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This  paper  deals  with  the  aliasing  probability of 
multiple-input  data  compressors  used in self- 
testing networks. It is shown  that  a  far  more 
general  class of linear  machines  than  linear 
feedback shift registers  can  be  used  for  data 
compression  purposes.  The  function of these 
machines is modeled  by  a  Markov  process. The 
steady-state  value  of  the  aliasing  probability is 
shown to be  the same  as  for  single-input 
signature  analysis  registers. An easily  verifiable 
criterion is given  that  allows  one  to  decide 
whether a given  linear  machine falls into this 
class  of  multiple-input  data  compressors. The 
steady-state  value  of  the  aliasing  probability is 
shown to be independent of the  correlation  of 
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the  data  streams at the  inputs  of  the  data 
compressor.  Two  kinds of circuits are  analyzed 
in more  detail  with  respect  to  their  aliasing 
properties:  linear  feedback shift registers with 
multiple  inputs,  and  linear  cellular  automata. 
Simulation  results  show  the  effect  of  the  next- 
state  function  on  the  steady-state  value of the 
aliasing  probability  and  the  effect of correlation 
on  the  transient  response. 

Introduction 
With the use of signature-analysis techniques for testing 
boards introduced by Hewlett Packard [ 11, considerable 
attention has been paid to the aliasing problem-i.e., 
what is the probability that faulty test responses cannot 
be distinguished in the signature analysis register? The 
structure shown in Figure 1 is an example of a signature 
analysis register. The network is supplied with a  pattern, 
and the network responds with a single output which 
goes into the first exclusive-OR gate. The output of this 
exclusive-OR gate then feeds a shift register of length k. 
The second and the last bits of the shift register are 
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exclusive-ORed and are fed  back to the  input side of the 
shift register.  Before a test is begun, the shift register  is 
initialized to  a given  value. Let us assume that the 
network is combinational, so that we need not deal with 
the initialization of the network under test. 

the shifting of the shift register. A test pattern is applied 
to the network inputs. The response produced at the 
network output is shifted one bit position into the shift 
register, concurrent with the application of a new  test 
pattern. As a result, a new value  resides  in the shift 
register,  it  is  ready to accept its next value from the 
output of the network, and so on. 

Before the aliasing can be  discussed in detail, a few 
comments  about probability must be made relative to 
this type of structure. Consider the network in Figure 1, 
and assume that there is a defect in the network such that 
(at least  for one pattern)  the  output is different from the 
good-machine response. Given this defect  in the network, 
assume that all  possible patterns are applied to this 

364 network, and the network's output is observed. Of all the 

Patterns are applied to the network synchronously with 
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2" patterns, where n is the  number of inputs  to the 
network, assume that there are exactly m patterns which 
are different from those of the good machine. Thus, if an 
input vector for the network is selected randomly from 
the set  of  all  possible input vectors, the probability that 
the output of the network is correct is  m/2". 

Thus, for this network and this defect we can say that 
for a  random vector the probability of getting an 
incorrect output is p,  where p is  m/2".  If the input vectors 
are always  selected from the space  of  all  possible  vectors, 
the probability of an incorrect output will always be p for 
this defect. For a stuck-at fault which  is testable (i.e., 
there exists at least one  input vector such that the good- 
machine response is different from the faulty-machine 
response), we can also  say that given a  random  pattern, 
the probability of having a different output is p ,  where 
this p is calculated in the same manner  as above. Hence, 
if a stuck-at fault or a particular defect is being  discussed, 
we can associate with it a parameter p to describe the 
probability of an incorrect output of the network under 
consideration. We also  may  refer to this less formally as 
the probability of an error in the output of the network, 
or simply the probability of an error. 

probability of all  possible faulty test responses which 
cannot be differentiated from the defect-free  response 
(due  to the loss  of information in response compaction). 

There are many forms of this kind of  testing, from 
transition counting to syndromes, signature analysis, 
parity bits, etc. [2-71. Linear feedback shift registers 
(LFSRs) have been proposed to be an integral part of the 
sequential logic  design so that they can be used to both 
generate and compact the results of a test [8,9]. With 
respect to hardware overhead, this solves the problems of 
test data storage for BIST [ 10, 1 11. Instead of storing test 
stimuli and test  responses  in an additional on-chip ROM, 
LFSRs could be  used to generate pseudorandom patterns 
that exercise the network. Test-response compaction by 
LFSRs permits the mapping of network test responses 
onto a single data word, eliminating the need for storing 
thousands of expected test responses for on-chip 
comparison with the measured data. The signature 
registers  suggested in [9] are different from the one shown 
in  Figure 1, in  that they may  have more than one input 
(see Figure 2). Such registers are known as multiple-input 
signature analysis registers (MISRs). In prior work, 
considerable attention has been  paid to  the bounds and 
final  values of aliasing in signature analysis registers such 
as those shown in Figure 1 [ 12-22]. In those papers 
which mention multiple-input signature analysis, this 
case  is treated by alluding to superposition or by 
restricting either the type of signature analysis register or 
the type of  allowable faulty output [23].  However, none 
give the final  value of aliasing, nor do they discuss what 

We define the probability of aliasing to be the 
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happens when different, possibly correlated, error 
probabilities are introduced to the different inputs of the 
shift  register. 

