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by M. A. Auslander Managing 
programs  and 
libraries in AIX 
Version 3 for RISC 
SystemI6000 
processors 
This paper describes the  program and program- 
library  management  facility  that has been 
developed  for  the AIX* operating  system,  Version 
3, as implemented for the IBM POWER 
(Performance  Optimization  With  Enhan c ed RISC) 
architecture. It provides  run-time  loading of 
libraries,  symbol  resolution  with type checking, 
and  relocation.  In  addition,  the use of the loader 
to add programs  to an already running  process 
or  to the kernel is  offered. The advantages of 
these functions  and the techniques needed to 
provide  a usable and efficient realization are 
described.  Particular  attention  is  given  to the 
special  problems posed by  very large programs, 
and by  very  small  programs  which use services 
from  very large libraries. 

Introduction 
Traditionally, an executable program under a UNIX'-based 
operating system is self-contained. It is executed by 
reading its parts into predetermined memory locations and 
running it. Executable programs are built by compiling one 
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or more source programs and  using the Id command to 
combine them with programs from libraries. Library 
programs are selected to resolve calls in the original 
programs or in other library programs to functions or 
routines external to the calling program. Thus, a call to the 
printf routine results in inclusion of the library's 
implementation of printf. Since executing programs  must 
contain actual machine addresses of programs and data, 
these address constants must  be adjusted once the actual 
execution locations are known. This relocation is done by 
the Id command, and the resulting executable function will 
have a conventional fixed execution location. 

The only  remaining  dependency of the resulting 
program is related to kernel services, which are 
represented in  the program  as system-call instructions, 
with each  kernel service assigned a fixed system-call 
number. 

execution  time, since loading a program involves only 
copying it to its predetermined locations. It is often 
possible to reuse the instruction portion of such a 
program  for several executions, further reducing the cost 
of each. However, there are a number of drawbacks to 
this approach, which have become  more serious as UNIX- 
based operating systems and their applications have 
grown. These include 

Size of executable program Since a program  includes 
copies of all the  other services (programs) it uses, its 
total size reflects the size of those services. This effect 
limits the use of such services. 
Maintenance Including a private  copy of each service 
in  each using program  implies that changes to a service 

This approach offers the advantage of low overhead at 
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can  only  be  installed by relinking and then 
redistributing the service to all  using  applications. This 
is  of course not practical, and leads to very long 
lifetimes  for  old  versions of existing  services. 

executable  programs which contain particular versions 
of library  services,  or  expect  users to build  final 
executable  versions  for  themselves. 

Distribution A software  supplier  must either supply 

Name scope The Id command treats all  symbols  from 
the user’s program and from  any  libraries  uniformly.  In 
effect,  each  service  included  in the program is  itself 
rebuilt  from  its components during the link. All 
interfaces and data in the service are exposed, and all 
external  symbols in all  services  used  by a program  must 
be disjoint.  Additionally,  providers of a service  risk 
having  users  become dependent on internal details of 
the service that were  never intended to be part of its 
maintained interface.  Programmers  familiar  with the 
various uses  of the stream 1/0 package in 1ibc.a are 
well aware  of  this phenomenon. 
Kernelflexibility The  kernel  interface  consists of a set 
of  system  calls,  using a machine-specific trap 
mechanism.  These trap instructions become part of 
each  using  program.  It  is  difficult to extend the system- 
call  repertoire of the kernel,  since a specific trap value 
must be  assigned.  Relinking  is  necessary to move a 
service into or out of the kernel. 

application program is, it must be packaged  as a single 
executable  module. If this  becomes  impractical, the 
only alternative is to construct a multiple-process 
implementation, which involves major changes to the 
application structure. 

Application packaging No matter how  large an 

In our design, we have replaced the traditional 
approach with  one  which  can  defer  symbol  resolution to 
program  load time, and we have  developed  mechanisms 
for  doing so efficiently  for  both  large and small  programs. 
We have  provided  for  loading additional programs into 
the address  space of a running process, and we have 
added a mechanism that allows  for  verification of 
compatible data types during link- and load-time  symbol 
resolution.  In the remainder of this paper, we discuss the 
overall  strategy and describe  some  detailed techniques 
that are needed to make it work  well. 

In approaching  this  problem, there are trade-offs 
among  strict  compatibility  with the past,  performance at 
load time, and the provision of  new function. Earlier 
approaches  have either compromised the ability to 
replace  libraries and to share data as well as  code [ 1,2], 
or  accepted the performance  penalty of reproducing Id 
semantics at load time [ 31. Our approach may  be 
characterized  as  accepting a modified  symbol-resolution 
semantic at load time because we believe  it  is  right and 
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can perform better, even at  the cost  of  some 
incompatibility  with the past. 

