
Computation
of elementary
functions
on the IBM RlSC
System/6000
processor

by P. W. Markstein

The additional speed and precision of the IBM
RlSC System/6000* floating-point unit have
motivated reexamination of algorithms to
perform division, square root, and the
elementary functions. New results are obtained
which avoid the necessity of doing special
testing to get the last bit rounded correctly in
accordance with all of the IEEE rounding modes
in the case of division and square root. For the
elementary function library, a technique is
described for always getting the last bit rounded
correctly in the selected IEEE rounding mode.

Introduction
The extra precision and high speed of the IBM RISC
System/6000* (RS/6000) floating-point instruction set
has significantly changed the balance between fixed- and
floating-point arithmetic, and performing conditional
branches. Re-examining the elementary functions in light
of these new capabilities has led to interesting new results
concerning those functions.

RlSC System/6000 is a trademark of International Business Machines Corporation.

@Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

This paper discusses results concerning division, square
root, and the evaluation of the common elementary
functions (e.g., sin, exp). Division and square root are
primitive IEEE operations [11; the methods chosen to
implement them for the RS/6000 processor required that
proofs of their correctness be established. Finally, as a
consequence of implementing the common elementary
functions using the IBM Haifa Research Group’s
accurate table method [2,3], it became apparent that
with some modification these routines could always
produce the correctly rounded values. While these results
could always have been obtained without the RSJ6000, it
was that machine’s new floating-point capabilities that
inspired the investigations leading to the results which
follow.

The additional precision of the accumulate (floating-
point multiply and add) instruction [4] permits certain
applications of the Newton-Raphson iteration to
converge to correctly rounded results. In developing
proofs of the convergence of these iterative techniques, it
has also become clear why attempts to carry out such
algorithms without the precision of the RSJ6000
accumulate instruction were doomed to failure, or
required an impractical amount of computation.

instruction set, the objective in designing routines for the
elementary functions was to minimize the use of floating-
point arithmetic. With the RSJ6000 processor, there is no
need to try to circumvent most floating-point operations.
Polynomials of degree IZ can be evaluated by Horner’s

In machines having a relatively slow floating-point

111

IBM J. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990 P. W. MARKSTEIN

method using just n accumulate instructions. In the case
of division and square root, we show how additional
floating-point computation avoids the need for a
conditional branch, which would be more expensive in
these cases.

Division
The RS/6000 divide instruction is implemented by
microcode which computes the quotient by iteratively
refining guesses of the quotient and the reciprocal of the
divisor using the accumulate instruction. The decision to
use a microcode approach for floating-point division was
motivated by the need to save space on the floating-point
chip.

Historically, using a Newton-Raphson approach for
division required that special corrective action be taken
at the end of the algorithm in order to get the last bit
rounded correctly, as required by the IEEE standard.
Furthermore, in an IEEE implementation, an indicator
must be correctly set to describe whether or not the
division was exact. Without corrective action, previous
applications of the Newton-Raphson method to division
seemed to round some results incorrectly [5]. However,
conditional branches at the end of the division process
could cause the floating-point pipeline to be drained at
the cost of several additional cycles.

If P and D are floating-point numbers, how can P/D be
computed with the last bit correctly rounded according to
each of the four defined IEEE rounding modes? The
entire difficulty lies in computing the bits of the mantissa
of PfD. P and D will be written in a nonstandard
floating-point form to reduce the problem to one of
integer division. Let N be the number of bits represented
in the mantissa of a floating-point word. For the RS/6000
architecture, N = 53. Select integers B, S, d, and s such
that

D = B X 2d, 2N” 5 I B I < 2N,

- = s x 2 ” , 2 N - 1 5 IS1 < 2 N . P
D

This choice of the integers B, S, d, and s determines
integers A and p such that P = A X 2’, and
A = O(mod 2 N - 1) , in which the leading N bits of A are the
bits of the mantissa of P. Since the exponent of the
quotient is simply computed by s = p - d, it remains
only to determine the integer S which best approximates
A/B according to the IEEE rounding mode in which the
computer is currently running.

The initial approximation Y to 1/B is derived from a
table. The Newton-Raphson iteration [6] refines Y to a
better approximation Y’ by the iteration

E = 1 - B Y ,

112 Y’ = Y + EY. (2)

P. W. MARKSTEIN

In (2) , B is an integer as determined in (l), and E and Y
are floating-point quantities having N-bit mantissas.
When Y is correct to within one ulp (unit in the last
place), E is computed exactly if the full, double-length
product BY can be preserved, or if the hardware is
capable of an “accumulate” instruction (x + y z) and
allows all the bits of the product yz to participate in the
sum, as does the RS/6000 floating-point unit. If the
original approximation was not exactly 1/B, then Y’
generated by (2) underestimates 1/B before rounding,
since

”

B

An initial approximation Q to A/B is computed as A Y,
where Y is an approximation to 1/B. Q is refined to a
better approximation Q ‘ by computing a residual

- Y(l + E + E * + . . .) .

