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Because  logic  designs are becoming  more 
complex  and  extensive,  they  increasingly  tend 
to  contain  embedded  memories.  In  the 
simulation  (particularly  fault  simulation)  of  these 
designs,  the  embedded  memories  may be found 
to require large amounts  of storage  unless  a 
carefully  designed  simulation  strategy  is 
adopted.  This  paper  describes  a  technique  that 
drastically  reduces  the  storage  required  in  the 
fault  simulation  of  such large designs.  The 
required  amount of storage  can be fixed at 
compile  time  or  at  load  time,  and  can  almost 
always  be  made  to  fit  in  the  available  storage  at 
the  cost of  only a small decrease  in  the 
predicted  exposure  probabilities. 

Introduction 
During fault simulation in the combinational logic  of 
designs containing embedded memories, a fault in  the 
combinational logic  may cause the input  to  the write port 
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or the read port of some memory to be incorrect. The 
contents of that memory may become corrupted when 
the write port is affected i.e., the  contents may diverge 
from those of the memory in the fault-free design. How 
they diverge depends on the details of the fault effect on 
the write port: Sometimes only one address is  affected, 
sometimes two [I] .  An incorrect read address or  an 
incorrect read enable may produce faulty data in the read 
buffer, although it does not corrupt  the  contents of the 
memory. 

be  exposed if the contents of the memory become 
incorrect and are later read. Since it is not known 
beforehand when such incorrect data will be written into 
or read from the memory, a fault simulator must 
maintain a complete copy  of the faulty design’s memory, 
in addition to the copy for the fault-free  design. When 
only the read port of a memory can be affected by a fault, 
incorrect data may still appear  in the read buffer and 
cause an exposure of the fault, but this will not affect the 
contents of the memory. Therefore, no separate copy of 
the memory is required for such a fault. 

In many fault-simulation algorithms [ 2 ] ,  such as 
deductive simulation or concurrent simulation, all faults 
are processed simultaneously to take advantage of the 
logical similarity of most faulty designs: For  many input 
patterns, faults will produce no fault effects at all, or will 
produce fault effects only in  the immediate neighborhood 

A fault that affects the write port of the memory may 
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of the fault location. Most  of the time, the logical  values 
on  the internal nets of a faulty  design are the same as 
those in the fault-free  design, and there is therefore no 
reason to simulate the faulty design  explicitly.  When all 
faults are simulated simultaneously, however, each fault 
that may affect the write-port of some internal memory 
in  general will, if sufficiently many patterns are applied, 
but we do not know how and when a particular fault will 
corrupt the memory. Therefore, to properly simulate all 
faulty  designs, multiple copies  of  each embedded 
memory may  have to be maintained; each memory 
whose  write port(s) can  be  affected by N different faults 
requires N + 1 copies: N for the faulty designs and 1 for 
the fault-free  design. 

The storage required for copies of large memories can 
easily  exceed the available storage  in the host machine. 
This can be and often is solved by partitioning the fault 
list and simulating only one (small) portion at a time. 
This reduces the memory requirements but also  greatly 
increases the run time. Far less storage  would be required 
by storing only the addresses containing incorrect data 
and the incorrect data themselves. On a read from a 
memory in a faulty  design, one then checks  first to see 
whether there is a record  for the read address in that 
memory, indicating that that address contains corrupted 
data. If there is no such record, the data are simply read 
from the good  machine’s  copy  of that memory. 

The required storage  may  be considerably less than 
290 when complete memories are stored. One still needs a 
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storage  pool to accommodate the incorrect data in any of 
the memories. Allocation  of the incorrect data  to  the 
storage pool can be done by hashing [3,4].  The key to be 
hashed contains fields, the first  of  which  is the address in 
the memory. The second is the name of the memory, or 
some index, since there may be more than one memory 
in the design. The third and last  field in  the key is the 
name of the fault for which the memory simulation is 
done. Hashing has the advantage that locating a record 
can be done  in constant time; other techniques for 
allocating records to the storage pool, such as binary 
trees,  slow the simulation unacceptably. 

