the single stuck-at fault model is used). At present, only
limited comparisons between the LFSR and HCA
WTPGs have been made. These studies indicate
comparable stuck-at fault coverage and favorable stuck-
open fault coverage. As we have mentioned, extensive
transition-fault analysis is required.

Signature analysis
o Traditional signature analysis

The most popular BIST data compaction methods use
error-detection and -correction techniques for cyclic

IBM J. RES. DEVELOP. VOL. 34 NO. 2/3 MARCH/MAY 1990

redundancy check (CRC) codes. These error-detecting
and -correcting circuits, which make extensive use of
LFSRs, were developed in the late 1950s and early 1960s
[29, 30]. They are well understood and are thoroughly
explained in the algebraic coding theory literature as
syndrome detection {31, 32] and in the digital testing
literature as signature analysis (SA) [33, 34]. Here we
focus our examination on the use of cellular automata
for signature analysis in BIST.

The conventional signature analysis circuit uses a
LFSR to implement a repeated polynomial division of an
input binary data stream. Several well-known theorems
concerning LFSR-based SA are also of particular
relevance here [35-38].

As most practical circuits have many outputs, one
could use a multiple-input signature analysis register
(MISR) [39-41] to form a signature of the output from a
multiple-output circuit. The MISR circuit is currently
considered to be the most efficient means of producing a
signature of a multiple-bit data stream. Several analytical
measures of error-detecting capability for MISR circuits
have been proposed in the literature and are again of
direct relevance here. Recently, Williams et al. [38] have
shown that the probability of aliasing for maximal-length
LFSRs asymptotically approaches 1/(2" — 1), where # is
the length of the register. The analysis was based upon a
single-bit-stream input to a LFSR with probability of
error, p/bit.

o CA-based signature analysis

One of the primary motivations for considering signature
analysis using cellular automata is that in cases where a
CA is preferable for test vector generation, it would be
desirable to use the same CA for signature analysis as
well. Here we proceed to describe and propose some
measures of the effectiveness of signature analysis circuits
using cellular automata.

Two methods of cellular-automata-based MISR
(C-MISR) implementation

The nearest-neighbor communication properties required
for implementing elementary one-dimensional cellular
automata allow the consideration of several different
techniques of SA. Here we consider two of the most
promising methods; other techniques are possible and are
studied in [42]. The techniques to be considered here are
shown in Figure 12. In Figure 12(a), the signature is
formed by updating and then exclusive-oring the current
state at each site with the corresponding output from the
circuit under test. Notice that this technique is directly
analogous to those of conventional LFSR-based MISRs
(L-MISRs). The second technique, shown in Figure
12(b), 1s similar except that here we first exclusive-or each
site with the corresponding circuit output and then

P. D. HORTENSIUS, R. D. McLEOD. AND B. W. PODAIMA

401




402

Two signature-analysis techniques using CA-based MISRs: (a)
% Method : R(t+1) = R()' @ O (t+1). (b)) Method 2: R+ 1) =
| RO® 0@

increment the cellular automaton. These two methods
can be described algebraically by the following equations:

Method 1:

R+ 1)=R(tYy ®O@ + 1) (12)
Method 2:
R(t+ 1) =[R() @ O, (13)

where R(t) = cellular automaton contents at time ¢,
O(t) = circuit output at time ¢, and R(¢)’ = incremented
value of cellular automaton contents at time ¢,

Here some results are presented which attempt to
identify properties that should be possessed by candidate
cellular automata for SA, using Methods 1 and 2. The
following theorems are presented without proof, since the
interested reader may refer to [42] for complete
development and proof of the theorems.

We first consider the evolution of states for different
cellular automata. In general, the state transition
diagrams consist of many cycles and paths to the cycles.
These state transition diagrams contrast with the most
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common LFSR-based MISRs, which have one large cycle
of 2" — 1 states and the zero state.

Theorem 1 Given a general tree structure with N, nodes
of degree i, the probability that the signatures of two
random sequences differing in only one element remain
distinct after 7 steps, using Method 1 or 2, is

i(i—l)M}T
1- 3 ———4T, 14
- 255 a9

i

Using Theorem 1 [42], we can now find the probability
of aliasing on single-word errors for any CA-based MISR,
provided we know the state transition diagram. For
example, a 4-bit cyclic rule 30 cellular automaton has a
state transition diagram which yields a probability of not
aliasing of [1 — (5/128)]" = 0.961". If we examine more
CA-based MISRs, we see that cellular automata with the
fewest branches of degree =2 in the state transition
diagram have the smallest aliasing probability. If the state
transition diagram consists only of unary branches (i.e.,
cycles, the aliasing probability for single-word errors is
zero. Table 3 lists a number of CA rules which lead to
such behavior.

Theorem 2 Using SA methods 1 and 2, we will always
have a different signature for two sequences differing in
only one element, provided that the MISR’s rule of
operation forms a cyclic group.

Notice that Theorem 2 [42] also holds for conventional
L-MISRs. Therefore, only rules implementing cyclic
groups should be used for MISRs, since for single errors
both C-MISRs and L-MISRs will provide the same anti-
aliasing capabilities. For single error, using a C-MISR
built from a CA rule of Table 3 provides SA properties
equivalent to those of an L-MISR.

This can be extended to multiple errors, but the
number and complexity of the terms become large. As in
the single-error case, implementing SA on a general
directed tree implies a greater probability of converging
to the same signature than on a unary tree [11]. Once
again we see that the CA rules of Table 3 are the most
suitable for use in a C-MISR when we consider multiple
eITOTS.

