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Results  are  presented  for  a  variation  on  a built- 
in self-test (BET) technique  based  upon  a 
distributed  pseudorandom  number  generator 
derived  from  a  one-dimensional  cellular 
automata  (CA)  array.  These  cellular  automata 
logic  block  observation (CALBO) circuits provide 
an alternative to conventional  design  for 
testability circuitry such  as built-in logic block 
observation (BILBO) as a direct consequence  of 
reduced  cross-correlation  between  the bit 
streams  which  are  used  as  inputs to the  logic 
unit  under  test.  The  issue of generating 
probabilistically  weighted test patterns  for  use in 
built-in self-test is also  addressed.  The 
methodology  presented  considers  the  suitability 
of incorporating  structures  based  on  cellular 
automata,  a  strategy  which, in general,  improves 
test pattern  quality. Thus, CA-based  structures 
qualify as attractive  candidates for use in 
weighted test pattern  generator  design.  The 
analysis  involved in determining  and  statistically 
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evaluating  these  potential  models is discussed, 
and is compared  with  that  for  previous as well 
as statistically independent  models.  Relevant 
signature  analysis  properties  for  elementary 
one-dimensional  cellular  automata  are  also 
discussed. It is found  that  cellular  automata with 
cyclic-group  rules  provide  signature  analysis 
properties  comparable to those  of the linear 
feedback shift register. The results presented 
here  are  based  upon  simulation. 

Introduction 
Design  for  testability ( D m )  techniques attempt to deal 
with the complexity of the VLSI testing  problem by 
incorporating testability  as  a primary component of the 
design  process [ 11. A common feature of DFT techniques 
is the reconfiguration of a  sequential  circuit SO that  at test 
time it can be considered combinational. This is 
accomplished by using the sequential circuit latches to 
apply appropriate test  vectors and accumulate the 
resulting  response  vectors. The latches are tested 
indirectly as they verify the combinational logic  of the 
circuit under test.  Level-sensitive  scan  design  (LSSD) [2] 
is an example of such an approach. 

In LSSD and similar approaches such  as  Scan Path [3], 
Random Access  Scan [4], and Scan/Set [5 ] ,  a  test  set 
must be determined, together  with the valid  responses, in 
advance of the test. At test time each  test  vector  must  be 
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d (a) A simple one-dimensional cellular automaton. (b) Null boundary 
1 conditions. (c) Cyclic boundary conditions. I 

serially scanned into the circuit, and  the corresponding 
response  serially scanned out. While this type of 
approach greatly reduces the complexity of sequential 
circuit testing, there are three difficulties: 

1. An appropriate test  set must be determined, which 
can require significant computation. 

2. The time required to scan the test vectors in  and  the 
circuit responses out can be  excessive. 

3. The correct responses must be stored and compared to 
the observed responses to determine whether there is a 
detected fault. 

Built-in  self-test (BIST) techniques attempt to address 
these points. In a BIST  design, the generation and 
application of the test vectors and  the analysis of the 
resulting response are part of the circuit (or system) 
under test. As in scan-path techniques, a sequential 
circuit is rendered combinational, with the sequential 
circuit latches used as an integral part of the test. 

appropriate set of test  vectors. For cases  where an 
exhaustive test  set is prohibitive, a pseudorandomly 
selected subset of the possible inputs to the circuit under 
test  is  used. This requires an on-chip pseudorandom 
sequence generator which, in order to reduce the 
overhead required for BIST, should consist largely  of the 
sequential circuit latches. An example of such a 
technique is built-in logic  block observation (BILBO) [6], 
which  typically employs a linear feedback shift register 
(LFSR) with maximal cycle length as the pseudorandom 

A BIST  design requires a mechanism for generating an 

390 sequence generator. 
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The LFSR-based test pattern generator is formed by 
the addition of exclusive-or gates to  the sequential latches 
with appropriate control logic so that the latches can 
perform their normal circuit function as well as be 
reconfigured for testing. The positioning of the exclusive- 
or gates  is  given by the primitive polynomial over GF(2) 
required to form a maximal-cycle-length  LFSR [7]. A 
potential difficulty  is the requirement of a feedback path 
from the most significant to the least significant  cell in 
the LFSR, which further complicates the layout of the 
register and in some cases  may degrade performance. 

New pseudorandom number generators (PRNGs) 
based on cellular automata (CA) are discussed and 
examined using the same metrics as those for the LFSR. 
It is shown that these CA-based generators provide an 
alternative to conventional LFSR-based generators. In 
addition to improved randomness properties, these new 
pseudorandom test pattern generators can be designed to 
require only adjacent neighbor communication. 

Also discussed  is  weighted  test pattern generation using 
CA-based driving engines. The concept of weighted  test 
pattern generation was  first initiated to increase the 
detectability of hard-to-detect or pseudorandom-test- 
pattern-resistant faults [8-lo]. By weighting the input 
probability distribution, an attempt is made to expose the 
hard-to-detect faults, thereby rendering them random- 
pattern-testable. In other words, an optimal input 
probability distribution is  desired  in order to maximize 
fault coverage and minimize test length. (This is  basically 
an extension of earlier work concerning equiprobable, 
unbiased, pseudorandom test patterns, with the single 
stuck-at fault model assumed in the derivation of  test 
quality measures.) Overall, there exists a class of 
combinational networks whose testability may  be 
significantly improved by utilizing a weighted probability 
distribution. 

response data  to a simple pass/fail result using some form 
of data compaction. Once again, the common suggestion 
is to employ an LFSR to form a signature for the output 
data. The use of a CA-based signature register instead of 
one based on  an LFSR would then be a natural extension 
in a CA-based  BIST scheme. Analysis  of the effectiveness 
of some CA-based data compactors [ 1 1 J indicates that 
aliasing properties comparable to those of the LFSR are 
possible. 

