Simulation

of embedded
memories

by defective
hashing

by Leendert M. Huisman

Because logic designs are becoming more
complex and extensive, they increasingly tend
to contain embedded memories. In the
simulation (particularly fault simulation) of these
designs, the embedded memories may be found
to require large amounts of storage unless a
carefully designed simulation strategy is
adopted. This paper describes a technique that
drastically reduces the storage required in the
fault simulation of such large designs. The
required amount of storage can be fixed at
compile time or at load time, and can almost
always be made to fit in the available storage at
the cost of only a small decrease in the
predicted exposure probabilities.

Introduction

During fault simulation in the combinational logic of
designs containing embedded memories, a fault in the
combinational logic may cause the input to the write port

©Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 34 NO. 2/3 MARCH/MAY 1990

or the read port of some memory to be incorrect. The
contents of that memory may become corrupted when
the write port is affected; i.e., the contents may diverge
from those of the memory in the fault-free design. How
they diverge depends on the details of the fault effect on
the write port: Sometimes only one address is affected,
sometimes two [1]. An incorrect read address or an
incorrect read enable may produce faulty data in the read
buffer, although it does not corrupt the contents of the
memory.

A fault that affects the write port of the memory may
be exposed if the contents of the memory become
incorrect and are later read. Since it is not known
beforehand when such incorrect data will be written into
or read from the memory, a fault simulator must
maintain a complete copy of the faulty design’s memory,
in addition to the copy for the fault-free design. When
only the read port of a memory can be affected by a fault,
incorrect data may still appear in the read buffer and
cause an exposure of the fault, but this will not affect the
contents of the memory. Therefore, no separate copy of
the memory is required for such a fault.

In many fault-simulation algorithms [2], such as
deductive simulation or concurrent simulation, all faults
are processed simultaneously to take advantage of the
logical similarity of most faulty designs: For many input
patterns, faults will produce no fault effects at all, or will
produce fault effects only in the immediate neighborhood

LEENDERT M. HUISMAN

289

290

)

Write
address

Data in
Write
enable

Read
address || [
Data

Read [0ut
enable

[T][]

Two-port memory configuration.

of the fault location. Most of the time, the logical values
on the internal nets of a faulty design are the same as
those in the fault-free design, and there is therefore no
reason to simulate the faulty design explicitly. When all
faults are simulated simultaneously, however, each fault
that may affect the write-port of some internal memory
in general wi/l, if sufficiently many patterns are applied,
but we do not know how and when a particular fault will
corrupt the memory. Therefore, to properly simulate all
faulty designs, multiple copies of each embedded
memory may have to be maintained; each memory
whose write port(s) can be affected by N different faults
requires N + 1 copies; NV for the faulty designs and 1 for
the fault-free design.

The storage required for copies of large memories can
easily exceed the available storage in the host machine.
This can be and often is solved by partitioning the fault
list and simulating only one (small) portion at a time.
This reduces the memory requirements but also greatly
increases the run time. Far less storage would be required
by storing only the addresses containing incorrect data
and the incorrect data themselves. On a read from a
memory in a faulty design, one then checks first to see
whether there is a record for the read address in that
memory, indicating that that address contains corrupted
data. If there is no such record, the data are simply read
from the good machine’s copy of that memory.

The required storage may be considerably less than
when complete memories are stored. One still needs a

LEENDERT M. HUISMAN

storage pool to accommodate the incorrect data in any of
the memories. Allocation of the incorrect data to the
storage pool can be done by hashing [3, 4]. The key to be
hashed contains fields, the first of which is the address in
the memory. The second is the name of the memory, or
some index, since there may be more than one memory
in the design. The third and last field in the key is the
name of the fault for which the memory simulation is
done. Hashing has the advantage that locating a record
can be done in constant time; other techniques for
allocating records to the storage pool, such as binary
trees, slow the simulation unacceptably.

However, with hashing there is still the problem that
the location in the hash table where (key + data) should
be stored is already occupied. This is called a collision.
Standard strategies to deal with such collisions are
rehashing and linked lists [3]. Resolving the collisions
tends to slow down the simulation process and may still
result in an overflow of the available memory during run
time. To solve the problem of hash-table overflow, and
also to avoid the performance degradation associated
with the collision handling, a new technique, called
defective hashing, is proposed. This technique makes it
possible to simulate all fault effects at the inputs to
embedded memories using only the available storage.