Strategy 
At link time, programs are not (necessarily) combined 
with library  programs. Rather, these  libraries are loaded 
separately at load time and combined  with the using 
program. To do this, Id records the names of the needed 
libraries so that they can be  fetched at load time. Since 
we must be able to modify  libraries without relinking the 
executable  programs that use them, no internal details of 
the library  can be introduced into the using  program 
before  load time. This implies that symbol  resolution and 
relocation  for  library  references  must be done at load 
time. (Symbol  resolution  is the process  of  finding the 
definition of a needed  symbol in a library;  relocation  is 
the process  of updating address  values in the loaded 
program to reflect the actual locations of the referenced 
symbols.) 

Since we actually  relocate  address constants at load 
time, all the mechanisms  described  work uniformly for 
code and data. In particular, a using  program  can import 
the name of an external data structure from a library and 
use it just as if the library were bound with the using 
program.  Since  libraries  can  refer to each other or, in 
theory, even to the user  program,  symbol  resolution and 
relocation  must  be done for the libraries  as well  as the 
program. (The alternative of  assigning  fixed,  well-known, 
disjoint  locations to all  sharable  libraries  is  clearly 
impractical.) 

processes. The loader in fact  places a copy  of the library 
program into a shared part of the process  address  space, 
and uses the same copy for  all  processes.  Of  course,  each 
process  needs  its  own  copy of the (read/write) data 
portion of the library routine. Each time symbols are 
resolved, either at link or at load time, a representation of 
the symbol  type  is  included  in the comparison. It is an 
error for  symbols  with the same name and different  types 
to be present. 

Imports and exports 
It  would  be  possible  for  load-time  resolution to follow the 
same  rules as link-time resolution. All the symbols of the 
program and libraries  would be considered  again at load 
time, and libraries  would be  searched  for  unresolved 
symbols. 

We have  chosen a more constrained technique, in 
which the only  symbols  available  for load-time resolution 
are those  explicitly exported by the libraries, and in which 
a library’s internal symbol  resolutions are never 
recomputed at load time. This approach follows the more 
modem preference  for  clearly  distinguishing  interfaces 
and implementations; it reduces the amount of work 

When  possible,  libraries are shared among many 
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done at load time, making  high-performance  loading 
practical.  Finally,  as we show  below,  by making the 
libraries independent of their users, much of the work  of 
loading a library  can  be  cached,  reducing the cost  of 
loading  programs that use  large  libraries. 

Table of contents 
The final  goal of load-time symbol  resolution  is to 
modify the address constants in the loaded  programs to 
be the actual locations of the addressed data. Once 
resolution  has determined the values,  relocation updates 
the program. We expect  programs to be  large and use 
paging techniques to defer the actual reading of the 
program  as  long as possible.  If  address constants were 
spread throughout the program, then the program  would 
in fact  be  completely  read  as a side  effect  of relocation, 
eliminating the advantage of “page  mapped”  loading. To 
avoid  this, we introduce the table of contents (TOC). The 
idea  is to gather  all the address constants of a module 
together. This must be done even though the module 
consists of many  separately  compiled  programs. The 
solution is to have  each  separately  compiled  program  use 
register and displacement instructions to fetch  needed 
address constants. The register  is  (usually) the 
conventional TOC register,  which contains the origin of 
the running module’s  TOC. (There is one TOC for  each 
linked  collection of programs, or module.) 

The linker collects  all  TOC definitions and constructs a 
single  TOC  with one instance of  each  address constant. It 
then sets the displacements of instructions which  refer to 
TOC data to the correct  value. (Relocation directory 
entries in  each  compiled  program  identify the TOC 
references.)  When  one  program  calls another in the same 
module,  they  both  need the same TOC  register  value, so 
a simple branch-and-link instruction suffices. The called 
program, if it has static data, fetches the address of its 
own static data from the TOC. When  one  program  calls 
another in a different  module, it must  set the TOC 
register to the TOC address of the called  module.  On 
return, the caller  must  restore  its  own  TOC  register  value. 

Of course, at compile time the compiler cannot 
anticipate whether a called  program will wind up in the 
same  or another module; this is not known until link 
time. One  valid  strategy  would  be  always to load a new 
TOC  value, but we decided to optimize the intra-module 
call by  always  using a simple,  program-counter-relative, 
branch-and-link instruction with no TOC reload.  If the 
called  program  is not part of the caller’s module, the 
linker determines this and provides  surrogate  code in the 
caller  which  performs the needed TOC manipulation and 
register-contents-relative branch. 

advantages than might  be apparent. A major portion of 
It turns out that the TOC provides  even more 

100 the “data” in many programs  consists in fact of address 
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constants. In a large modular program, there may  be 
many  copies of the address of each  symbol.  These are 
replaced by a single  copy in the TOC. For small routines, 
the elimination of address constants often eliminates 
static storage  completely. 

