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This paper deals with the aliasing probability of
multiple-input data compressors used in self-
testing networks. It is shown that a far more
general class of linear machines than linear
feedback shift registers can be used for data
compression purposes. The function of these
machines is modeled by a Markov process. The
steady-state value of the aliasing probability is
shown to be the same as for single-input
signature analysis registers. An easily verifiable
criterion is given that allows one to decide
whether a given linear machine falls into this
class of multiple-input data compressors. The
steady-state value of the aliasing probability is
shown to be independent of the correlation of

©Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 34 NO. 2/3 MARCH/MAY 1990

the data streams at the inputs of the data
compressor. Two kinds of circuits are analyzed
in more detail with respect to their aliasing
properties: linear feedback shift registers with
multiple inputs, and linear cellular automata.
Simulation results show the effect of the next-
state function on the steady-state value of the
aliasing probability and the effect of correlation
on the transient response.

Introduction

With the use of signature-analysis techniques for testing
boards introduced by Hewlett Packard [1], considerable
attention has been paid to the aliasing problem—i.e.,
what is the probability that faulty test responses cannot
be distinguished in the signature analysis register? The
structure shown in Figure 1 is an example of a signature
analysis register. The network is supplied with a pattern,
and the network responds with a single output which
goes into the first exclusive-OR gate. The output of this
exclusive-OR gate then feeds a shift register of length k.
The second and the last bits of the shift register are
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exclusive-ORed and are fed back to the input side of the
shift register. Before a test is begun, the shift register is
initialized to a given value. Let us assume that the
network is combinational, so that we need not deal with
the initialization of the network under test.

Patterns are applied to the network synchronously with
the shifting of the shift register. A test pattern is applied
to the network inputs. The response produced at the
network output is shifted one bit position into the shift
register, concurrent with the application of a new test
pattern. As a result, a new value resides in the shift
register, it is ready to accept its next value from the
output of the network, and so on.

Before the aliasing can be discussed in detail, a few
comments about probability must be made relative to
this type of structure. Consider the network in Figure 1,
and assume that there is a defect in the network such that
(at least for one pattern) the output is different from the
good-machine response. Given this defect in the network,
assume that all possible patterns are applied to this
network, and the network’s output is observed. Of all the
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2" patterns, where 7 is the number of inputs to the
network, assume that there are exactly m patterns which
are different from those of the good machine. Thus, if an
input vector for the network is selected randomly from
the set of all possible input vectors, the probability that
the output of the network is correct is m/2".

Thus, for this network and this defect we can say that
for a random vector the probability of getting an
incorrect output is p, where p is m/2". If the input vectors
are always selected from the space of all possible vectors,
the probability of an incorrect output will always be p for
this defect. For a stuck-at fault which is testable (i.e.,
there exists at least one input vector such that the good-
machine response is different from the faulty-machine
response), we can also say that given a random pattern,
the probability of having a different output is p, where
this p is calculated in the same manner as above. Hence,
if a stuck-at fault or a particular defect is being discussed,
we can associate with it a parameter p to describe the
probability of an incorrect output of the network under
consideration. We also may refer to this less formally as
the probability of an error in the output of the network,
or simply the probability of an error.

We define the probability of aliasing to be the
probability of all possible faulty test responses which
cannot be differentiated from the defect-free response
(due to the loss of information in response compaction).

There are many forms of this kind of testing, from
transition counting to syndromes, signature analysis,
parity bits, etc. [2-7]. Linear feedback shift registers
(LFSRs) have been proposed to be an integral part of the
sequential logic design so that they can be used to both
generate and compact the results of a test [8, 9]. With
respect to hardware overhead, this solves the problems of
test data storage for BIST [10, 11]. Instead of storing test
stimuli and test responses in an additional on-chip ROM,
LFSRs could be used to generate pseudorandom patterns
that exercise the network. Test-response compaction by
LFSRs permits the mapping of network test responses
onto a single data word, eliminating the need for storing
thousands of expected test responses for on-chip
comparison with the measured data. The signature
registers suggested in [9] are different from the one shown
in Figure 1, in that they may have more than one input
(see Figure 2). Such registers are known as multiple-input
signature analysis registers (MISRs). In prior work,
considerable attention has been paid to the bounds and
final values of aliasing in signature analysis registers such
as those shown in Figure 1 [12-22]. In those papers
which mention multiple-input signature analysis, this
case is treated by alluding to superposition or by
restricting either the type of signature analysis register or
the type of allowable faulty output [23]. However, none
give the final value of aliasing, nor do they discuss what
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happens when different, possibly correlated, error
probabilities are introduced to the different inputs of the
shift register.

This work addresses the aliasing problem in a more
general way by treating multiple-input signature analysis
registers as a special kind of linear data compressor
[24, 25]. The analysis also considers a modification of
LFSRs recently presented at the 1989 European Test
Conference [26].

First, two theorems are presented which show the final
value for aliasing when each input bit to each input stage
has a probability p of an error and these errors are
independent. The results are also given for the case when
the probabilities of error for each of the inputs are
different from one another but still independent. The
analysis is based on the Markov model of the process
[14, 16, 20]. A number of simulation results are given to
demonstrate the conclusions.

Next, correlation is allowed between data streams
which are inputs to the multiple-input data compressor.
Given this type of input, a sufficient condition for the
type of feedback network is found, such that the final
value of the probability of aliasing is 27 where k is the
number of bits in the register. With these resuits, a new
class of data compressors is defined. Again, simulations
reinforcing the results are given for multiple-input
signature analysis registers and cellular automata with
correlated inputs.

