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Managing
programs and
libraries in AlX

by M. A. Auslander

Version 3 for RISC

System/6000
Processors

This paper describes the program and program-
library management facility that has been
developed for the AIX* operating system, Version
3, as implemented for the IBM POWER
(Performance Optimization With Enhanced RISC)
architecture. It provides run-time loading of
libraries, symbol resolution with type checking,
and relocation. In addition, the use of the loader
to add programs to an already running process
or to the kernel is offered. The advantages of
these functions and the techniques needed to
provide a usable and efficient realization are
described. Particular attention is given }to the
special problems posed by very large programs,
and by very small programs which use services
from very large libraries.

Introduction

Traditionally, an executable program under a UNIX*-based
operating system is self-contained. It is executed by
reading its parts into predetermined memory locations and
running it. Executable programs are built by compiling one
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or more source programs and using the 1d command to
combine them with programs from libraries. Library
programs are selected to resolve calls in the original
programs or in other library programs to functions or
routines external to the calling program. Thus, a call to the
printf routine results in inclusion of the library’s
implementation of printf. Since executing programs must
contain actual machine addresses of programs and data,
these address constants must be adjusted once the actual
execution locations are known. This relocation is done by
the Id command, and the resulting executable function will
have a conventional fixed execution location.

The only remaining dependency of the resulting
program is related to kernel services, which are
represented in the program as system-call instructions,
with each kernel service assigned a fixed system-call
number.

This approach offers the advantage of low overhead at
execution time, since loading a program involves only
copying it to its predetermined locations. It is often
possible to reuse the instruction portion of such a
program for several executions, further reducing the cost
of each. However, there are a number of drawbacks to
this approach, which have become more serious as UNIX-
based operating systems and their applications have
grown. These include
e Size of executable program Since a program includes

copies of all the other services (programs) it uses, its

total size reflects the size of those services. This effect
limits the use of such services.

e Maintenance Including a private copy of each service
in each using program implies that changes to a service
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can only be installed by relinking and then
redistributing the service to all using applications. This
is of course not practical, and leads to very long
lifetimes for old versions of existing services.

e Distribution A software supplier must either supply
executable programs which contain particular versions
of library services, or expect users to build final
executable versions for themselves.

o Name scope The 1d command treats all symbols from
the user’s program and from any libraries uniformly. In
effect, each service included in the program is itself
rebuilt from its components during the link. All
interfaces and data in the service are exposed, and all
external symbols in all services used by a program must
be disjoint. Additionally, providers of a service risk
having users become dependent on internal details of
the service that were never intended to be part of its
maintained interface. Programmers familiar with the
various uses of the stream I/O package in /ibc.a are
well aware of this phenomenon.

o Kernel flexibility The kernel interface consists of a set

of system calls, using a machine-specific trap

mechanism. These trap instructions become part of
each using program. It is difficult to extend the system-
call repertoire of the kernel, since a specific trap value

must be assigned. Relinking is necessary to move a

service into or out of the kernel.

Application packaging No matter how large an

application program is, it must be packaged as a single

executable module. If this becomes impractical, the
only alternative is to construct a multiple-process
implementation, which involves major changes to the
application structure.

In our design, we have replaced the traditional
approach with one which can defer symbol resolution to
program load time, and we have developed mechanisms
for doing so efficiently for both large and small programs.
We have provided for loading additional programs into
the address space of a running process, and we have
added a mechanism that allows for verification of
compatible data types during link- and load-time symbol
resolution. In the remainder of this paper, we discuss the
overall strategy and describe some detailed techniques
that are needed to make it work well.

In approaching this problem, there are trade-offs
among strict compatibility with the past, performance at
load time, and the provision of new function. Earlier
approaches have either compromised the ability to
replace libraries and to share data as well as code [, 2],
or accepted the performance penalty of reproducing Id
semantics at load time [3]. Our approach may be
characterized as accepting a modified symbol-resolution
semantic at load time because we believe it is right and
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can perform better, even at the cost of some
incompatibility with the past.