However, with hashing there is still the problem that 
the location in  the hash table where  (key + data) should 
be stored is already occupied. This is  called a collision. 
Standard strategies to deal with such collisions are 
rehashing and linked lists [3]. Resolving the collisions 
tends to slow down the simulation process and may still 
result  in an overflow  of the available memory during run 
time. To solve the problem of hash-table overflow, and 
also to avoid the performance degradation associated 
with the collision handling, a new technique, called 
defective  hashing,  is proposed. This technique makes it 
possible to simulate all fault effects at the  inputs  to 
embedded memories using only the available storage. 

The next section briefly describes how to simulate a 
memory when a fault effect arrives at a write port or a 
read port. In the final section, defective hashing and 
various implementation details are discussed. 

Embedded  memories 
This section reviews  how faults can affect the  inputs to 
and the  contents of a memory, and how these fault effects 
are simulated, using hash tables to store records for faulty 
addresses. Summary, and sketchy, C programs are 
presented in Figures 2 and 3 for the write operation and 
the read operation, respectively. Completeness is not 
claimed for these programs. Thorny problems, such as 
how the memory is initialized and what logical  values 
appear in the read buffer  when the read enable is off, are 
not discussed. The main goal  of this section is to show 
that all fault effects can be handled systematically and to 
focus attention  on  the few primitive operations that work 
directly with the hash  table. 

Embedding of the  memory 
The memories considered in this paper are assumed to 
have two ports (see Figure l), although the ideas 
expressed  here are applicable to general multiport 
memories. There are two separate ports, one for writing 
and  one for reading, each with its own address lines and 
enable line. Fault effects can arrive at  the memory at the 
data lines of the write port and at  any of the addresses or 
enables.  We assume no restrictions on the combinational 
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logic  in front of the memory. For example, on the same 
input pattern a single fault can give  rise to fault effects on 
the data lines, address lines, and enable line of the write 
port. 

memory is simulated explicitly and serially  (i.e., one 
faulty  design at a time) for  all faulty designs that have a 
fault effect on any of the inputs  to  the memory or in the 
contents of the memory. The simulator handles the 
memory by two separate simulation operations: a read 
and a write. There must be an order of precedence for 
the two operations if both read and write ports are 
enabled and both operations refer to the same address: 
Either the write occurs first and the read produces the 
newly written data, or the read occurs first and produces 
stale data. The choice of priority has no effect on  the 
simulation of the reads and writes,  however, as long as 
they are done in  the appropriate order. 

In the concurrent simulation of many faulty designs, a 

Fault eflects 
Faults can affect the memory in many different ways. 
When a fault affects the read operation, the memory is 
simulated as if the design  were  fault-free, but with 
perhaps a different enable or address than in the actual 
fault-free design. The write operation, however,  is 
affected  by faults in a very complex manner. 

Table 1 summarizes the ways in which a single fault 
can affect the write port of a memory. To simplify the 
text somewhat, the simulated fault-free design  is 
indicated from now on by g.machine and the simulated 
faulty  design for some fault byxmachine.  The columns 
in Table 1 are labeled according to the four different 
g.machine/f.machine combinations of the write enables. 
In the  column labeled O/O, the write enables of both the 
fault-free  design and the faulty  design are off. Clearly, in 
that case, no write occurs in either the g.machine or the 
[machine, and therefore no fault effect (F.E.) is written 
into  the memory. 

In the 0/1 column,  the write enable of the f.machine is 
incorrectly on. Data are written to some address that may 
or may not be the same as the g.machine’s address, 
though data should not have been written at all. This will 
corrupt  the contents of the memory, unless by 
coincidence the f.machine’s data happen to be the same 
as the data in the g.machine’s memory at  the f.machine’s 
address. Then the faulty write to the f.machine’s memory 
will in  fact overwrite and cancel a previously stored fault 
effect.  We ignore this exception at the cost  of a small 
potential increase in required storage and assume that  the 
memory contents will always  be corrupted. 

The case in which the write enable is incorrectly off 
(the I/O column) has a similar effect on the contents of 
the memory. In this case, no write occurs to the 
f.machine’s memory, though a write should have 
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Table 1 Fault effects on the write port of a memory 

010 01 J JIO 111 

Good/Good No F.E. F.E. in f.a. F.E. ing.a. No F.E. 
Good/Faulty No F.E. F.E. in f.a. F.E. ing.a. F.E. in f.a. 
Faulty/Good No F.E. F.E. in f.a. F.E. in g.a. F.E. in g1f.a. 
Faulty/Faulty No F.E. F.E. in f.a. F.E. in g.a. F.E. in g/f.a. 