Notation and definitions
Before proceeding to investigate linear data compressors,
a notation for MISRs is derived. It is then shown that
this notation is also adequate to describe a more general
class of linear data compressors. Figure 3 shows a general
form of a multiple-input signature analysis register with a
linear feedback function. It is linear because all the
elements of the feedback function are exclusive-ORs
which are linear elements over the field GF(2).

The operation of the MISR of length k can be
described in matrix notation. The state of the register can
be represented by a column vector,

Y1) = [yl(t)’ yz(l), tey yk(t)]r,

and the input at time 7 can be represented by a column
vector,

X(2) = [x,(0), x,(1), -+, x ().

The next state of the register is calculated by multiplying
the current state vector by a next-state matrix C and
adding the current input to the product. The first row of
the matrix C is defined by the presence or absence of
feedback taps of the given shift register. The next k — |
rows represent the shifting function of the shift register.
This is accomplished by setting the lower off-diagonal
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elements to one and all other elements to zero, as shown
in the following equation:

yl(l) ¢ 6 ¢ C, yl(l -1 Xl([)
¥,(0) 1 0 0 0 wit=1) Xy(?)
»() 01 0 0 yt=1) Xx,(1)
0! 0 0 0 1 0 ni -1 X (1)

Y@)=C . Y —1)® X().

Remember that all additions are done modulo 2.

We now use this matrix notation to describe a more
general class of linear automata than LFSRs.

The general structure of the investigated data
compressors is shown in Figure 4. It is a special case of a
general linear sequential machine [2]. The input vector
X(t) feeds the modulo 2 adder directly at the register
inputs, and the state of the machine is directly
observable. The data compressor consists of a
synchronously clocked register, a linear feedback
network, and & bitwise modulo 2 adders. The next state,
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y,(1), of a given register position is the sum of the input
bit x,(¢) and w,(¢), which is calculated as a linear
combination of the values y,(t — 1), j=1, - - -, k, of the
previous state. The values of all variables Y, w;, and X,
are elements of GF(2), and addition is performed modulo
2 (XOR-operation). The above structure for a data
compressor has been chosen because of its ease of
implementation in a BIST environment. The register can
be built from existing output latches of the network, and
only a small amount of hardware for the feedback
network and the k modulo 2 adders must be added to a
given design.

Again, the operation of the data compressor can be
described by the following matrix equation:

Yty=C . Yt — 1)@ X().

The matrix C describes the function of the feedback
network, which is allowed to be significantly more
complex than in the LFSR case. Each bit w,(¢) can be an
arbitrary linear combination of the bits of the previous
state vector Y(¢ — 1). If the initial state of the data
compressor is Y(—1), the state at time j can be calculated
using the above recursion formula in the following way:

7(0) = C - Y(~1) ® X(0),
Y(1) =C - Y(0) ® X(1)

=C'. Y(-1)® C - X(0)® X(1),
Y(2) =C - Y(1) ® X(2)

=C . Y-1)®C . X0)®C - X(1)D X(2),

Y(Hy=C" . v-1) e i‘ 7 LX3).

i=0

The state of the data compressor at time j is a linear
combination of the input vector sequence X and the
initial condition Y(-1). This state will be referred to as
the signature.

Let us now assume that a sequence X’ is applied to the
data compressor. X’ is defined as the modulo 2 sum of
the good-machine output sequence X and an error
sequence E(1) = [e,(1), e,(2), - - - e(D)]":

X'(t) = X(t) ® E(1) forO0=t=j.

An element e,(¢), i = 1, - - -, k, of the error vector E(¢) is
| whenever there is a difference between the good-
machine response and the faulty-machine response at
output 7. For X”, the following signature Y’ of a faulty
network is obtained:
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Y(j)y=C"" . Y=D® T T X30)

i=0

=CM . Y- Y CT L [X()® EG)]

=[C .Y~ P X0

® 3 C7 . E>G),

gM\.

i

Y'()=Y())® T C™ . Ei) = Y(j) ® Y,()).

i=0
Thus, for all linear data compressors of the general
structure shown in Figure 4, the signature of a faulty
machine equals the signature of the good machine plus
the summation associated with the error sequence.
Moreover, Y (/) is independent of the good-machine
response. We therefore assume without loss of generality
that the initial state Y(—1) of the data compressor is
always logical zero and that the good-machine response is
an all-zero sequence:

0 0
0 0
0
YD) ={---]; X)) = for all .
0 0

With this assumption, aliasing is characterized by a data
compressor starting in the “all-zero” state, Y(0) = '0',
and returning to that state if the error sequence is applied
and if there is at least one nonzero element in the error
sequence.

Aliasing and Markov processes

A Markov process is represented in a manner very
similar to that used to describe sequential machines. As
with sequential machines, a Markov process is defined in
terms of states and transitions. Figure 5 shows the
transition diagram of a 2-bit multiple-input signature
analysis register. The arcs are labeled by the input symbol
which results in the associated transition. When the input
sequence to the signature analysis register is random, the
transitions are done with the probabilities of the
respective input symbols. By replacing the input symbols
with their probabilities, the transition diagram for the
Markov process describing the operation of the signature
analysis register with random signals at the input is
obtained.