The next section briefly describes how to simulate a
memory when a fault effect arrives at a write port or a
read port. In the final section, defective hashing and
various implementation details are discussed.

Embedded memories

This section reviews how faults can affect the inputs to
and the contents of a memory, and how these fault effects
are simulated, using hash tables to store records for faulty
addresses. Summary, and sketchy, C programs are
presented in Figures 2 and 3 for the write operation and
the read operation, respectively. Completeness is not
claimed for these programs. Thorny problems, such as
how the memory is initialized and what logical values
appear in the read buffer when the read enable is off, are
not discussed. The main goal of this section is to show
that all fault effects can be handled systematically and to
focus attention on the few primitive operations that work
directly with the hash table.

o Embedding of the memory

The memories considered in this paper are assumed to
have two ports (see Figure 1), although the ideas
expressed here are applicable to general multiport
memories. There are two separate ports, one for writing
and one for reading, each with its own address lines and
enable line. Fault effects can arrive at the memory at the
data lines of the write port and at any of the addresses or
enables. We assume no restrictions on the combinational

1BM J. RES. DEVELOP. VOL. 34 NO. 2/3 MARCH/MAY 19%0

logic in front of the memory. For example, on the same
input pattern a single fault can give rise to fault effects on
the data lines, address lines, and enable line of the write
port.

In the concurrent simulation of many faulty designs, a
memory is simulated explicitly and serially (i.c., one
faulty design at a time) for all faulty designs that have a
fault effect on any of the inputs to the memory or in the
contents of the memory. The simulator handles the
memory by two separate simulation operations: a read
and a write. There must be an order of precedence for
the two operations if both read and write ports are
enabled and both operations refer to the same address:
Either the write occurs first and the read produces the
newly written data, or the read occurs first and produces
stale data. The choice of priority has no effect on the
simulation of the reads and writes, however, as long as
they are done in the appropriate order.

o Fault effects

Faults can affect the memory in many different ways.
When a fault affects the read operation, the memory is
simulated as if the design were fault-free, but with
perhaps a different enable or address than in the actual
fault-free design. The write operation, however, is
affected by faults in a very complex manner.

Table 1 summarizes the ways in which a single fault
can affect the write port of a memory. To simplify the
text somewhat, the simulated fault-free design is
indicated from now on by g.machine and the simulated
faulty design for some fault by f.machine. The columns
in Table 1 are labeled according to the four different
g.machine/f.machine combinations of the write enables.
In the column labeled 0/0, the write enables of both the
fault-free design and the faulty design are off. Clearly, in
that case, no write occurs in either the g.machine or the
f.machine, and therefore no fauit effect (F.E.) is written
into the memory.

In the 0/] column, the write enable of the f.machine is
incorrectly on. Data are written to some address that may
or may not be the same as the g.machine’s address,
though data should not have been written at all. This will
corrupt the contents of the memory, unless by
coincidence the f.machine’s data happen to be the same
as the data in the g.machine’s memory at the f.machine’s
address. Then the faulty write to the f.machine’s memory
will in fact overwrite and cancel a previously stored fault
effect. We ignore this exception at the cost of a small
potential increase in required storage and assume that the
memory contents will always be corrupted.

The case in which the write enable is incorrectly off
(the 1/0 column) has a similar effect on the contents of
the memory. In this case, no write occurs to the
f.machine’s memory, though a write should have

IBM J. RES. DEVELOP. VOL. 3¢ NO. 2/3 MARCH/MAY 1990

Table 1 Fault effects on the write port of a memory

Address/Data Enable (glf)
010 o/1 1/0 1
Good/Good NoF.E. FE.infa FE.inga NoFE.