~ 

g/f = g.machine’s/f.machine’s 

g.a. = gmachine’s address In the tmachine’s memory 
F.E. =fault effect 

g/f.a. = both the gmachine’s and the fmachine’s addresses in the f.machine’s memory 
f.a. = fmachine’s address 

occurred (to the g.machine’s address in  the faulty design’s 
memory). If the g.machine’s address of the faulty design’s 
memory already contains incorrect data, these data will 
not be  affected, and the corresponding record in  the hash 
table will stay.  However, if there are no incorrect data  at 
that address, there is no corresponding entry in  the hash 
table, and an explicit  write to the hash table (not to  the 
f.machine’s memory) is required: The f.machine’s 
memory will differ from that of the g.machine, because it 
will contain  the old data from the g.machine, while the 
g.machine itself contains new data. Again, ignoring the 
unlikely  case  in  which the  data at the affected address are 
the same as the write data  in  the g.machine, this lack  of a 
write will always corrupt  the f.machine’s memory. 

The 1/1 column treats the most complex case, in 
which both write enables are on. The rows are labeled 
with the various possibilities (good or faulty) of the data 
and  the address. When both addresses and  data are 
correct, the f.machine will end up with correct data, i.e., 
no entry in  the hash table, at the g.machine’s  address.  If a 
record had existed for the f.machine at that address, it 
would be removed from the hash table. When the fault 
causes the data at the write port to be incorrect while the 
address remains valid (row 2), incorrect data  are stored in 
the f.machine’s memory at  the same address as in the 
g.machine’s memory. Finally, when the write address is 
faulty (rows 3 and 4), a double write must be performed 
into  the f.machine’s memory [ 11. First, data are written 
to  an address to which they should not have been 
written. Second, a write occurs in  the g.machine that is 
not paralleled in  the faulty design. Consequently, at  the 
completion of the actual write operation, the f.machine’s 
memory will also contain incorrect data at the 
g.machine’s address, namely the  data that were there 
before the write occurred rather than the data  that 
appeared at the write port. 

A complete program written in pseudo-C is shown in 
Figure 2. In this and later program fragments, we assume 
that  the memory simulation is done by hashing (defective 
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int  rcf, rcfg; 
unsigned  fault-descriptor; 

switch (fault-descriptor) { 

case 1: case 5: case 9: case 13: 
case I: 

I* 
/* 

rcf = locate_record(key(f.  machine)) 
write_record(key(f.machine),data); 
break, 

case 2: case 6 case 1 0  case 14: I* 
rcfg = locate-record(key(f.  machine  at gmachine’s address)) 
if  (rcfg ! = RFCORD-FOUND) 

copy(g.machine  data to gmachine’s address  in fmachine) 
break; 

case 3: /* 

Column 4, row 2 *I 
Column 2 */ 

Column 3 *I 

rcf =locate_record(key(f.machine)) 

break, 
IF (rcf== RECORD-FOUND) remove_record(key(f.machine)); 

Column 4, row 1 */ 

case 11: case 15: 
rcf = locate-record(key(f.machine)) 
write_recordfkevff.machine~.~~~: 

/* Column 4, rows 3  and 4 */ 

rcfg  =locatek6Ord(key(f,machine at gmachine’s address)) 
if  (rcfg ! = RECORD-FOUND) 

break, 
copy(g.machine data to gmachine’s address  in fmachine) 

default: 
break, 

1 

/* Column 1 */ 

Write operation to a memory. 

or otherwise). The fault-descriptor  variable  encodes in 
some  form the sixteen various possibilities of Table 1. In 
the variation shown  here, the elements of the matrix in 
Table 1 are numbered row-wise from 0 to 15. The 
function locate-record(key)  locates a record in the hash 
table and returns a variable that indicates whether a 
record that matches the key  was found (RECORD- 
FOUND) or not (NO-RECORD). Hidden in this 
function is the algorithm  used to handle  collisions; key  is 
a structure that contains the information required to 
store an item in the hash  table:  address,  memory  name, 
and fault name. This structure upon return from  locate- 
record() also contains a record  address in the hash  table, 
either of the existing  record or of a blank  record  where 
the new data will  be written, The function write- 
record(key,data) performs a single  write of data  into the 
hash  table at the location indicated by  key. Consequently, 
the case corresponding to column 111, rows 3 and 4, 
needs  two invocations of write-record(). The function 
remove-record(key)  removes a record if one is  there. 

simpler than a write operation. The pseudo-C  program 
As mentioned above, a read operation is  considerably 

292 for  reading  from a memory  is  shown in Figure 3. 