Let p,,; be the probability of going from state i of the
register to state j of the register in one step, and, further,
let p,; be constant (this is called the Markov property).
That is, no matter what time one enters state /, the
probability of going to state j is always p,;. A Markov
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process on the n = 2 possible states can be described by
the transition matrix P = (p,)). Let «(0) = [ (0},

7,(0), - - -, ,(0)] be the initial condition vector for the
state of the Markov process. Thus, «,(0) is the probability
that one starts in state i of the register at time 0. We
arbitrarily assign state 1 to the all-zero ('0') state.

Given the vector 7(0) of initial state probabilities «,(0),
the probability of a data compressor being in some state |
at time ; can be calculated by the following matrix
equation:

w(1) = 7 (0) . P,
7(2) = (1) - P =x(0) - P,

x(j) = 7(0) - P”.

Consider the probability of the data compressor
starting in the all-zero state and returning to it after j
cycles. The initial state probabilities «,(0) must all be set
to zero except for the all-zero state, whose probability
=,(0) is one. The aliasing probability is obtained by
excluding the case of an all-zero error sequence:

Pr,(Jj)

= Pr[Y(j)= '0'/¥(0) = '0') — Pr[E() = [0, 0, - -+, 0]
for t=0,-...,/]

= m,(j) = Pr[E{t)=[0,0, ---, 0]

for t=0, -,/

Let the probability that E(¢) = [0, 0, - - -, 0] be g; then,
the probability that E(¢) = {0,0, ---, 0] forr =0, ---, j)
isg’"". Thus,

lim PriE(t) =[0,0, ---,0] for t=0, --.,/]

Je

=limg™" = 0.
jrco

Therefore, in investigating the steady-state value of Pr,,
we need to find only the steady-state value of = (j),
which is
lim# (j)=m,.
joee

For ergodic Markov processes [24, 25, 28] with a
doubly stochastic transition matrix P, the value of =, can
be calculated easily. A Markov process is ergodic if there
is a finite number of time steps such that the probability
of a transition from any state to any other state is greater
than zero. A transition matrix of a Markov process is
called doubly stochastic if the sum of the elements of
every row is one and if the sum of the elements of every
column is one. For an ergodic Markov process with n
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(e )=,
P+ x+ a2

State transition diagram for the multiple-input signature analysis
register with feedback function | + x + x2.

states and with a doubly stochastic transition matrix, the
final value of the state probability =, (t) will be the same
for all states [28]. Thus,

lim=,(j)=1/n

S

forall 1=j=<n,

and

lim Pr, (j) = 1/n=27"
oo
We now investigate the conditions under which the
Markov process is ergodic and has a doubly stochastic
transition matrix.

Let us start by using a single-input signature analysis
register as a small example. For a single-input signature
analysis register of length k, we have the following
equation:

», (1) € 6 Cy - C, =1 x(t)
1) 100 - 0] | »a-1 [ 0
yi(0) 010.---0 yit = 1) 0
S el I I S I
y{0) 000 --10 ye=1 0

Given a present-state vector Y{(¢) = [y,(?), - - -, yk(t)]T,
we must show first that it has exactly two possible
predecessor states, and that together the transitions from
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367




368

State transition diagram for the single-input signature analysis
register with feedback function | + x + x2,

s . s ” s
;
ﬁ

these states to the present state have probability one. If
we can do this, we will be able to show that the matrix is
doubly stochastic. From the fact that the basic structure
is a shift register, which is reflected by the off-diagonal
ones in the above equation, we immediately get

i=23 -k

y;(l) = y,‘-l(l - l)a
Thus, we must try to find a y,(# — 1) that satisfies the
general equation; if so, we must determine the number of
possible values of y,(¢ — 1). From the general equation

above, we have

y,(l) C; - yi(t - 1) & Xl(f)

I
N >

=
|

1

¢ - yt—1@c, -yt —1)®x(),

1l
(R %!

and making the substitutions for y,(r — 1),
k=1
y](l) = 2 ¢ - y,‘+\(t) ® Cp - yk(t - 1)@X‘(l).
i=1
Since ¢, = 1,
k=1
yl([) = Z c,’ * .Vi+1(t) @ .Vk([ - 1) @ x1(t)-
i=1
Solving for y, (f — 1),
k=1

Ka=1D=y00 % ¢ -y, x0).

i=1

There are thus two possible solutions for y,{t — 1) from
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the above equation: one solution when x,(f) = 1, which
happens with probability p, and one solution when

x,(t) = 0, which happens with probability 1 — p. Since
this is true for any given state, Y(r), we have that the
elements of each column of the transition matrix sum to
one, or

The elements of the rows of the transition matrix of the
Markov process are the probabilities of making a
transition from state i to some state j of the register. This
can happen in two ways, by inserting a one into the
signature analysis register with probability p, or by
inserting a zero with probability 1 — p. Thus, the
elements of every row sum to 1. The transition matrix
therefore has the property that it is doubly stochastic; i.e.,
both the elements of every row and the elements of every
column sum to one. Furthermore, since it is possible to
get from any state to any other state if p #2 0, 1 in k (or
more) steps, the system is irreducible and has a unique
stationary solution = = [27, 27" ..., 279

such that

=7 . P,

and we have the following theorem.

Theorem 1
Given p# 0, 1 and ¢, = 1, then the final probability
of being in any of the 2" states of a k-length signature
analysis register is 1/2", regardless of the initial condition.
This theorem holds for any signature analysis register,
provided that the feedback function includes the last bit
of the shift register.
Using the above line of reasoning,

lim Pr,(j) = lim = (j) = 27
J

Je o0

we obtain the following corollary.