Good/Faulty NoF.E. F.E.infa. F.E.inga. FE.infa.
Faulty/Good NoF.E. F.E.infa F.E.inga. F.E. ing/fa.
Faulty/Faulty NoF.E. FE.infa. F.E.inga F.E. ing/fa.

g/f = g.machine’s/f.machine’s

F.E. =faulteffect

ga. = g.machine’s address in the f.machine’s memory

fa. =f.machine’s address

g/f.a. = both the g.machine’s and the f.machine’s addresses in the f.machine’s memory

occurred (to the g.machine’s address in the faulty design’s
memory). If the g.machine’s address of the faulty design’s
memory already contains incorrect data, these data will
not be affected, and the corresponding record in the hash
table will stay. However, if there are no incorrect data at
that address, there is no corresponding entry in the hash
table, and an explicit write fo the hash table (not to the
f.machine’s memory) is required: The f.machine’s
memory will differ from that of the g.machine, because it
will contain the old data from the g.machine, while the
g.machine itself contains new data. Again, ignoring the
unlikely case in which the data at the affected address are
the same as the write data in the g.machine, this lack of a
write will always corrupt the f. machine’s memory.

The 1/1 column treats the most complex case, in
which both write enables are on. The rows are labeled
with the various possibilities (good or faulty) of the data
and the address. When both addresses and data are
correct, the f.machine will end up with correct data, i.e.,
no entry in the hash table, at the g.machine’s address. If a
record had existed for the f.machine at that address, it
would be removed from the hash table. When the fault
causes the data at the write port to be incorrect while the
address remains valid (row 2), incorrect data are stored in
the f.machine’s memory at the same address as in the
g.machine’s memory. Finally, when the write address is
faulty (rows 3 and 4), a double write must be performed
into the f.machine’s memory [1]. First, data are written
to an address to which they should not have been
written. Second, a write occurs in the g.machine that is
not paralleled in the faulty design. Consequently, at the
completion of the actual write operation, the f.machine’s
memory will also contain incorrect data at the
g.machine’s address, namely the data that were there
before the write occurred rather than the data that
appeared at the write port.

A complete program written in pseudo-C is shown in
Figure 2. In this and later program fragments, we assume
that the memory simulation is done by hashing (defective

LEENDERT M. HUISMAN

291

292

int ref, refg;
unsigned fault_descriptor;

switch (fault.descriptor) {

case 1: case 5: case 9: case 13: 1*

case 7: /%
rcf = locate_record(key(f. machine))
write_record(key(f. machine),data);
break;

case 2: case 6: case 10: case 14: /%

Column 2 */
Column 4, row 2 */

Column 3 */

refg = locate_record(key(f. machine at g.machine’s address))

if (rcfg ! = RECORD_FOUND)

copy(g.machine data to g.machine’s address in f. machine)

reaK;

case 3: *
ref = locate_record(key(f. machine))

Column 4, row 1 %/

IF (rcf == RECORD_FOUND) remove_record(key(f. machine));

break;

case 11: case 15: /%
ref = locate_record(key(f. machine))
write_record(key(f.machine),data);

Column 4, rows 3 and 4 */

rcfg = locate_record(key(f. machine at g.machine’s address))

if (refg ! =RECORD_FOUND)

copy(g.machine data to g.machine’s address in f.machine)

2

default: *
break;

Column 1 */

Write operation to a memory.

or otherwise). The fault_descriptor variable encodes in
some form the sixteen various possibilities of Table 1. In
the variation shown here, the elements of the matrix in
Table 1 are numbered row-wise from 0 to 15. The
function locate_record(key) locates a record in the hash
table and returns a variable that indicates whether a
record that matches the key was found (RECORD_
FOUND) or not (NO_RECORD). Hidden in this
function is the algorithm used to handle collisions; key is
a structure that contains the information required to
store an item in the hash table: address, memory name,
and fault name. This structure upon return from locate_
record() also contains a record address in the hash table,
either of the existing record or of a blank record where
the new data will be written. The function write_
record(key,data) performs a single write of data into the
hash table at the location indicated by key. Consequently,
the case corresponding to column //1, rows 3 and 4,
needs two invocations of write_record(). The function
remove_record(key) removes a record if one is there.

As mentioned above, a read operation is considerably
simpler than a write operation. The pseudo-C program
for reading from a memory is shown in Figure 3.

LEENDERT M. HUISMAN

Defective hashing

The programs shown above assume a complete hash-
table storage technique for storing the corrupted
addresses. The locate_record, write_record, and read_
record functions introduced above are functions that
work on the hash table. However, as explained in the
Introduction, adding records may eventually lead to local
memory overflow and in any case introduces the
problem, and performance degradation, of collision
handling. In this section, a technique is introduced that
obviates the need for collision handling, making it
possible to do the simulation with almost any amount of
local memory without fear of overflow.

