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Evolution 
of storage 
facilities in AIX 
Version 3 for RISC 
SystemI6000 
processors 

The AIX* Version 3 storage  facilities  include 
features  not  found  in  other  implementations of 
the UNIXt operating  system.  Maximum  virtual 
memory  is  more  than 1000 terabytes  and  is  used 
pervasively to access  all  files  and  the  meta-data 
of  the  file  systems.  Each separate  file system 
(subtree) of  the file  name  hierarchy  occupies  a 
logical  disk  volume,  composed  of  space  from 
possibly  several  disks.  Database  memory (a 
variant  of  virtual  memory)  and  other database 
techniques are used  to  manage  file  system 
meta-data.  These  features  provide  the  capacity 
to address  large  applications  and  many  users, 
simplified  program  access  to  file  data,  efficient 
file  buffering  in  memory,  flexible  management  of 
disk  space,  and  reliable  file  systems  with  short 
restart  times. 

Introduction 
AIX*  Version 3 for the IBM RISC Systed6000 processor 
continues  the  evolution of storage  facilities within the 
framework  of  the  UNIX' operating  system  that began with 
AIX Version 1 [l]. There are various  motivations  for  this 
evolution, such as the  following: 

* AIX  is a trademark of International  Business  Machines  Corporation, 

@Copyright 1990 by International Business Machines  Corporation. 
Copying in  printed  form for private use is permitted  without 
payment of royalty provided that (1)  each  reproduction is done 
without  alteration  and (2) the Journal reference and IBM copyright 
notice are  included on the first page. The  title  and  abstract,  but  no 
other  portions, of this  paper  may be copied or distributed royalty 
free without  further permission by computer-based  and  other 
information-service systems. Permission to republish any  other 
portion  of  this  paper  must be obtained  from  the  Editor. 

IBM J.  RES. I 3EVELOP. VOL. 34 NO. I JANUARY I 990 

Support for larger applications and more users. 
Direct access to file data by ordinary program 
statements. 
More efficient file buffering than  that provided by a 
fixed-size  buffer pool. 
More flexible units of  disk space management than 
provided by  fixed-size  disks. 
A file subsystem that can recover from crashes and that 
has a shorter restart time. 

The important concepts used in this evolution include 
very  large virtual memory, integration of the file 
subsystem  with  logical volumes and virtual memory, and 
the innovation of database memory. The first two 
concepts come from earlier systems such as Multics [2] 
and the IBM System/38 [3]. Database memory was 
developed in the 80 1 minicomputer project at the IBM 
Thomas J. Watson Research Center, where all three 
concepts were combined in a prototype called CPR 
running on the IBM RT System [4]. 

is achieved while  preserving the AIX program interface, 
based on architecture extensions described elsewhere 
[4, 51. It then  discusses  the structure of  UNIX-based  file 
systems and  how they  benefit  from  the  flexibility of logical 
volumes and from simplified  buffering in virtual 
memory. Finally, the use  of database techniques to 
implement a reliable file subsystem is described. 

Very large virtual  memory 
The IBM POWER (Performance Optimization With 
Enhanced RISC) architecture with the AIX  Version 3 
operating system  offers a maximum virtual memory 

This paper first explains how  very  large virtual memory 
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space  of  more than 1000  terabytes. The addressing 
capacity  is  greatly  increased  over that of previous 
versions of AIX, without affecting  programs outside the 
AIX kernel. This results  from the inherently extensible 
virtual-memory architecture of the IBM  RISC 
System/6000* (RS/6000) processor [4, 51, which is 
summarized  as follows. 

bits. Four bits  select  a  segment  register and 28 bits give 
an offset within the segment,  providing  access to 16 
segments of up  to 256  megabytes  each.  Each  segment 
register contains a  segment ID  that becomes  a  prefix to 
the 28-bit  offset,  forming the virtual-memory  address. 
The segment ID is  24  bits in the RS/6000, for a  total of 
up to 16 million  segments. The 52-bit virtual address 
refers to a  single,  large,  system-wide virtual memory 
space,  as  shown in Figure 1. 