Corollary The final value of the probability of aliasing
Pr, in a signature analysis register of length k with ¢, = 1
is 172, irrespective of the error detection probability p,
O0<p<l.

If the same theorem (doubly stochastic) can be proven
for multiple-input signature analyzers, we will have
shown that they converge to an aliasing probability of
1/2k. Thus, we need to show that the transition matrix
P = (p,;) for the Markov process for the register with
muitiple inputs is also doubly stochastic. First, let us
examine how a transition matrix for a single-input
signature analysis register differs from a transition matrix
for a multiple-input signature analysis register. We are
using the multiple-input signature analysis register shown
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in Figure 5, with states 00, 01, 11, 10 represented by
subscripts 1, 2, 3, 4 of the elements of the transition
matrix. The following is the transition matrix for the
single-input signature analysis register shown in Figure 6:

(I ~p) 0 0 p
p 0 0 (1 ~p)
0 (1-p p 0
0 p (1 =p) 0

The following is the transition matrix for the multiple-
input signature analysis register with the same
polynomial shown in Figure 5:

(A-=pxt-py (L-pwp p p(1 —p)
p(l = p)

op (1 = pp (1 —pX1 ~p)
(I -pp -pl-p pll-p o4
o p(l=p (1—-pL-p (1 =pyp

These transition matrices for the two Markov processes
are both doubly stochastic. We are now ready to prove
the two theorems necessary to reach our goal.

Theorem 2
For any Markov process, the elements of every row of the
transition matrix P sum to 1.

Proof See [28].

To be doubly stochastic, in addition to the elements of
the rows, the elements of every column of the transition
matrix must sum to 1. The following theorem relates
properties of the next-state matrix of the data compressor
and the transition matrix of the Markov process that
models its behavior.

Theorem 3

If the determinant of the next-state matrix C of the data
compressor is 1, the columns of the transition matrix P
sum to 1.

Proof We show that for each state Y (/) and each input
symbol X(7) there is a unique predecessor state Y.(t — 1)
of the data compressor iff the determinant of the next-
state matrix C is one. Thus, the sum over all entries in a
column of the transition matrix P will equal the sum
over the probabilities of the input symbols X:

[N BE]

p;=%pX)=1

[

The proof is by construction;

Y, (1) =C. Y- 1) X0,
Y(0)® X(t)=C - Yt - ).

If|C| #0, then C™' exists, and
Y- 1D=C"[¥,0)& X0l
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Using Theorem 3, we can now identify which linear data
compressors are good candidates for having an aliasing
probability of 27,

Corollary Provided the Markov process is ergodic, the
final value of the aliasing probability of a linear data
compressor with register length k is 27" if |C| = 1.

Note that no assumptions have been made with respect
to the probabilities of the input symbols X or the error
symbols £ = (e,, e,, - - -, €,). Thus, the results also hold
if the error bits ¢,(#) are strongly correlated.

Clearly, if 0 < Pr(e,, e,, - - -, ¢,) < 1 for all possible
error patterns, then there exists a path between any pair
of states Y, and Y,, and the Markov process is ergodic.

Theorem 4
If 0 < Pr(E) < 1 for all possible error patterns and if
j C| = 1, then the final value of the aliasing probability is

lim Pr, (j) =27
J

—»00

for a linear data compressor with a register of length k.

Before proceeding with the investigation of nonergodic
Markov processes and deriving additional checking
criteria, let us investigate the implication of the above
result on the aliasing properties of multiple-input
signature analysis registers and linear cellular automata
(LCA).

Application to multiple-input signature analysis
registers and linear cellular automata

Figure 4 shows a multiple-input signature analysis
register (MISR) with a linear feedback function. The
next-state matrix has the following form:

6 & G Gt Gk

1 0 0 0 0
o 1 o 0 0
¢= 0 0 1 0 0
0 0 O 1 0

The entries in the first row are the feedback coefficients.
The orfes in the lower main diagonal represent the
shifting of data. Expanding along the last column of C,
the determinant of this matrix is always

ICl=c¢ll_ |=¢ - 1=¢.

We can thus conclude the following.

Regardless of the distribution of the error patterns
[with the restriction that 0 < Pr (E) < 1], the asymptotic
aliasing probability of a multiple-input signature analysis
register of length & is always 27, if the last bit of the

register is fed back. Of course, other bits in the signature 369
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analysis register may also be fed back in addition to the
kth bit.

From the work of Smith [13], it is clear that if no bits
are fed back and the probability of an error is 1/2 at each
input, the final value of the aliasing probability is -
However, Figure 7 shows the potential impact of not
feeding back the last bit of an 8-bit MISR if the
probability of an error is 0.01 for all input ports of the
register. The aliasing probability of the register whose last
bit is not fed back may be significantly higher.

With respect to built-in test pattern generation, cellular
automata have been proposed as an alternative to linear
feedback shift registers [29]. Here we concentrate on the
feasibility of linear cellular automata (LCA) for data-
compression purposes. Figure 8 shows an example of a
LCA. The state of each cell is restricted to depend only
on the previous states of the cell itself, its two adjacent
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Table 1 Determinants of the next-state matrix of a linear
cellular automation of length & with zero boundary conditions.

Length C
3 tt,
4 a o oo s Bay ooy
5 o, 8oy ¢ o0 e o0y
6 a;Ba oy e Pa; o
7 a,
8 o, B oy -y

k 1 Conseric] = | Corgern=s|

C =a,- C_Ba - oy . C.,

cells, and the value of the actual input bit (Figure 8).
Generally the next-state function of each cell of a LCA
can be written as

) =a -y_(t—1)
@o, y1—1)Ba, -y, (- 1)Dx().