The key idea is that in many applications fault
simulation is done to establish that faults are exposed by
a test sequence, 1.€., by at least one of the patterns in the
sequence. In such applications it is clearly not necessary
that all exposures be identified, but only that at least one
be identified. In fact, it is often not even necessary to
determine all faults that are exposed, only a sufficiently
large fraction. It is therefore possible to relax the fault-
simulation requirements and require only that when the
fault simulator identifies a pattern as one exposing a

IBM J. RES. DEVELOP. VOL. 34 NO. 2/3 MARCH/MAY 1990

int rcf, refg;

if (read_enable is off)
rcf = ENABLE_OFF
else
rcf =locate_record(key(f.machine))

switch (rcf) {

case RECORD_FOUND: /*

copy (f. machine data to read buffer)
break;

case NO_RECORD: I

read from the hash table */

read from good machine */

rcfg =locate_record(key(g.machine at f. machine’s address))
copy(g.machine data at f. machine’s address to read buffer)

break;

default:
break;

% Read operation from a memory.
:

certain fault, (a) this fault must be exposed by that
pattern when the real test sequence is applied to the real
hardware, and (b) this fault must be present in the real
hardware. In other words, in many applications a fault
simulator is allowed to be pessimistic as long as it is
never optimistic. A similar reasoning lies behind the
acceptability of critical path tracing [5], which is an
approximate but strictly pessimistic fault simulator. Of
course, once we allow pessimism, the degree of
acceptable pessimism becomes a matter of concern, but
we do not address that here.

If we allow a fault simulator to be pessimistic, all the
problems with collisions and hash-table overflow can be
made to disappear. The general strategy is simply to
overwrite on collision, i.e., to use a new item to replace
an item that is already in a location. This has the
disadvantage that possible exposures are sometimes
missed when incorrect data that were stored in a memory
are overwritten by other incorrect data that corrupted
some other address (perhaps even belonging to an
entirely different memory) but were stored in the same
location in the hash-table. Such an overwrite may
therefore reduce the calculated exposure probability of
the fault. This pessimism can be minimized by using as
large a storage pool as is feasible and by using a hashing
technique that will assign the keys as evenly as possible to
the locations in the storage pool [6].

Of course, the g.machine’s memory now cannot be
simulated using the same hash table, because its data are
always needed and we cannot run the risk of overwriting

IBM J. RES. DEVELOP. VOL. 34 NO. 2/3 MARCH/MAY 1990

those data. The machine’s memories must therefore be
simulated using separate storage areas and no defective
hashing mechanisms.

This simple idea of overwriting upon collision must be
refined, because memories can be embedded in many
different ways in combinational logic, and not all
embeddings are amenable to simple overwrites. Starting
from the fault location, fault effects may fan out, pass
through the memory via several different paths, or pass
around the memory in addition to passing through it,
and reconverge behind that memory. It might then
happen that during the actual test a fault effect would
follow a path around the memory, or through the
memory, and reconverge with another fault effect that
originated from the same fault and that was stored
previously in the memory. If this reconvergence should
lead to a mutual cancellation of the fault effects, no
exposure would be observed on the POs for that pattern.
However, if we had performed fault simulation with
unprotected overwrites, the fault effect stored in the
memory during the simulation might have been
overwritten by another fault effect with a different key.
As a result, the fault effect coming around the memory
would reconverge in the simulation with a g.machine
value rather than with another fault effect, and the
simulator might indicate, incorrectly, that the fault was
exposed at the POs.

We discuss a number of strategies of increasing
complexity. These strategies differ in the presence or
absence of some indication that an overwrite occurred.

LEENDERT M. HUISMAN

293

294

Such an indication may be required to ensure that the
simulation does not indicate an exposure when there is
none, as explained above. Since the presence of such an
indication increases the storage required for the memory
simulation without increasing the calculated exposure
probability, it should be avoided whenever possible.