This work  addresses the aliasing problem in a more 
general way  by treating multiple-input signature analysis 
registers as a special kind of linear data compressor 
[24,25]. The analysis also considers a modification of 
LFSRs  recently presented at the 1989 European Test 
Conference [26]. 

First, two theorems are presented which  show the final 
value for aliasing when each input bit to each input stage 
has a probability p of an error and these errors are 
independent. The results are also  given for the case  when 
the probabilities of error for each of the  inputs are 
different  from one another but still independent. The 
analysis is based on the Markov model of the process 
[ 14,  16, 201. A number of simulation results are given to 
demonstrate the conclusions. 

Next, correlation is  allowed  between data streams 
which are inputs to the multiple-input data compressor. 
Given this type of input, a sufficient condition for the 
type of feedback network is found, such that the final 
value of the probability of aliasing is 2-k, where k is the 
number of bits  in the register. With these  results, a new 
class  of data compressors is  defined.  Again, simulations 
reinforcing the results are given for multiple-input 
signature analysis  registers and cellular automata with 
correlated inputs. 

Notation  and  definitions 
Before proceeding to investigate linear data compressors, 
a notation for  MISRs  is derived. It is then shown that 
this notation is  also adequate to describe a more general 
class  of linear data compressors. Figure 3 shows a general 
form of a multiple-input signature analysis register  with a 
linear feedback function. It is linear because  all the 
elements of the feedback function are exclusive-ORs 
which are linear elements over the field GF(2). 

described in matrix notation. The state of the register can 
be represented by a column vector, 

The operation of the MISR of length k can be 

Y(t) = [Y,(t), YAO, . . ., Y k ( 0 I T >  

and the input  at  time t can be represented by a column 
vector, 

= [x,(t), x,(t), . . ., x,(t)lT. 

The next state of the register  is calculated by multiplying 
the current state vector by a next-state matrix C and 
adding the current input to  the product. The first  row  of 
the matrix C is  defined by the presence or absence of 
feedback taps of the given shift register. The next k - 1 
rows represent the shifting function of the shift register. 
This is accomplished by setting the lower  off-diagonal 

3 

' k  
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Structure of a linear data compressor. 

elements to one and all other elements to zero, as shown 
in  the following equation: 

Y(t) = c . Y(t - 1) G3 X @ ) .  

Remember that all additions are done  modulo 2. 

general  class  of linear automata  than LFSRs. 

compressors is shown in Figure 4. It  is a special  case of a 
general linear sequential machine [2]. The  input vector 
X ( t )  feeds the modulo 2 adder directly at  the register 
inputs, and the state of the machine is directly 
observable. The data compressor consists of a 
synchronously clocked  register, a linear feedback 
network, and k bitwise modulo 2 adders. The next state, 365 

We  now  use this matrix notation to describe a more 

The general structure of the investigated data 
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y,(t), of a given register position is the  sum of the  input 
bit x,(t) and w,(t), which is calculated as a  linear 
combination of the values y, ( t  - I ) ,  j = 1, . . . , k, of the 
previous state. The values of all variables y),  w,, and x, 
are elements of GF(2), and  addition is performed modulo 
2  (XOR-operation). The above structure for a data 
compressor  has been chosen because of its ease of 
implementation in a BIST environment.  The register can 
be built from existing output latches of the network, and 
only  a small amount of hardware  for the feedback 
network and  the k modulo 2 adders  must be added  to a 
given design. 

Again, the operation of the  data compressor can be 
described by the following matrix  equation: 

Y( t )  = c . Y(t - 1) @ X( t ) .  

The matrix C describes the function of the feedback 
network, which is allowed to be significantly more 
complex than  in  the LFSR case. Each bit w,(t) can be an 
arbitrary  linear  combination of the bits of the previous 
state vector Y(t - 1 ) .  If the initial  state of the  data 
compressor is Y(-  l) ,  the state at  time j can be calculated 
using the above recursion formula in the following way: 

Y(0) = c . Y(-1) @ X(O), 

Y ( l )  = c . Y(0) @ X ( 1 )  

= c2 ’ Y(-1) @ c . X(0)  @ X(l), 

Y(2) = c . Y ( l )  @ X ( 2 )  

= c3 . Y(-1) @ c2 . X ( 0 )  @ c . X(1) @ X(2), 

. . .  

The state of the  data compressor at  time j is a linear 
combination of the  input vector sequence X and  the 
initial condition Y(-1). This state will be referred to  as 
the signature. 

data compressor. X‘ is defined as the  modulo 2 sum of 
the good-machine output sequence X and  an  error 
sequence ~ ( t )  = [el(t), e,(t), . . . ek(t)lT: 

Let us now assume that a  sequence X’ is applied to  the 

X ’ ( t )  = X ( t )  @ E(t)  for 0 5 t ~ j ,  

An element e, ( t ) ,  i = 1 ,  . . . , k, of the  error vector E(t)  is 
1 whenever there is a difference between the good- 
machine response and  the faulty-machine response at 
output i. For X ’ ,  the following signature Y’ of a faulty 

366 network is obtained: 
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X ’ ( i )  

I 

Thus, for all linear data compressors of the general 
structure shown in Figure 4, the signature of a faulty 
machine  equals the signature of the good machine plus 
the  summation associated with the  error sequence. 
Moreover, Y<,(j)  is independent of the good-machine 
response. We therefore  assume without loss of generality 
that  the initial  state Y(-1) of the  data compressor is 
always logical zero and  that  the good-machine response is 
an all-zero sequence: 

0 

0 
0 0 
0 

Y( - l )  = . . . ; X ( t )  = . . .  
0 - 0  

for all t. 

