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The  additional  speed  and  precision  of  the IBM 
RlSC System/6000* floating-point  unit  have 
motivated  reexamination of algorithms  to 
perform  division,  square  root,  and  the 
elementary  functions.  New  results are obtained 
which  avoid  the  necessity of  doing special 
testing to get the  last  bit  rounded  correctly  in 
accordance  with  all of the  IEEE  rounding  modes 
in  the case of division  and  square  root.  For  the 
elementary  function  library,  a  technique  is 
described for always  getting  the  last  bit  rounded 
correctly  in  the selected IEEE  rounding  mode. 

Introduction 
The extra precision and high  speed  of the IBM  RISC 
System/6000* (RS/6000) floating-point instruction set 
has  significantly  changed the balance  between  fixed- and 
floating-point arithmetic, and performing conditional 
branches.  Re-examining the elementary functions in light 
of these new capabilities  has led to interesting new results 
concerning  those functions. 
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This paper discusses  results concerning division, square 
root, and the evaluation of the common elementary 
functions (e.g.,  sin,  exp).  Division and square root are 
primitive IEEE operations [ 11; the methods chosen to 
implement them for the RS/6000  processor  required that 
proofs of their correctness be established.  Finally, as a 
consequence of implementing the common elementary 
functions using the IBM Haifa  Research  Group’s 
accurate table method [2,3], it became apparent that 
with  some  modification  these routines could always 
produce the correctly rounded values.  While  these  results 
could always have  been obtained without the RSJ6000, it 
was that machine’s  new  floating-point  capabilities that 
inspired the investigations  leading to the results  which 
follow. 

The additional precision of the accumulate (floating- 
point multiply and add) instruction [4] permits certain 
applications of the Newton-Raphson iteration to 
converge to correctly rounded results. In developing 
proofs of the convergence of these iterative techniques, it 
has  also  become  clear why attempts to carry out such 
algorithms without the precision of the RSJ6000 
accumulate instruction were doomed to failure, or 
required an impractical amount of computation. 

instruction set, the objective in designing routines for the 
elementary functions was to minimize the use  of floating- 
point arithmetic. With the RSJ6000  processor, there is no 
need to try to circumvent most  floating-point operations. 
Polynomials of  degree IZ can be  evaluated by Horner’s 

In machines having a relatively  slow  floating-point 
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method using just n accumulate instructions. In the case 
of division and square root, we show  how additional 
floating-point computation avoids the need  for a 
conditional branch, which would  be more expensive in 
these cases. 

Division 
The RS/6000  divide instruction is implemented by 
microcode which computes the quotient by iteratively 
refining  guesses  of the quotient and the reciprocal of the 
divisor  using the accumulate instruction. The decision to 
use a microcode approach for  floating-point  division was 
motivated by the need to save  space on the floating-point 
chip. 

Historically,  using a Newton-Raphson approach for 
division  required that special  corrective action be taken 
at the end of the algorithm in order to get the last  bit 
rounded correctly, as required by the IEEE standard. 
Furthermore, in an IEEE implementation, an indicator 
must be correctly  set to describe  whether or not the 
division was exact. Without corrective action, previous 
applications of the Newton-Raphson method to division 
seemed to round some  results  incorrectly [5]. However, 
conditional branches at the end of the division  process 
could  cause the floating-point  pipeline to be drained at 
the cost of  several additional cycles. 

If P and D are floating-point numbers, how can P/D be 
computed with the last  bit  correctly rounded according to 
each of the four defined  IEEE rounding modes? The 
entire difficulty  lies in computing the bits of the mantissa 
of PfD. P and D will  be written in a nonstandard 
floating-point  form to reduce the problem to one of 
integer  division.  Let N be the number of bits  represented 
in the mantissa of a floating-point  word. For the RS/6000 
architecture, N = 53. Select  integers B, S, d, and s such 
that 

D = B X 2d, 2N” 5 I B I < 2N, 

- = s x 2 ” ,   2 N - 1 5  IS1 < 2 N .  P 
D 

This choice of the integers B, S, d, and s determines 
integers A and p such that P = A X 2’, and 
A = O(mod 2 N - 1 ) ,  in which the leading N bits of A are the 
bits of the mantissa of P. Since the exponent of the 
quotient is simply computed by s = p - d, it remains 
only to determine the integer S which  best approximates 
A/B according to the IEEE rounding mode in which the 
computer is currently running. 