The AIX  process  space  is  a  32-bit  address  space; in 
other words,  programs  use  32-bit  pointers.  Each  process 
or interrupt handler is  able to address  only  a portion of 
the system-wide virtual memory space-those segments 
whose segment  IDS are in the segment  registers.  If 
desired,  segment  registers  may  be  changed  rapidly, 
allowing  a  process to access  many  more than 16 
segments.  However,  only the AIX kernel can load a 
segment  register,  which  enables the kernel to enforce 
access  permissions  for  objects in virtual memory. 

Memory-access instructions generate an address of  32 

I6 * RISC  System/6000  is  a  trademark of International  Business  Machines  Corporation. 

The system  call to load  a  segment  register (shrnat) does 
not specify the segment ID to be  loaded, but rather a 
software  capability  for  some  object that the process  is 
expected to address.  Access  permissions are checked prior 
to  this, during system  calls that open a file or get a virtual 
memory  segment. If  access  is  allowed, the kernel  assigns 
a segment ID (of  interest  only to the kernel) and gives the 
process  a  capability  (file  descriptor or shared memory 
identifier)  for  access to the segment,  used later in the 
shrnat system  call. 

This 32-bit  addressing and indirection through access 
capabilities give  each  process an interface that does not 
depend on the actual size of the system-wide virtual 
memory  space. The maximum segment ID (1 6 million in 
the RS/6000  processor) must be  large enough to 
accommodate the sum of all  segments of  all  processes, 
and this maximum affects  only  programs  inside the kernel. 

Some  segments are shared by all  processes,  some are 
shared by a  subset of  processes, and some are accessible 
to only one process.  Sharing  is  achieved by simply 
allowing  two or more  processes to load the same 
segment ID. 

The AIX  Version  3  kernel  loads  a few segment 
registers in a conventional way in all  processes,  implicitly 
providing the memory addressability  needed by most 
processes, as shown in Figure 1. There are two  kernel 
segments,  a  shared-library  segment and  an 1/0 device 
segment, that are shared by all  processes and whose 
contents are hidden (or read-only) to non-kernel 
programs. There is  a  segment  for the current main 
program (exec system  call)  of the process,  shared on a 
read-only  basis  with other processes  executing the same 
program. There is  a  read-write  segment that is  private to 
the process. The remaining segment  registers can be 
loaded  (using the shrnat system  call) to provide more 
memory or memory  access to files (described later), 
shared or private,  read-only or read-write,  according to 
access  permissions. 

The approach to implementing large  virtual  memory 
in AIX  systems  has  been  described  elsewhere [ 1,4]. An 
inverted page table,  with one entry for  each  real page, 
limits the real memory required for virtual-address 
translation to a size related to real rather than virtual 
memory  size. The external page tables,  which contain the 
disk location of each  virtual page, are themselves  kept in 
pageable virtual memory, since  they  may be quite large. 
Disk-allocation  maps,  which  record the allocation state of 
disk  blocks, are treated similarly. The kernel  page-fault 
handler  uses techniques called careful update and 
backtracking [ 1,4]  to deal  with  page faults in its own 
data structures. 

The AIX  Version  3  virtual-memory implementation 
retains the preceding  features and generalizes them, with 
two motivations: to efficiently  represent  sparsely  used 
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memory and to accommodate the very  large  addressing 
capacity of the architecture. External page tables and 
other structures that contain disk  locations of  pages  (file 
system “meta-data,” described later) are  organized  as a 
tree for  each  segment  or  file,  with  nodes  present  only 
where  needed  for data actually stored. These and other 
virtual-memory structures are allocated in several 
segments, separate from the kernel  segments mentioned 
previously. The page-fault handler must  find the segment 
that contains the tree for the segment or file in which a 
page fault  has  occurred, and then load a segment  register 
to address it. These  tree-containing  segments  also contain 
an external page table  for  themselves,  with a small 
portion pinned in real  memory to terminate recursion 
during page-fault  handling. 