& Defective hashing with reconvergence

In the simplest case, no indication will show that an
overwrite occurred. This technique can be used when
there is no danger of reconvergence from the fault site
before the memory to somewhere behind the memory.
Clearly, the presence or absence of such a reconvergence
depends on the fault location with respect to the memory
and on how the memory is embedded. The same
memory therefore may be simulated without an
overwrite indication for some faults, but with one for
other faults.

The specifics in this case are simple; in fact, the
programs shown in Figures 2 and 3 can be used. The
locate_record(key) function hashes the key only once
(i.e., without attempting to resolve a collision if one
occurs) and returns 1) the resulting location in the hash
table and 2) an indication whether or not a record with a
matching key was found. If no record with a matching
key was found, the location is assumed to be empty
(rcf = NO_RECORD), even if a record is there. On a
write to an f. machine’s memory, (key + data) are written
at the location that was found by locate_record(),
regardless of what was there already. On a read, the data
from the hash table are used if there is a match between
the key for the read operation and the stored key in the
hash table. Otherwise, the f.machine’s memory is
considered to contain no corrupted data at the read
address, and the data are taken from the g.machine’s
memory instead.

& Degree of pessimism

To get some feeling for how pessimistic fault simulation
can become when the defective hashing technique is
used, we consider a simple example. In this example, a
random pattern sequence is applied to a logic design with
one embedded memery and no reconvergence around
the memory. This memory has I addresses, and the
addresses are randomly selected with equal probability
(equal to 1/7) during the test. The logic design is such
that only faults on the data lines can affect the memory.
There are F such faults, with exposure probabilities p,, p,,
.-+, P,.. A fault effect is written into the memory when it
appears at the write port and the write enable (indicated
by w) happens to be on. Similarly, a fault effect is read
from the memory when the read enable happens to be on
and a fault effect was previously written into the address
from which the read occurs.

LEENDERT M. HUISMAN

While a fault effect is present in some address, it may
be overwritten by various mechanisms, though not all of
them are caused by defective hashing. Random testing is
a case in which defective hashing can lead to very
pessimistic results, because a fault effect may have to
remain a long time in the memory before it is read.
Clearly, defective hashing reduces the average stay of a
fault effect in the memory because of the additional
overwriting mechanisms. One would like to estimate how
severe this reduction is, and whether or not the stay will
be reduced to 0.

The hash table contains H bins. Because there is only
one memory, there are F*/ items [(fault,address) pairs] to
be hashed, and on average each bin contains F*I/H of
them. The case in which F*[is not large compared to H
is not interesting, as it is the case in which the hash table
is (almost) large enough to hold all items without
collision. We therefore assume that both F and 7 are large
compared to | and that their product is large compared
to H. In fact, we assume that 7 is itself large compared to
H, because we would like to illustrate the effects of
defective hashing in its most serious form. For every
f.machine, the addresses will be spread more or less
evenly over the bins and, as a result, on average I/H
addresses will be assigned to each bin. As the total
number of (fault,address) pairs mapped in any bin is on
average F*I/H, all faults will be represented in each bin.

Consider now a particular fault f with exposure
probability p,, and assume that a fault effect caused by
this fault has been written in address i in the memory.
The pair (f;i) is mapped to a certain bin, called 4, in the
hash table. The fault effect can be overwritten on a later
pattern in three different ways. First, the f.machine can
write fault-free data to address i. This overwrites the fault
effect even without the defective hashing. The probability
of such an overwrite occurring is

w
7 (1- p/')a

where the factor w/I is the probability of writing to
address i. Second, a fault effect can be written by the
same f.machine to a different address that is mapped to
the same bin 4. On average, I/H different addresses from
that f.machine will be mapped to 4. The probability of
writing a fault effect to any of those addresses except i is

w (1_1 v
1°\H =t

These first two overwrite mechanisms are mutually
exclusive. Therefore, the probability that neither one of
them caused an overwrite on one pattern can be
approximated by