Strategy

At link time, programs are not (necessarily) combined
with library programs. Rather, these libraries are loaded
separately at load time and combined with the using
program. To do this, 1d records the names of the needed
libraries so that they can be fetched at load time. Since
we must be able to modify libraries without relinking the
executable programs that use them, no internal details of
the library can be introduced into the using program
before load time. This implies that symbol resolution and
relocation for library references must be done at load
time. (Symbol resolution is the process of finding the
definition of a needed symbol in a library; relocation is
the process of updating address values in the loaded
program to reflect the actual locations of the referenced
symbols.)

Since we actually relocate address constants at load
time, all the mechanisms described work uniformly for
code and data. In particular, a using program can import
the name of an external data structure from a library and
use it just as if the library were bound with the using
program. Since libraries can refer to each other or, in
theory, even to the user program, symbol resolution and
relocation must be done for the libraries as well as the
program. (The alternative of assigning fixed, well-known,
disjoint locations to all sharable libraries is clearly
impractical.)

When possible, libraries are shared among many
processes. The loader in fact places a copy of the library
program into a shared part of the process address space,
and uses the same copy for all processes. Of course, each
process needs its own copy of the (read/write) data
portion of the library routine. Each time symbols are
resolved, either at link or at load time, a representation of
the symbol type is included in the comparison. It is an
error for symbols with the same name and different types
to be present.

Imports and exports

It would be possible for load-time resolution to follow the
same rules as link-time resolution. All the symbols of the
program and libraries would be considered again at load
time, and libraries would be searched for unresolved
symbols.

We have chosen a more constrained technique, in
which the only symbols available for load-time resolution
are those explicitly exported by the libraries, and in which
a library’s internal symbol resolutions are never
recomputed at load time. This approach follows the more
modern preference for clearly distinguishing interfaces
and implementations; it reduces the amount of work 99
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done at load time, making high-performance loading
practical. Finally, as we show below, by making the
libraries independent of their users, much of the work of
loading a library can be cached, reducing the cost of
loading programs that use large libraries.

Table of contents

The final goal of load-time symbol resolution is to
modify the address constants in the loaded programs to
be the actual locations of the addressed data. Once
resolution has determined the values, relocation updates
the program. We expect programs to be large and use
paging techniques to defer the actual reading of the
program as long as possible. If address constants were
spread throughout the program, then the program would
in fact be completely read as a side effect of relocation,
eliminating the advantage of “page mapped” loading. To
avoid this, we introduce the table of contents (TOC). The
idea is to gather all the address constants of a module
together. This must be done even though the module
consists of many separately compiled programs. The
solution is to have each separately compiled program use
register and displacement instructions to fetch needed
address constants. The register is (usually) the
conventional TOC register, which contains the origin of
the running module’s TOC, (There is one TOC for each
linked collection of programs, or module.)

The linker collects all TOC definitions and constructs a
single TOC with one instance of each address constant. It
then sets the displacements of instructions which refer to
TOC data to the correct value. (Relocation directory
entries in each compiled program identify the TOC
references.) When one program calls another in the same
module, they both need the same TOC register value, so
a simple branch-and-link instruction suffices. The called
program, if it has static data, fetches the address of its
own static data from the TOC. When one program calls
another in a different module, it must set the TOC
register to the TOC address of the called module. On
return, the caller must restore its own TOC register value.

Of course, at compile time the compiler cannot
anticipate whether a called program will wind up in the
same or another module; this is not known until link
time. One valid strategy would be always to load a new
TOC value, but we decided to optimize the intra-module
call by always using a simple, program-counter-relative,
branch-and-link instruction with no TOC reload. If the
called program is not part of the caller’s module, the
linker determines this and provides surrogate code in the
caller which performs the needed TOC manipulation and
register-contents-relative branch.

It turns out that the TOC provides even more
advantages than might be apparent. A major portion of
the “data” in many programs consists in fact of address
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constants. In a large modular program, there may be
many copies of the address of each symbol. These are
replaced by a single copy in the TOC. For small routines,
the elimination of address constants often eliminates
static storage completely.

Position-independent code

It would be impossible to share an executable program
among several processes if the act of relocation were to
modify the text (i.e., instruction) portion of the program.
In this section, we describe the programming conventions
that forbid this, and the characteristics of the POWER
architecture hardware that make position-independent
code efficient.