Defective hashing 
The programs shown  above  assume a complete  hash- 
table  storage technique for storing the corrupted 
addresses. The locate-record,  write-record, and read- 
record functions introduced above are functions that 
work on the hash table. However, as explained in  the 
Introduction, adding records  may  eventually  lead to local 
memory overflow and in any  case introduces the 
problem, and performance degradation, of  collision 
handling. In this section, a technique is introduced that 
obviates the need for collision  handling,  making it 
possible to  do the simulation with almost any amount of 
local  memory without fear of  overflow. 

simulation is done to establish that faults are exposed by 
a test sequence, i.e., by at least one of the patterns in the 
sequence.  In  such applications it is  clearly not necessary 
that all  exposures be identified, but only that at least one 
be  identified.  In  fact, it is often not even  necessary to 
determine all faults that are exposed,  only a sufficiently 
large fraction. It  is  therefore  possible to relax the fault- 
simulation requirements and require only that when the 
fault simulator identifies a pattern as one exposing a 

The key idea  is that  in many applications fault 
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int rcf, rcfg; 

if (read-enable  is  off) 

else 
rcf = ENABLE-OFF 

rcf = locate_record(key(f.machine)) 

switch (rcf) { 

case RECORD-FOUND /* read  from  the  hash  table */ 
copy (f.machine data to read buffer) 
break; 

case NO-RECORD: /* 
rcfg = locate-record(key(g.machine at  f.machine’s address)) 
copy(g.machine data at  f.machine’s address to  read buffer) 
break; 

read from good machine */ 

default: 
break; 

1 

1 Read operation from a memory. 

certain fault, (a) this fault  must be exposed by that 
pattern when the real  test  sequence  is  applied to the real 
hardware, and (b) this fault  must  be  present in the real 
hardware. In other words, in many applications a fault 
simulator is  allowed to be  pessimistic as long as it is 
never optimistic. A similar  reasoning  lies  behind the 
acceptability of critical path tracing [ 5 ] ,  which  is an 
approximate but strictly  pessimistic  fault simulator. Of 
course,  once we allow  pessimism, the degree  of 
acceptable  pessimism  becomes a matter of concern, but 
we do not address that here. 

If  we allow a fault simulator to be  pessimistic,  all the 
problems with collisions and hash-table overflow can be 
made to disappear. The general  strategy  is  simply to 
overwrite on collision, i.e., to use a new item to replace 
an item that is already in a location. This has the 
disadvantage that possible  exposures are sometimes 
missed  when incorrect data that were stored in a memory 
are overwritten by other incorrect data that corrupted 
some other address (perhaps even  belonging to  an 
entirely  different memory) but were stored in the same 
location in the hash-table.  Such an overwrite  may 
therefore  reduce the calculated  exposure  probability of 
the fault. This pessimism can be minimized by  using  as 
large a storage  pool  as is feasible and by using a hashing 
technique that will  assign the keys as evenly as possible to 
the locations in the storage  pool [6]. 

Of course, the g.machine’s  memory  now cannot be 
simulated using the same hash  table,  because  its data are 
always needed and we cannot run the risk  of overwriting 

those data. The machine’s  memories  must  therefore be 
simulated  using separate storage  areas and no defective 
hashing  mechanisms. 

refined,  because  memories can be embedded in many 
different ways in combinational logic, and not all 
embeddings are amenable to simple  overwrites. Starting 
from the fault location, fault  effects  may  fan out, pass 
through the memory via  several  different  paths, or pass 
around the memory in addition to passing through it, 
and reconverge  behind that memory. It  might then 
happen that during the actual test a fault effect  would 
follow a path around the memory, or through the 
memory, and reconverge  with another fault effect that 
originated  from the same fault and  that was stored 
previously in the memory. If this reconvergence should 
lead to a mutual cancellation of the fault effects, no 
exposure  would  be  observed on the POs for that pattern. 
However,  if we had  performed  fault simulation with 
unprotected overwrites, the fault effect stored in the 
memory during the simulation might  have  been 
overwritten by another fault effect  with a different key. 
As a result, the fault effect coming around the memory 
would  reconverge in the simulation with a gmachine 
value rather than with another fault effect, and  the 
simulator might indicate, incorrectly, that  the fault was 
exposed at the POs. 