The initial approximation Y to  1/B is derived  from a 
table. The Newton-Raphson iteration [6] refines Y to a 
better approximation Y’ by the iteration 

E =  1 - B Y ,  

112 Y’ = Y + EY. ( 2 )  
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In (2) ,  B is an integer as determined in (l), and E and Y 
are floating-point quantities having  N-bit  mantissas. 
When Y is  correct to within one ulp (unit  in the last 
place), E is computed exactly if the full,  double-length 
product BY can be  preserved, or if the hardware is 
capable of an “accumulate” instruction (x + y z )  and 
allows  all the bits of the product yz to participate in the 
sum, as  does the RS/6000  floating-point unit. If the 
original approximation was not exactly  1/B, then Y’ 
generated by ( 2 )  underestimates 1/B before rounding, 
since 

” 

B 

An initial approximation Q to A/B is computed as A Y, 
where Y is an approximation to 1/B. Q is refined to a 
better approximation Q ‘ by computing a residual 

- Y(l + E + E * + . . . ) .  

R = A - B Q  (3) 

and then computing 

Q’ = Q + RY. (4) 

As above,  assume that (3) and (4) are evaluated  with 
RS/6000 accumulate instructions. If Q approximates A/B 
to better than one ulp, the computation of R in (3) is 
exact. 

When ( 2 )  is  used, Y’ will have  twice  as many bits of 
1/B correct as Y. The number of correct bits in Q’ will 
be  approximately the number of correct bits in Q plus 
the number of correct  bits in Y. 

If  all intermediate computations of Equations (2) ,  (3), 
and (4) are carried out in round-to-nearest mode, and the 
final evaluation of (4) is carried out in the desired 
rounding mode, then it is not difficult to get the correctly 
rounded result,  except for the case  of round to nearest. 

The issue in round-toward-zero (truncation), round-to- 
infinity  (ceiling), or round-to-minus-infinity (floor) is 
whether the exact  result  is a representable  floating-point 
number, or falls to the left or right of a representable 
number. If the next-to-last application of (4) produces 
more than N good bits before rounding, and if the 
question is a representable  floating-point number, then 
that application of (4) will produce that representable 
number [because (4) was performed in round-to-nearest 
mode]. In any case, the next computation of the residual 
(3) will determine to which  side  of the current 
approximation of the quotient the true quotient lies, and 
the final application of (4) with the machine running in 
the desired rounding mode will  select either the current 
approximation or its  neighbor in the direction of R Y, 
depending on the rounding mode. 

The difficulty  when the rounding mode is round-to- 
nearest  stems  from the fact that the last application of (4) 
can yield an approximation good to 2N bits  before 
rounding, but on the opposite  side of the midpoint 
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between  two  representable  floating-point numbers from 
the true quotient. The reader can easily  verify that this 
can  happen by trying to compute 1/ 15 using  only  4-bit 
floating-point arithmetic, and taking  as the first  guess to 
1/15, 1/16, that is,  (1000, x 2"). Whereas the correctly 
rounded-to-nearest result  is 91128, that is, (100 1, x 2"), 
the algorithm  never  budges from the guess  1/16  (see 
Figure 1). 

The remainder of this  section shows that when 
Equations (2 ) ,  (3), and (4) are applied  sufficiently often, 
Q' will become the correctly rounded-to-nearest 
approximation to A/B, provided that the initial guess to 
l /B  is  properly chosen, and that all evaluations of (2), 
(3), and (4) are performed  with  RS/6000 accumulate 
instructions (or their equivalent). (The failure  shown in 
Figure 1 to converge to the correct round-to-nearest 
result  stems  from  what  will  be  shown to be an improperly 
chosen initial approximation to 1 / 15.) 

Lemma I 
The residual R cannot equal B/2 in radix-2 arithmetic. 

Proof If the residual R = B/2, then the true quotient q 
would  be  exactly  representable in N + 1 bits, and A = Bq 
exactly. The product of an N + 1-bit number by an 
integer will  always  require at least N + 1 significant  bits. 
But the dividend A was represented in just N significant 
bits. 

Lemma 1 shows that a quotient cannot lie  exactly 
between  two  representable  numbers. This is  very  helpful, 
because it removes the necessity of devising a means of 
simulating  IEEE rounding in the event that a result were 
to lie  exactly  between  two  representable numbers. It is 
also  desirable to influence the algorithm to avoid 
attempting to add a correction which  lies  exactly  between 
two representable  numbers.  Figure 1 also illustrates the 
danger of using  such a correction, since the rounding 
during the Newton-Raphson  algorithm  does not 
necessarily  give the desired quotient. 

Lemma 2 
There  is no solution in integers to the diophantine 
equation 

2NX = (2N - l)Y + 2N-' - 1 

satisfying 

2N" 5 X < 2N and 2N" I Y < 2N. 