BIST also requires a mechanism for reducing the 

Cellular  automata 
A cellular automaton evolves in discrete steps, with the 
next value  of one site determined by its previous value 
and  that of a set of sites called the neighbor sites. The 
extent of the neighborhood can vary, depending among 
other factors upon the dimensionality of the CA under 
consideration. Figure 1 illustrates three simple one- 
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dimensional CAS, where the next value at a  site  depends 
only on its present value and  the values of the left and 
right neighbors [Figure ](a)]; the CA register may possess 
null boundary  conditions (i.e., the first and last sites 
consider  their missing neighbor site to always have a  zero 
value) [Figure l(b)];  or  the CA register may be cyclically 
connected (i.e., the CA forms a ring, thereby making the 
first and last sites neighbors) [Figure l(c)]. Here,  only 
binary  one-dimensional CAS with two neighbor sites (left 
and right) are  considered, but  in general it is possible to 
use any desired modulus,  dimension,  or neighbor set. For 
a  binary CA of this  type,  each  site must  determine its 
next value on  the basis of the eight possible combinations 
of its own present value and those of its left and right 
neighbors (Le., 000, 001, 010, . . .). The next-state values 
corresponding to each possible input form a number 
which is referred to as the “rule number”  under  the 
classification scheme of Wolfram [ 121. As an example, 
for the CA rule 90 (see Table 3, shown  later), the next 
value of a site is the  sum  modulo 2 of its neighboring 
sites. The evolution of a CA is often shown using a state- 
time  diagram,  as in Figure 2, which shows the evolution 
for a rule 90 CA with 17 sites, for 40 time steps. The 
state-time  diagrams presented in  this  paper show the 
evolution of numbers  in  the CA (or LFSR) by assigning 
each bit in the CA to a  horizontal pixel and assigning the 
pixel black if the corresponding bit is a logical 1. The 
time axis runs vertically, thereby showing successive 
values in the CA. Therefore, in Figure 2 the first number 
is a single-bit logical 1 in the middle of the CA. On the 
next time step, there are two bits of value 1 to the left 
and light of the original bit, which is now 0. This 
continues with a new line for  each time step of the LFSR 
or CA. There are in general at least two distinct methods 
of initializing a CA. One  method is to begin with a 
simple state  such  as a nonzero value at a single central 
site; the  other  method is to begin with each site randomly 
initialized to 0 or 1 with p ( 0 )  = p (  I )  = 0.5. Figure 2 was 
initialized with a single nonzero site. 

Pseudorandom test  pattern  generation for BlST 

0 LFSR-bused pseudorrrndom  sequence  generators 
The most  popular hardware pseudorandom  sequence 
generator is the linear feedback shift register. The binary 
sequence at cell i is generally considered to display 
attributes of a  pseudorandom  binary sequence. The 
sequence has a cycle length of 2” - I using an n-bit shift 
register, provided the polynomial describing the register is 
primitive over GF(2) [7]. Here we consider the two  most 
popular methods for generating pseudorandom  sequences 
using LFSRs. The serial-in parallel-out method  forms 
m-bit pseudorandom numbers by collecting m bits in 
sequence from bit i in the LFSR. This  means  that  it takes 
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! State-time diagram for CA rule 90 of 17 sites, for 40 time steps. 

m shifts, or clock cycles, to form the pseudorandom 
number. To overcome  this time penalty (the m shifts) 
and area  penalty (the m-bit register), the bits of the LFSR 
are  sometimes used in parallel, so that a new 
pseudorandom word is formed on each clock cycle. This 
is the method used extensively in the application of 
LFSRs to built-in self-test circuits [I]. 

Testing of these two types of LFSR-based generators 
using standard  random-number tests shows that  the 
serial-in parallel-out method provides good m-bit-word 
pseudorandom sequences. However, the parallel LFSR 
method (using  any number of different primitive 
polynomials) does  not yield output sequences which 
could be considered pseudorandom [ 1 I ,  131’. This can 

In one clock cycle of the initial state of the LFSR to that  which would occur after m 
’ It is possible to use an XOR network on the LFSR outputs to perform a transform 

shifts [ 131. We do not consider this method here because of the size and complexity of 
the XOR network  and the reduced cycle length of the output sequence. 
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readily be seen in the state-time diagram of the parallel 
LFSR implementation given in Figure 3, where there is 
considerable regularity in the parallel LFSR output 
pattern. The only  criterion for pseudorandomness  met by 
the parallel LFSR method is the equidistribution  test. 

The most evident  failure of the parallel LFSR method 
is in  the bit-sequence correlation  (this is the feature which 
creates the stripes in Figure 3). A correlation figure such 
as Figure 4 can be used to show both the autocorrelalion 
and cross-correlation of bits in word sequences  produced 
by the parallel LFSR. Here the  correlation figures display 
the results for 30-bit words using a  three-dimensional 
figure. The vertical axis is the  magnitude of the 
correlation, while the x and y axes give the  time 

392 displacement, i.e., number of shifts, and sequence 

displacement, Le., number of LFSR  cell positions, from 
the reference time and sequence, respectively. 

The parallel LFSR method displays a severe correlation 
problem. I n  fact, the  bits in the bit streams are perfectly 
correlated in that  the value at bit i at time 1 will appear at 
bit j > i at time 1 + ( j . ~ -  i). Therefore, one  cannot 
consider the test pattern  sequences used in most built-in 
self-test structures to be pseudorandom,  since the bits  in 
succeeding test patterns are fully correlated. 

The cross-correlation of the bit streams in the  I.FSR 
y d d s  a number of circuit faults which cannot be 
detected. For example,  a simple CMOS  NAND gate with 
inputs A and B has  faults which cannot be detected by 
1,FSR-based test patterns. If  we assume an open circuit 
fault on the B-input p  transistor, we induce  memory into 
the circuit, since the  input A = I ,  R = 0 results in a 
floating output.  This  situation, in which the last output 
value is held, can only be detected by having the input 
pattern I O  follow input pattern I I .  However, this 
situation  can never arise in LFSR-based testing if the 
shift direction is from A to B, since the value on input A 
will  be on R when the next input  pattern is applied. 
Therefore, one can never completely test a  simple two- 
input  CMOS  NAND gate for stuck-open  faults using 
single-clocked parallel I,FSRs. This shows the  potential 
deficiency of IFSR-based test pattern  generation for 
B1ST due  to  the correlation between adjacent outputs. 

( 'A-hu.sd psntdorundom sequence genfmfors 
A number of ('A-based pseudorandom  sequence 
generators are  examined in [ 141. Here we briefly describe 
two interesting CA-based PRNGs. 

Rule 30 C 'A 
Consider  a  simple  one-dimensional CA using rule 30; Le.. 

u,(l + 1 )  = u, , ( O  @ la,([) IJ u,+,(f) l .  ( 1 )  

The rule 30 CA displays many attributes of a 
pseudorandom number generator when connected in a 
cyclic configuration. Specifically, the rule 30 CA has 
significantly reduced cross-correlation as compared  to  the 
parallel LFSR generator. The principal difficulty with 
respect to BIST is that  the rule 30 CA is not a maximal- 
length sequence  generator. The state  transition  diagram is 
actually made up of trees and cycles. An important 
consideration in the use  of any PRNG is the length of the 
sequence produced  (Le.,  after how many  numbers does 
the sequence repeat?). The LFSR generators of interest 
here have sequence length of 2" - I .  where n is the length 
of the LFSR. However, the rule 30 CA does  not  provide 
nearly as long a  sequence.  For rule 30, as the length of 
the CA increases, the maximum possible cycle length of 
the pseudorandom  sequence generally increases, but this 
growth is not monotonic; in addition,  the initial state 
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used in the CA affects the length of the sequence 
produced [ 14, 151. 