We discuss a number of strategies of increasing 
complexity.  These  strategies  differ in the presence or 
absence of some indication that  an overwrite occurred. 

This simple  idea of overwriting upon collision  must  be 
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Such an indication may be required to ensure that  the 
simulation does not indicate an exposure when there is 
none, as explained above. Since the presence of such an 
indication increases the storage required for the memory 
simulation without increasing the calculated exposure 
probability, it should be avoided whenever possible. 

Defective hashing with  reconvergence 
In the simplest  case, no indication will show that  an 
overwrite occurred. This technique can be used  when 
there is no danger of reconvergence from the fault site 
before the memory to somewhere behind the memory. 
Clearly, the presence or absence of such a reconvergence 
depends on the fault location with  respect to the memory 
and  on how the memory is embedded. The same 
memory therefore may  be simulated without an 
overwrite indication for some faults, but with one for 
other faults. 

The specifics  in this case are simple; in fact, the 
programs shown  in  Figures 2 and 3 can be  used. The 
locate-record(key) function hashes the key only once 
(i.e., without attempting to resolve a collision if one 
occurs) and returns 1 )  the resulting location in  the hash 
table and 2 )  an indication whether or not a record with a 
matching key  was found. If no record  with a matching 
key  was found, the location is assumed to be empty 
(rcf = NO-RECORD), even if a record is there. On a 
write to an f.machine’s memory, (key + data)  are written 
at the location that was found by locate-record(), 
regardless of what was there already. On a read, the data 
from the hash table are used if there is a match between 
the key for the read operation and the stored key in  the 
hash table. Otherwise, the f.machine’s memory is 
considered to contain no corrupted data at the read 
address, and the  data  are taken from the g.machine’s 
memory instead. 

Degree  of pessimism 
To get some feeling  for  how  pessimistic fault simulation 
can become when the defective hashing technique is 
used, we consider a simple example. In this example, a 
random pattern sequence is applied to a logic  design with 
one embedded memwy  and no reconvergence around 
the memory. This memory has Z addresses, and the 
addresses are randomly selected  with equal probability 
(equal to 111) during the test. The logic  design  is such 
that only faults on the data lines can affect the memory. 
There are F such faults, with exposure probabilities p , ,  pz ,  
. . . , PF. A fault effect is written into  the memory when it 
appears at  the write port and the write enable (indicated 
by w )  happens to be on. Similarly, a fault effect  is read 
from the memory when the read enable happens to be on 
and a fault effect  was  previously written into the address 

294 from which the read occurs. 
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While a fault effect  is present in some address, it may 
be overwritten by various mechanisms, though not all  of 
them are caused by defective hashing. Random testing is 
a case in which defective hashing can lead to very 
pessimistic  results, because a fault effect may have to 
remain a long time in the memory before  it  is read. 
Clearly,  defective hashing reduces the average  stay  of a 
fault effect in the memory because  of the additional 
overwriting mechanisms. One would like to estimate how 
severe this reduction is, and whether or not the stay will 
be reduced to 0. 