Assuming zero boundary conditions, i.e.,

V() = 0 and y,,, (1) = 0 for all 7.

the operation of a LCA-based data compressor is
described by the following next-state matrix (which is
tridiagonal):

@ a, 0 -0 0
a, o, o - 00
C= 0 a e 00
0O 00 @, oy
0 00 @, a,

Table 1 lists the determinants for different lengths k of
the data compressor. In contrast to MISRs, no simple
general rule can be given for the proper selection of the
next-state function of a cell. Setting (a,, a,, a;) = (1, 1, 1)
results in a minimal steady-state value of the aliasing
probability Pr, = 27" for a 7-bit data compressor.
However, for an 8-bit device («,, a,, a;) = (1, 0, 1) is the
better choice. Figure 9 compares 8-bit data compressors
with (e, a,, @) = (1, 1, 1) and (e, a,, a,) = (1,0, 1).
The probability of any bit being in error has been set to
0.1 for all inputs.

Nonergodic Markov processes

In the previous sections the ergodic property of the
Markov process has been ensured by the requirement
that the probability of all input error patterns must be
greater than zero. Thus, there is always a path in the state
diagram between arbitrary pairs of states. However, if a
fault is always propagated to a subset of the outputs of
the network under test or creates 100% correlation
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conditions between any two outputs, some error patterns
E will never be created, and thus can never be applied to
the data compressor. Consequently, the number of
possible state transitions is reduced, and we can no longer
be certain that a path between two arbitrary states exists.
Hence, the Markov process may become nonergodic.
Figure 10 shows the state diagram for a 3-bit multiple-
input signature analysis register when a fault is
propagated to input 2 of the register only. The only error
patterns that are possible are (0, 0, 0) and (0, 1, 0), the
former being the error-free good-machine response.

Starting in state (0, 0, 0), only three additional states
can be reached. Thus, after a sufficient number of error
patterns E(r) have been applied, the state probabilities of
these four states can be expected to be 1/4, while the state
probabilities of the remaining states will be 0. The final
value of the aliasing probability will be 277, not 2™ as is
usually expected for a 3-bit signature analysis register.
Figure 11 shows the result of a simulation of the Markov
process for e, = ¢, = 0 and Pr(e, = 1)=0.9.

Figure 12 shows the state diagram of the previous
multiple-input signature analysis register for the case in
which an error always appears at register inputs 1 and 3
simultaneously. Now only (0, 0, 0) and (1, 0, 1) are
possible error inputs to the data compressor. As in the
previous case, the final value of the aliasing probability
will be 272 instead of 2 (Figure 13).

Operational analysis of the data compressor

To derive criteria for checking whether the Markov
process is ergodic, we now analyze how an error sequence
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Aliasing probability for 8-bit cellular-automata-based data
compressors with next-state coefficients («,, a,, a;) = (1, 1, ) and

2 3
I+ x+x +x,

+ X

800.0
600.0 r

400.0 ’»

3
Pr (X 107)

200.0

———

Expected aliasing probability

0.0 ) Il i L i by
0

e g

Aliasing in a 3-bit MISR with only one error input ¢,.

E(r) is mapped onto a state sequence Y(¢) by a given
linear data compressor. This analysis will enable us to
determine the number of states of the compressor if only
a subset of all possible error patterns can be applied to
the inputs of the automaton. We will thus be able to
determine whether the Markov process is ergodic.
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1 +x+x2 +X3.
/(1) = ;0
ez(r) =0.

% Nonergodic behavior of a 3-bit MISR for error patterns (0, 0, 0) and
(1,0, ).

800.0 i

2
3
=3

400.0

Pr (x 107

200.0

Expected aliasing probability

0.0

Test length

Increase of the aliasing probability of a 3-bit MISR due to strong
correlation between e, and e;.

|

The analysis employed uses the D-transform [27],
which is very similar to the z-transform of sampled data
theory [27, 30]). However, as we are dealing with Galois
functions rather than real-valued functions, it is less

W. DAEHN, T. W. WILLIAMS, AND K. D. WAGNER

Table 2 D-transform pairs.

Operation 140) Dlg(n}
1. Addition 2,(1)® gy(t) G(D)® G(D)
2. Constant 8. gt 8- G(D)
multiplication
: G(D)
3. Sum ":20 g(n) oD
4. Convolution 2 k) gtk G(D)- GAD)
k=0
5. Multiplication by 8 . g(1) G(8D)
6. Delay gle—m) D" - G(D)
7. Advance g+ 1) D™ [G(D) - g(0)]

confusing if we differentiate between the two types of
transforms.

The D-transform is defined only for functions g(¢) that
are zero for ¢ < 0:

D[g(1)]

GD)=g0)®D - g(1)® ...

Y g()- D"
1=0

Table 2 shows some transform pairs. Assuming again
that the good-machine response X(¢) is zero, the behavior
of the linear data compressor is described in the time
domain by the following equation:

Y()=C . Y(t — 1) ® E().

By applying the D-transform, we get
D{Y(n)] = C - D[Y(z — 1)] ® D[E()],
Y(D)=C . D - Y(D)® E(D).

Solving for Y(D), an operational relationship is
established between the error sequence E and the state
sequence Y

YD)=(U®D-C)" - ED).