Rule 50 and 150 hybrid CA 
A cellular automaton which yields a  maximal-length 
binary sequence from each site (i.e., 2" - l) ,  like the 
maximal-length LFSR, is a hybrid CA (HCA) [ 161. The 
HCA combines rules 90, 

a,(t + 1) = a,- , ( t )  0 a,+](t), 

and 150, 

a,(t + 1) = a,-,(t) 0 a,(t) 0 a,+,(t). 

The ordering of the rules for construction of a  maximal- 
length binary sequence is irregular, with complexity 
similar to  that involved in determining  the polynomial 
for a  maximal-length LFSR [ 171. Table 1 gives a  sample 
of hybrid constructions for producing  HCAs with 
maximal cycle length up  to length 53. Here, 1 refers to 
CA rule 150. Hence,  a length-5 maximal-length hybrid 
would be constructed by having CA rules 90 and 150 in 
the following order: 150, 150, 90, 90, 150. It  should be 
noted that for many lengths there are several CA rule 90 
and 150 hybrid constructions which will yield maximal- 
length cycles. Maximal-cycle-length hybrid cellular 
automata exist for lengths larger than 53 but  must be 
found using computer simulation. 

Zhang  et  al. [ 181 have recently developed an efficient 
algorithm to generate minimum-cost maximal-length 
HCAs; at the time of writing, they have produced  a  table 
giving constructions up  to length 150. Using this  type of 
table, construction of the HCA is quite simple. For 
example, consider a HCA of length 16. A maximal-length 
cycle can be formed by twinning CA rule 150 at  one  end 
of the  automaton  and  then alternating rules 90 and 150 
over the rest  of the CA. Figure 5 shows the state-time 
diagram for a 498-site hybrid over 840 time steps with a 
simple initial state. Note that  the regular pattern dies out 
as the CA evolves in  time. 

in the HCA are not correlated in  time  or space2, as is 
evident  in the autocorrelation and cross-correlation data 
of Figure 6 .  

The HCA with null boundary  conditions has layout 
advantages over  rule 30, since the first and last sites in 
the hybrid need not be connected (i.e., no extended 
wiring is required). 

Weighted  test  pattern  generation  for BIST 
Because of the versatility with which pseudorandom 
patterns may be distributed  in  a system and  the strikingly 

Unlike the LFSR or even the rule  30  CA,  adjacent sites 

For the 901150 maxlmal-length HCAs, the parallel bit streams  are actually the Same 
(true pseudonoise sequences), except for some  unknown phase or time offset [ 191. For 
test applications the parallel bit streams are effectwely uncorrelated. 
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high fault-detection  capability of these test patterns, 
pseudorandom pattern testing is particularly  suited  for 
use in  a BIST strategy. Today,  there is little argument 
that this ideology is applicable to a large class of 
combinational circuits. Often, however, there are 
instances where the testability of a  circuit is hindered by a 
relatively small number of hard-to-detect faults. When 
ordinary  unbiased pseudorandom testing is performed, 
these faults, categorically known  as pseudorandom- 
resistant faults, display very low fault-detection 
probabilities. Circuits  known to  contain  such faults are 
called pseudorandom-resistant; they must be dealt  with 
by an advanced  form of test. 
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Table 1 Hybrid constructions necessary to achieve a cellular automaton with maximal cycle length 

Length n Construction Cycle length 

4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 

0101 
11001 
010101 
1101010 
11010101 
110010101 
0I010l0101 
11010101010 
010101010101 
1100101010100 
01111101111110 
100100010100001 
1101010101010101 
01111101111110011 
010101010101010101 
0110100110110001001 
111100111011011111I1 
011110011000001111011 
0101010101010101010101 
11010111001110100011010 
111111010010110101010110 
1011110101010100111100100 
0101  10101  101000101  1101  1000 
000011111000001100100001101 
0101010101010101010101010101 
10101001010111001010001000011 
11101000100110110010100011110l 
oloolloolololloIllllollloollooo 
01000110000010011011101111010101 
000011000100111001110010110000101 
0011110000101101000011000110l11010 
0101011110111101100111010100l010011 
101001100100100011111010110000100011 
00100101100111101011010110000101l0011 
00011100101011110110011001l11000010011 
110100010111110110111l0011001110l10l100 
000011  1011001010101 1 1  I100100001011  100101 
01  101011 11  11  1010000101  1001100011  1100001 11  
001001111110110011100l0100100110011l100110 
001110101110001011100010000l01l010l100100l0 
0011110011110111010110111000010010l011000010 
00110100101100110110l001000100l10001101001101 
000100101001100101000110100010l100l1101l010110 
00111001011111100111001010100l000l011100000110l 
000110000110111110010010l00111010001111000001111 
001011011110110010001100l0111l10001011l0110011001 
1001  101001  101  10000001  10001  101000101 100100010010110 
000100001011101010100001011010011101000101000010111 
0011001000110111101110111111100010001111010ll1000110 
1000011100101000100000100100l100l01110111110110010101 

15 
31 
63 

127 
255 
51 1 

1,023 
2,047 
4,095 
8,191 

16,383 
32,761 
65,535 

131,071 
262,143 
524,287 

1,048,575 
2,097,15 1 
4,194,303 
8,388,607 

16,777,215 

67,108,863 
134,217,727 
268,435,455 
2"- 1 
2"- 1 
2"- 1 
2"- 1 
2"- 1 
2"- 1 
2"- 1 
2"- 1 
2"- 1 
2"- 1 
2"- 1 
2"- 1 
2"- 1 
2"- 1 
2"- 1 
2"- 1 
2"- 1 
2"- 1 
2"- 1 
2 " -  1 
2"- 1 
2"- 1 
2"- 1 
2"- 1 
2"- 1 

33,554,431 

A successful candidate, which maintains many of the 
attributes first introduced by unbiased pseudorandom test 
pattern generation, is  weighted test pattern generation 
(WTPG). This approach involves the application of 
weighted  probability distributions in order to enhance the 
probability  of  generating suitable patterns to expose the 
pseudorandom-resistant faults [ 101. In doing so, the 
overall  test  set  decreases  while the fault  coverage 
increases, rendering this particular subclass  of circuits 

394 weighted-random-pattern-testable. Work by Wunderlich 

[20] and by Waicukauski and Lindbloom [2 1 1  has 
successfully demonstrated that this is, in fact, the case  for 
the ISCAS [22] benchmark designs. 

By using an adaptive weighted test pattern generation 
method or a probabilistic fault-grading technique, it is 
possible to find the relationship between the fault 
detection and rate of excitation of a circuit. With this 
knowledge, an appropriate weighted  probability 
distribution(s) may then be assigned.  Although more 
recent advances in WTPG have  resulted in some efficient 
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heuristics for computing multiple weighted test sets, 
earlier work of Chin  and McCluskey [ lo] suffices to 
demonstrate,  in a simplified manner,  the  attributes of 
WTPG. 