With this  assumption, aliasing is characterized by a data 
compressor  starting  in the “all-zero” state, Y(0) = IO’, 
and returning to  that state if the  error sequence is applied 
and if there is at least one nonzero  element in  the  error 
sequence. 

Aliasing and Markov  processes 
A  Markov process is represented in a manner very 
similar to  that used to describe sequential machines. As 
with sequential  machines,  a  Markov process is defined in 
terms of states and transitions. Figure 5 shows the 
transition  diagram of a 2-bit multiple-input  signature 
analysis register. The arcs are labeled by the  input symbol 
which results in  the associated transition.  When the  input 
sequence to  the signature analysis register is random,  the 
transitions  are done with the probabilities of the 
respective input symbols. By replacing the  input symbols 
with their probabilities, the transition  diagram for the 
Markov process describing the  operation of the signature 
analysis register with random signals at  the  input is 
obtained. 

Let p,, be the probability of going from state i of the 
register to state j of the register in one step, and, further, 
let p,, be constant (this is called the Markov property). 
That is, no  matter what time  one enters  state i, the 
probability of going to state j is always p,,. A  Markov 
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process on the n = 2h possible states  can  be described by 
the  transition  matrix P = ( p z i ) .  Let a(0) = [a,(O), 
K , ( O ) ,  . . . , K,,(O)] be the initial  condition vector fol the 
state of the Markov process. Thus, a,(O) is the probability 
that  one starts  in  state i of the register at  time 0. We 
arbitrarily assign state 1 to  the all-zero ('0') state. 

Given  the vector a(0) of initial  state probabilities a,(O), 
the probability of a data compressor being in  some  state i 
at time j can be calculated by the following matrix 
equation: 

a(1) = K(0) . P, 

4 2 )  = a(1) . P = a(0) . P2, 

. . .  

a(j) = a(0) . P'. 

Consider the probability of the  data compressor 
starting in the all-zero state and returning to it afterj 
cycles. The initial  state probabilities K,(O) must all be set 
to zero except for the all-zero state, whose probability 

excluding the case of an all-zero error sequence: 
I ~ ~ ( 0 )  is one.  The aliasing probability is obtained by 

P r J j )  

= P r [ Y ( j )  = 'Ol/Y(O) = '0'1 - Pr[E(t)  = [0,  0, . . . ,  01 
~ 

I for t = 0, . . . , j ]  

= rI(j) - Pr [E(t)  = [0, 0, . . ., 01 
~ for t = 0, . . ., j ] .  

I Let the probability that E(t )  = [0, 0, . . . , 01 be q ;  then, 
the probability that E(t )  = [O, 0, . . ., 01 for t = 0, . . ., j )  
is q'+' .  Thus, 

lim Pr [E( t )  = [0, 0, . . ., 01 for t = 0, . . ., j ]  
i-m 

= lim q'+' = 0. 
I-m 

Therefore,  in investigating the steady-state value of Pr,, 
we need to find only the steady-state value of a,(j), 
which is 

lim a,(j) = . 
J-m 

For ergodic Markov processes [24,25,28] with a 
doubly stochastic transition  matrix P, the value of K, can 
be calculated easily. A Markov process is ergodic if there 
is a finite number of time steps such that  the probability 
of a  transition  from  any  state to  any  other state is greater 
than zero. A transition matrix of a Markov process is 
called doubly stochastic if the  sum of the elements of 
every row is one  and if the sum of the elements of every 
column is one. For  an ergodic Markov process with n 

n 
I1  

tf 01 

states and with a  doubly stochastic transition  matrix, the 
final value of the state probability ai(t) will be the  same 
for all states [28]. Thus, 

lim ~ , ( j )  = l / n  for all 1 5 J 5 n, 
I-m 

and 

We now investigate the conditions under which the 
Markov process is ergodic and has  a  doubly stochastic 
transition  matrix. 

Let us start by using a single-input signature analysis 
register as  a small example. For a single-input signature 
analysis register of length k,  we have the following 
equation: 

Given a present-state vector Y ( t )  = [ y , ( t ) ,  . . ., y,(t)]', 
we must show first that it has exactly two possible 
predecessor states, and  that together the transitions from 
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n n  

f State  tran\ition  diagram  for  the  single-input  signature  analysis 
g register  with  feedback  function I + x + x?, 

these states to  the present  state  have  probability  one. If 
we can do this, we will be able to show that  the matrix is 
doubly stochastic. From  the fact that  the basic structure 
is a shift register, which is reflected by the off-diagonal 
ones  in the above equation, we immediately get 

y , ( t )  = y,-,(t - l), i = 2, 3, . . ., k. 