Proof It is  easy to verify that  the diophantine equation 
is  solved by 

X = 2N" - l(mod 2N - 1) 

and 

IBM J.  RES. DEVELOP. VOL. 34 NO. 1 JANUARY 1990 

Y = O.OOOloo00, Q =1(M = O.OOO1OOO 

E = 1 - 15 Y = 0.0001OOOO 

Y' = 0.0001Ooo + 0.00000001000 

= 0.0001OOOlOOO, roundsto0.0001000 

R = 1-15Q=O.O00lOoo 

Q' = O.Ooo1000 + (0.0001000) (0.0001000) 

= 0.001OOO1OOO, rounds to0.0001000 

! Failure  to converge to  round-to-nearest result. (All fractions shown 
i in binary radix.) I 

Y E ZN-l  - l(mod 2N), 

and consequently no solutions match the required 
constraints on X and Y. 

The next proposition is the cornerstone of the division 
algorithm, because it shows just how  close an 
approximation to a reciprocal  must  be to guarantee that 
(3) and (4) yield a correctly rounded quotient. 

Proposition I 
If Q is  correct to within one ulp, and Y = 1/B correctly 
rounded, then one application of (3) and (4) yields 
Q' = A/B correctly rounded. 

Proof If Q = A/B to within one ulp, the computation of 
R by (3) results in a value  whose absolute value  is less 
than B. When the adjustment RY to Q is computed, then 
when R < B/2, RY must be  less than 112, and when 
R > B/2, RY must be  greater than 112 for correct 
rounding to occur. (By Lemma 1, the residual B/2 
cannot occur.) 

If 1 R 1 > B/2, we can write R = (B  + M)/2 ,  where 
M E B(mod 2) and 0 < M < B. The requirement that 
R Y > 1 / 2  becomes 

B + M  1 
9 y> , ,  
L L 

or 

1 
B + M '  

Y>-  

The most  stringent condition is  when M = 1 for oaa B, 
when the following  must  hold: 

1 
B +  1 '  

Y>-  ( 5 )  113 
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Similarly, if I R I < B/2,  write R = (B - M)/2, where 
A4 I B(mod 2), 0 c M < B. The requirement that 
RY 112 leads to 

> Y  
B -  1 

Together, ( 5 )  and (6) show that if  A/B  is computed to 
within one ulp, one additional application of (3) and (4) 
will lead to a correctly rounded quotient, provided that 

1 1 
B +  1 B -   1 ‘  

< Y < -  

Notice that 

1 1 1 1 
B B + 1 B(B + I )  22N’ 
”“ - >- 

with the scaling  assumed in (1)  for B, whereas Y = 1/B 
correctly rounded means 

Thus, Y = 1/B correctly rounded satisfies (7). 

the correctly rounded reciprocal  except for a divisor 
whose mantissa  consists of all 1 bits. 

Proposition 1 will  be  used to show that (2)  converges to 

Proposition 2 
If Y approximates 1/B to  within one ulp, one application 
of (2) will  give Y’ = 1/B  correctly rounded, except  when 
B = 2 N -  1. 

Proof If Y satisfies (7), then Proposition 1 shows that 
one iteration of (3) and (4) will  yield the correctly 
rounded quotient. But an application of (3) and (4) is 
equivalent to (2) when A = 1. What are the consequences 
when Y approximates 1 /B  to within one ulp, but is not 
correctly rounded? According to the proof of Proposition 
1,  only if the residual  given by (3) takes on the value 

might an application of (3) and (4) not lead to the 
correctly rounded result.  [Since we are dividing an N-bit 
integer into 1 .O to get an N-significant-bit  fraction,  notice 
that the first N - 1 bits to the right  of the binary point 
are zeros,  followed by the N significant  bits. The 
remainder (B + 1)/2 would  have  been  right-aligned 
2N - 1 bits to the right of the binary point.] Had the 
quotient Y been truncated instead of rounded up, then 

y = - -  1 (B + 1)2-2N 1 - (B + 1)2-2N 
B B 

- - 
B 

Examine Y - - B +  1 to determine whether Y satisfies (7): 

1 B + 1 - (B + 1)22-2N - B y -  - = 
B +  1 B(B + 1) 

- 1 - (B + 1)2 X 2-2N - 
B(B + 1) ’ 

For B c 2N - 1, (8) shows that Y - 1/(B + 1) > 0, and 
thus satisfies (7). For B = 2N - 1, Y = 1/(B + l),  and so 
(7) is not satisfied. 