R = A - B Q (3)

and then computing

Q’ = Q + RY. (4)

As above, assume that (3) and (4) are evaluated with
RS/6000 accumulate instructions. If Q approximates A/B
to better than one ulp, the computation of R in (3) is
exact.

When (2) is used, Y’ will have twice as many bits of
1/B correct as Y. The number of correct bits in Q’ will
be approximately the number of correct bits in Q plus
the number of correct bits in Y.

If all intermediate computations of Equations (2) , (3),
and (4) are carried out in round-to-nearest mode, and the
final evaluation of (4) is carried out in the desired
rounding mode, then it is not difficult to get the correctly
rounded result, except for the case of round to nearest.

The issue in round-toward-zero (truncation), round-to-
infinity (ceiling), or round-to-minus-infinity (floor) is
whether the exact result is a representable floating-point
number, or falls to the left or right of a representable
number. If the next-to-last application of (4) produces
more than N good bits before rounding, and if the
question is a representable floating-point number, then
that application of (4) will produce that representable
number [because (4) was performed in round-to-nearest
mode]. In any case, the next computation of the residual
(3) will determine to which side of the current
approximation of the quotient the true quotient lies, and
the final application of (4) with the machine running in
the desired rounding mode will select either the current
approximation or its neighbor in the direction of R Y,
depending on the rounding mode.

The difficulty when the rounding mode is round-to-
nearest stems from the fact that the last application of (4)
can yield an approximation good to 2N bits before
rounding, but on the opposite side of the midpoint

IBM J. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

between two representable floating-point numbers from
the true quotient. The reader can easily verify that this
can happen by trying to compute 1/ 15 using only 4-bit
floating-point arithmetic, and taking as the first guess to
1/15, 1/16, that is, (1000, x 2"). Whereas the correctly
rounded-to-nearest result is 91128, that is, (100 1, x 2"),
the algorithm never budges from the guess 1/16 (see
Figure 1).

The remainder of this section shows that when
Equations (2) , (3), and (4) are applied sufficiently often,
Q' will become the correctly rounded-to-nearest
approximation to A/B, provided that the initial guess to
l /B is properly chosen, and that all evaluations of (2),
(3), and (4) are performed with RS/6000 accumulate
instructions (or their equivalent). (The failure shown in
Figure 1 to converge to the correct round-to-nearest
result stems from what will be shown to be an improperly
chosen initial approximation to 1 / 15.)

Lemma I
The residual R cannot equal B/2 in radix-2 arithmetic.

Proof If the residual R = B/2, then the true quotient q
would be exactly representable in N + 1 bits, and A = Bq
exactly. The product of an N + 1-bit number by an
integer will always require at least N + 1 significant bits.
But the dividend A was represented in just N significant
bits.

Lemma 1 shows that a quotient cannot lie exactly
between two representable numbers. This is very helpful,
because it removes the necessity of devising a means of
simulating IEEE rounding in the event that a result were
to lie exactly between two representable numbers. It is
also desirable to influence the algorithm to avoid
attempting to add a correction which lies exactly between
two representable numbers. Figure 1 also illustrates the
danger of using such a correction, since the rounding
during the Newton-Raphson algorithm does not
necessarily give the desired quotient.

Lemma 2
There is no solution in integers to the diophantine
equation

2NX = (2N - l)Y + 2N-' - 1

satisfying

2N" 5 X < 2N and 2N" I Y < 2N.

Proof It is easy to verify that the diophantine equation
is solved by

X = 2N" - l(mod 2N - 1)

and

IBM J. RES. DEVELOP. VOL. 34 NO. 1 JANUARY 1990

Y = O.OOOloo00, Q =1(M = O.OOO1OOO

E = 1 - 15 Y = 0.0001OOOO

Y' = 0.0001Ooo + 0.00000001000

= 0.0001OOOlOOO, roundsto0.0001000

R = 1-15Q=O.O00lOoo

Q' = O.Ooo1000 + (0.0001000) (0.0001000)

= 0.001OOO1OOO, rounds to0.0001000

! Failure to converge to round-to-nearest result. (All fractions shown
i in binary radix.) I

Y E ZN-l - l(mod 2N),

and consequently no solutions match the required
constraints on X and Y.

The next proposition is the cornerstone of the division
algorithm, because it shows just how close an
approximation to a reciprocal must be to guarantee that
(3) and (4) yield a correctly rounded quotient.