Another  useful  consequence of  very  large virtual 
memory  is that it somewhat  simplifies  memory  allocation 
within the kernel  itself.  Tables  whose  required  size 
depends on  system  load or on the number of  users, 
processes, or segments, can be allocated in virtual 
memory at the size  of the maximum design point. 
Unused portions of these  tables and the corresponding 
external  page-table tree nodes consume no real  memory 
or  disk  space.  These  resources are assigned  only  after a 
page fault in a previously  unused area. 

Files in logical  volumes and virtual  memory 
A file in the  UNIX-based  operating  system  is  an  unstructured 
byte  string  stored  in a set  of not necessarily adjacent disk 
blocks.  File  system meta-data (i-nodes, indirect blocks, 
and directories) are used to find and access the files.  An 
i-node is a small  block that contains information such  as 
file owner,  access  permissions,  file  size, and the locations 
of a few data blocks  for a small file.  Larger  files  have a 
tree of indirect blocks, rooted in the i-node, which 
contain the  data-block  locations. A directory is a file that 
contains pairs of the form (file name, i-node location) 
organized  for  searching by  file name.  Directories  can 
contain names of other directories,  thereby  forming a 
hierarchy or tree. A file  is named by a variable-length 
sequence of names that gives a directory  search path, 
starting from the root directory, to the directory that 
contains the location of the file i-node. 

As in most  UNIX-based  implementations,  AIX  Versions 1 
and 2 separate total disk  space into partitions, such  as 
one disk  or a contiguous portion of one disk,  sometimes 
called a minidisk. Each partition contains a file  system 
with its own directory  tree,  i-nodes, indirect blocks, and 
files.  These separate file  systems are formed into a single 
naming  tree by making the root  directory of each file 
system,  except  one,  become a directory in the tree of 
another file  system  (using the mount system  call). 

AIX  Version 3 retains this model but generalizes the 
concept of disk  space.  Each  file  system  occupies a logical 
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volume of disk  space  composed  of one or more disk 
partitions rather than one  disk partition. A partition is 
contiguous on one physical  disk, but a logical  volume 
may  have partitions on more than one disk in a group of 
related  disks,  as  shown in Figure 2. All partitions in the 
disk  group are of one size, but logical volumes  may  differ 
in the number of partitions they contain. Each  disk 
contains a description of the group it is part of, e.g., what 
logical volumes are in the group and what partitions 
belong to each  volume. 

This  generalization of  disk  space  has  two important 
results.  First, the space  available to a file  system  can  be 
expanded by adding a partition to the logical  volume, 
without stopping the system or moving  any other 
partition. If necessary, a disk can be added to the group 
to supply  more  free partitions. The size  of a file  system  is 
not  limited by the size  of a physical  disk.  Second, a 
logical volume can be mirrored to enhance data 
availability.  Each partition of such a volume  has one or 
two other partitions allocated on different  disks to hold 
identical  copies of the data. 

the physical  disks  directly, but instead  consider  each 
logical volume as a device and call a logical-volume 
device  driver. This component translates a logical-volume 
disk-block  location into a physical-block location or 

The file  systems and virtual-memory  pager do not use 
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mirrored  locations. If mirroring, the driver  reads the 
fastest  copy  or  writes  all  copies  identically. If a 
permanent disk error occurs, the driver  can assign a new 
location  for the block and, if mirrored, read a good  copy 
and write the data into the new location. 

Previous  versions  of  AIX  have  two  possible  places to 
buffer the disk  blocks  of a file in memory. The default,  is 
the  kernel  buffer  cache.  In  addition,  the shrnat system  call 
can  be  used  to  map  an entire file  into a virtual-memory 
segment in the  caller’s  space, where it is  addressable by 
ordinary  memory-access  instructions.  The  virtual-memory 
pager  is responsible  for  the  disk I/O for that file,  when 
triggered  by events  such  as  page  fault  or  request  for a free 
real  page.  The read and write system  calls  can  access  the 
data in a file in either  place. 