(2) does not converge to 1/(2N - 1)  correctly rounded to 
N bits when B = 2N - 1. (Figure 1 illustrates this 
phenomenon with N = 4.) 

For divisors  having mantissas consisting of  all 1 bits, 
the next proposition shows that (3) and (4) converge to 
the correctly rounded result if the quotient is approached 
from  above. 

The reader can easily  confirm by hand calculation that 

Proposition 3 
If B = 2N - 1, Y is within one ulp of 1/B, Q is within one 
ulp of A/B, and I Q I is at least as large as I A/B 1 correctly 
rounded, then one application of (3) and (4) will lead to 
the correct quotient. 

Proof If Y is within one ulp of I/B, but is not equal to 
1/B correctly rounded, then Y will not satisfy (7), but  it 
will  satisfy 

1 1 
B + 2  B -  1 ’  

< Y < -  

By virtue of the discussion in the proof of Proposition 1, 
such a Y will produce the correctly rounded quotient 
provided Q is within one ulp of A/B and  the (magnitude 
of the) residual is not equal to 

First, if Q is  already equal to A/B  correctly rounded, 
the residual R must be less than B/2, so that by the proof 
of Proposition 1, an application of (3) and (4) will return 
Q correctly rounded. 

If Q exceeds  A/B  correctly rounded, (3) and (4) will 
still  yield the correctly rounded quotient, provided that 
the residual  is not equal to 2N-l in magnitude. Since Q is 
too large, R will  be  negative.  But a residual of  -2N”  is 
congruent to 2N-1 - l(mod 2N - l), and Lemma 2 shows 
that it cannot arise. 

Using the above  propositions, the conditions for 
computing a correctly rounded quotient without any 
conditional branching to adjust the last  bit will be given. 

The computations in (2), (3), and (4) must each be 
done with rounding occurring only on  the additions or 
subtractions. Regardless  of the rounding mode with 
which the quotient is to be computed, all applications of 
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(2), (3), and (4) are to be done in round-to-nearest mode, 
except  for the final application of (4), which  should  be 
performed in the desired rounding mode. 

It 1s necessary to repeat (2) sufficiently  often that on 
the next-to-last iteration there is  more than N-bit 
accuracy  before rounding. While this result  may not be 
rounded correctly, the last iteration will produce the 
correctly rounded reciprocal,  except  for  divisors whose 
mantissas  consist of all 1 bits, by Proposition 2. The 
number of iterations depends on the precision of the 
initial “guess” to the reciprocal of B. 

The first approximation of the quotient A/B must be 
made in such a manner that it overestimates A/B in those 
cases  where the mantissa of B consists of all 1 bits. 
Whenever (3) and (4) are applied, the value Y must  have 
resulted  from an application of (2). Equations (3) and (4) 
must first  be  applied  sufficiently  often that the value of 
Q’ has  more than N-bit  accuracy  before rounding. After 
rounding, it  will  be within one ulp of the correctly 
rounded result.  In particular, if the quotient is exact, it 
will  have  been  produced by this time. If the approximate 
reciprocal  is  generated  according to the previous 
paragraph, then by Propositions 1 and 3, final  application 
of (4) will result in the correctly rounded quotient. As a 
by-product, the last  application of (4), which should be 
executed in the desired rounding mode, will correctly 
characterize the result as to whether or not it is  exact. 

Square root 
For the RS/6000  processor, the primitive  IEEE 
operation, square root, is implemented in software.  Two 
algorithms that can  be used are power  series evaluation 
and Newton-Raphson iteration. With either algorithm, 
the last  bit  must  be rounded correctly  according to 
whichever  of the four IEEE rounding modes  is in effect 
when the routine is entered. Tuckerman rounding 
provides the precise criterion for determining whether an 
approximation of a square  root  is  correctly rounded-to- 
nearest, or must  be  changed (up  or down) by one ulp [7]. 

If g is a guess to &, Tuckerman rounding states that 
g is  correctly  rounded-to-nearest if and only if 

g(g - u )  x 5 g(g + u), (10) 

where u = one ulp. This inequality stems  from the 
requirement that for g to equal & correctly rounded-to- 
nearest, 

(g  - u/2)2 e x < (g  + u/2)2. 