Proposition I
If Q is correct to within one ulp, and Y = 1/B correctly
rounded, then one application of (3) and (4) yields
Q' = A/B correctly rounded.

Proof If Q = A/B to within one ulp, the computation of
R by (3) results in a value whose absolute value is less
than B. When the adjustment RY to Q is computed, then
when R < B/2, RY must be less than 112, and when
R > B/2, RY must be greater than 112 for correct
rounding to occur. (By Lemma 1, the residual B/2
cannot occur.)

If 1 R 1 > B/2, we can write R = (B + M)/2 , where
M E B(mod 2) and 0 < M < B. The requirement that
R Y > 1 / 2 becomes

B + M 1
9 y> , ,
L L

or

1
B + M '

Y>-

The most stringent condition is when M = 1 for oaa B,
when the following must hold:

1
B + 1 '

Y>- (5) 113

P. W. MARKSTEIN

114

Similarly, if I R I < B/2, write R = (B - M)/2, where
A4 I B(mod 2), 0 c M < B. The requirement that
RY 112 leads to

> Y
B - 1

Together, (5) and (6) show that if A/B is computed to
within one ulp, one additional application of (3) and (4)
will lead to a correctly rounded quotient, provided that

1 1
B + 1 B - 1 ‘

< Y < -

Notice that

1 1 1 1
B B + 1 B(B + I) 22N’
”“ - >-

with the scaling assumed in (1) for B, whereas Y = 1/B
correctly rounded means

Thus, Y = 1/B correctly rounded satisfies (7).

the correctly rounded reciprocal except for a divisor
whose mantissa consists of all 1 bits.

Proposition 1 will be used to show that (2) converges to

Proposition 2
If Y approximates 1/B to within one ulp, one application
of (2) will give Y’ = 1/B correctly rounded, except when
B = 2 N - 1.

Proof If Y satisfies (7), then Proposition 1 shows that
one iteration of (3) and (4) will yield the correctly
rounded quotient. But an application of (3) and (4) is
equivalent to (2) when A = 1. What are the consequences
when Y approximates 1 /B to within one ulp, but is not
correctly rounded? According to the proof of Proposition
1, only if the residual given by (3) takes on the value

might an application of (3) and (4) not lead to the
correctly rounded result. [Since we are dividing an N-bit
integer into 1 .O to get an N-significant-bit fraction, notice
that the first N - 1 bits to the right of the binary point
are zeros, followed by the N significant bits. The
remainder (B + 1)/2 would have been right-aligned
2N - 1 bits to the right of the binary point.] Had the
quotient Y been truncated instead of rounded up, then

y = - - 1 (B + 1)2-2N 1 - (B + 1)2-2N
B B

- -
B

Examine Y - - B + 1 to determine whether Y satisfies (7):

1 B + 1 - (B + 1)22-2N - B y - - =
B + 1 B(B + 1)

- 1 - (B + 1)2 X 2-2N -
B(B + 1) ’

For B c 2N - 1, (8) shows that Y - 1/(B + 1) > 0, and
thus satisfies (7). For B = 2N - 1, Y = 1/(B + l), and so
(7) is not satisfied.

(2) does not converge to 1/(2N - 1) correctly rounded to
N bits when B = 2N - 1. (Figure 1 illustrates this
phenomenon with N = 4.)

For divisors having mantissas consisting of all 1 bits,
the next proposition shows that (3) and (4) converge to
the correctly rounded result if the quotient is approached
from above.

The reader can easily confirm by hand calculation that

Proposition 3
If B = 2N - 1, Y is within one ulp of 1/B, Q is within one
ulp of A/B, and I Q I is at least as large as I A/B 1 correctly
rounded, then one application of (3) and (4) will lead to
the correct quotient.

Proof If Y is within one ulp of I/B, but is not equal to
1/B correctly rounded, then Y will not satisfy (7), but it
will satisfy

1 1
B + 2 B - 1 ’

< Y < -

By virtue of the discussion in the proof of Proposition 1,
such a Y will produce the correctly rounded quotient
provided Q is within one ulp of A/B and the (magnitude
of the) residual is not equal to

First, if Q is already equal to A/B correctly rounded,
the residual R must be less than B/2, so that by the proof
of Proposition 1, an application of (3) and (4) will return
Q correctly rounded.

If Q exceeds A/B correctly rounded, (3) and (4) will
still yield the correctly rounded quotient, provided that
the residual is not equal to 2N-l in magnitude. Since Q is
too large, R will be negative. But a residual of -2N” is
congruent to 2N-1 - l(mod 2N - l), and Lemma 2 shows
that it cannot arise.