It is possible to do empirical studies to verify our
estimates on the aliasing probability for the CA rules of
Table 3. One such test is to check the aliasing probability
by inserting errors into a number sequence until an
aliased signature occurs. These results are reported in [42].
It was found that both SA methods 1 and 2 provided
essentially the same results. For comparison an L-MISR
was also included. We noted that both the L-MISR and
the C-MISR implementations alias at a rate which is
approximately predicted by 1/(2" — 1). For example, for
a length 9 rule 89 cellular automaton it takes an average
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of 433 quadruple error insertions before an aliased
signature occurs. In addition, the simulation indicated
that all the CA rules of Table 3 and the LFSR provide
essentially equivalent aliasing performance for the above
test.

To indicate why a C-MISR circuit may be preferable to
the L-MISR circuit, we note that in an L-MISR it is
possible to miss an error by canceling out the error when
the LFSR is shifted [43]. If a C-MISR constructed from
the rule 90 and 150 hybrid is used, the error is not
canceled, since each bit in the C-MISR is a function of
the incoming information and its two neighbor bits.

In general, a MISR receives a word on each cycle
which is the exclusive-OR of the expected word and
some, possibly all-zero, error pattern. Recent studies of
the multiple-input signature analysis case by Miller [44]
have shown that if the probability of occurrence is the
same for all error patterns, the aliasing probability is
independent of the MISR implementation and depends
only upon the underlying polynomial. This is a
generalization of the isomorphism identified for the
single-input case by Serra et al. [17]. The CA and LFSR
registers are isomorphic in the sense that they have
equivalent cycle structures up to relabeling of the states
under linear operation [17].

However, if the probability of occurrence is not the
same for all error patterns, Miller’s results show that the
probability of aliasing is different for feed-forward and
feedback LFSR impiementations as well as for the HCA
configurations which he considered. As such, it is
reasonable also to conjecture that the probability of
aliasing should be different for the two implementations
of C-MISR circuits introduced in this paper.

In [44], an error model assigning a fixed probability of
error p to each bit of the error pattern was suggested. In
this manner, the probability of an error pattern is a
function of the number of 1s in the pattern and hence of
the Hamming distance between the error and the error-
free words. For p < 0.5, patterns with fewer ones are
more likely. This is arguably a more realistic error model
than assuming that all error patterns are equally likely.
Preliminary results from [44] indicate that for small p,
the HCA-based MISRs display better aliasing
characteristics than the corresponding LFSR-based
MISRs. Although this was the error model used in our
simulations, we were unable to distinguish this difference,
perhaps in part due to the limited range of p we were
considering.

Summary

The main contribution of this work was improvement
upon conventional test pattern generator circuitry for

built-in self-test, thereby increasing the fault-detection
capability of the apparatus and the means by which
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Table 3 CA rules implementing a cyclic group for both null
and cyclic boundary conditions. Cellular automaton 90h150 refers to
a rule 90 and 150 hybrid cellular automaton where certain sites
implement CA rules 90 or 150 along the array.

Rule Equation Boundary  Length
204 a(t) all all
51 a(t) all all
60 a,.(t)® al) null all
195 a,.,()D alt) null all
102 a()®a_ ) null all
153 at)®a,_(1) null all
90 a,.,()®a_J() null 46,8, -
165 4, (O)Da_(1) null 4,68, -
150 a,.,()Da()Da_J(1) null 4,6,8, -+
105 a,,()®al()®a._(1) null 468, -
240 a.. () cyclic all
15 a.,. (1) cyclic all
170 a,_,(1) cyclic all
85 a, () cyclic all
150 a4, ()@ a() ®a._ () cyclic all
105 a, () ®a()®a_(1) cyclic all
101 [a, (DU a]®a_() cyclic 579, -
154 [a, (DU a(D)] @ a_(1) cyclic 57,9, -
89 [a,, U a()]®a_() cyclic 57,9, -
166 fa, Va(]®a_(n) cyclic 5,79, -
75 4, (D) ® [a) U a,_ (1] cyclic 579, --

180 a (DD [a()Ua_(1)] cyclic 5,79, -
45 a. (D®[a()Va_,(D)] cyclic 579, -
210 a,., () ®[a()Ua_,1)] cyclic 57,9, -

90h150  a,,(H)®a_(1)

4., (O)Da(t)Da_J(1) null all

testability is achieved. The methodology is centered
around the concept of employing one-dimensional
cellular automata (CA) as alternatives to linear feedback
shift registers (LFSRs). The use of these structures as
primary “driving engines” driving logic arrays results in a
WTPG function with improved statistical properties,
wiring complexities, and performance.

In retrospect, it was determined that the CA-based
WTPGs exhibited much better local and global random
properties, and, with reservations, appeared similar to the
statisticaily independent model. By virtue of the local
communication architecture and regular topology of the
CA-based WTPGs, there is a reduced wiring complexity
associated with the development of such BIST test
circuitry. [In this regard, they are extendible to scanning
techniques such as boundary scan, and to observation
techniques incorporating a weighted cellular automaton
logic block observer (WCALBQO) with multiple
distributions.] In particular, it was learned that the rule
90/150 HCA, under the zero-spacing WTPG
configuration, demonstrated sufficiently acceptable
random properties and is well suited to VLSI.
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