With

(I1® DC)" = [(I & DCY)"/1(I ® DC)|
= [(/ & DOY*]"/p(D)
= T(D),

we get

Y(D) = T(D) - E(D).
Defined as

pD)y=|I1®&D.C|,
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p(D) is the characteristic polynomial of the next-state matrix C. T(D) is the transfer function of the data compressor.
Since the data compressor has several inputs and several state bits, T(D) is a matrix of fractional rational functions.

Hence,
p(D) (D) 2a(D)
D)y=—— . ¢(D)® .eD).--® . e (D),
p,(D) Py, (D) Dix(D)
Dy=——.¢/(D)® -eD) ... @ . e (D),
w0y =gy aP 8 gy el @ gy alb)
Pi(D) D:(D) PuD)
Dy=——.¢e(D)® .eD)--. ® - e (D).
WD) =" gy e @ py e ab) - @50 - alD)
For the 3-bit multiple-input signature analysis register shown in Figure 12, we obtain the following input-state
relation:
1 D.-(D®1) D
n(D) = -e(D)® - e(D)® . e(D),
: pPepeper | DeDeD®l AD) DeDeD®l D)
D (D®1) ?
(D)= —F——F——— . ¢(D)® - e(D) @ - (D),
? DoeDeDo ] D) DoeDpeD®1 AD) DeDpeD®1 (D)
D D.D®1 DeDel
(D) = e(D)® ( ) eD) ® - ey(D).

DeDrene1

Deprenpei

DeoDepal

Now we are able to analyze the behavior of a linear data compressor if only a subset of all error patterns E(f) can be
applied to the inputs of the compressor. Clearly, such a subset always contains the all-zero (defect-free) error pattern.
Moreover, with respect to the ergodicity of the Markov process, subsets of only two patterns have to be considered, as
is shown next.

Theorem 5

If, for an arbitrary subset of the input alphabet, the states of the automaton are strongly connected (no disjoint
subgraphs), the state diagram will not be partitioned into disjoint subgraphs if additional symbols are added to the
input alphabet.

Proof  Assume a strongly connected machine with an input alphabet E and a set of states Y = Y,, ¥, --., ¥,. If the
machine is strongly connected, there is always a sequence E,, E,, - - -, E, for every path from an arbitrary state Y, to
another state Y. If the input alphabet is increased (E” = E'U E), the former sequence still constitutes a path from
state Y, to Y,. The states are thus still strongly connected.

With respect to the ergodicity of the Markov process, this means that the process is ergodic if the Markov process is
ergodic for a subset of the error symbols consisting of the all-zero vector and an arbitrary error vector (e,, €,, - - -, €,).
Thus, the Markov process is ergodic for all sets of two or more error symbols that contain the all-zero vector.

In the example of Figure 11, an error was supposed to occur only at input e, of the investigated MISR. The set of
possible error patterns consists only of the two vectors (0, 0, 0) and (0, 1, 0). Here the transfer function £(D) — Y(D)
is described as follows:

D-D®1) D-(D® 1)
D) = ceD)=——"——. (D)= - (D),
”()zfewep@l «(D) (D& 1) (D) D'® 1 &)
D& 1 1
= —— . D = * D 3
(D) D& 1)3 e,(D) Dol e,(D)
_D-(D®1) __D
¥{D) = D1y «(D) rei 2O 373
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A el i

-

Functionally equivalent circuit for the 3-bit MISR ife, = ¢

S—

FanY
3

s

Functionally equivalent circuit for £(t) € {(0,0, 0), (1, 1, D}.
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Functionally equivalent circuit for E(f) €{(0, 0, 0), (1, 0, D}.

In the above example, the transfer function can be
simplified, because the terms in the numerator and the
characteristic polynomial in the denominator have a
common factor. A canonical implementation of a
network realizing the transfer function can easily be
given. The necessary number of register cells equals the
degree of the polynomial in the denominator, which is
reduced from 3 to 2 in this case (Figure 14).

Since the state variables y,, v,, y, are derived from a
smaller number of state variables y/, y; of the equivalent
network, they must be linearly dependent. Further, if a
linear data compressor of length k can be modeled by an
equivalent linear data compressor of length m < & in the
case of a reduced-error-input alphabet, the final value of
the aliasing probability of the original data compressor of
length k is Pr, = 27" > 27", Figure 15 shows the
equivalent circuit for the example of Figure 12, where
E€{0,0,0), (1,0, D}

For the investigated 3-bit MISR, the functionally
equivalent circuit has a minimal number of register cells
if a fault always propagates to all three inputs of the
device (e, = e, = ¢,). In this case, we get the following
transfer function:

1 ® D? 1

MO ey P Ten 4P
18 D°

»(D) = m - e(D) = 1D e, (D),
1®D° 1

WP =y P TTen P

Figure 16 shows the equivalent circuit. An aliasing
probability of 0.5 has been verified by simulation of the
Markov process (Figure 17).

Aliasing probability and characteristic
polynomial

As shown in the previous section, a reduction of the
input alphabet of the data compressor may result in a
partitioning of the set of states that can be visited. This
partitioning is such that there exists no path in the state
diagram between two states that belong to different
partitions. As a result, the Markov process becomes
nonergodic. Unless we are interested in autonomous
behavior, a minimal subset of the input alphabet of the
data compressor comprises two patterns. In this context,
one of the patterns is the all-zero vector [0,0, ..., O]T,
and the other one is [, A, - -, hk]T, which has

its ones (and zeros) at fixed bit positions through

the duration of the experiment. These two vectors

can be represented by

E@)y=1[h, hy, -+, B] - et) with e@t) € {0, 1}.
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Using the D-transform, the behavior of the circuit in this
special situation can be analyzed as follows:

Y(D)=T(D) - E(D)
= T(D) - [h, hyy -+, B - Dle(®)]
= T(D) - [h,, by, ---, B - e(D).