Using the above propositions, the conditions for
computing a correctly rounded quotient without any
conditional branching to adjust the last bit will be given.

The computations in (2), (3), and (4) must each be
done with rounding occurring only on the additions or
subtractions. Regardless of the rounding mode with
which the quotient is to be computed, all applications of

P. W. MARKSTEIN IBM J . RES, DEVELOP. VOL. 34 NO. I JANUARY 1990

(2), (3), and (4) are to be done in round-to-nearest mode,
except for the final application of (4), which should be
performed in the desired rounding mode.

It 1s necessary to repeat (2) sufficiently often that on
the next-to-last iteration there is more than N-bit
accuracy before rounding. While this result may not be
rounded correctly, the last iteration will produce the
correctly rounded reciprocal, except for divisors whose
mantissas consist of all 1 bits, by Proposition 2. The
number of iterations depends on the precision of the
initial “guess” to the reciprocal of B.

The first approximation of the quotient A/B must be
made in such a manner that it overestimates A/B in those
cases where the mantissa of B consists of all 1 bits.
Whenever (3) and (4) are applied, the value Y must have
resulted from an application of (2). Equations (3) and (4)
must first be applied sufficiently often that the value of
Q’ has more than N-bit accuracy before rounding. After
rounding, it will be within one ulp of the correctly
rounded result. In particular, if the quotient is exact, it
will have been produced by this time. If the approximate
reciprocal is generated according to the previous
paragraph, then by Propositions 1 and 3, final application
of (4) will result in the correctly rounded quotient. As a
by-product, the last application of (4), which should be
executed in the desired rounding mode, will correctly
characterize the result as to whether or not it is exact.

Square root
For the RS/6000 processor, the primitive IEEE
operation, square root, is implemented in software. Two
algorithms that can be used are power series evaluation
and Newton-Raphson iteration. With either algorithm,
the last bit must be rounded correctly according to
whichever of the four IEEE rounding modes is in effect
when the routine is entered. Tuckerman rounding
provides the precise criterion for determining whether an
approximation of a square root is correctly rounded-to-
nearest, or must be changed (up or down) by one ulp [7].

If g is a guess to &, Tuckerman rounding states that
g is correctly rounded-to-nearest if and only if

g(g - u) x 5 g(g + u), (10)

where u = one ulp. This inequality stems from the
requirement that for g to equal & correctly rounded-to-
nearest,

(g - u/2)2 e x < (g + u/2)2.

Examining the right-hand inequality above shows that

x < g + - = g (g + u) + q , ($ U 2

since there are no numbers z representable in floating-
point in the interval

g (g + u) < z s g (g + u) + - . U 2 4

(The reader can convince himself of this by rescaling the
floating-point numbers to force one ulp to equal 1 .)
Thus, if

x 5 g(g + u),

g must be closer than g + u to & A similar argument
shows that if

g(g - u) x,

g must be closer than g - u to

error by no more than one ulp (either by taking a
sufficient number of terms in a series expansion or by
using a sufficient number of iterations of the Newton-
Raphson iteration), Tuckerman rounding can be applied
to resolve whether g requires adjustment by one ulp. On
the RS/6000 processor, the floating-point compares
would be followed immediately by conditional branches.
Because of the high degree of pipelining in the floating-
point unit, the processor would have to delay as much as
15 cycles before returning the final result. Can the
conditional branches needed for Tuckerman rounding be
avoided?

Analysis of the Newton-Raphson method shows that
only two mantissas cause the method to converge to the
incorrectly rounded value. As in the case of division, it is
only the treatment of the mantissa of the result that is of
interest. So, to force the analysis into number-theoretic
terms, the number x whose square root is sought is
assumed to be an integer in the range

After g is computed with sufficient accuracy to be in

22N-2 5 x < 22N,

2N-l 5 & < 2N.

(1 1)

so that its square root lies in the range

(12)

Of course, since x must be representable with only N
significant bits, it follows that in order to satisfy (1 l),

x = O(mod 2N”) when x < 22N-1

and

x = O(mod 2N) when x 2 22N-’

(13)

(14)

The most difficult cases for the round-to-nearest mode
occur when x = g(g f u), since the correct square root is
almost g f u/2. Because of the scaling chosen for this
analysis, the guesses g are always integers, and u = 1. The
most difficult square root problems occur when

g(g & 1) = O(mod 2N-1),

g(g k 1) = O(mod 2N). (15)