Cellular-automata-based WTPG considerations 
Here we consider using driving engines with external 
weighting logic for realizing cellular-automata-based 
WTPGs. An alternative  technique would be to use 
conventional and hybrid cellular automata directly. 

Past methods of WTPG design incorporate the 
maximal-length LFSR as a primary  “driving  engine,” 
supplying pseudorandom patterns to an array of  logic 
gates performing a weighting operation  on  incoming 
patterns.  Naturally, it is expected that if a more capable 
pseudorandom,  or even random,  number generator is 
used, the result will be an  improvement in the statistical 
properties of the  WTPG function.  For  example, if 
measures of effectiveness are obtained  for a statistical 
distribution of independent  inputs,  the correlation 
between expected and observed measures will be greater 
using an improved WTPG.  For  the purpose of achieving 
different output probabilities, standard Boolean logic 
gates, each with its own unique probability profile, may 
be configured to deliver the desired weighting to each 
input of the circuit under test. 

By connecting  various logic gates, forming single-level 
or multi-level logic arrays, a number of incremental 
output probabilities are attainable. For example, if a 50% 
equiprobable  driving  engine is used, only  probability 
increments of 1 /4 are possible by incorporating a single- 
level array of logic. However, if a two-level array of logic 
is utilized instead, probability increments of 1/ 16 are 
permitted. Even though still finer increments  are possible, 
it should be kept in  mind  that  the  number of usable 
outputs decreases substantially  as the  number of logic 
levels increases. For this  reason, the resolution of the 
probability increment is limited by the restrictions 
imposed upon  it by  VLSI-in particular, the area 
constraint.  Recently, Brglez et al. [23]  have  shown that 
multiplexors may also be used to accomplish much  the 
same task. In  addition,  the multiplexor technique using 
CA outperformed  the LFSR-based WTPGs with respect 
to fault coverage for their application. 

For  our purposes here, we are primarily  concerned 
with the HCA as well as with LFSR driving engines. In 
[ 191 four different driving engines were investigated. They 
included a nonlinear random  number generato:, a 
pseudorandom  maximal-length  LFSR, a pseudorandom 
maximal-length rule 901 150 HCA, and a pseudorandom 
nonmaximal-length rule 30 CA. With the exception of 
the pictorial  state-time  evolutions, where the original 

generated by a nonlinear additive feedback shift register (NLFSR). 
The nonlinear random number generator  is  based on a uniform distribution 
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LFSR or CA engine 

LFSR or CA eneine 

driving engines are 53 cells wide (to allow for better 
visual presentation), all statistical analysis is performed 
on machines based on engines 30 cells wide (because  they 
are large enough to exhibit global characteristics, but 
small  enough to allow extensive analysis). Complete 
details regarding statistical evaluation and  the statistical 
estimators used can also be found in [ 191. For  the HCA 
of width 30, the  combination 

Rule 901 150 HCA: 

000001100010000110000100111110 (4 

is used, where a “0” represents a rule 90 cell and a ‘ I  1 ,” a 
rule 150 cell. 

0 WTPG logical Configurations 
Several interconnection  schemes are feasible, with 
varying degrees of complexity and  area overhead. A basic 
configuration is characterized by the  amount of cell 
spacing between each  consecutive  pairing of gates, for a 
particular logic level. These basic configurations  include a 
zero-spacing configuration [ J  = 01 and  an N/2 
configuration [ J  = (N /2 )  - 11 (see Figure 7). Each logic 
level may contain a different basic configuration, but it is 
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i Space-time  evolution of test  patterns for (a) Ni2 LFSR and (b) 
J = 0 HCA weighted to 75%. 

the overall  logic array itself, made up of one or more 
logic  levels,  which determines the final output probability 
assignments. The selection of an appropriate 
interconnection scheme (logic array) for a particular 
driving  engine depends on the statistical qualities 
demanded, and  the conformity of its implementation to 
VLSI.  These factors help  establish a criterion to make 
possible the proper selection among the different WTPG 
candidates. For our purposes, we focus our discussion 
still further, considering the N / 2  LFSR and J = 0 HCA 
configurations, which were selected  because  they 
represent the most  likely candidates for practical WTPG 

circuits. Complete characterization of  all configurations 
can be found in [ 191. For most of the following 
discussion, our interest is  in the generation and analysis 
of  weighted broadside words  with the same weight at 
each bit position. This facilitates the assignment and 
analysis  of random variables and  the abstraction of 
statistical  measures. Individual bit-stream tests are also 
included for completeness. It should be noted that the 
following  discussion does not preclude the application of 
CA pseudorandom pattern generators with a different 
weight at each bit position or group of  bits. Statistical 
attributes are preserved due to the  autonomous  nature of 
the weighting  gates and  the apparent statistical 
independence of their inputs. 

State-time visualization 
A simple apparatus which  is  often  used, albeit with 
caution, because of its “unequivocal” ability to 
immediately assess the randomness of an emanating 
process,  is the  human eye.  As  is  well appreciated, the eye 
sometimes fails to interpret accurately what actually 
appears. Keeping this in mind, a strictly qualitative visual 
test,  with questionable validity, may be performed on a 
variety  of finite-state-machine state-time evolutions. 
Figure 8 shows the state-time evolutions of the weighted 
LFSR and HCA driving engines. Throughout the 
discussion we consider 75% 1s weighting  for illustration 
(an OR array performs a 75% weighting). 

By searching  for some obvious patterns within an 
evolution, important pictorial comparisons can be made. 
Generally  speaking, the appearance of  large  global,  as 
opposed to local, patterns is probably damaging to a 
system’s subjective randomness. The test itself can thus 
be  used  as a weak pre-test  for random behavior. The 
figure  shows noticeable global nonrandomness for the 
LFSR-based configuration: for  those  based on cellular 
automata, only local  self-similar structures prevail. For a 
more quantitative look into random performance, much 
more sophisticated objective  analysis  is  needed. 

Density and average density 
The density, d,, of a binary word (test pattern) is  defined 
here  as the actual number of ones per  word length, W, or 

where n, is the number of 1s; the average density, 

is  merely the average  of the densities for some time 
evolution T E (0, . . . , L - 11, where L represents the 
total number of  words in an evolution. The densities 
emanating over time reveal information about the 
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sophistication of the underlying  process. For instance, if a 
system  possesses total statistical independence, the L 
random variables making up the time evolution are 
mutually independent and identically distributed (IID). 
Thus, graphically, the density evolution will appear 
similar to band-limited white  noise. Also, because the 
statistical  characteristics  of a discrete independent 
temporal process do not change  with time (i.e., it is  said 
to be a discrete-time stationary process), the average 
density evolution converges  rapidly to some mean, p, 

with  infinitesimal  steady-state error. 
Figure 9 illustrates the average  density evolutions of 

the N/2 LFSR and the J = 0 HCA.  These  original  finite- 
state machines each  consist  of 30 sites, and, as indicated 
previously, are used as a primary source of 
pseudorandom test patterns which  feed  weighting  logic 
arrays.  For the various gate  configurations, the ability  of 
the original generator to produce high-quality 
pseudorandom numbers is  critical to the generation of 
high-quality  weighted random test patterns. 