These transfer functions are linear combinations of the
elements in the respective columns of T(D). If the
numerator and the denominator of the resulting transfer
function have common factors, the expression can be
simplified, and a less complex transfer function is
obtained (see previous examples):

- 11
(D) 2iD)
p’(D)
pz(D)
D) | = - e(D).
p'(D)
p{D)
(D) —_—
] Lo ]

Now let us assume that we get the same denominator
p’ (D) for all transfer functions e(D) — y,(D), | = i< k.
Using the transfer functions, it is now possible to obtain a
canonical implementation, i.¢., a network with a minimal
number of register cells. The network is a single-input
signature analysis register with deg [ p’(D)] register cells.
This kind of data compressor has been investigated in a
previous paper; we refer to the results without proof [25].

For a linear data compressor with an input alphabet
restricted to two symbols, the following statements are
valid:

e The final value of the aliasing probability is 27", with
m = deg [ p’(D)] and p’ (D) constituting the feedback
function of the functionally equivalent canonical
network.

¢ The aliasing probability Pr, (#) converges fastest to its
final value if p’ (D) is primitive [16, 20, 31, 32].

As p’(D) is always a factor of the characteristic
polynomial p(D) of the linear data compressor, an upper
bound of the final value of the aliasing probability can be

given,
Let
p(D) =p D) - p(D) --- - p(D),
with
p(D) # 1 i=1,2,-..,J
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0.2H Expected minimum aliasing probability

0.0 - L 1 i 1 1 -
0 10 20 30 40 50 60

Aliasing probability for strongly correlated error patterns.

i i

and

kpin = Min{deg[p(D)]} i=1,2,---, ]
then

Pr = 2 Fmn

al, max

is an upper bound on the final value of the aliasing
probability of the linear data compressor.

Figure 18 shows a MISR with feedback function
1+ x"as proposed in [12]. The characteristic polynomial
for this circuit is

pD)=1®6D ' =(16D\1SDSD’' & ... d D).

An upper bound of the final value of the aliasing
probability for this would be

Pr, = 270D~ g5

al. max

If at time ¢ an error propagates to all inputs of the MISR,
we get exactly this value of the aliasing probability (sce
Figure 18), regardless of the length of the register.

Now let us assume that p(D) is irreducible.

Theorem 6

If the characteristic polynomial of the next-state matrix C
of a linear data compressor with k register cells is
irreducible, and if the input alphabet consists of two (or
more) error symbols, the aliasing probability is 27

Proof From the transfer function of the data
compressor, a functionally equivalent single-input
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the probability of an error at the outputs of the circuit
under test,

‘ _sem o g .
1{1‘ 2. |C| = | and p(D) reducible:
) o e e e The final value of the aliasing probability does not
sl = 1 depend on the error probability, but rather on the
%‘:]‘*Lr_'} JPD) correlation of error streams at different inputs of the
& ost data compressor and on the inputs of the compressor
where the errors are observed: Pr, = 27",
04 s S 3. |C| = | and p(D) irreducible:
sl The final value of the aliasing probability of a linear
data compressor with k register cells is Pr,, = 27, with
an ! ; ; ; N i no regard to the probability distribution Pr(FE) of the
0

10 20 L 48 50 60 error patterns E(1).

In a recent paper [31] it has been shown, for multiple-
input signature analysis registers with independent

10,0

signature analysis register implementation with no less

than k register cells can be derived. The aliasing g0 F
probability for this register is 27, and because of the ' [ m

]

=
functional equivalence, the aliasing probability of the g 6.0
original data compressor must be 27" as well. & A A
40E } P

Corollary The aliasing probability of a linear data -
compressor with & register cells is 27" regardless of the o
probability distribution of the error pattern Pr (E), i p ; . . i
if | C| = 1 and if the characteristic polynomial of the 0 10 20 30 40 0
next-state matrix C, Test length
p(D) = ! IepD.C i s S —
is irreducible. 100F
Proof As has already been shown, | C| = | means that P E@I_D;P
the transition matrix of the Markov process is doubly =
stochastic. If p(D) is irreducible, the Markov process is x 8Or
ergodic for an arbitrary two-symbol-input alphabet that o 40k h ol A -
includes the all-zero vector; and with Theorem 3, the VA
Markov process must be ergodic for any subset of the S0k
full-input alphabet, which again includes the all-zero
vector, Hence, Pr,=2"". 0.0 L L L . -

0 10 20 30 40 50
Classification of linear data compressors Testlenit
On the basis of the results presented here, the following
classification scheme for linear data compressors can be S—
given: @ m«%

3 Impact of the error sequence on the transient of the aliasing

1, |C|=0: probability of an 8-bit MISR.

376 The final value of the aliasing probability depends on
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inputs, that the transient of the aliasing probability has a maximum damping if the feedback polynomial is not only
irreducible but primitive. As we are capable of constructing a functionally equivalent shift-register implementation by
means of the D-transform, this result can be extended to the more general class of linear data compressors investigated
here.