IBM J. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990 P. W. MARKSTEIN

116

The only g satisfying (I 4) in such a way that x = g(g -+ 1)
with x satisfying (1 1) are

g = 2 9

N x = 2 2 N - 2N7

g = 2 N - 1, x = 22N - 2N 7

The discussion which follows shows that for all x
satisfying (1 1) except for the two specific values cited in
(1 5), the Newton-Raphson algorithm must converge
correctly to the round-to-nearest square root. The variant
of the Newton-Raphson iteration that will be examined
is

g ’ = g + - x - g2
2g

This form of the Newton-Raphson iteration is avoided in
most computer implementations because x - g2 suffers
loss of accuracy due to cancellation which gets worse as
g2 gets closer to x. Instead, g’ = OS(g + x/g) is favored.
But in the RS/6000 floating-point unit, with its
accumulate instruction, the mantissa of x - g2 always
contains N significant bits. For all x satisfying (1 1) except
those shown in (1 6), x - g2 # g, so the correction to g
will be other than exactly 1/2. If y, the reciprocal of 2g,
were available, correctly rounded (or one ulp too large or
too small), the analysis of Proposition 1 shows that

g’ = g + (x - g2)Y (18)

will round correctly to g + u or g - u whenever
I x - g2 I > g, and resolve to g whenever I x - g2 I < g.
For the case where x - g2 = g, Tuckerman rounding
shows that g is the correctly rounded-to-nearest result,
and if x - g2 = -g, g - u is the correctly rounded result.
Since the Newton-Raphson iteration converges to &
from above, it is sufficient to ensure that when I x - g2 I
= g, (18) will yield g - u. This will be achieved if y
overestimates 1/2g by at least 1/2 ulp. However, to still
guarantee convergence for all other cases, y cannot
overestimate 1/2g by more than one ulp.

Equation (1 8) can be evaluated with two accumulate
instructions. The first computes x - g2, and the second
the resultant value of g ’, the improved guess with twice
as many good bits as g (before rounding), if y were
available. How can y be computed cheaply when division
is a very expensive operation? The initial value of g is
derived from a table based on the leading n bits of the
mantissa of x. (For the RS/6000 application, n was taken
to be 8.) A parallel table yields an approximation y of
1/2g, also good to n bits. With these starting values, the
2n-bit approximation g ’ is computed. Since g and g ’

P. W. MARKSTEIN

agree to n bits, y is an n-bit approximation of 1/2g‘.
Interleaved with the next computation of g’ is the
refinement of y to the reciprocal of 2g’. The cost of
repeated evaluations of (18) would be four cycles if an
oracle provided y (since each accumulate instruction is
dependent on the previous one.) By interleaving the
refinement of the reciprocal with the computation of
(1 8), one iteration takes six cycles. The final touch is to
perturb the reciprocal computation to always
overestimate the reciprocal of 2g. This is easily
accomplished by using 1 + ulp instead of 1 in the
evaluation of (2). This never creates an error of more
than one ulp in 1/2g. If I x - g2 I = g, the correction (18)
yields g - u. [If this slightly incorrect value for y is
applied when x - g2 = g, (18) will incorrectly produce
g + u, but the values given in (1 6) are the only ones that
can cause this to happen when their correctly rounded
square roots are obtained. But by that time no further
iterations are performed if the initial guesses to those
square roots are sufficiently poor!]

The code fragment presented in Figure 2 shows the
refinement of the initial guess g (and the guess y for 1/2g)
to the correctly rounded &, assuming that the mantissas
have 53 bits and the initial guesses have eight correct
significant bits. Each line of code produces one RS/6000
instruction with the PL.8 compiler. The instructions
which lose one cycle by depending on the previous
operation are marked in the comment field with “!! .”

Elementary function library
In the previous two sections, we have shown how the
IBM RISC System/6000 architecture is exploited to
perform division and square root as required by the IEEE
floating-point standard. The standard is silent, however,
on the precision with which other elementary
mathematical functions should be computed. Perhaps no
precision requirements were specified because it was
deemed unreasonable or impossible to achieve last-bit
accuracy. At additional execution cost, of the order of
20%, the standard mathematical library can be written so
as to always achieve the correctly rounded result.

elementary function consists of three major components:
reducing the argument to a small domain, evaluating the
function (or a related one) for the reduced argument, and
combining the function just evaluated with data
developed during the argument-reduction process. Recent
papers [2, 3, 81 have stressed the importance of
controlling errors during the process of argument
reduction. Here again the accumulate instruction proves
to be very useful. Argument reduction often involves
computation of

In almost all cases, the process of computing an

x’ = x - nc,

IBM J . RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

where x is the original argument and n is an integer
chosen so that x’ will be less than c/2 in magnitude.
Because c is usually known to high precision, in practice
there are two (or more) floating-point numbers, c, and c,
(and perhaps more), so that c = c, + c,, but c, is less than
112 ulp of c, . The above reduction is then carried out as
follows:

t = x - nc, (Note: This is exact if n = x/cl is correctly
rounded),

x ’ = t - n c , .