File  buffering  is  simplified in AIX  Version 3 by not 
using the kernel buffer cache.  Files  are always mapped 
into virtual-memory  segments when  first  opened and 
there  is a separate  virtual-memory  segment  for the 
different meta-data of each  file  system, that is, one for 
i-nodes, one for indirect blocks, one for the disk-block 
allocation map, and one  for  each  directory,  as  shown in 
Figure  2. The kernel  addresses  these  segments by loading 
their segment IDS as needed. For example, during read 
and write system  calls, the kernel  loads the file  segment 
ID to move data between the file and the caller’s area. 
The shmat system  call  simply  makes  file  segments 
addressable by non-kernel programs,  as  shown in Figure 
1. Ordinary  program statements may then be  used to 
access  any  byte in such a file, without further system 
calls,  which  may  simplify  some  programs  considerably. 

The mapping of  files into virtual-memory  segments  is 
also  simplified. Rather than copying  disk-block  locations 
from the file  system into external page tables  for  virtual 
memory, AJX Version 3 simply  makes the file  system 
meta-data (i-nodes and indirect blocks)  available to the 
virtual-memory  pager. The page-fault handler accesses 
the file meta-data directly, to find a disk-block location 
needed  for  page-in or to save a newly allocated  disk-block 
location  for eventual page-out. 

The virtual-memory  pager uses all  real  memory  as a 
common buffer  pool  for the most  recently  referenced 
pages of all  virtual  segments, including those used to 
address  all  opened files. The availability of a large portion 
of real  memory as a buffer  may  significantly  improve 
file-access performance  for  some  applications,  compared 
to the usual  fixed-size  buffer  cache. 

Database memory 
Other  UNIX  operating  systems  invoke a utility  program, 
fsck, to detect  possible  file  system  damage  after a crash. 
Thefsck program  reads  all the meta-data (i-nodes, 
indirect blocks, and directories) and recommends and 
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and found directory and deleting very damaged files)  if 
needed to restore a consistent state. A consistent state has 
properties  such as the following: The number (0 or more) 
of directory entries that point to an i-node exactly equals 
a link count in the i-node;  each  disk  block  belongs to, at 
most, one file (one pointer in an i-node or indirect 
block).  Repair by thefsck program  may sometimes be 
impossible. 

AIX  Version 3 uses database memory to achieve a 
more  reliable file subsystem.  Specifically, the kernel 
implements database  memory  for the segments that 
contain directories,  i-nodes, and indirect blocks.  Also, 
changes to disk-block allocation maps are recorded in the 
same log  file  used to implement database  memory. The 
result  is that these file  system meta-data are consistent or 
can be made consistent after a crash  simply by 
application of recent  records  from the log  file.  Recovery 
time with this database approach is much faster than 
with thefsck program,  since it is  related  only to the 
amount of log data produced by recent file  system 
activity, rather than to total file  system  size as withfsck. 

Database memory, as described in [4], is files in virtual 
memory  with the additional implicit  properties of access 
serializability and atomic update, similar to those of 
database transaction systems.  Database  memory can be 
shared and accessed concurrently by many processes 
executing  different  transactions. The processes  use 
ordinary memory-access instructions to read and write 
the contents of database memory, and they indicate the 
end of each transaction by a call to the kernel.  They  need 
do nothing else to coordinate with  each other. The 
system  is  designed  to  ensure  that  the  permanent results in 
database  memory  are  as if the  transactions  execute one 
after  another in some  order  rather  than  concurrently  and, 
in the  case of failures, as  if each  transaction  executes 
completely or not at all. 