4. |C| = | and p(D) primitive:
The aliasing probability converges fastest to its final value, 27,

Simulation results show that the final value of the aliasing probability is reached after some oscillations. The
magnitude of the oscillations and the locations of the local minima depend on the error pattern sequence. Figure 19
shows the aliasing probability for an 8-bit MISR for two difterent fauit situations. In the first case, a fault is propagated
to inputs 2 and 3 simultaneously; in the second case, an error appears at register inputs | and 3 with probability 0.9.
Since the error sequence depends on the actual fault inside the circuit, no advantage can be drawn from knowing the
minima for a particular fault situation. A low final value of the aliasing probability. together with a strong damping of
the transient, has to be considered as the best overall choice.

Application to multiple-input signature analysis registers
In this section we investigate the relation between the feedback function and the characteristic polynomial p(D). The
feedback function is usually given as a polynomial,

k
p) =18 % ¢ - x\
J=1

The coefficients ¢, are identical to the first row of the next-state matrix C, and the ones in the lower main diagonal
represent the shifting of data (Figure 4).
The characteristic polynomial p(D) is

¢ -D®V ¢ D ¢, D - ¢ - D ¢ D
D 1 0 0 0
poy=11ep.c= Pt 00
0 0 0 1 0
0 0 0 D 1

k
pD)y=1® % ¢ - D
1

j=

Because the characteristic polynomial p(D) is identical to the feedback polynomial p(x), we can conclude the
following:

If the feedback polynomial of a multiple-input signature analysis register of length & is irreducible, the final value
of the aliasing probability is 2 .

For a list of primitive polynomials up to degree 300, see [10].

Application to linear cellular automata
For the given class of LCAs, the characteristic polynomial is the following determinant:

a, - D@1 a, - D 0 0 0
a, - D a, - DB 1] a, 0 0
poy=11+p.ci=| O @ Pow DOl o
0 0 0 i a4, D®I @ - D
0 0 0 @, a, - DS 1 377
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Coeflicients «,, a,, and «, determine whether the state of
the left neighbor, the cell itself, or the state of the right
neighbor is taken into account in the calculation of the
next state of a cell. Table 3 lists the characteristic
polynomials for linear cellular automata with zero
boundary condition through length 5.

None of the polynomials listed in Table 3 is
irreducible. Thus, we can conclude that for register
lengths <10, multiple-input signature analysis registers
are superior to these linear cellular automata with respect
to aliasing in the data compression mode. Since a MISR
with an aliasing probability of 27, which is minimal for
the investigated class of linear machines, exists for every
register length, MISRs are more universal than LCAs.
Figure 20 shows the aliasing probability of this 6-bit
LCA, (e,, a,, a,) = (1, 1, 1). The error is assumed to
propagate with probability 0.9 to inputs 3 and 4 of the
data compressor. If the error streams are perfectly
correlated, the aliasing probability becomes 27 >2"°
(Figure 20).

Table 3 Characteristic polynomial for linear cellular automata.

Impact of time correlation

In the previous section, correlation has always been
considered as a dependency between different bits e, of
the error input vector E(¢). Let us now take a short look
at how correlation between successive error bits at one bit
position might influence aliasing. It has been shown that
a linear feedback shift register, which is a functionally
equivalent canonical representation of the linear data
compressor, can be derived by means of the D-transform
analysis. Thus, we can rely on previous results [10, 11,
13, 17, 32} and state the following:

An aliasing error due to time correlation of error bits
occurs only if the D-transformed error vector
sequence is a multiple of the characteristic
polynomial of the linear data compressor.

There are more complex correlations, combinations of
time and space correlations, possible for MISRs. For
instance, error cancellation occurs for the 3-bit MISR of
Figure 12, if inputs e, = e, = ¢, and input e, = D'e, ie.,
100% correlated to e but delayed two time units. Then,

(D) =0,

(D) = e (D),
and

vi{D)= (D + De.
Thus

n(n=0,

vt = e(0).

and

ylt) = e(t) ® e(t — 1).

Then the final probability of aliasing is
(I1-p) . [(1-p) ész], or 0.25 for p = 0.5.

On the other hand, for the correlation example of
Figure 12,

(D) = y(D) = y(D) =

1
oD e(D).

Length Characteristic polynomial
3 (a, - DO 1)
4 (0, - DO®)'®a,-ay-D-(a, - DOI1Y D0, - D*
5 (o - DO (o, - DB1)'Da, - a, - D]
6 (0, - DO ®a, -, - D (o, - DO1)' B, - o - D°
7 (ay - DD 1Y
8 (0, DON'®a, -0, D - (a, - DO1)' @0, -0, - D' - (e, - DO)' @B, - @, - D°
9 (t, - DO [{a, - DO 1)’ B, -y - D' - (0, - DB 1)’ D, - a, - D]

pPYy=Ao, - D® ). p_ (D)@ «, - Ay - . Pies (D)
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Then, taking the inverse D-transform,

n

y) =Y e(), i=1,23.

=0

Thus, for large n, the final aliasing probability is 1/2,
since it reflects the cumulative parity of the incoming
error stream. On average, this signature will be zero
(aliasing) 50% of the time.

Conclusions

In this paper the aliasing probability of multiple-input
linear data compressors has been investigated; sufficient
conditions have been derived to ensure an aliasing
probability of 27" if the data compressor has k register
cells. If these conditions are met, the aliasing probability
does not depend on the distribution of the errors at the
data compressor input. In particular, the aliasing
probability does not depend on correlation between
errors at the different inputs. By application of the
derived criteria, it has been shown that multiple-input
signature analysis registers with an irreducible feedback
polynomial can meet the conditions for every register
length.,
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