Thus, we must try to find a yk(t - 1) that satisfies the 
general equation; if so, we must  determine  the  number of 
possible values of yh(t - I ) .  From  the general equation 
above, we have 

h 

Y , ( t )  = c c, . Yi(f - 1) @ x,(d 
, = I  

h -  I 

= c, ' y,(t  - 1 )  @ c, . Yk(t  - 1) @x, ( t ) ,  
I =  I 

and making the substitutions for y,(t - l), 
h - I  

Y I ( l )  = 2 c, . y ~ + l ( ~ )  @ c!, ' Y k ( l  - l )  @ 
I =  I 

Since c, = 1,  
k -  I 

Y , ( d  = c c, * vi+l(t) @ Y k ( t  - 1) @ Xl(t). 
I =  I 

Solving for yh(t - I ) ,  
k -  1 

yh(' - '1 = yI(l) @ 2 ci ' y,+l(t) @ xl(f). 
I= I  

There  are thus two possible solutions for yk(t - 1) from 

the above  equation: one solution when xI ( t )  = 1 ,  which 
happens with probability p, and  one solution when 
x,([) = 0, which happens with probability 1 - p. Since 
this is true for any given state, Y ( f ) ,  we have that  the 
elements of each column of the transition  matrix sum  to 
one, or 
21 

c P,, = 1. 
I =  I  

The elements of the rows of the transition  matrix of the 
Markov process are the probabilities of making  a 
transition  from  state i to some statej of the register. This 
can happen  in two ways,  by inserting  a one  into  the 
signature analysis register with probability p, or by 
inserting a  zero with probability 1 - p. Thus,  the 
elements of every row sum  to 1 .  The transition  matrix 
therefore has the property that it  is doubly stochastic; i.e., 
both the elements of every row and  the elements of every 
column  sum  to one. Furthermore, since it  is possible to 
get from  any  state to  any  other state if p # 0, 1 in k (or 
more) steps, the system is irreducible and has  a unique 
stationary  solution x = [2-', P ,  . . . ,2-'1 
such that 

x = x .  P, 

and we have the following theorem. 

Theorem 1 
Given p # 0, 1 and cL = 1, then the final probability 
of being in  any of the 2k states of a k-length signature 
analysis register is 1/2,, regardless of the initial  condition. 

This theorem holds for any  signature analysis register, 
provided that  the feedback function  includes the last bit 
of the shift register. 

Using the above line of reasoning, 

lim Pr, , ( j )  = lim x l ( i )  = 2-k, 

we obtain the following corollary. 

i-m /-" 

Corollary The final value of the probability of aliasing 
Pr,, in a  signature analysis register of length k with c, = 1 
is 1/2h, irrespective of the  error detection probability p, 
o < p <  1. 

for multiple-input  signature analyzers, we  will have 
shown that they converge to  an aliasing probability of 
1/2k. Thus, we need to show that  the transition  matrix 
P = (pi,) for the Markov process for the register with 
multiple inputs is also doubly stochastic. First, let us 
examine how a transition  matrix  for  a single-input 
signature analysis register differs from  a  transition  matrix 
for a  multiple-input  signature analysis register. We are 
using the multiple-input  signature analysis register shown 

If the  same theorem  (doubly  stochastic)  can be proven 
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in Figure 5 ,  with states 00, 01, 1 1,  10 represented by 
subscripts 1, 2 ,  3 ,  4 of the elements of the transition 
matrix. The following is the transition  matrix  for the 
single-input signature analysis register shown in Figure 6: 

( 1  - P )  0 0 
0 0 (1 - P )  

P ( 1  - P I  0 

The following is the transition  matrix  for the multiple- 
input signature analysis register with the  same 
polynomial  shown in Figure 5 :  

[ ( 1  ;;)a (1 - P X ~  - P I  ~ ( 1  - P )  

These  transition  matrices  for the two Markov processes 
are both doubly stochastic. We are now ready to prove 
the two theorems necessary to reach our goal. 

( 1  - P K I   - P )  ( 1  - P ) P  PP P ( I   - P )  
P ( I  - P )  PP ( 1  - P ) P  ( 1  - P ) ( l  - P )  

PP 
P ( I   - P I  ( 1  - P K l  - P )  ( 1  - P I P  

Theorern 2 
For any Markov process, the elements of every row of the 
transition  matrix P sum  to 1. 

Proof See [28]. 

To be doubly stochastic, in addition  to  the elements of 
the rows, the elements of every column of the transition 
matrix  must sum  to 1. The following theorem relates 
properties of the next-state matrix of the  data compressor 
and  the transition  matrix of the Markov process that 
models its behavior. 

Theorem 3 
I f  the  determinant  of  the next-state matrix C of the data 
compressor is 1, the  columns of the transition  matrix P 
sum  to 1.  

Proof We show that for each  state r, ( t )  and each input 
symbol X ( t )  there is a unique predecessor state Yi(r - 1) 
of the  data compressor iff the  determinant of the next- 
state  matrix C is one.  Thus, the  sum over all entries  in  a 
column of the  transition  matrix P will equal the  sum 
over the probabilities of the  input symbols X :  

X 

c P,, = c P(X) = 1. 
,=I 

The proof is by construction: 

r, ( 2 )  = c . Y,(t - 1) a3 X ( l ) :  

r , ( t )  a3 X ( t )  = c . Yi(t - 1). 

Y,(t - 1) = c-I . [ r , ( t )  @ X ( [ ) ] .  

If I C I # 0, then C” exists, and 

Using Theorem 3,  we can now identify which linear data 
compressors are good candidates for having an aliasing 
probability of 2-k. 