Examining the right-hand  inequality  above  shows that 

x <  g + -  = g ( g + u ) + q ,  ( $ U 2  

since there are no numbers z representable  in  floating- 
point in the interval 

g ( g + u ) < z s g ( g + u ) + - .  U 2  4 

(The reader can convince  himself of this by rescaling the 
floating-point numbers to force  one ulp to equal 1 .) 
Thus, if 

x 5 g(g + u), 

g must be  closer than g + u to & A similar argument 
shows that if 

g(g - u )  x, 

g must  be  closer than g - u to 

error by no more than one ulp (either by taking a 
sufficient number of terms in a series expansion or by 
using a sufficient number of iterations of the Newton- 
Raphson iteration), Tuckerman rounding can be  applied 
to resolve  whether g requires adjustment by one ulp. On 
the RS/6000  processor, the floating-point compares 
would be followed immediately by conditional branches. 
Because  of the high  degree  of  pipelining in the floating- 
point unit, the processor  would  have to delay  as much as 
15 cycles  before returning the final  result. Can the 
conditional branches needed for Tuckerman rounding be 
avoided? 

Analysis  of the Newton-Raphson method shows that 
only two mantissas  cause the method to converge to the 
incorrectly rounded value. As in the case of  division, it is 
only the treatment of the mantissa of the result that is  of 
interest. So, to force the analysis into number-theoretic 
terms, the number x whose square root is  sought  is 
assumed to be an integer in the range 

After g is computed with  sufficient  accuracy to be in 

22N-2 5 x < 22N, 

2N-l 5 & < 2N. 

( 1   1 )  

so that its square root lies in the range 

(12) 

Of course,  since x must be  representable  with  only N 
significant  bits, it follows that in order to satisfy (1  l), 

x = O(mod 2N”) when x < 22N-1 

and 

x = O(mod 2N) when x 2 22N-’ 

(13) 

(14) 

The most  difficult  cases  for the round-to-nearest mode 
occur when x = g(g f u), since the correct square root is 
almost g f u/2. Because  of the scaling  chosen  for this 
analysis, the guesses g are always  integers, and u = 1. The 
most  difficult square root problems  occur  when 

g(g & 1) = O(mod 2N-1), 

g(g k 1 )  = O(mod 2N). (15) 
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The only g satisfying ( I  4) in such a way that x = g(g -+ 1) 
with x satisfying (1 1) are 

g = 2  9 

N x = 2 2 N  - 2N7 

g =  2 N -  1, x = 22N - 2N 7 

The discussion  which  follows  shows that for  all x 
satisfying (1  1) except  for the two  specific  values  cited in 
(1 5), the Newton-Raphson  algorithm must converge 
correctly to the round-to-nearest square root. The variant 
of the Newton-Raphson iteration that will  be examined 
is 

g ’ = g + -  x - g2 
2g 

This form of the Newton-Raphson iteration is  avoided in 
most computer implementations because x - g2 suffers 
loss  of  accuracy due  to cancellation which  gets  worse as 
g2 gets  closer to x. Instead, g’ = OS(g + x/g) is favored. 
But in the RS/6000 floating-point unit, with its 
accumulate instruction, the mantissa of x - g2 always 
contains N significant  bits. For all x satisfying (1 1) except 
those  shown in (1 6), x - g2 # g, so the correction to g 
will  be other than exactly 1/2. If y, the reciprocal of 2g, 
were available,  correctly rounded (or one ulp too large or 
too small), the analysis of Proposition 1 shows that 

g’ = g + (x - g2)Y (18) 

will round correctly to g + u or g - u whenever 
I x - g2 I > g, and resolve to g whenever I x - g2 I < g. 
For the case  where x - g2 = g, Tuckerman rounding 
shows that g is the correctly rounded-to-nearest result, 
and if x - g2 = -g, g - u is the correctly rounded result. 
Since the Newton-Raphson iteration converges to & 
from  above, it is  sufficient to ensure that when I x - g2 I 
= g, (18) will  yield g - u. This will  be achieved if y 
overestimates 1/2g by at least 1/2 ulp.  However, to still 
guarantee convergence for all other cases, y cannot 
overestimate 1/2g by more than one ulp. 

Equation (1  8) can be  evaluated  with  two accumulate 
instructions. The first computes x - g2, and the second 
the resultant value  of g ’, the improved guess  with  twice 
as many  good  bits as g (before  rounding), if y were 
available.  How can y be computed cheaply  when  division 
is a very  expensive operation? The initial value of g is 
derived  from a table  based on the leading n bits of the 
mantissa of x. (For the RS/6000 application, n was taken 
to be 8.) A parallel  table  yields an approximation y of 
1/2g, also  good to n bits. With these starting values, the 
2n-bit approximation g ’ is computed. Since g and g ’ 
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agree to n bits, y is an n-bit approximation of 1/2g‘. 
Interleaved  with the next computation of g’ is the 
refinement of y to the reciprocal of 2g’. The cost  of 
repeated evaluations of ( 18)  would  be four cycles  if an 
oracle  provided y (since  each accumulate instruction is 
dependent on the previous one.) By interleaving the 
refinement of the reciprocal  with the computation of 
(1  8), one iteration takes six  cycles. The final touch is to 
perturb the reciprocal computation to always 
overestimate the reciprocal of 2g. This is  easily 
accomplished by  using 1 + ulp instead of 1 in the 
evaluation of (2). This never  creates an error of more 
than one ulp in 1/2g. If I x - g2 I = g, the correction (18) 
yields g - u. [If this slightly incorrect value  for y is 
applied  when x - g2 = g, ( 18) will incorrectly produce 
g + u, but the values  given in (1 6) are the only ones that 
can cause this to happen when their correctly rounded 
square roots are obtained. But by that time no further 
iterations are performed if the initial guesses to those 
square roots are sufficiently  poor!] 