By observing  average density evolutions of the various 
structures in their different configurations, it is apparent 
that the configurations of the cellular-automata-based 
structures are attractive in that they  resemble more 
closely the evolution based on a statistically independent 
model. 

Probability mass  function 
Any discrete-time stochastic process can, in part, be 
described by its discrete  probability density function, or 
probability  mass function (PMF). This emphasizes the 
importance of  deriving a histogram  which, at least 
approximately, represents the  PMF of some random 
process. For any finite-state machine, each site  position 
can take on only one of two  values, “0” or “ 1 .” If it is 
further stipulated that the process  governing the 
evolution  of a finite-state machine be  statistically 
independent, each bit position  can be completely 
specified by a Bernoulli random variable.  When the 
entire word (width) is examined, a function of W 
Bernoulli random variables can be formulated 
contributing to  the specification  of the entire finite-state 
machine. For such a system, the densities d, emanating 
over time conform to a discrete binomial or delta PMF. 
It  is then possible to compare a histogram  generated 
empirically, by some deterministic finite-state machine, 
to a PMF obtained assuming total statistical 
independence. Although this comparison does not 
provide information as to how independent, or 
dependent, a particular deterministic process  is, it does 
reveal some important aspects  of distribution 
convergence. Naturally, it is  expected that a machine 
based on a statistically independent model will converge 
rather rapidly to a binomial PMF. 
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Figure 10 represents the density histogram evolutions 
of the N/2 LJSR and  the J = 0 HCA configurations at 
75%. It is evident from these  plots that the HCA-based 
structure converges more quickly and is thus more 
favorable  from a statistical standpoint. 

Goodness-of-Jit test 
The probability  mass function, p(X) ,  or probability 
distribution function, F(X) ,  completely characterizes the 
behavior of the random variable X [24]. Because  of this 
property, it is of great importance to establish the 
“goodness of fit”  between a distribution (sampling 
distribution) or histogram determined empirically and 
that which  is  proposed or postulated. The best approach 
used to substantiate a measure of similarity is to test a 
hypothesis  regarding some previously known 
characteristic. With the benefit  of some statistical 
measure, a null hypothesis H,, may at best  be  rejected or 397 
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refuted.  It  has  been determined that a x2 (chi-square) 
statistic is particularly suited for this type of analysis. 
Explicitly stated, the x2 test is made with the null 
hypothesis H,,. The data X,, X,, . . . , X, are  IID discrete 
random variables,  with a binomial PMF. 

According to  Knuth [25], the x 2  test  is perhaps the best 
known of  all standard statistical tests. Its potential is  best 
emphasized by virtue of the fact that it may  be  used in 
conjunction with many other statistical  tests. 

The x’ statistic is  used  mainly  for the purpose of 
providing the means by which arbitrary, empirically 
determined, data can be compared to some ideal or 
“expected”  value. This is done by  weighting the squares 
of the differences  between the observed data  and the 
expected data (determined by some discrete or 
continuous probability function) in the form of a 
summation. The statistic is  expressed in the form 

k-1 IN,  - L P ( ~ ) I ~  

r=O Lp(i) 
x2 = c 

where L denotes the size  of the independently selected 
data set, LP(  i)  the expected number of outcomes, and N 
the observed number for some particular category i, 
ranging from 0 to k - 1. [For large L, Equation (7) is 
approximately x 2  distributed.] 

The quantity x2 should be reasonably  small  for Ho to 
be refuted;  otherwise,  if x2 is  considered too large, Ho will 
be rejected outright. By observing tabulated quantities of 
a x2 distribution, a corresponding percentage point, or 
probability,  is obtainable for some degree  of freedom 
(d.f.). [As a “rule of thumb,” LP(z) 2 5, so the d.f.  is 
available  as a by-product of the computational process.] 
This percentile forms the basis  of the determining factor 
by which the null, or alternative, hypothesis Ho is 
rejected. 

number generator testing,  involves  probabilistically 
judging the actual data emanating from a random 
number generator. Although this procedure is no more 
difficult than that required in the testing of a null 
hypothesis  for distribution fitting, its implications are 
more profound. In the view  of Knuth [25], no definitive 
statement can be made as to whether or not a sequence is 
random; however,  what can be stated is the probability or 
improbability of certain sequences  being randomly 
generated. With respect to this outlook, he  has  suggested 
the following interpretation as a means of rating the 
randomness of  large  sequences  of “apparently” random 
data: If x2 is  less than 1 % or greater than the 99% entry, 
the sequence  is  “rejected”  as not being  sufficiently 
random; if x2 resides  between the 1 % and 5% entries, or 
the 95% and 99% entries, the sequence is “suspect”; if x 2  
resides  between the  5%  and 10% entries or  the  90%  and 
95% entries, the sequence  is “almost suspect”; but if the 
x2 lies  somewhere  between 10% and  90%,  the x2 is 
thought to be a value  which  could  be produced by a 
random sequence. 

Typically, a x2 test  is  performed at least three times on 
different  sequences of adequate length.  Also, it should be 
noted that for instances where x’ testing  is  applicable, it 
is  only  valid  asymptotically  for independently observed 
data. Therefore, tests  which  check  for independence (such 
as a serial correlation, tuple, temporal measure entropy, 
spectral, lattice, or run test), depending on  the kind of 
data comprising the sequence, should be performed first, 
so that the authenticity of the x2 can be  acknowledged. 

In order to make quantitative comparisons of density 
histogram  convergence among the various configurations, 
a x2 test  can be adequately performed on  the histograms 
generated from a large  test  set.  Because it is known that 
an IID statistical process dictates ideal behavior, it 
should, therefore, represent the postulated, or reference, 
function in the form of a binomial PMF. With respect to 
this and Equation (7), the x* metric can then be 

A more direct use  of the x 2  test, as applied to random 
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computed for an analytical establishment. Using a test  set 
of 20 000 vectors, an approximation level  between 10% 
and 90%, and the criterion that LP(i) 2 5 ,  Table 2 
clearly illustrates that the LFSR-based configurations 
generate density sequences which  fail the x’ test, whereas 
most  of the cellular-automata-based configurations 
generate density sequences which can be considered 
randomly generated. This overwhelmingly  exemplifies 
the undesirability of  LFSR-based WTPGs, especially 
considering the smaller test lengths which are more 
commonly associated with  weighted random pattern 
testing. 