The above scheme can be extended to use even longer
approximations of c in the event that x’ is sufficiently
small (implying that there are fewer than N significant
bits in x’).

functionf(x) as follows (after preliminary argument
reduction of the sort shown above has been performed):
Split the domain of the argument-reduced function into
256 approximately equal intervals. Instead of choosing
equidistant boundary points, choose the domain
boundaries x, so thatf(x,) when evaluated to high
precision has 1 1 or more Os or 1s beginning at significant
bit 54 of its mantissa. In this way, a long floating-point
IEEE word with 53 bits of mantissa behaves as though it
had 64 bits of precision. Now computef(x) as follows:

Gal and Bachelis [31 propose computing an elementary

f(x) = t; + g(x - x;), (19)

where i is chosen so that I x; - x I is minimized. In (1 9)
t , is the function valuef(x,) represented as a long IEEE
floating-point word extracted from a table indexed on i,
and g(x - x,) is evaluated by economized power series
[6]. Since g(x,) = 0, g itself can be written as

g(x - x,) = (x - x,)h(x - Xi), (20)

where h is a polynomial. After h(x - x,) is computed,
(19) can be evaluated with one accumulate instruction:

f(x) = t; + (x - x;)h(x - x,). (21)

In (21), if h has been evaluated with sufficient accuracy
and if the product is less than 112048 of the magnitude of
t,, the accumulate instruction will produce the correctly
rounded result in 102311024 of the cases. Since
polynomial evaluation is fast on the RS/6000 processor,
this technique (or minor variations) leads to subroutines
for the elementary functions that are both fast and
accurate.

What is needed to obtain the correct result in the
remaining 1 1 1024 of the cases? First, the elementary
functions exp, sin, cos, tan, and their inverses are all
transcendental. While floating-point arguments are
termed “real,” they are in fact limited to rational values,
since their mantissas are finite in length. The above-

IBM J. RES, DEVELOP. VOL. 34 NO. 1 JANUARY 1990

d = x - g * g ;

y2 = y f y;

g = g + y * d ;

e = almost - half - y * g;

d = x - g * g ;

y = y + e * y 2 ;

g = g + y * d ;

y2 = y + y;

e = almost - half - y * g;

d = x - g * g ;

y = y + e * y 2 ;

g = g + y * d ;

y2 = y i- y;

e = almost - half - y * g;

d = x - g * g ;

y = y + e * y 2 ;

setflm(fmode);

g = g + y * d ;

/*assume machine in round-to-nearest mode *I

I* 16-bit approximation to g *I

I* ! ! Newton-Raphson iteration for *I

/*reciprocal is interleaved with *I

/*Newton-Raphson iteration for the *I

I* ! ! sqrt. 32-bit approx to g. *I

/*almost - half = 0.5 + 2**(-53) *I

I* ! ! 64-bit approximation before rounding *I

I* Caution! The approximation was

I* good to 64 bits before rounding, but

I* it may have rounded incorrectly.

I* setflm is a PL.8 built-in function to

I* restore the original floating-point status

I* and the original user-defined rounding

I* mode. One more iteration gets the last

I* bit right by the arguments in this

I* paper, and avoids Tuckerman rounding

I* Furthermore, the last computation of g

I* completely characterizes the result and

I* correctly sets all the status bits.

*I

*I

*I

*I

*I

*I

*I

*I

*I

*I

*I

*I

Square root by Newton-Raphson iteration.

mentioned transcendental functions are all known to
yield transcendental numbers for all rational arguments
(except, for each of these functions, one specific rational
argument, for which a rational result is produced, e.g.,
eo = 1). Therefore, evaluating a transcendental function
to sufficient precision will always lead to the correct
determination of the low-order bit of its long floating-
point representation.

machine’s natural longest word length to resolve the last
bit of precision? Suppose a formula such as (21) is used
to compute the transcendental function. The error
introduced by rounding in the computation of (2 1) will
be called the discriminant, and it can easily be

When is it necessary to resort to more than the

P. W. MARKSTEIN

117

computed as

discriminant = [ti - f(x)] + (x - xi)h(x - xi). (22)

If the discriminant is not too close to the critical value
for the rounding mode (1/2 ulp for round-to-nearest, and
0 for the other rounding modes), the evaluation of (21)
has yielded the correctly rounded result. Because the
correct value off(x,) differs from ti by less than 112048
ulp, and the polynomial h has been chosen to be correct
to within 112048 ulp ofJ; only if I discriminant I differs
from the critical value by less than 1/1024 ulp is the
correct rounding of (21) in doubt.

transcendental term must be computed to higher
precision. This will occur about once in a thousand
evaluations. If the higher-precision calculation can be
contained within 1000 cycles, the average increase in
computing a transcendental will be increased by about 15
cycles' calculation of the discriminant and its comparison
to the critical value, and on the average by one cycle for
the high-precision evaluation. To put this cost into
perspective, ex and In x can be computed in 50 to 70
cycles by the accurate table method.