IBM J. RES. DEVELOP. VOL. 34 NO. 2/3 MARCH/MAY 1990

w w

LA
1" HY

Finally, the fault effect can also be overwritten by
different f.machines that write to the addresses for which
the corresponding (fault,address) pairs are mapped to bin
h. For every such f.machine, I/H different addresses will
use bin /4 on average. The probability of not writing a
fault effect to any of the (fault,address) pairs in bin / is
then (assuming I/H to be large)

w
—nF
F F H
w [w e
1_11<1'7”fﬁ)=[1,(1‘§”f>=—7’
e T L=

where (p) is the average fault-exposure probability.
The conclusion is that once a fault effect in some

f.machine has been written to some address, the

probability that it will not be overwritten is

Fault effects can also be overwritten as soon as they are
written, i.e., on the same clock cycle. The probability of
such an overwrite occurring depends on when the
corresponding f.machine is handled by the fault
simulator; it is largest when the f.machine is first in the
list. The first two overwrite mechanisms do not apply,
because they are in contradiction with a fault effect being
written. The third one does occur. When the f.machine
in question is the first one to be considered, the
probability of the other f. machines not overwriting the
fault effect is the same as above, i.e., a simple exponential
factor. Therefore, the probability of a fault effect being
written without being overwritten is

a
e H

The most important difference from the exact fault
simulation, i.e., no defective hashing, is the exponential
factor. Interestingly, the exponential factor does not
depend on the size of the memory if this size is large. It
depends mainly on the ratio of F and H, showing that for
defective hashing not to be too pessimistic, the number of

IBM J. RES. DEVELOP. VOL. 34 NO. 2/3 MARCH/MAY 1990

bins in the hash table should not be small compared to
the number of faults that can affect the memory. A more
accurate estimate of the effects of defective hashing is
obtained by comparing the exponential factor to its
coefficient. This coeflicient is present even without
defective hashing. Strictly speaking, there is an additional
term proportional to p,in this coeflicient, but that term
can be ignored when p, is small. The comparison shows
that the effects of defective hashing can be ignored when
H/FT is large compared to (p). Since we assume that
FI/H is large, this condition may not be fulfilled, and
defective hashing may have a nonnegligible effect.

Fault exposures will not be eliminated by the defective
hashing scheme, however; they will only be diminished.
Moreover, if faults are dropped from consideration when
they are first exposed, (p) will decrease and H/FI will
eventually become large compared to {p). In the limit
that only the hard-to-detect faults remain, (p) will be
very small, and the exponential factor will have almost
no effect.

& Defective hashing with reconvergence

When there is reconvergence from the fault site before
the memory to behind the memory, some record must be
kept that the location in which (key + data) was stored
became polluted, i.e., that an exposing vector was
overwritten. The easiest way to indicate that an overwrite
occurred is to add a so-called pollution bit to the record
for the location in the hash table. This bit is set as soon
as the overwrite occurs. Once the bit has been set,
however, it cannot be reset, because all information on
the data and the address whose record was overwritten
has been lost. Therefore, it is impossible to determine
whether a later write to that address has canceled the
fault effect, or even that a fault effect existed in that
address in the first place.

The pseudo-C code for the write operation is shown in
Figure 4. It is basically the same as the code in Figure 2,
but with some additions to handle the pollution bit. In
particular, locate_record() now also indicates whether a
record with a nonmatching key was found at the location
where the write data will be stored (OTHER_RECORD_
FOUND), because the pollution bit only has to be set
when an actual existing record is overwritten. set_
pollution_bit(key) is the function that sets the pollution
bit of the location in the hash table indicated by key.

When on a read it turns out that (a) the location in the
hash table returned by locate_record() is polluted and (b)
there is no match between the keys (rcf = = OTHERL
RECORD_FOUND), any exposure of a fault during this
pattern is ignored. The reason is that the present data in
this location might have overwritten a fault effect that
was stored previously in the memory at the address being
read, and that this overwritten fault effect might have

LEENDERT M. HUISMAN

295

296

int ref, refg;
unsigned fault_descriptor,

switch (fault.descriptor) {

case 1: case 5: case 9: case 13:

case 7:
ref = locate _record(key(f.machine));
write_record(key(f. machine),data);

Column 2 */
Column 4, row 2 */

IF (rcf == OTHER.RECORD_FOUND) set_pollution.bit(key(f. machine));

break;

case 2: case 6: case 10; case 14:

Column 3 */

refg = locate_record(key(f.machine at g.machine’s address));

if (rcfg ! = RECORD_FOUND)

copy(g.machine data to g.machine’s address in f.machine);
IF (rcfg == OTHER .RECORD_FOUND)
setpollution_bit(key(f.machine at g.machine’s address));

break;

case 3:
ref = locate_record(key(f. machine));