Magnitude spectrum 
A measure used to indicate the rate at which densities 
change on a global  level, within a sample function, can 
be made by applying a Fourier transform. Since the 
density sample function d, (i.e., the density evolution of 
some discrete-time stochastic process) represents what 
can be considered a large  set  of points, “sampled” with 
fixed increments of time A, it is  typical  of what the 
density evolution looks like for a number of other start- 
up “seeds.” Thus, if dT contains L density values, its 
discrete Fourier transform can be determined [26] by 

k=O 

where 

dk = d(tk),  t ,  = kA,  k E (0, 1, . . ., L - I ) ,  (9) 

and 

f =- LA’ n .E{- -?  L ...,gj. 
By choosing n E (0, 1, . . . , L/2 ) ,  the resulting positive 

frequencies of a two-sided  power spectral density are 
calculated to provide insight into the frequency content, 
or magnitude spectrum I F,, I of a density time evolution. 
For a statistically independent process, the magnitude 
spectrum is expected to have an appreciably flat 
frequency response. Figure 11 illustrates the magnitude 
spectra of the N/2 LFSR and J = 0 HCA configurations 
weighted at 75 % . 

As expected, when the magnitude spectrum of the 
LFSR-based configuration is  observed, the majority of 
the power  is found to be contained in  the low 
frequencies. This trend is similar to what  is expected if 
the originating density evolution waveforms consist of a 
low-frequency fundamental. This behavior is a direct 
result  of the dependencies among consecutive density 
values d,. Upon closer inspection, any succeeding density 
can only be the same, or differ at  the most by one density 
increment (i.e., d,,, E {d ,  + 1/W, dT, dT - l/W]). On 
the other hand, the magnitude spectrum of the HCA 
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Table 2 Chi-square PMF test for the various WTPG 
configurations. Engine refers to the original driving engine; [SI refers 
to a nearest neighbor sharing configuration. 

Conjguration dJ NLFSR  LFSR  HCA  CA 
R90/150  R30 

Engine 18 Pass Fail Pass Pass 

[ J =  OJ 10 Pass Fail Pass Pass 
[J  = N/2 - 11 10 Pass Fail Pass Pass 

[SI 15 Fail  Fail  Fail  Fail 

appears “white” or flat, as would a statistically 
independent model. 

A serial test, which  is  basically a generalization of the 
x 2  test to higher dimensions, is an empirical test  which 
provides an indirect check on the assumption that 
individual d,s are independent [27]. If the dTs are 
correlated, the pairs (dT, d,,,) tend to cluster around  the 
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diagonals of a unit square. The application of a x’ test 
will definitively detect this, and, thereby, indicate 
nonrandomness in the generation process.  Such  is the 
case for the density evolution of any LFSR-based 
configuration, where the predicting mechanism, as 
indicated, is rather simplistic. It  is evidently the low- 
frequency content of the magnitude spectrum which  is 
most damaging to randomness. 

Not surprisingly,  HCA-based configurations have  far 
better suitable magnitude spectra; the HCA 
configurations all appear flat. 

Correlation of weighted conjigurutions 
As is evident from the space-phase correlation plots 
discussed in the previous section, the structures formed 
by adding different configurations of weighting  logic 
appear to have correlations directly related to the original 
driving engines. The most noticeable difference  is a 
“broadening” in some of the original correlation peaks 
and/or ridges. 

The N/2 LFSR-based configuration has a broadened 
space-phase correlation ridge. The HCA  shows no 
appreciable correlation peaks. 

that the CA-based configurations have more attractive 
state-time correlation plots than those based on the 
LFSR. In particular, the HCA-based configurations have 
the most acceptable properties of all the deterministic 
machines we have examined, and certainly present 
themselves as excellent parallel WTPG candidates. Of 
these configurations, the zero-spacing configuration offers 
a distinct advantage in the detection of stuck-open faults, 
beyond those based  previously on  the LFSR, with the 
added benefit  of a nearest-neighbor connection scheme. 
Recent transition-fault analysis has demonstrated the 
improved coverage of CA-based TPG [28]; we believe 
this to be a direct consequence of the reduced cross- 
correlation. For this reason, the zero-spacing 
configuration is  most recommended for implementation 
in a weighted-test-pattern-BIST environment. The HCA 
sharing configuration offers  significant implementation 
advantages, and in spite of its increased correlation also 
warrants further consideration. To be more definitive, 
transition-fault analysis  over a large number of 
representative circuits is  still required. 

Bit-sequence tuple lengths 
Before a bit sequence can be considered effectively 
random, it must possess apparent statistical 
independence. This is to say, besides conforming to the 
appropriate distribution, the emanating bits must appear 
as if they  were generated independently. If this is the 
case, the number of “k-tuples” contained within a given 
sequence length should, by Equation ( 1  l), be  relatively 

From the correlation analysis, it can be clearly stated 

400 consistent. 
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The number of k-tuples, as defined here, includes the 
occurrence of overlapping tuples. For example, within a 
single run of four 1 s, there are four k-tuples of length 
one, three k-tuples of length two, two k-tuples of length 
three, and  one k-tuple of length four. (A  so-called ‘‘run’’ 
is a contiguous sequence of Is isolated by one or more Os.) 

The expected number of k-tuples, T(Lk), found  in  the 
evolution of a single Bernoulli random variable can be 
obtained by 

E[TF]  = ( L  - k + 1) . pk, 

where p is the probability of generating a 1 (1 - p is the 
probability of generating a 0), L is the number of 
successive Bernoulli trials, and k is the tuple length. In 
accordance with Equation (1 l),  an absolute, or expected, 
tuple profile may be  used as a basis on which 
comparisons among a variety  of machines and 
configurations can be made. 

For a maximal-length LFSR, it  is only for the N/2 
configuration that  the tuple profile coincides with that 
which  is expected. These findings also happen to be 
independent of the chosen bit sequence, due to the fact 
that every consecutive bit sequence is identical, with the 
exception of an accompanying phase shift. The necessity 
of using a spacing of J = N/2 - 1, in order to achieve 
proper LFSR-generated tuple profiles, has been addressed 
by Chin and McCluskey [ 101. They discuss the rationale 
behind the selection  of the N/2 configuration for the case 
of a 25% weighted random bit sequence which  is  readily 
extended to the 75% case. 

When the tuple profiles of a maximal-length J = 0 
HCA configuration are examined, we find that the results 
are no longer completely independent of the selected bit 
sequence. For the J = 0 HCA configuration, the general 
trend is that the bit sequences farthest from the  end sites 
provide the better tuple profiles.  However, if rule 150 
cells are used in place  of the rule 90 cells at the end sites 
of the original generator, there is a great improvement in 
the tuple profile of bit sequence at the ends of the arrays. 
In  fact,  it appears as good as any of the  other tuple 
profiles. 

If the HCA  is  reconfigured  in the N/2 configuration, 
only moderate gains are made in the tuple profiles. In 
light  of this, and the potential advantage in overall circuit 
performance because  of reduced wiring complexity, it  is 
the zero-spacing ( J  = 0) configuration of the HCA  which 
lends itself for use  in  BIST. 