The code  fragment  presented in Figure 2 shows the 
refinement of the initial guess g (and the guess y for 1/2g) 
to the correctly rounded &, assuming that the mantissas 
have 53 bits and the initial guesses have  eight  correct 
significant  bits.  Each line of code produces one RS/6000 
instruction with the PL.8 compiler. The instructions 
which  lose one cycle by depending on the previous 
operation are marked in the comment field  with “!! .” 

Elementary  function  library 
In the previous  two  sections, we have  shown how the 
IBM RISC  System/6000 architecture is exploited to 
perform  division and square root as required by the IEEE 
floating-point standard. The standard is silent,  however, 
on the precision  with  which other elementary 
mathematical functions should be computed. Perhaps no 
precision requirements were  specified  because it was 
deemed unreasonable or impossible to achieve  last-bit 
accuracy. At additional execution  cost, of the order of 
20%, the standard mathematical library can be  written so 
as to always  achieve the correctly rounded result. 

elementary function consists of three major components: 
reducing the argument to a small domain, evaluating the 
function (or a related one) for the reduced argument, and 
combining the function just evaluated  with data 
developed during the argument-reduction process. Recent 
papers [2, 3,  81 have  stressed the importance of 
controlling errors during the process  of argument 
reduction. Here  again the accumulate instruction proves 
to be  very  useful.  Argument reduction often  involves 
computation of 

In almost all  cases, the process  of computing an 

x’ = x - nc, 
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where x is the original argument and n is an integer 
chosen so that x’ will  be  less than c/2 in magnitude. 
Because c is  usually  known to high precision, in practice 
there are two (or more) floating-point numbers, c, and c, 
(and perhaps more), so that c = c, + c,, but c, is less than 
112 ulp of c, . The above reduction is then carried out as 
follows: 

t = x - nc, (Note: This  is  exact if n = x/cl is correctly 
rounded), 

x ’ = t - n c , .  

The above  scheme can be extended to use even  longer 
approximations of c in the event that x’ is  sufficiently 
small  (implying that there are fewer than N significant 
bits in x’ ). 

functionf(x) as follows (after preliminary argument 
reduction of the sort shown  above  has  been  performed): 
Split the domain of the argument-reduced function into 
256 approximately equal intervals.  Instead of choosing 
equidistant boundary points,  choose the domain 
boundaries x, so thatf(x,) when  evaluated to high 
precision  has 1  1 or more Os or 1s beginning at significant 
bit 54 of its  mantissa.  In this way, a long  floating-point 
IEEE  word  with 53 bits of mantissa  behaves as though it 
had 64 bits of precision. Now computef(x) as follows: 

Gal and Bachelis [ 31 propose computing an elementary 

f(x) = t; + g(x - x;), (19) 

where i is  chosen so that I x; - x I is minimized. In (1  9) 
t ,  is the function valuef(x,) represented as a long IEEE 
floating-point  word  extracted  from a table  indexed on i, 
and g(x - x,) is evaluated by economized  power  series 
[6]. Since g(x,) = 0, g itself can be  written as 

g(x - x,) = (x - x,)h(x - Xi), (20) 

where h is a polynomial.  After h(x - x,) is computed, 
( 19) can be  evaluated  with one accumulate instruction: 

f(x) = t; + (x - x;)h(x - x,). (21) 

In (21), if h has  been  evaluated  with  sufficient  accuracy 
and if the product is  less than 112048 of the magnitude of 
t,, the accumulate instruction will produce the correctly 
rounded result in 102311024 of the cases.  Since 
polynomial evaluation is  fast on the RS/6000 processor, 
this technique (or minor variations) leads to subroutines 
for the elementary functions that are both  fast and 
accurate. 