To implement database  memory, the kernel must 
detect and control the memory  accesses of each  process. 
The RT and RS/6000  systems  have a data-locking 
hardware  assist  [4] to provide this function in a virtual- 
memory  segment if required.  Each  real  page-table entry 
contains a transaction ID field and lock-bits to control 
access to each  memory  line (128 bytes in the RS/6000) of 
the 4-Kbyte  page. A register contains the transaction ID 
of the process currently executing.  Hardware  prevents 
access and interrupts the process  if the locks in the page- 
table entry belong to another transaction or if they 
disallow the attempted load or store operation. In the 
RS/6000 architecture, the hardware  also grants and sets 
locks in the page-table entry without interrupt, when  only 
one transaction is  accessing a page or when  all  accesses in 
a page are read  accesses  [5]. 

Lock interrupts call a lock  manager in the kernel.  It 
searches a lock  table  for  locks of other transactions in the 
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same page. If conflicting  locks  exist, the current process 
must wait until  they are released.  Otherwise, the lock  is 
granted in the lock  table and in the page table, and the 
current process can continue. 

Selected standard database  techniques are used to 
make updates atomic. Updated pages are not permitted 
to page out to permanent-file  disk  space  unless the 
updating transaction has  ended.  When a transaction 
ends,  its  updates are recorded in a log. The write  locks 
held by the transaction determine which  memory  lines 
are copied to the log  file.  An end-transaction record  is 
logged, and then the transaction’s  locks  are  released. If 
failures  occur, pages updated by uncompleted 
transactions are discarded  from  real  memory or 
temporary  disk  space.  Recent log records (those from 
pages  possibly not paged out to permanent file 
space) of completed transactions (those with 
end-transaction records in the log) are used to update 
permanent-file  disk  blocks and thereby  complete the 
transactions. 

The AIX  Version 3 file  system meta-data reside in 
database  memory  segments.  Each transformation of the 
meta-data by the kernel  from one consistent state to 
another is treated as a transaction: for example,  create a 
file,  close a file after  writing into new data blocks, or 
remove a file. In  each of these  examples,  changes to 
several  areas of meta-data are made into an atomic unit 
by the logging and recovery operations previously 
described. 

As in any  system  where  lock  requests  may  occur in any 
order, the use  of database  memory  may  cause  deadlock- 
that is,  two or more  processes  waiting  forever  for the 
other(s) to release  locks.  Deadlock  detection and recovery 
are well understood, but the required undoing and 
redoing of lost  work  would  be  complicated  inside the file 
subsystem of the kernel.  Instead,  deadlock  involving file 
system meta-data is  avoided by a combination of 
techniques  which  differ  somewhat  from  those used  with 
pure  database memory. Reading  is  allowed  freely and 
does not conflict  with  write  locks. Conventional software 
locking  for  some operations provides the proper 
serialization.  Hardware  locking  is  applied to indirect 
blocks  only during end-transaction processing,  when  all 
modified  locations are again  updated  in a standard order. 
Finally, if a transaction modifies  several  i-nodes, it does 
so in a standard order. 

Conclusions 
The architecture extensions  of the IBM RISC 
System/6000  processor and the more  general  AIX 
Version 3 implementation provide a total  virtual  space of 
more than 1000 terabytes and a storage  interface 
consistent  with  previous  versions of  AIX.  File data may 
be  addressed  directly  in  virtual  memory  with ordinary 

program statements. Logical volumes and file  buffering in 
virtual  memory  allow file  systems to grow to very  large 
configurations  with  very  little  space  management  and 
tuning effort.  File-space  mirroring  and  database  memory 
are  designed  to  improve  file  system  availability,  reliability, 
and recovery  time. 

Although  most  of the ideas  described in this  paper are 
not new, their combination in an industry-compatible 
workstation  product  may be  new. Database  memory  is a 
new approach to storage  concurrency and recovery, 
previously  studied  only in a research  setting and 
employed in AIX  Version 3 only  for the file  system meta- 
data. Other uses for it may  be  discovered  within the 
kernel, based on experience  with AIX  Version 3. Also, 
database  memory  might be  useful  for  non-kernel 
programs,  as an option at the system  call  interface. 
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