Comparison of CA and LFSR 
The rule 30 and hybrid CA and the LFSR  all  display 
reasonably good spatial distribution of the pseudorandom 
output words, the LFSR being the least acceptable from a 
statistical viewpoint. The advantages of cellular automata 
arise from the much-reduced cross-correlation associated 
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with the CA compared to  that of the LFSR. As discussed 
previously, single-bit outputs from the LFSR and CA are 
pseudorandom, but  in most BIST applications the test 
patterns are generated by taking many bits of the register 
in parallel. This leads to nonpseudorandom sequences for 
the LFSR because of the correlation. Application of 
standard  random-number tests to both  the parallel LFSR 
and CA PRNGs shows that  the CA-based PRNGs are 
much  more  pseudorandom than  the parallel LFSR 
[ 1 1, 191.  An especially important result occurs in tests 
which measure the  distribution of test pattern pairs, 
triples, and  quadruples. We observe good distribution 
using the CA-based generators, whereas in the LFSR, 
pairs, triples, and quadruples are not at all well 
distributed. 

Another  concern arising from the fact that LFSRs are 
poor pseudorandom generators is that much of the 
analysis for  BIST assumes a  random  or  pseudorandom 
test pattern source, so when an LFSR is used as  the 
source, it should not be expected that the fault coverage 
and other calculated measures will  be entirely accurate. 
This  does not imply that  the fault coverage of the LFSR 
will be degraded, but  only  that  the analysis in which it is 
considered to be random is inaccurate. 

A disadvantage of some CA-based schemes is reduced 
cycle length and starting value dependence. For example, 
the rule 30  CA has maximal-length cycles which are 
much smaller than those of the LFSR. In addition, rule 
30  is starting-value-dependent, whereas the LFSR is not 
(other  than  the zero state). The only CA discussed here 
with maximal-length cycles  like those of the LFSR is the 
rule 90/ 150 HCA. Therefore, if  cycle length is important, 
the LFSR or HCA should be considered. One additional 
point is worth noting concerning CA test circuits: We 
have found that the most favorable HCAs are  ones 
constructed with a good mix of rule 90 and 150 cells. 

an excellent BIST pattern  generator on a wide variety of 
circuits. The somewhat surprising consequence is that 
important statistical attributes associated with generating 
good pseudorandom  patterns may be of little 
consequence from the perspective of circuits (particularly 
if the single stuck-at fault model is used). At present, only 
limited comparisons between the LFSR and HCA 
WTPGs have been made. These studies indicate 
comparable stuck-at fault coverage and favorable stuck- 
open fault coverage. As  we have mentioned, extensive 
transition-fault analysis is required. 

Signature  analysis 

Traditional signature analysis 
The most popular BIST data  compaction  methods use 
error-detection and -correction techniques for cyclic 

In spite of these differences, the LFSR has proved to be 
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redundancy check (CRC) codes. These error-detecting 
and -correcting circuits, which make extensive use of 
LFSRs, were developed in the late 1950s and early 1960s 
[29, 301. They are well understood and  are thoroughly 
explained in the algebraic coding theory literature  as 
s-vndrome detection [3 1 ,  321 and  in the digital testing 
literature  as signature analysis (SA) [33,34].  Here we 
focus our examination on  the use  of cellular automata 
for signature analysis in BIST. 

The conventional  signature analysis circuit uses a 
LFSR to  implement a repeated polynomial division of an 
input binary data stream. Several well-known theorems 
concerning LFSR-based SA are also of particular 
relevance here [35-381. 

As most practical circuits have many  outputs, one 
could use a multiple-input signature analysis register 
(MISR) [39-411 to form a signature of the  output from  a 
multiple-output circuit. The MISR circuit is currently 
considered to be the most efficient means of producing  a 
signature of a multiple-bit data stream. Several analytical 
measures of error-detecting capability for MISR circuits 
have been proposed in the  literature and are again of 
direct relevance here. Recently, Williams et al. [38] have 
shown that the probability of aliasing for maximal-length 
LFSRs asymptotically approaches 1/(2" - l), where n is 
the length of the register. The analysis was  based upon  a 
single-bit-stream input  to a LFSR with probability of 
error, plbit. 

CA-based signature analysis 
One of the  primary  motivations for considering signature 
analysis using cellular automata is that  in cases where a 
CA is preferable for test vector generation,  it would be 
desirable to use the same CA for signature analysis as 
well. Here we proceed to describe and propose some 
measures of the effectiveness of signature analysis circuits 
using cellular automata. 

Two methods of cellular-automata-based MISR 
(C-MISR) implementation 
The nearest-neighbor communication properties required 
for implementing  elementary  one-dimensional cellular 
automata allow the consideration of several different 
techniques of SA. Here we consider two of the most 
promising methods; other techniques are possible and  are 
studied in [42]. The techniques to be considered here are 
shown in Figure 12. In Figure 12(a), the signature is 
formed by updating and then exclusive-oring the current 
state at each site with the corresponding output from the 
circuit under test. Notice that this  technique is directly 
analogous to those of conventional LFSR-based MISRs 
(L-MISRs). The second technique, shown in Figure 
12(b), is similar except that here we first exclusive-or each 
site with the  corresponding circuit output  and then 
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common LFSR-based  MISRs,  which  have one large  cycle 
of 2" - 1 states and the zero state. 

ri 

T 
1 M e t h o d l : R ( t + I ) = R ( t ) ' O  O ( t + l ) . ( b ) M e t h o d 2 : R ( t + l ) =  

[R ( t )  0 0 (r)]'. 

increment the cellular automaton. These  two methods 
can be described  algebraically by the following equations: 

Method 1: 

R(t + 1) = R(t)' 0 O(t + I);  

Method 2: 

R(t + 1) = [R( t )  0 O(t)]', (13) 

where R(t )  = cellular automaton contents at time t ,  
O(t)  = circuit output  at time t ,  and R(t)' = incremented 
value  of  cellular automaton contents at time t .  

Here some results are presented  which attempt  to 
identify  properties that should be  possessed  by candidate 
cellular automata for SA,  using Methods 1 and 2. The 
following theorems are presented without proof,  since the 
interested reader  may  refer to [42] for complete 
development and proof  of the theorems. 