What  is  needed to obtain the correct  result in the 
remaining 1 1 1024 of the cases? First, the elementary 
functions exp, sin, cos, tan, and their inverses are all 
transcendental. While  floating-point arguments are 
termed “real,” they are in fact limited to rational values, 
since their mantissas are finite in length. The above- 
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d = x - g * g ;  

y2 = y f y; 

g = g + y * d ;  

e = almost - half - y * g; 

d = x - g * g ;  

y = y + e * y 2 ;  

g = g + y * d ;  

y2 = y + y; 

e = almost - half - y * g; 

d = x - g * g ;  

y = y + e * y 2 ;  

g = g + y * d ;  

y2 = y i- y; 

e = almost - half - y * g; 

d = x - g * g ;  

y = y + e * y 2 ;  

setflm(fmode); 

g = g + y * d ;  

/*assume machine in round-to-nearest  mode *I 

I* 16-bit  approximation  to g *I 

I* ! ! Newton-Raphson  iteration  for *I 

/*reciprocal is interleaved  with *I 

/*Newton-Raphson  iteration  for  the *I 

I* ! ! sqrt. 32-bit approx  to g. *I 

/*almost - half = 0.5 + 2**( -53) *I 

I* ! ! 64-bit approximation  before  rounding *I 

I* Caution!  The  approximation  was 

I* good to 64 bits  before  rounding, but 

I* it may have rounded  incorrectly. 

I* setflm is a PL.8 built-in  function  to 

I* restore  the  original floating-point status 

I* and  the  original  user-defined  rounding 

I* mode. One  more  iteration gets the last 

I* bit  right  by  the  arguments in this 

I* paper,  and avoids Tuckerman  rounding 

I* Furthermore,  the  last  computation of g 

I* completely characterizes  the  result  and 

I* correctly sets all  the  status bits. 

*I 

*I 

*I 

*I 

*I 

*I 

*I 

*I 

*I 

*I 

*I 

*I 

Square root by Newton-Raphson  iteration. 

mentioned transcendental functions are all  known to 
yield transcendental numbers for  all rational arguments 
(except,  for each of these functions, one specific rational 
argument, for which a rational result is produced, e.g., 
eo = 1). Therefore,  evaluating a transcendental function 
to sufficient  precision  will  always  lead to  the correct 
determination of the low-order bit of its long  floating- 
point representation. 

machine’s natural longest  word  length to resolve the last 
bit of precision?  Suppose a formula such as (21) is  used 
to compute the transcendental function. The error 
introduced by rounding in the computation of (2 1)  will 
be  called the discriminant, and it can easily  be 

When is it necessary to resort to more than the 
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computed as 

discriminant = [ti - f(x)] + (x - xi)h(x - xi). (22) 

If the discriminant is not too close to the critical value 
for the rounding mode (1/2 ulp for round-to-nearest, and 
0 for the other rounding modes), the evaluation of (21) 
has  yielded the correctly rounded result.  Because the 
correct  value off(x,) differs  from ti by  less than 112048 
ulp, and the polynomial h has  been  chosen to be  correct 
to within 112048 ulp ofJ; only if I discriminant I differs 
from the critical  value by less than 1/1024 ulp is the 
correct rounding of (21) in doubt. 

transcendental term must  be computed to higher 
precision. This will occur about once in a thousand 
evaluations. If the higher-precision  calculation can be 
contained within 1000  cycles, the average  increase in 
computing a transcendental will  be increased by about 15 
cycles' calculation of the discriminant and its comparison 
to the critical  value, and on the average by one cycle for 
the high-precision evaluation. To put this cost into 
perspective, ex and In x can be computed in 50 to 70 
cycles  by the accurate table method. 

To ensure that the high-precision  calculation can be 
kept to within 1000  cycles, a double-length computation 
is  coded  very  carefully.  Effectively, the number of correct 
bits in the discriminant has  been  increased by more than 
40. So, except  for  possibly  once in a trillion times, the 
double-length computation will  resolve the question of 
the last  bit.  Otherwise, a longer  detailed calculation is 
required, but the remote possibility of its  occurrence 
allows  great latitude in its  coding. 

The double-length computation offers an interesting 
choice, which  is  discussed  here  only  for the round-to- 
nearest  case. The obvious method is  simply to compute 
the transcendental to double length by brute force.  In this 
situation, the accurate table t is no longer  sufficiently 
precise, so that other means are required to obtain the 
required  precision. 