The hash table contains H bins.  Because there is only 
one memory, there are F*Z items [(fault,address) pairs] to 
be hashed, and on average each bin contains F*Z/H of 
them. The case in which F*Z is not large compared to H 
is not interesting, as it is the case  in  which the hash table 
is (almost) large enough to hold all items without 
collision. We therefore assume that both F and Z are large 
compared to 1 and  that their product is  large compared 
to H. In fact, we assume that Z is itself  large compared to 
H ,  because we would like to illustrate the effects  of 
defective hashing in  its most serious form. For every 
f.machine, the addresses will  be spread more or less 
evenly  over the bins and,  as a result, on average Z/H 
addresses will  be assigned to each bin. As the total 
number of (fault,address) pairs mapped in any bin is on 
average F*Z/H, all faults will be represented in each bin. 

probability pf, and assume that a fault effect caused by 
this fault has been written in address i in  the memory. 
The pair (Ai) is mapped to a certain bin, called h, in  the 
hash table. The fault effect can be overwritten on a later 
pattern in three different ways. First, the f.machine can 
write fault-free data  to address i. This overwrites the fault 
effect even without the defective hashing. The probability 
of such an overwrite occurring is 

Consider now a particular fault f with exposure 

where the factor w/Z is the probability of writing to 
address i. Second, a fault effect can be written by the 
same f.machine to a different address that is mapped to 
the same bin h. On average, Z/H different addresses from 
that f.machine will be mapped to h. The probability of 
writing a fault effect to any of those addresses except i is 

These first two overwrite mechanisms are mutually 
exclusive. Therefore, the probability that neither one of 
them caused an overwrite on one pattern can be 
approximated by 
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1""p w w  
I H I '  

Finally, the fault effect can also be overwritten by 
different f.machines that write to the addresses  for  which 
the corresponding (fault,address) pairs are mapped to bin 
h. For every such f.machine, I /H  different addresses will 
use bin h on average. The probability of not writing a 
fault effect to any of the (fault,address) pairs in bin h is 
then (assuming I / H  to be large) 

-"I "\ F 
W 

where ( p )  is the average fault-exposure probability. 
The conclusion is that once a fault effect in some 

f.machine has been written to some address, the 
probability that it will not be overwritten is 

Fault effects can also be overwritten as soon as they are 
written, i.e., on the same clock  cycle. The probability of 
such an overwrite occurring depends on when the 
corresponding f.machine is handled by the fault 
simulator; it  is  largest  when the f.machine is  first in the 
list. The first two overwrite mechanisms do not apply, 
because they are in contradiction with a fault effect being 
written. The  third one does occur. When the Emachine 
in question is the first one to be considered, the 
probability of the  other f.machines not overwriting the 
fault effect is the same as above, i.e., a simple exponential 
factor. Therefore, the probability of a fault effect  being 
written without being overwritten is 

The most important difference from the exact fault 
simulation, i.e., no defective  hashing,  is the exponential 
factor. Interestingly, the exponential factor does not 
depend on the size  of the memory if this size  is  large. It 
depends mainly on the ratio of F and H, showing that for 
defective hashing not to be too pessimistic, the  number of 
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bins in the hash table should not be small compared to 
the number of faults that can affect the memory. A more 
accurate estimate of the effects  of  defective hashing is 
obtained by comparing the exponential factor to its 
coefficient. This coefficient  is present even without 
defective hashing. Strictly speaking, there is an additional 
term proportional to pJ in  this coefficient, but that term 
can be  ignored  when pf is small. The comparison shows 
that  the effects  of  defective hashing can be ignored when 
H/FI is large compared to ( p ) .  Since we assume that 
FI/H is  large, this condition may not be  fulfilled, and 
defective hashing may  have a nonnegligible  effect. 

Fault exposures will not be eliminated by the defective 
hashing scheme, however; they will only be diminished. 
Moreover, if faults are dropped from consideration when 
they are first exposed, ( p )  will decrease and H/FI will 
eventually become large compared to ( p ) .  In the limit 
that only the hard-to-detect faults remain, ( p )  will be 
very small, and the exponential factor will have almost 
no effect. 

Defective hashing with reconvergence 
When there is reconvergence from the fault site before 
the memory to behind the memory, some record must be 
kept that  the location in which  (key + data) was stored 
became polluted, i.e., that an exposing vector was 
overwritten. The easiest way to indicate that  an overwrite 
occurred is to  add a so-called pollution bit to the record 
for the location in  the hash table. This bit is  set as soon 
as the overwrite occurs. Once the bit has been set, 
however, it cannot be  reset, because all information on 
the data and the address whose record was overwritten 
has been lost. Therefore, it is impossible to determine 
whether a later write to that address has canceled the 
fault effect, or even that a fault effect existed in that 
address in  the first  place. 