Local branches are by program-counter-relative
displacements. Address constants are loaded into registers
for use, and there are enough registers that such
constants, once loaded, can be kept in registers. In
position-independent code, the program cannot contain
the addresses of its data, since the data may be in a
different place for each execution and will certainly not
be available before load time. Thus, the caller of a
program must effectively provide the addresses of its data
as well as the instructions for branching to the code. The
TOC linkage convention provides for this by requiring
that each program get its own data addresses from its
TOC.

Procedure descriptors

To represent a “pointer to procedure,” some value
adequate to call the procedure must be used. As we have
seen, this must include both the target-code address and
the TOC address. But a procedure pointer itself must fit
into a pointer value, so we decided to use a three-value
descriptor to represent each procedure. A procedure
pointer is then the address of such a descriptor. This
descriptor contains the code address, the TOC address,
and provision for an environment address for languages
that need one.

Since the C language allows the comparison of
procedure descriptors for equality, it is important that all
uses of a library procedure “see” the same descriptor. For
this reason, the procedure descriptor is always
materialized in the data area of the module that contains
the procedure, where it is treated like any other external
data. Programs in this or other modules fetch an address
constant to get the address of the descriptor, which is
thus always the same. Since procedure descriptors
contain addresses which must be relocated, the linker
groups them together and places them adjacent to the
TOC to reduce paging during relocation.

File names
When a module imports an interface from another, the
using module will contain the file name of the used
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module. This name is used by the loader to load the used
module whenever the using module is loaded. To provide
flexibility in the placement of shared programs in the file
system, we have added a library-lookup mechanism
which is similar to the path-lookup mechanism the shell
uses for the main program. The file names in the using
program may be either path names or base names. Base
names are found by searching the directories in the
LIBPATH. Of course, path names are used directly. The
default value of the path string is stored in the module
being loaded and is normally the same path used by Id in
its library search. For exec, this can be overridden by the
value of the LIBPATH environment variable. The load
command has an explicit parameter for this purpose. By
overriding the normal LIBPATH, the programmer can,
for example, test a new version of a system library before
installing it in the normal place. (The LIBPATH
environment variable is ignored on suid/sgid calls.)

Once a file is loaded, it is kept open while in use. Thus,
subsequent path lookups which result in the same open
file are known to be the same file. The consequence of
renaming or overmounting a file in use is that subsequent
uses of the same file name are in fact seen to be a
different file.

Sharing
In describing the 1d command, we have indicated that
shared modules are not copied into the output module.
At load time, these modules are conceptually added to
the text and data of the module. Two optimizations are
applied during this process. First, if the “shared”
module’s access permissions allow universal reading, the
module is copied into the shared-library region.
Subsequently, other requests for the module can be
satisfied by that copy. As long as a module is available for
sharing, the file it came from remains open and “text
busy,” so that it cannot be modified. However, it can be
replaced. If the module cannot be shared, a private copy
is read into the process-private area.

When a module is placed in the shared-library region,
a second optimization, pre-relocation, is attempted. The
goal is to resolve and relocate this module once and for
all. For this to be possible, all symbols imported by the
shared module must come from the kernel or from other
pre-relocated shared modules. When pre-relocation is
possible, a target data location in the process-private area
is assigned, and a copy of the data of the shared module
is relocated as if it were at that location. At each use of
this pre-relocated module, this data is copied to its target
location, and no resolution or relocation is needed. A
recursive algorithm is in fact employed so that sharable
modules that use each other can be pre-relocated as a set.
This succeeds as long as no module in the set imports
symbols from a module which cannot be pre-relocated.
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This sharing strategy cannot be implemented by an
unprivileged loader, since the shared library area and the
pre-relocations are shared by processes in different
protection domains. Since the loader needed to be
privileged in any case, we chose to make it a kernel
service to further improve its performance.

Symbol resolution

Even though the imports/exports model reduces the
number of symbols that must be processed at load time,
libraries can still export hundreds of symbols. Thus, a
linear search for each imported symbol would be
inappropriate. Rather, as each module is loaded, a hash
table of its exported symbols is built; the size of the hash
table is chosen to be greater than the number of exported
symbols. Thus, the import-symbol search time is linear in
the number of imported symbols. When a shared-library
module is pre-relocated, its symbol hash table is built and
then reused at each use of the library.