Corollary Provided the Markov process is ergodic, the 
final value of the aliasing probability of a  linear data 
compressor with register length k is 2-h if I C I = 1. 

to  the probabilities of the  input symbols X or  the  error 
symbols E = (e , ,  e,, . . . , ek). Thus,  the results also hold 
if the error  bits e,(t)  are strongly correlated. 

Clearly, if 0 < Pr ( e , ,  e,, . . . , ek)  < 1 for all possible 
error patterns,  then  there exists a  path between any  pair 
of states Y, and 5 ,  and  the Markov process is ergodic. 

Note that  no  assumptions have been made with respect 

Theorem 4 
If 0 < Pr ( E )  < 1 for all possible error  patterns  and if 
I C I = I ,  then  the final value of  the aliasing probability is 

for  a  linear data compressor with a register of length k. 

Markov processes and deriving additional checking 
criteria, let us investigate the implication of  the above 
result on  the aliasing properties of multiple-input 
signature analysis registers and linear cellular automata 
(LCA). 

Before proceeding with the investigation of nonergodic 

Application  to  multiple-input  signature  analysis 
registers  and  linear  cellular  automata 
Figure 4 shows a  multiple-input  signature analysis 
register (MISR)  with  a  linear feedback function. The 
next-state matrix  has the following form: 

c, c, c, . . . 
1 0 0  

c = [  0 1 0  0 0 1  

. . .  
0 0 0 . . .  

‘k-1 ‘k 

1 0  

The entries  in the first row are  the feedback coefficients. 
The odes in the lower main diagonal  represent the 
shifting of data. Expanding  along the last column of C, 
the  determinant of this matrix is always 

We can thus conclude the following. 

[with the restriction that 0 < Pr ( E )  < I], the asymptotic 
aliasing probability of a  multiple-input  signature analysis 
register of length k is always 2-k, if the last bit of the 
register is fed back. Of  course, other bits in  the signature 

Regardless of the distribution of the error  patterns 
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analysis register may also be fed back in addition to the
kth bit .

From the work of Smith [ 13], it is clear that if no bits
are fed back and the probability of an error is 1 /2 at each
input, the final value of the aliasing probability is 2 k.
However, Figure 7 shows the potential impact of not
feeding back the last bit of an 8-bit MISR if the
probability of an error is 0 .01 for all input ports of the
register. The aliasing probability of the register whose last
bit is not fed back may be significantly higher .

With respect to built-in test pattern generation, cellular
automata have been proposed as an alternative to linear
feedback shift registers [29] . Here we concentrate on the
feasibility of linear cellular automata (LCA) for data-
compression purposes . Figure 8 shows an example of a
LCA. The state of each cell is restricted to depend only
on the previous states of the cell itself, its two adjacent
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Table 1 Determinants of the next-state matrix of a linear
cellular automation of length k with zero boundary conditions .

Length

	

C

3

	

a,
4

	

a, ® a i a, • a 3 n a, a 3
5

	

a, ® a, • a, a 3
6

	

a, ® a, a, a 3 ® a, a 3
7

	

a,
8

	

a, ® a, • a 3

k

	

I Corderk I= I Cordar -, I

C, = a, • C5 _ 1 e a, • a3 • CA- ,

cells, and the value of the actual input bit (Figure 8) .
Generally the next-state function of each cell of a LCA

can be written as

y,(t) = a, • y,_,(1 - 1)

® a, • y, (t - 1) ® a 3 y;+,(t - 1) ® x; (t) .

Assuming zero boundary conditions, i .e .,

y0 (t) = 0 and y,,,, (t) = 0 for all t,

the operation of a LCA-based data compressor is
described by the following next-state matrix (which is
tridiagonal):

Table I lists the determinants for different lengths k of
the data compressor. In contrast to MISRs, no simple
general rule can be given for the proper selection of the
next-state function of a cell . Setting (a, a2, a 3 ) = ( 1, 1, 1)
results in a minimal steady-state value of the aliasing
probability Pra , = 2 ' for a 7-bit data compressor .
However, for an 8-bit device (a„ a 2 , a3 ) = ( 1, 0, 1) is the
better choice. Figure 9 compares 8-bit data compressors
with (a,, a2 , a,) = ( 1, 1, 1) and (a„ a 2 , a3 ) = ( 1, 0, 1) .
The probability of any bit being in error has been set to
0.1 for all inputs.

Nonergodic Markov processes

In the previous sections the ergodic property of the
Markov process has been ensured by the requirement
that the probability of all input error patterns must be
greater than zero . Thus, there is always a path in the state
diagram between arbitrary pairs of states . However, if a
fault is always propagated to a subset of the outputs of
the network under test or creates 100% correlation
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a 2 a, 0 	 • 0 0
a, a2 a 3 •

	

• 0 0
0 a 2 	 • 0 0
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0 0 a2 a,
0 0 0 a, a2
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1 Aliasing  probability  for  8-bit  cellular-automata-based  data 1 compressors with next-state  coefficients (a,, c t 2 ,  a?) = (1, 1. I)  and 
- - 

conditions between  any  two outputs, some error patterns 
E will  never  be  created, and thus can  never  be  applied to 
the data compressor.  Consequently, the number of 
possible state transitions is  reduced, and we can no longer 
be certain that a path between  two arbitrary states  exists. 
Hence, the Markov  process  may  become  nonergodic. 
Figure 10 shows the state  diagram  for a 3-bit  multiple- 
input signature  analysis  register when a fault  is 
propagated to input 2 of the  register  only. The only error 
patterns that are possible are (0, 0,O) and (0, 1, 0), the 
former  being the error-free  good-machine  response. 