The pseudo-C code for the write operation is shown in 
Figure 4. It is  basically the same as the code in Figure 2, 
but with some additions to handle the pollution bit. In 
particular, locate-record() now also indicates whether a 
record  with a nonmatching key  was found at the location 
where the write data will be stored (OTHER-RECORD- 
FOUND), because the pollution bit only has to be set 
when an actual existing record is overwritten. set- 
pollution-bit(key) is the function that sets the pollution 
bit of the location in  the hash table indicated by  key. 

When on a read it turns  out  that (a)  the location in  the 
hash table returned by locate-record() is polluted and  (b) 
there is no match between the keys (rcf = = OTHER- 
RECORD-FOUND), any exposure of a fault during this 
pattern is ignored. The reason  is that  the present data  in 
this location might have overwritten a fault effect that 
was stored previously in  the memory at the address being 
read, and  that this overwritten fault effect might have 
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int rcf, rcfg; 
unsigned fault-descriptor; 

switch (fault-descriptor) { 

case 1: case 5: case 9: case 13: I* Column 2 *I 
case 7: I* 

rcf = locakrecord(key(f.machine)); 
Column 4, row 2 *I 

write-record(key(f.machine),data); 
IF (rcf == OTHER-RECORD-FOUND) set-pollution-bit(key(f.machine)); 
break; 

case 2: case 6: case 10: case 14: I* Column 3 */ 
rcfg=locate_record(key(f.machine at gmachine’s address)); 
if (rcfg ! = RECORD-FOUND) 

IF (rcfg == OTHER-RECORD-FOUND) 

break; 

copy(g.machine data to gmachine’s address in f.machine); 

setLpollution_bit(key(f.machine at g.machine’s address)); 

case 3: I* 
rcf = locate_record(key(f.machine)); 

break; 
IF (rcf == RECORD-FOUND) remove_record(key(f.machine)); 

Column 4, row 1 */ 

case I 1  : case 15: I* Column 4, rows 3 and 4 *I 
rcf = locate-record(key(f.machine)) 
write.record(kev(f.machine).data): 
IF (rcf==OTHER-RECORD-FOUND) setpollution-bit(key(f.machine)); 
rcfg = locate-record(key(f.machine at g.machine’s address)); 
if (rcfg ! = RECORD-FOUND) 

co&g.machine data to gmachine‘s address in fmachine); 

setLpollution_hit(key(f.machine at g.machine’s address)); 
IF (rcfg = = OTHER-RECORD-FOUND) 

break; 

default: 
break; 

} 

/* Column I *I 

interfered destructively with other fault effects coming 
around  the memory or through the memory via some 
other path. In all other cases, the read operation works as 
if there were no pollution bit. The extension of the code 
shown in Figure 3 for the read operation is 
straightforward and is not shown separately. 

are always  pessimistic. They become more pessimistic 
over time because pollution bits cannot be reset once 
they are set. Such increasing pessimism  is not a problem 
when few patterns are simulated. However,  in long test 
sequences all exposures must eventually be ignored 
because of the set pollution bits. 

This problem of increasing pessimism can be solved, 
though at some storage cost, by having not one pollution 
bit per location in the hash table, but instead one 
pollution bit per address for  every memory in every 
f.machine where reconvergence necessitates some 
indication that  an overwrite occurred. The idea is to 

With a simple pollution bit, the exposure predictions 

296 replace each memory with a pollution array which has 

the same number of addresses but is only one bit  wide.  If 
a record in the hash table is overwritten, the information 
about the data in the memory is  lost, but not the address 
in the memory and not the fact that there used to be 
corrupted data at that address. 

This technique is  generally applicable, but it  clearly 
does not save storage space when the memories 
themselves are very narrow. In addition, the pollution 
arrays may not fit in storage if storage is sufficiently 
small, and their use should therefore be restricted as 
much as possible. It might be noted, however, that it is 
not always  necessary to set aside in storage one bit for 
every address in  the memory. If  few addresses are affected 
during a simulation, for example because the  number of 
patterns that must be simulated is small or because the 
fault is hard  to expose, the pollution-array representation 
in  storage can be considerably compressed because the set 
bits in  the array are sparse. 