To ensure that the high-precision calculation can be
kept to within 1000 cycles, a double-length computation
is coded very carefully. Effectively, the number of correct
bits in the discriminant has been increased by more than
40. So, except for possibly once in a trillion times, the
double-length computation will resolve the question of
the last bit. Otherwise, a longer detailed calculation is
required, but the remote possibility of its occurrence
allows great latitude in its coding.

The double-length computation offers an interesting
choice, which is discussed here only for the round-to-
nearest case. The obvious method is simply to compute
the transcendental to double length by brute force. In this
situation, the accurate table t is no longer sufficiently
precise, so that other means are required to obtain the
required precision.

Alternatively, the inverse function can be used to
resolve the last bit. Iff(x) is being evaluated with g being
the inverse function over the range in question, then to
resolve whetherf(x) should be y or y + u (where y is a
representable floating-point number and u is one ulp),
g(y + 242) can be evaluated. Iffis an increasing function
in the neighborhood of x, then g (y + u/2) > x implies
thatf(x) rounds to y, and g (y + u/2) < x implies that
f(x) rounds to y + u. Again, y + 4 2 is rational, so
g(y + u/2) is transcendental and cannot equal x. The
analysis of g(y + u/2) is exactly the approach that leads
to the derivation of Tuckerman rounding in the case of
the square root. The notion of computing g(y + u/2) to
determine the rounding forf(x) can be considered an

If the discriminant is too close to the critical value, the

118 extension of Tuckerman rounding.

P. W. MARKSTEIN

Whether the double-length computation should be in
terms of the given function or its inverse depends on the
relative rates of increase of these functions. As an
example, consider the exponential function. If

X

y = e ,

In y = x,

& = d x = x - .
Y (3
In this form, the relative error in y is expressed as a
function of the relative error in x. If dx/x is one ulp, dyly
is x ulps. Now consider the same analysis for the inverse
function, the natural logarithm:

x = In y,

In x = In In y,

dx = L(&).
x 1nY Y

Reducing the range of arguments for the exponential
function leaves new arguments whose absolute value is
bounded by 112 In 2. Thus, over the domain in which
exp is evaluated, the relative error in exp will be less than
0.4 times the relative error in x. On the other hand, the
natural logarithm would be evaluated in the domain
J1/2 I y I A. The closer y gets to 1 , the larger the
relative error in its logarithm. The conclusion is that the
logarithm will be much sharper than the exponential in
determining the correct rounding. Even though the series
for the logarithm converges more slowly than the
exponential, the logarithm reduces the probability of
having to resort to more than double-length calculation.

series expansion gives

e = 1 + 2-53 + +
It would take a triple-length computation to have the
2"07 term enter the calculation to indicate that the value
should be rounded to 1 + 2-52. On the other hand, one
could compute

ln(1 + 2-53) = 2-53 - +

As an illustration, consider the evaluation of e2-s3. The

*-53

Clearly, a double-length computation (single-length
almost sufficed) shows that In(1 + 2-53) < 2-53, and
therefore should be rounded up to 1 + 2-52.

There are interesting open questions related to this
approach to computing the elementary functions. If a
rational argument can be expressed in N significant bits,
will the discriminant, when computed to N-bit accuracy,
always differ from the critical value by more than 2-N
ulps? For the exponential, the above example showed
that N-bit discriminants are not sufficient over the

IBM J. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

domain of interest. Are N-bit discriminants sufficient to
correctly determine the rounding for the logarithm
function for all arguments between J1/2 and &‘ that are
representable as floating-point numbers? If that question
could be answered in the affirmative, computation
greater than double length would be unnecessary for the
exponential and logarithm functions.

Conclusions
The architecture of the IBM RISC System/6000
processor has motivated reexamination of mathematical
algorithms, including those used to compute the
commonly used elementary functions. The precision of
the RS/6000 accumulate instruction allows low-order bits
of a product to participate in a sum. Thus, cancellation
of high-order bits can become an advantage in certain
cases. The form of the Newton-Raphson iteration used
for the square root is a good example. The closer a guess
g comes to the more precise is the computation of x
- g2. When g is within an ulp of 4 then x - g2 is exact
on the RS/6000 processor, whereas it exhibits its worst
cancellation characteristics on standard architectures.
Knowing that such cancellation leaves a full word of
useful data has led to new insights in the numerical
analysis of these algorithms, including the opportunity to
apply number theory. The resultant algorithms have
better characteristics, both in accuracy and the
exploitation of pipelined architecture.