Column 4, row 1 */

IF (ref ==RECORD_FOUND) remove._record(key(f. machine));

break;

case 11: case 15:
ref = locate _record(key(f. machine))
write_record(key(f.machine),data);

Column 4, rows 3 and 4 */

IF (ref == OTHER.RECORD_FOUND) set_pollution_bit(key(f.machine));
rcfg =locate_record(key(f.machine at g.machine’s address));

if (rcfg ! = RECORD_FOUND)

copy(g.machine data to g.machine’s address in f.machine);
IF (refg == OTHER_RECORD_FOUND)
set_pollution_bit(key(f.machine at g.machine’s address));

break;

default:
break;

o

interfered destructively with other fault effects coming
around the memory or through the memory via some
other path. In all other cases, the read operation works as
if there were no pollution bit. The extension of the code
shown in Figure 3 for the read operation is
straightforward and is not shown separately.

With a simple pollution bit, the exposure predictions
are always pessimistic. They become more pessimistic
over time because pollution bits cannot be reset once
they are set. Such increasing pessimism is not a problem
when few patterns are simulated. However, in long test
sequences all exposures must eventually be ignored
because of the set pollution bits.

This problem of increasing pessimism can be solved,
though at some storage cost, by having not one pollution
bit per location in the hash table, but instead one
pollution bit per address for every memory in every
f.machine where reconvergence necessitates some
indication that an overwrite occurred. The idea is to
replace each memory with a pollution array which has

LEENDERT M. HUISMAN

Column | */

the same number of addresses but is only one bit wide. If
a record in the hash table is overwritten, the information
about the data in the memory is lost, but not the address
in the memory and not the fact that there used to be
corrupted data at that address.

This technique is generaily applicable, but it clearly
does not save storage space when the memories
themselves are very narrow. In addition, the pollution
arrays may not fit in storage if storage is sufficiently
small, and their use should therefore be restricted as
much as possible. It might be noted, however, that it is
not always necessary to set aside in storage one bit for
every address in the memory. If few addresses are affected
during a simulation, for example because the number of
patterns that must be simulated is small or because the
fault is hard to expose, the pollution-array representation
in storage ccan be considerably compressed because the set
bits in the array are sparse.

A bit in the pollution array is set if the corresponding
address in the memory contains a fault effect and reset

1BM J. RES. DEVELOP. VOL. 34 NO. 2/3 MARCH/MAY 1990

int ref, refg;
unsigned fault_descriptor;

switch (fault_descriptor) {

case 1: case 5: case 9: case 13:

case 7:
ref = locate_record(key(f.machine));
write_record(key(f.machine),data);

change.pollution_array(key(f. machine),);

break;

case 2: case 6: case 10: case 14:

Column 2 */
Column 4, row 2 */

Column 3 */

refg = locate_record(key(f.machine at g.machine’s address));

if (refg ! = RECORD_FOUND)

copy(g.machine data to g.machine’s address in f.machine);
change_pollution_array(key(f.machine at g.machine’s address),1);

break;

case 3:
rcf = locate_record(key(f.machine));

Column 4, row 1 */

IF (rcf == RECORD_FOUND) remove_record(key(f.machine));
change_pollution_array(key(f.machine at g.machine’s address),0);

break;

case 11: case 15:
ref = locate_record(key(f.machine))
write_record(key(f. machine),data);

change_pollution_array(key(f. machine),1);

Column 4, rows 3 and 4 */

refg = locate_record(key(f. machine at g. machine’s address));

if (rcfg ! = RECORD_FOUND)

copy(g.machine data to g.machine’s address in f. machine);
change_pollution_array(key(f.machine at g.machine’s address),1);

break;

default:
break;

Write operation to a memory with pollution arrays.