Each module contains a list of the file names of the
libraries used by the module. Each symbol is labeled with
the specific library from which it came, and only that
library is searched to resolve the symbol at load time.
This further reduces the cost of load-time resolution, and
also makes it possible to verify that a pre-relocation can
be used without re-resolving the symbols of the pre-
relocated modules. (If symbols were resolved by searching
a list of modules, adding a module to the list or adding
an exported symbol to a module would potentially
change all symbol resolutions.)

An encoding of symbol type is carried with each
symbuol; this is a hash of the language definition of the
symbol into a fixed, ten-byte field. Because the field has a
fixed length (and is short) and because only equality is
checked, the cost of this enforcement is low. The
probability that two different types will match by
accident after hashing is smaller than the probability that
the machine will miscompare two values, and can be
ignored.

Kernel name space

Rather than using system call or trap instructions for
kernel calls, kernel symbols are imported in the same
way as other shared-library symbols. The file name /unix
is associated by convention with symbols exported by the
kernel. When the kernel is built, some of its symbols are
indicated as exports, just as for any other shared module.
At system initialization, an exports hash table is built for
these kernel symbols. In addition, some of the symbols
can be designated as syscalls. At initialization, each
syscall symbol is given the value of an interface routine,
which issues a system call instruction that leads to the
actual kernel entry point. Thus, to the using program,
system calls are indistinguishable from other callable

routines. 101
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Archives
Traditionally, UNIX-based libraries are archives of
programs, each the result of a separate compilation. A
shared module is in fact a prebound collection of such
programs. Thus, such a module could serve as a library,
and we have used the two terms interchangeably above.
However, the linker and loader also support archives,
some of whose members may be shared modules.
Remember that a prebound shared module contributes
only its exported symbols to the link; whenever such a
symbol is imported, its file name is recorded. If it is an
archive member, its member name is recorded as well.
As an example of a shared library, consider libc.a. This
library contains several programs which cannot be
shared; these include ert0.0 and longjmp.o. Each of these
will be an archive member. In the simplest shared
realization, all other object programs are bound into a
single shared module, which is placed in a single archive
member. libc.a consists of the private objects and the
shared module. At Id time, only the few private programs
and the exports list of the shared module need to be
processed, speeding the 1d step. At run time, the shared
member of libc.a finds its way into the shared-library
region and is pre-relocated. Thus, when a program is
loaded, the loader need only look up the imported
symbols in the already prepared hash table for this
member and copy the pre-relocated data of libc.a into the
process-private area.

Packaging

Packaging is the partitioning of a program into a
collection of libraries and modules. It might appear that
our design, which includes library names within the using
programs, would make it difficult to change certain
packaging decisions once made. In order to reduce this
problem, the linker and loader allow for the “import of
exports.” A module or library which exports a symbol
may in fact “produce” the definition by importing it from
some other module. This allows the implementation of
an interface to be moved, leaving an indirection in its old
location so that pre-existing using programs will continue
to work.

This mechanism can be used to move the
implementation of an interface from one member of an
archive to another. In particular, it allows an archive
member to be broken into several pieces if it grows too
large over time.

Another use of this mechanism is found in our
treatment of syscalls. Whether a particular kernel facility
such as open is in fact implemented in libc.a or in the
kernel is a packaging decision which we would like to
defer. syscalls are represented as being imported from
/unix, which the loader takes as the name for the kernel
services. However, we do not require each using module
to indicate that its kernel imports came from /unix, as
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this would preclude ever moving part of a syscall
implementation into the library. Rather, a shared
member of libc.a will import (from /unix) and export
these symbols. When a program is linked using libc.a, it
will import the syscalls from this member. The
implementation of these services can thus be moved by
changing libc.a, without rebinding the using programs.
(Because a hash table is used, these extra symbols do not
increase the cost of resolving libc.a imports.)

Similar packaging changes are available to other library
providers and users.