The code fragments presented here are all in higher-
level language, reflecting the fact that the actual math
library for the RS/6000 processor is coded in PL.8. The
code available from the RISC System/6000 compiler family
is of high quality, potentially eliminating the need to resort
to assembly language. Since the programs changed during
the development process, it was a relief not to have to
struggle with the problems of register allocation and
scheduling, knowing that the compiler would faithfully
solve these problems in a tailor-made fashion for every
new instance of the code.

Acknowledgments
The author has received help and advice from many
people. John Cocke suggested the division problem, and
was available for frequent discussions about all phases of
this work. Professor W. Kahan provided the author with
several monographs from the University of California at
Berkeley on the analysis of floating-point computations.
Reference [SI shows how number theory can be
employed for floating-point arithmetic analysis. Ramesh
Agarwal also offered advice on the division problem.
Peter Oden enriched the PL.8 language to allow the
floating-point rounding modes to be controlled from
within a PL.8 program; this modification made it

IBM J . RES, DEVELOP. VOL. 34 NO. 1 J ANUARY I 990

possible to do all the coding without resorting to
assembly language. Joel Boney and Sharon Lamb
consulted frequently on implementation issues, and the
author is indebted to them for their extensive testing of
the elementary function library.

References
1. “IEEE Standard for Binary Floating-point Arithmetic,”

ANSIIIEEE Standard No. 754, American National Standards
Institute, Washington, D C , 1988.

2. S. Gal, “Computing Elementary Functions: A New Approach for
Achieving High Accuracy and Good Performance,” Lecture Notes
in Computer Science No. 235, Accurate ScientiJic Computations,
Springer-Verlag, New York, 1986.

3. S. Gal and B. Bachelis, “An Accurate Elementary Mathematical
Library for the IEEE Floating Point Standard,” IBM Technical
Report 88.223, IBM Israel, Technion City, Haifa, Israel, 1988.

4. R. K. Montoye, E. Hokenek, and S. L. Runyon, “Design of the
IBM RISC System/6000 Floating-point Execution Unit,” IBM J.
Res. Develop. 34, 59-70 (1990, this issue).

Correctly Rounded, monograph, Dept. of Computer Science,
University of California, Berkeley, 1987.

6 . F. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill
Book Company, Inc., New York, 1956.

I . Elementary Math Library, Programming RPQ P81005, Program
No. 5799-BTB, Program Reference and Operations Manual, a)
First Edition (Release I , EMLI), January 1984, Order No. ST40-
2230-00; b) Second Edition (Release 2, EMLZ), August 1984,
Order No. SH20-2230-1; both are available through IBM branch
offices.

8. Ramesh C. Agarwal, James W. Cooley, Fred G . Gustavson,
James B. Shearer, Gordon Slishman, and Bryant Tuckerman,
“New Scalar and Vector Elementary Functions for the IBM
System/370,” I R M J . Res. Develop. 30, 126-144 (1986).

5. W. Kahan, Checking Whether Floating-Point Division Is

Received February 28, 1989; accepted for publication
February 6, I990

Peter W. Markstein IBM Research Division, 11400 Burnet Road,
Austin, Texas 78758. Dr. Markstein received his S.B. and S.M.
degrees in mathematics from the Massachusetts Institute of
Technology in 1958 and 1959, respectively, and his Ph.D. in
computer science from New York University in 1975. From 1959 to
1970, he was a member of the Computer Systems Department at the
IBM Thomas J. Watson Research Center, where he developed an
early multiprogrammed operating system for the STRETCH
computer. Dr. Markstein received an IBM Outstanding Contribution
Award in 1966 for developing a 7090-to-System/360 code-to-code
translator. He also served as manager of the Thomas J. Watson
Computing Center. As a member of the Computer Science
Department, he participated in a study of operating system security
in the early 1970s. He has been a member of the 801 project from its
inception in 1975. Dr. Markstein’s research interests focus on
compiler optimization, for which he received an IBM Outstanding
Contribution Award in 1985. He has also contributed to the
architecture and design of RISC arithmetic units, and has recently
developed a library of elementary function routines for the RISC
System/6000 processor. He is currently on assignment to the
Advanced Workstations Division, Austin, Texas, in the Hardware
Architecture Department. Dr. Markstein holds several patents in
compiler optimization and RISC technology.