when the exposing vector is overwritten by a
nonexposing one. It is this possibility of resetting
the pollution bit that prevents the simulation from
becoming increasingly pessimistic. In the hash table
itself, there can be overwriting as above. The C program
for the write operation is shown in Figure 5. The
setting and resetting of pollution bits is done by
change_pollution_bit(key,value), where value is either 1,
corresponding to a set, or 0, corresponding to a reset.
The program for a read is shown in Figure 6. The hash
table must be consulted on a read when the pollution bit
in the pollution array is set. The pollution array is
checked by the function read_pollution_bit(key), which
returns the value of the pollution bit. When the pollution
bit is set to 1, the f.machine’s memory contains
corrupted data at the f.machine’s address. These data
may of course have been overwritten, but a mismatch or
match between the keys indicates whether an overwrite
did or did not occur. In the former case, locate_record()
returns the value OTHER_RECORD_FOUND; in the

IBM J. RES. DEVELOP. VOL. 34 NO. 2/3 MARCH/MAY 1990

Column 1 */

latter case it returns RECORD_FOUND. As before, on a
mismatch, any exposure of the fault should be ignored
for this pattern.

Conclusion

Defective hashing makes it possible to handle many
memories in a fault simulator, usually within the
constraint of existing storage. The cost is a possible
decrease in the calculated test coverage. This decrease is
under the control of the user, who still has the option of
obtaining more storage or partitioning the fault list. Only
when the test sequences are long and the memories are
embedded in such a complex fashion that many fault
effects may follow reconvergent paths through or around
the memory will the simple versions of this technique
fail. Even then, however, the required storage can be
reduced by using pollution arrays, which are only one bit
wide. In addition, the representation of these arrays may
be compressed if the array elements that have the set
value are sparse.

LEENDERT M. HUISMAN

297

298

int rcf, refg;

if (read_enable is off)
ref = ENABLE_QFF
else {
p-bit = read_pollution_array(key(f. machine))
if (p_bit==0)
ref =NO_RECORD
else
ref = locate_record(key(f. machine))

switch (rcf) {
case RECORD_FOUND: %
copy (f.machine data to read buffer)
break;
case NO_RECORD: /*

read enable is on */

read from the hash table */

read from good machine */

rcfg = locate_ record(key(g.machine at f.machine’s address))
copy(g.machine data at f. machine’s address to read buffer)

break;

case OTHER_RECORD_FOUND: /*

ignore this pattern */

/* return and “IGNORE THIS PATTERN INDICATION™

break;

default:
break;

E Read operation from a memory with pollution arrays.

Acknowledgment

The author wishes to thank Barry Rosen and Larry
Carter of the IBM Thomas J. Watson Research Center
for their critical reading of the original manuscript.

References

1. Paul H. Bardell, William H. McAnney, and Jacob Savir, Built-In
Test for VLSI: Pseudorandom Techniques, John Wiley & Sons,
Inc., New York, 1987, Ch. 7.11.12.

2. Alexander Miczo, Digital Logic Testing and Simulation, Harper
& Row Publishers, New York, 1986, Ch. 4.8.

3. Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman, Data
Structures and Algorithms, Addison-Wesley Publishing Co., Inc.,
Reading, MA, 1983, Ch. 4.7.

4. Ted G. Lewis and Curtis R. Cook, “Hashing for Dynamic and
Static Internal Tables,” Computer, pp. 45-56 (October 1988).

5. Miron Abramovici, P. R. Menon, and David T. Miller, “Critical
Path Tracing: An Alternative to Fault Simulation,” JEEE Design
& Test of Computers 1, 83-92 (February 1984).

6. J. Lawrence Carter and Mark N. Wegman, “Universal Classes of
Hash Functions,” J. Computer & Syst. Sci. 18, 143-154 (April
1979).

Received June 29, 1989; accepted for publication August 25,
1989

LEENDERT M. HUISMAN

Leendert M. Huisman 7BM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598. Dr. Huisman received the Ir. degree in technical physics
from the Technische Hoge School, Delft, the Netherlands, in 1973.
He received a Ph.D. degree in physics from Harvard University in
1979. From 1978 to 1980 Dr. Huisman was a Postdoctoral Research
Fellow at Brandeis University, Waltham, Massachusetts. Between
1980 and 1982, he was employed by the Stichting voor
Fundamenteel Onderzoek der Materie in the Netherlands. Since
joining IBM in 1982, he has worked on VLSI testing and
verification. Dr. Huisman is a member of the American Physical
Society and the IEEE Computer Society.

IBM J. RES. DEVELOP. VOL. 34 NO. 2/3 MARCH/MAY (990