A bit in the pollution array is  set  if the corresponding 
address in  the memory contains  a fault effect and reset 
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int rcf, rcfg: 
unsigned fault-descriptor: 

switch (faukdescriptor) { 

case I :  case 5 :  case 9: case 13: 
case 7: 

I* 
/* 

rcf= locate-record(key(f.machine)): 
write-record(key(f.machine),data): 
change_pollution_array(key(f.machine),l); 
break: 

Column 4, row 2 */ 
Column 2 * I  

case 2: case 6: case IO: case 14: /* 
rcfg= locate-record(key(f.machine at g.machine’s address)); 
if (rcfg ! = RECORD-FOUND) 

change_pollution_array(key(f.machine at gmachine’s address),l): 
copy(g.machine data to gmachine’s address in f.machine): 

break; 

Column 3 */ 

case 3: 
rcf = locate_record(key(f.machine)); 

change_pollution_mdy(key(f.machine at gmachine’s address),O): 
IF (rcf == RECORD-FOUND) remove_record(key(f.machine)): 

break: 

/* Column 4, row I */ 

case I I :  case 15: 
rcf = locate_record(key(f.machine)) 
write_record(key(f,machine),data): 
change_pollution_array(key(f.machine),I); 
rcfg= locate_record(key(f.machine at g.machine’s address)): 
if (rcfg ! = RECORD-FOUND) 

copy(g.machine data to  gmachine’s address in fmachine): 
change_pollution_array(key(f.machine at gmachine’s  address),l); 
break, 

I* Column 4, rows 3 and 4 */ 

default: 
break: 

1 
Column 1 */ 

1 Write operation to a memory with pollution arrays 

when the exposing vector is overwritten by a 
nonexposing one. It is this possibility  of resetting 
the pollution bit that prevents the simulation from 
becoming increasingly  pessimistic. In the hash table 
itself, there can be overwriting as above. The  C program 
for the write operation is shown in Figure 5. The 
setting and resetting of pollution bits is done by 
change-pollution-bit(key,value), where  value  is either 1, 
corresponding to a set, or 0, corresponding to  a reset. 

The program for a read is shown in Figure 6.  The hash 
table must be consulted on a read when the pollution bit 
in  the pollution array is  set. The pollution array is 
checked by the function read-pollution-bit(key), which 
returns the value of the pollution bit. When the pollution 
bit is set to 1, the f.machine’s memory contains 
corrupted data at the f.machine’s address. These data 
may  of course have been overwritten, but a mismatch or 
match between the keys indicates whether an overwrite 
did or did not occur. In the former case, locate-record() 
returns the value OTHER-RECORD-FOUND; in the 
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latter case  it returns RECORD-FOUND. As before, on  a 
mismatch, any exposure of the fault should be ignored 
for this pattern. 

Conclusion 
Defective hashing makes it possible to handle many 
memories in  a fault simulator, usually within the 
constraint of existing  storage. The cost is a possible 
decrease in the calculated test coverage. This decrease is 
under the control of the user,  who  still has the option of 
obtaining more storage or partitioning the fault list. Only 
when the test sequences are long and  the memories are 
embedded in such a complex fashion that many fault 
effects  may  follow reconvergent paths through or around 
the memory will the simple versions of this technique 
fail.  Even then, however, the required storage can be 
reduced by using pollution arrays, which are only one bit 
wide. In addition, the representation of these arrays may 
be compressed if the array elements that have the set 
value are sparse. 297 
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int  rcf,  rcfg; 

if  (read-enable  is off) 

else { 
rcf = ENABLE-OFF 

p-bit = redpollution-array(key(f.machine)) 
if(p_bit==O) 

else 
rcf = NO-RECORD 

ref = locate_record(key(f.machine)) 
1 /* read  enable  is  on */ 

switch (rcr) { 

case RECORD-FOUND /* 
copy  (f.machine  data  to  read  buffer) 
break; 

read  from  the  hash  table */ 

case NO-RECORD: 
rcfg = locate_record(key(g.machine at  f.machine’s  address)) 
copy(g.machine  data  at  f.machine’s  address  to  read  buffer) 
break; 

/* read  from  good  machine */ 

case OTHER-RECORD-FOUND /* 
I* return and “IGNORE THIS PATTERN  INDICATION” 
break, 

ignore  this  pattern */ 

default: 
break, 

} 
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