New system services

In addition to supporting exec, the loader provides
several new services. The most important of these are
kernel loading and the load system call.

o Kernel loading

In traditional systems, new device drivers, syscalls, or
kernel services can only be added by rebuilding the
kernel and rebooting. The kernel loader, however,
provides instead for dynamic changes to the kernel
without rebooting. The loading of these programs is
similar to the user-level load. A loaded program can
name imports from other modules, which are implicitly
loaded with it. Additionally, if a loaded program exports
symbols, these are added to the kernel name space. If any
of these symbols are marked syscall, they will also be
installed as new system calls, available to subsequently
loaded user programs.

The sysconfig system call uses the loader to implement
dynamic installation and replacement of device drivers,
physical or network file system implementations, and
other kernel mechanisms.

e load
The load system call allows a running program to add
other modules to the process. The rules for loading these
are similar to the initial exec load. The newly loaded
module can import symbols from modules that have
already been loaded, or from other modules that will
then automatically be loaded. In addition, any module
may import deferred symbols. These are left unresolved
when the using module is linked. [F BINDDEFERRED,
the default, is specified for the using module, each of
these symbols will be automatically resolved by the first
subsequently loaded module which exports it. If
NOBINDEFERRED is specified, the loadbind system call
must be used to cause resolution of deferred symbols in
the using module from a specified exporting module that
has already been loaded. The exporting module may have
been loaded before or after the using module.

The unload system call marks previously loaded
modules for unloading. These modules are removed from
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the process image only when all uses can also be
removed.

Complications

As with most new facilities, some complications are
inevitable. malloc and the use of _end cause trouble when
a program is loaded in pieces. We preserve _end as the
last address in the data of the execed program. However,
subsequent loads do not change its value. Thus, new
programs using the load system call should not also
depend on _end. We have also moved brk and sbrk into
the kernel. Programs which directly examine the break
value locations maintained by these services will fail.
Also, programs must use sbrk correctly. They must not
assume that sequential sbrk calls will always allocate
sequential memory, because the loader competes with the
user program for user memory space.

Programs which replace a libc.a service like malloc or
printf cannot expect their replacement to affect shared-
library uses of the service. If that is the intention, the
using program must be linked to a private copy of libc.a.
The linker provides an option for including private
copies of all libraries, and warnings if a user program
redefines a shared-library symbol.

The fact that sharable modules are kept in the shared
library between uses exacerbates the text-busy problem.
In many UNIX-based implementations a text-busy file
cannot even be removed, let alone written.

We do allow text-busy files to be removed. However,
the programmer must be aware that once a sharable
program has been used, he cannot just rewrite it with a
new version, but must remove the old version first. (Of
course, removing a file while it is still in use is
implemented correctly in that all existing uses continue
to use the old value.)

Copying

In a number of places, we have indicated that values are
copied. File contents are copied into both the process-
private area and the shared-library region. Shared-library
data is copied and pre-relocated. Pre-relocated data is
copied into the process-private area. In fact, all these
“copies” are normally done using well-known virtual-
memory management techniques to delay actual copies
until needed.

In addition, the virtual-memory manager and file
system are expected to cache file contents in memory,
even when the file is closed and later reopened. It is a
goal of this design that repetitive execution of a given
program will occur with no disk accesses in steady state.

Performance

We expect the performance cost of the shared-library
load to be a small part of the total fork/exec idiom. In
the end, this cost should be dominated by the number of
unique data copies implied by its semantics. In order to
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reach this goal, we have used several techniques. The
import/export semantics minimize the number of
symbols which must be processed for each load. The
technique of pre-relocation allows us to perform the
expensive process of relocating large shared libraries in
advance, caching the results, so that the cost of each load
depends on the size and complexity of the using
program, not the services it uses. Preliminary
measurements indicate that these goals can be met.

Conclusions
The AIX Version 3 linker and loader for the RISC System/
6000 processor have succeeded in implementing a high-
performance, mostly transparent shared-library system.
Programs are converted to shared-library use by linking
them against shared versions of traditional libraries. We
have found that using the exports construct, rather than
reproducing Id at load time, causes little if any trouble
even with existing programs. New versions of libraries can
be built and used without relinking using programs.
Finally, the execution overhead of the mechanism is small
and linear in the number of symbols needed by the using
program.

Thus, the ability of the linker/loader to provide
traditional exec services seems evident. The usefulness of
the new loader services awaits the test of time.
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