We first consider the evolution of  states  for  different 
cellular automata. In general, the state transition 
diagrams  consist  of many cycles and paths to the cycles. 
These state transition diagrams contrast with the most 

Theorem I Given a general  tree structure with N, nodes 
of  degree i, the probability that the signatures of two 
random sequences  differing  in  only one element remain 
distinct after T steps,  using Method 1 or 2,  is 

Using Theorem 1 [42], we can  now  find the probability 
of  aliasing on single-word errors for any CA-based  MISR, 
provided we know the state transition diagram. For 
example, a 4-bit  cyclic  rule  30 cellular automaton has a 
state transition diagram which  yields a probability of not 
aliasing  of [ 1 - (5/128)IT = 0.961 T. If  we examine more 
CA-based  MISRs, we  see that cellular automata with the 
fewest branches of  degree 2 2  in the state transition 
diagram  have the smallest  aliasing probability. If the state 
transition diagram consists  only  of unary branches (i.e., 
cycles, the aliasing probability for  single-word errors is 
zero. Table 3 lists a number of CA rules  which  lead to 
such  behavior. 

Theorem 2 Using SA methods 1 and 2,  we  will  always 
have a different signature for  two sequences differing in 
only one element, provided that the MISR's rule of 
operation forms a cyclic  group. 

L-MISRs.  Therefore, only rules implementing cyclic 
groups should be  used  for  MISRs,  since  for  single errors 
both C-MISRs and L-MISRs will provide the same anti- 
aliasing  capabilities. For single error, using a C-MISR 
built from a CA rule  of Table 3 provides SA properties 
equivalent to those of an L-MISR. 

This can be extended to multiple errors, but  the 
number and complexity of the terms become large. As in 
the single-error  case, implementing SA on a general 
directed tree implies a greater probability of  converging 
to the same signature than on a unary tree [ 1 I]. Once 
again we see that the CA rules  of Table 3 are  the most 
suitable for  use  in a C-MISR  when we consider multiple 
errors. 

estimates on the aliasing probability for the CA rules  of 
Table  3. One such test  is to check the aliasing probability 
by inserting errors into a number sequence until an 
aliased signature occurs. These results are reported in [42]. 
It was found that both SA methods 1 and 2 provided 
essentially the same results. For comparison an L-MISR 
was also included. We noted that both the L-MISR and 
the C-MISR implementations alias at a rate which  is 
approximately predicted by 1/(2" - 1). For example, for 
a length 9 rule 89 cellular automaton  it takes an average 

Notice that Theorem 2 [42] also holds for conventional 

It is possible to do empirical studies to verify our 
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of 433 quadruple error insertions before an aliased 
signature occurs. In addition, the simulation indicated 
that all the CA rules of Table 3 and the LFSR provide 
essentially equivalent aliasing performance for the above 
test. 

the L-MISR circuit, we note that in an L-MISR it is 
possible to miss an error by canceling out the error when 
the LFSR  is shifted [43]. If a C-MISR constructed from 
the rule 90 and 150 hybrid is  used, the error is not 
canceled, since each bit in the C-MISR is a function of 
the incoming information and its two neighbor bits. 

In general, a MISR  receives a word on each cycle 
which  is the exclusive-OR of the expected  word and 
some, possibly  all-zero, error pattern. Recent studies of 
the multiple-input signature analysis case by Miller [44] 
have  shown that if the probability of occurrence is the 
same for all error patterns, the aliasing probability is 
independent of the MISR implementation and depends 
only upon the underlying polynomial. This is a 
generalization of the isomorphism identified for the 
single-input case by Serra et a]. [ 171. The CA and LFSR 
registers are isomorphic in  the sense that they have 
equivalent cycle structures up to relabeling of the states 
under linear operation [ 171. 

However, if the probability of occurrence is not the 
same for all error patterns, Miller’s results show that the 
probability of aliasing is different for  feed-forward and 
feedback  LFSR implementations as well as for the HCA 
configurations which  he considered. As such, it is 
reasonable also to conjecture that the probability of 
aliasing should be  different for the two implementations 
of  C-MISR circuits introduced in this paper. 

In [44], an error model assigning a fixed probability of 
error p to each bit of the error pattern was  suggested. In 
this manner, the probability of an error pattern is a 
function of the  number of 1s in  the pattern and hence of 
the Hamming distance between the error and  the error- 
free  words. For p < 0.5, patterns with  fewer ones are 
more likely. This is  arguably a more realistic error model 
than assuming that all error patterns are equally likely. 
Preliminary results from [44] indicate that for small p ,  
the HCA-based  MISRs display better aliasing 
characteristics than the corresponding LFSR-based 
MISRs. Although this was the error model used in  our 
simulations, we  were unable to distinguish this difference, 
perhaps in part due  to the limited range  of p we  were 
considering. 

To indicate why a C-MISR circuit may  be  preferable to 

Summary 
The main contribution of this work was improvement 
upon conventional test pattern generator circuitry for 
built-in self-test, thereby increasing the fault-detection 
capability of the apparatus and the means by which 
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Table 3 CA rules implementing a cyclic group for both null 
and cyclic boundary  conditions.  Cellular  automaton  90h150 refers to 
a rule 90  and 150 hybrid cellular  automaton where certain sites 
implement CA rules 90 or 150 along  the  array. 

Rule Equation 

204 
51 

60 
195 
102 
153 
90 

I65 
150 
105 

240 
15 

170 
85 

150 
105 
101 
154 
89 

I66 
75 

I80 
45 

210 

90h 150 

Boundary 

all 
all 

null 
null 
null 
null 
null 
null 
null 
null 

cyclic 
cyclic 
cyclic 
cyclic 
cyclic 
cyclic 
cyclic 
cyclic 
cyclic 
cyclic 
cyclic 
cyclic 
cyclic 
cyclic 

null 

Length 

all 
all 

all 
all 
all 
all 

4,6,8; . . 
4,6,8; . 
4,6,8;. . 
4,6,8; . . 

all 
all 
all 
all 
all 
all 

5,7,9;. ’ 

5,7,9; ’ ’ 

5,7,9; ’ ‘ 

5,7,9; ‘ ‘ 

5,7,9; ‘ ‘ 

5,7,9;. ’ 

5,7,9; ’ ’ 

5,7,9; ’ .  

all 

testability is  achieved. The methodology is centered 
around the concept of employing one-dimensional 
cellular automata (CA) as alternatives to linear feedback 
shift  registers (LFSRs). The use  of these structures as 
primary “driving engines” driving logic arrays results in a 
WTPG function with improved statistical properties, 
wiring complexities, and performance. 

In retrospect, it was determined that the CA-based 
WTPGs exhibited much better local and global random 
properties, and, with reservations, appeared similar to the 
statisticalfy independent model. By virtue of the local 
communication architecture and regular topology of the 
CA-based WTPGs, there is a reduced wiring complexity 
associated  with the development of such BIST test 
circuitry. [In this regard, they are extendible to scanning 
techniques such as boundary scan, and  to observation 
techniques incorporating a weighted cellular automaton 
logic  block observer (WCALBO) with multiple 
distributions.] In particular, it was learned that the rule 
90/ 150 HCA, under the zero-spacing WTPG 
configuration, demonstrated sufficiently acceptable 
random properties and is well suited to VLSI. 
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