Starting in state (0, 0, 0), only three additional states 
can  be  reached. Thus, after a sufficient number of error 
patterns E ( f )  have  been  applied, the state probabilities of 
these  four  states  can  be  expected to be 1/4, while the state 
probabilities of the remaining  states will  be 0. The final 
value  of the aliasing  probability will  be 2-*, not 2-3 as  is 
usually  expected  for a 3-bit  signature  analysis  register. 
Figure 11 shows the result  of a simulation of the Markov 
process  for e, = e, = 0 and Pr (e, = 1 )  = 0.9. 

Figure 12 shows the state diagram of the previous 
multiple-input signature  analysis  register  for the case in 
which an error always  appears at register inputs 1 and 3 
simultaneously. Now  only (0, 0, 0) and (1, 0, 1) are 
possible error inputs to the data compressor. As in the 
previous  case, the final  value  of the aliasing  probability 
will  be 2-2 instead of 2-3 (Figure 13). 

Operational  analysis of the  data compressor 
To derive  criteria  for  checking  whether the Markov 
process is ergodic, we  now analyze how an error sequence 

000 

1 

1 Nonergodic Markov process for register I + I + x' + .x3. 

0 e2 0 
600.0 - - 

m 

0 

-- 400.0 - 
x 

&- 

200.0 - 
Expected aliasing probability 

0.01 ' I 1 I I I I 
0 10  20  30 40 50 60 

1 Aliasing in a 3-bit MISR with only one error input e2 

E( t )  is  mapped onto a state sequence Y ( t )  by a given 
linear data compressor. This analysis will enable us to 
determine the number of states of the compressor if only 
a subset  of  all  possible error patterns can be applied to 
the inputs of the automaton. We  will thus be able to 
determine whether the Markov process is ergodic. 
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Table 2 D-transform pairs. 

000 

"t "t "3 

Nonergodic behavior of a .?-bit MISR for error patterns (0, 0,O) and 1 U , O ,  1). 

- 400.0 - 
d 

200.0 - 
Expected aliasing  probability 

0.01 1 I I , , I  
0 10 20 30 40 50 60 

Test  length 

I Increase of the aliasing probability of a 3-bit MISR due to strong 
f correlation between e ,  and e 3 .  

The analysis employed uses the D-transform [27], 
which is very similar to  the z-transform of sampled data 
theory [27,30]. However, as we are dealing  with Galois 

372 functions rather  than real-valued functions, it is less 
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3. Sum G(D) 
1 633D 

confusing if we differentiate between the two types of 
transforms. 

are  zero for t < 0: 
The D-transform is defined only  for  functions g ( t )  that 

D[g(t)] E G(D)  = g(0 )  @ D . g(l) @ . . . 
m 

= g ( t )  . D'. 
r=o 

Table 2 shows some transform pairs. Assuming again 
that  the good-machine response X ( t )  is zero, the behavior 
of  the linear data compressor is described in  the  time 
domain by the following equation: 

Y( t )  = c . Y(t - 1) @ E(t).  

By applying the D-transform, we get 

D[ Y(t)]  = C . D[ Y(t - I ) ]  @ D[E(t)], 

Y(D) = C . D . Y(D) @ E(D). 

Solving for Y(D), an operational  relationship is 
established between the  error sequence E and  the state 
sequence Y :  

Y(D) = ( I  G3 D . C)-' . E@). 

With 

( I  @ DC)" = [ ( I  @ Dc)adJ]T/I ( I  @ DC) 1 

= [ ( I  @ Dc)adJ]T/p(D) 

= T(D), 

we get 

Y(D) = T(D) . E(D). 

Defined as 
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With  respect to the ergodicity of the Markov process, this means that  the process  is  ergodic if the Markov process  is 
ergodic  for a subset of the error symbols  consisting of the all-zero  vector and an arbitrary error Vector (e,, e,, . . . , e,). 
Thus, the Markov  process  is  ergodic  for  all  sets  of  two or more error symbols that contain the all-zero  vector. 

In the example of Figure 11, an error was supposed to occur only at  input e, of the investigated MISR. The set of 
possible error patterns consists  only of the two  vectors (0,  0, 0) and (0, 1, 0). Here the transfer function E(D) Y(D) 
is  described  as  follows: 
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In the above  example, the transfer function  can be 
simplified, because the  terms in the  numerator  and  the 
characteristic  polynomial in  the  denominator have  a 
common factor. A canonical implementation of a 
network realizing the transfer  function  can easily be 
given. The necessary number of register cells equals the 
degree of the polynomial in  the  denominator, which is 
reduced from 3 to 2 in this case (Figure 14). 

Since the state variables y ,  , y,, y3 are derived  from  a 
smaller number of state variables y ;  , y ;  of the equivalent 
network,  they  must  be linearly dependent.  Further, if a 
linear data compressor of length k can be  modeled by an 
equivalent  linear data compressor of length m < k in  the 
case of a  reduced-error-input  alphabet, the final value of 
the aliasing probability of the original data compressor of 
length k is Pr,, = 2-" > 2-k. Figure 15 shows the 
equivalent  circuit  for the example of Figure 12, where 

For the investigated 3-bit MISR, the functionally 
equivalent  circuit  has a minimal  number of register cells 
if a  fault always propagates to all three inputs of the 
device (e, = e, = e3). In this case, we get the following 
transfer function: 

E E  ( (O,O,   O) ,  (1 ,  0, 1 ) l .  