Alternatively, the inverse function can be  used to 
resolve the last  bit. Iff(x) is  being  evaluated  with g being 
the inverse function over the range in question, then to 
resolve whetherf(x) should  be y or y + u (where y is a 
representable  floating-point number and u is one ulp), 
g(  y + 242) can be  evaluated. Iffis  an increasing function 
in the neighborhood of x, then g (  y + u/2) > x implies 
thatf(x) rounds to y, and g (  y + u/2) < x implies that 
f(x) rounds to y + u. Again, y + 4 2  is rational, so 
g(  y + u/2) is transcendental and cannot equal x. The 
analysis of g( y + u/2) is  exactly the approach that leads 
to the derivation of Tuckerman rounding in the case  of 
the square root. The notion of computing g( y + u/2) to 
determine the rounding forf(x) can be considered an 

If the discriminant is too close to the critical  value, the 
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Whether the double-length computation should be in 
terms of the given function or its  inverse depends on  the 
relative  rates of increase of these functions. As an 
example,  consider the exponential function. If 

X 

y = e ,  

In y = x, 

& = d x = x - .  
Y (3 
In this form, the relative error in y is expressed as a 
function of the relative error in x. If dx/x is one ulp, dyly 
is x ulps.  Now consider the same analysis  for the inverse 
function, the natural logarithm: 

x = In y,  

In x = In  In y, 

dx = L(&). 
x 1nY Y 

Reducing the range of arguments for the exponential 
function leaves  new arguments whose absolute value  is 
bounded by  112  In 2. Thus, over the domain in which 
exp is evaluated, the relative error in exp will  be  less than 
0.4 times the relative error in  x. On the other hand, the 
natural logarithm would be evaluated in the domain 
J1/2 I y I A. The closer y gets to 1 ,  the larger the 
relative error in its  logarithm. The conclusion is that the 
logarithm will  be much sharper than the exponential in 
determining the correct  rounding.  Even though the series 
for the logarithm converges more slowly than the 
exponential, the logarithm reduces the probability of 
having to resort to more than double-length calculation. 

series  expansion gives 

e = 1 + 2-53 + + . . . . 
It would take a triple-length computation to have the 
2"07 term enter the calculation to indicate that the value 
should be rounded to 1 + 2-52. On the other hand, one 
could compute 

ln(1 + 2-53) = 2-53 - + . . . . 

As an illustration, consider the evaluation of e2-s3. The 

*-53 

Clearly, a double-length computation (single-length 
almost  sufficed)  shows that  In( 1 + 2-53) < 2-53, and 
therefore should be rounded up to 1 + 2-52. 

There are interesting open questions related to this 
approach to computing the elementary functions. If a 
rational argument can be  expressed in N significant  bits, 
will the discriminant, when computed to N-bit  accuracy, 
always  differ from the critical  value by more than 2-N 
ulps? For the exponential, the above example showed 
that N-bit discriminants are not sufficient  over the 
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domain of interest. Are  N-bit discriminants sufficient to 
correctly determine the rounding for the logarithm 
function for  all arguments between J1/2 and &‘ that are 
representable  as  floating-point  numbers? If that question 
could  be  answered in the affirmative, computation 
greater than double length  would  be  unnecessary  for the 
exponential and logarithm functions. 

Conclusions 
The architecture of the IBM  RISC  System/6000 
processor  has  motivated  reexamination of mathematical 
algorithms, including those used to compute the 
commonly used elementary functions. The precision of 
the RS/6000 accumulate instruction allows  low-order  bits 
of a product to participate in a sum. Thus, cancellation 
of high-order  bits can become an advantage in certain 
cases. The form of the Newton-Raphson iteration used 
for the square  root  is a good example. The closer a guess 
g comes  to the more  precise  is the computation of x 
- g2.  When g is  within an ulp of 4 then x - g2  is  exact 
on the RS/6000  processor,  whereas it exhibits  its  worst 
cancellation  characteristics on standard architectures. 
Knowing that such  cancellation  leaves a full  word  of 
useful data has led to new insights in the numerical 
analysis of these  algorithms, including the opportunity to 
apply number theory. The resultant algorithms  have 
better  characteristics,  both in accuracy and the 
exploitation of pipelined architecture. 

The code  fragments  presented  here are all in higher- 
level  language,  reflecting the fact that the actual math 
library  for the RS/6000  processor  is  coded in PL.8. The 
code  available  from  the  RISC  System/6000  compiler  family 
is  of high quality,  potentially  eliminating  the  need  to  resort 
to  assembly  language.  Since  the  programs  changed  during 
the  development  process, it was a relief  not  to  have  to 
struggle with the  problems of register  allocation  and 
scheduling,  knowing  that  the  compiler  would  faithfully 
solve  these  problems in a tailor-made  fashion  for  every 
new instance of the  code. 
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