Figure 16 shows the equivalent circuit. An aliasing 
probability of 0.5 has been verified by simulation of the 
Markov process (Figure 17). 

Aliasing  probability and characteristic 
polynomial 
As shown in  the previous  section,  a  reduction of the 
input alphabet of the  data compressor  may result in a 
partitioning of the set of states that  can be visited. This 
partitioning is such that there exists no path in the state 
diagram between two states that belong to different 
partitions. As a result, the Markov process becomes 
nonergodic. Unless we are interested in  autonomous 
behavior, a minimal subset of the  input alphabet of the 
data compressor  comprises  two  patterns. In this  context, 
one of the  patterns is the all-zero vector [0, 0, . . . , O]', 
and  the  other  one is [h,  , h,, . . . , hkIT, which has 
its  ones  (and zeros) at fixed bit positions  through 
the  duration of the experiment.  These  two vectors 
can be represented by 
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Using the D-transform, the behavior of the  circuit  in  this 
special situation  can be analyzed as follows: 

Y(D)  = T(D) . E(D) 

= T(D)  . [h , ,   h , ,  . . ., h,]’ . D[e(t) l  

= T(D)  . [h , ,   h , ,  . .., hkIT . e(D).  

These transfer functions are linear combinations of the 
elements in the respective columns  of T(D). If the 
numerator  and  the  denominator of the resulting transfer 
function have common factors, the expression can be 
simplified, and a less complex transfer function is 
obtained (see previous examples): 

Now let us assume that we get the  same  denominator 
p ’ ( D )  for all transfer functions e ( D )  - y,(D), 1 5 i 5 k.  
Using the transfer  functions, it is now possible to obtain  a 
canonical  implementation, i.e., a  network with a minimal 
number of register cells. The network is a single-input 
signature analysis register with deg [ p ’ ( D ) ]  register cells. 
This kind of data compressor  has been investigated in a 
previous paper; we refer to  the results without  proof [25] .  

For a  linear data compressor with an  input alphabet 
restricted to two symbols, the following statements  are 
valid: 

The final value of the aliasing probability is 2-”, with 
rn = deg [ p ’ ( D ) ]  and p‘(D)  constituting the feedback 
function of the functionally  equivalent  canonical 
network. 

final value ifp’(D) is primitive [16, 20, 31, 321. 
0 The aliasing probability Pral ( t )  converges fastest to its 

As p ’ ( D )  is always a factor of the characteristic 
polynomial p(D)  of the linear data compressor, an upper 
bound of the final value of the aliasing probability can  be 
given. 

Let 

P(D)  = PI ( 0  . PAD) . . . . P, (Dl, 

with 

p, (D)  # 1 i = 1, 2, . . . , j ,  
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I .0 1 
e l  = e2 = ‘3 
I l l  

0.2 - Expectcd minimum  allasing probability 
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and 

k,,, = Min  jdeg[p,(D)]) i = 1, 2, . . . , j ;  

then 

Pr,,,,,, = 2 - k m j n  

is an upper bound  on  the final value of the aliasing 
probability of the linear data compressor. 

Figure 18 shows a  MISR with feedback function 
1 + x, as  proposed  in [ 121. The characteristic  polynomial 
for this  circuit is 

p ( D )  = 1 Cl3 Dk = ( I  Cl3 D)(1 Cl3 D 63 D 2  63 . . .  63 d ” ) .  

An upper bound of the final value of the aliasing 
probability for this would be 

Pral,max = 2-deg(l@”) = 0.5. 

If at time t an error propagates to all inputs of the MISR, 
we  get exactly this value of the aliasing probability (see 
Figure 18), regardless of the length of the register. 

Now let us assume that p ( D )  is irreducible. 

Theorem 6 
If the characteristic  polynomial of the next-state matrix C 
of a  linear data compressor with k register cells is 
irreducible, and if the  input alphabet consists of two (or 
more)  error symbols, the aliasing probability is 2-k. 

Proof From  the transfer function of the  data 
compressor, a  functionally  equivalent single-input 
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A] iasing probability for correlated error streams

signature analysis register implementation with no less
than k register cells can be derived . The aliasing
probability for this register is 2 k , and because of the
functional equivalence, the aliasing probability of the
original data compressor must be 2 -k as well .

Corollary The aliasing probability of a linear data
compressor with k register cells is 2

A
regardless of the

probability distribution of the error pattern Pr (E),
if I C I = 1 and if the characteristic polynomial of the
next-state matrix C,

p(D) = IIeD . CI,

is irreducible .

Proof As has already been shown, I C I = I means that
the transition matrix of the Markov process is doubly
stochastic . Ifp(D) is irreducible, the Markov process is
ergodic for an arbitrary two-symbol-input alphabet that
includes the all-zero vector ; and with Theorem 5, the
Markov process must be ergodic for any subset of the
full-input alphabet, which again includes the all-zero
vector . Hence, Prat = 2 k.

Classification of linear data compressors
On the basis of the results presented here, the following
classification scheme for linear data compressors can be
given :

1 . ICI =o :

376

	

The final value of the aliasing probability depends on
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the probability of an error at the outputs of the circuit
under test .

2 . I C I = I and p(D) reducible:

The final value of the aliasing probability does not
depend on the error probability, but rather on the
correlation of error streams at different inputs of the
data compressor and on the inputs of the compressor
where the errors are observed : Prat _ 2 km

^ .

3 . I C I = 1 and p(D) irreducible:

The final value of the aliasing probability of a linear
data compressor with k register cells is Pa t = 2-k , with
no regard to the probability distribution Pr (E) of the
error patterns E(i) .

In a recent paper [311 it has been shown, for multiple-
input signature analysis registers with independent
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Impact of the error sequence on the transient of the a] iasing
probability of an 8-bit MISR .
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inputs.  that the transient o f  the aliasing probability has a maximum  damping if the feedback polynomial is not only 
irreducible but primitive. As we are capable of constructing  a  functionally  equivalent shift-register implementation by 
means of the  D-transform.  this result can be extended to  the  more general class of linear data compressors investigated 
here. 

4. I c' I = I and p ( D )  primitive: 
The aliasing probability converges fastest to its final value. 2"k 

Simulation results show that  the final value of the aliasing probability is reached after  some oscillations. The 
magnitude of the oscillations and the locations of the local minima depend on the error pattern  sequence. Figure 19 
shows the aliasing probability for an %bit MISR for two  dilt'crent fault situations. In the first case, a fault is propagated 
to  inputs 2 and 3 simultaneously;  in  the second case. an error  appears at register inputs I and 3 with probability 0.9. 
Since the  error  sequence  depends on  the actual fault inside the  circuit, no advantage can be drawn from knowing the 
minima for a particular fault situation. A low final value of the aliasing probability. together with a  strong damping of 
the  transient. has to be considered as the best overall choice" 

Application  to  multiple-input  signature  analysis registers 
In  this section we investigate the relation between the feedback function and  the characteristic  polynomial p(D) .  The 
feedback function is usually given as  a  polynomial, 

h 

p(x) = 1 @ c, ' XI. 
/ = I  

Because the characteristic polynomial p ( D )  is identical to  the feedback polynomial p ( x ) ,  we can conclude the 
following: 

If the feedback polynomial of a  multiple-input  signature analysis register of length k is irreducible, the final value 
of the aliasing probability is 2 - A ,  

For  a list  of primitive  polynomials up  to degree 300, see [IO]. 

Application  to  linear  cellular  automata 
For the given class of LCAs, the characteristic  polynomial is the following determinant: 

0 
0 
0 

N, . D 
D@ 1 
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A 
500.0 - 

I 
400.0 - - 

m 

0 
X 300.0 - - 
- 
6” 1 ,corn. = 1.0 

200.0 - 

Table 3 Characteristic polynomial for  linear  cellular automata. 

Impact of time  correlation 
In the previous section, correlation has always been 
considered as  a dependency between different bits e, of 
the  error input vector E(t). Let us now take  a  short look 
at how correlation between successive error bits at one bit 
position might influence aliasing. It has been shown that 
a linear feedback shift register, which is a functionally 
equivalent canonical representation of the linear data 
compressor, can be derived by means of the  D-transform 
analysis. Thus, we can rely on previous results [ 10, 1 1, 
13,  17, 321 and state  the following: 

An aliasing error due  to time  correlation of error bits 
occurs only if the D-transformed error vector 
sequence is a multiple of the characteristic 
polynomial of the  linear  data compressor. 

There  are  more complex correlations, combinations of 
time and space correlations, possible for MISRs. For 
instance, error cancellation occurs for the 3-bit MISR of 
Figure 12, if inputs e, = e3 = e, and  input e, = D’e, i.e., 
100% correlated to r but delayed two time units. Then, 

Y,(D)  = 0, 

Y’(D) = e (Dl, 

and 

J p )  = (D + 1)e. 

Thus 

Y J f )  = 0, 

Y J f )  = 4 / 1 9  

and 

y,(t) = e( t )  63 e(t - 1). 

Then  the final probability of aliasing is 
(1  - P) . [( 1 - P)’ @ p’], or 0.25 for p = 0.5. 

Figure 12, 
On  the other hand, for the correlation example of 

1 
Y , ( D )  = Y@) = JqD) = x . e,(D). 
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Then, taking the inverse D-transform, 

y , ( t )  = e,( f ) ,  i = 1, 2 ,  3. 

Thus, for large n, the final aliasing probability is 1/2, 
since  it  reflects the cumulative parity of the incoming 
error stream. On average, this signature will  be zero 
(aliasing) 50% of the time. 

n 

t=o 

Conclusions 
In this paper the aliasing probability of multiple-input 
linear data compressors has been investigated; sufficient 
conditions have  been derived to ensure an aliasing 
probability of 2-k if the data compressor has k register 
cells. If these conditions are met, the aliasing probability 
does not depend on the distribution of the errors at the 
data compressor input. In particular, the aliasing 
probability does not depend on correlation between 
errors at the different inputs. By application of the 
derived criteria, it has been shown that multiple-input 
signature analysis registers  with an irreducible feedback 
polynomial can meet the conditions for  every  register 
length. 
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