Position-independent  code 
It  would  be  impossible to share an executable  program 
among  several  processes  if the act of relocation were to 
modify the text (i.e., instruction) portion of the program. 
In this section, we describe the programming conventions 
that forbid this, and the characteristics  of the POWER 
architecture hardware that make position-independent 
code  efficient. 

displacements.  Address constants are loaded into registers 
for  use, and there  are  enough  registers that such 
constants, once  loaded, can be  kept in registers. In 
position-independent  code, the program cannot contain 
the addresses  of  its data, since the data may  be in a 
different  place  for  each  execution and will certainly not 
be available  before load time. Thus, the caller of a 
program must effectively provide the addresses  of its data 
as  well  as the instructions for branching to the code. The 
TOC  linkage convention provides  for this by requiring 
that each  program get its own data addresses  from  its 
TOC. 

Local  branches  are by program-counter-relative 

Procedure  descriptors 
To represent a “pointer to procedure,” some  value 
adequate to call the procedure must  be  used. As  we have 
seen, this must include both the target-code  address and 
the TOC  address.  But a procedure pointer itself must fit 
into a pointer value, so we decided to use a three-value 
descriptor to represent  each  procedure. A procedure 
pointer is then the address of such a descriptor. This 
descriptor contains the code  address, the TOC address, 
and provision for an environment address  for  languages 
that need one. 

procedure  descriptors  for  equality, it is important that all 
uses  of a library procedure “see” the same descriptor. For 
this reason, the procedure descriptor is always 
materialized in the data area of the module that contains 
the procedure,  where it is  treated  like any other external 
data. Programs in this or other modules fetch an address 
constant to get the address of the descriptor,  which  is 
thus always the same.  Since procedure descriptors 
contain addresses  which  must be relocated, the linker 
groups them together and places them adjacent to the 
TOC to reduce paging  during relocation. 

File  names 
When a module imports an interface from another, the 
using module will contain the file name of the used 

Since the C language  allows the comparison of 
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module. This name is  used  by the loader to load the used 
module  whenever the using module is  loaded. To provide 
flexibility in the placement of shared  programs in the file 
system, we have  added a library-lookup mechanism 
which  is  similar to the path-lookup mechanism the shell 
uses for the main program. The file names in the using 
program  may  be either path names or base  names. Base 
names are found by searching the directories in the 
LIBPATH. Of course, path names are used  directly. The 
default  value of the path string  is  stored in the module 
being  loaded and is  normally the same path used  by  Id in 
its  library  search. For exec, this can be overridden by the 
value  of the LIBPATH environment variable. The load 
command has an explicit parameter for this purpose. By 
overriding the normal LIBPATH, the programmer can, 
for  example,  test a new  version  of a system  library  before 
installing it in the normal place. (The LIBPATH 
environment variable  is  ignored on suid/sgid  calls.) 

subsequent path lookups  which  result in the same  open 
file are known to be the same file. The consequence of 
renaming or overmounting a file in use  is that subsequent 
uses  of the same file name are in fact  seen to be a 
different  file. 

Once a file  is loaded,  it  is  kept  open  while in use. Thus, 

Sharing 
In  describing the Id command, we have indicated that 
shared  modules are not copied into the output module. 
At load time, these  modules are conceptually  added to 
the text and data of the module.  Two optimizations are 
applied during this process.  First,  if the “shared” 
module’s  access  permissions  allow  universal  reading, the 
module is copied into the shared-library  region. 
Subsequently, other requests  for the module can be 
satisfied by that copy. As long  as a module  is  available  for 
sharing, the file it came  from remains open and “text 
busy,” so that it cannot be  modified.  However, it can be 
replaced. If the module cannot be  shared, a private  copy 
is  read into the process-private area. 

When a module  is  placed in the shared-library  region, 
a second optimization, pre-relocation,  is attempted. The 
goal  is to resolve and relocate this module  once and for 
all. For this to be  possible,  all  symbols imported by the 
shared  module must come  from the kernel or from other 
pre-relocated  shared  modules.  When  pre-relocation  is 
possible, a target data location in the process-private area 
is  assigned, and a copy of the data of the shared module 
is  relocated as if it were at that location. At each  use of 
this pre-relocated  module, this data is  copied to its target 
location, and no resolution or relocation  is  needed. A 
recursive  algorithm  is in fact  employed so that sharable 
modules that use  each other can be  pre-relocated as a set. 
This succeeds  as  long  as no module in the set imports 
symbols  from a module  which cannot be pre-relocated. 
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This sharing  strategy cannot be implemented by an 
unprivileged  loader,  since the shared  library area and the 
pre-relocations are shared by processes in different 
protection domains. Since the loader  needed to be 
privileged in any case, we chose to make it a kernel 
service to further improve its performance. 

Symbol resolution 
Even though the imports/exports model  reduces the 
number of symbols that must be  processed at load time, 
libraries can still export hundreds of  symbols. Thus, a 
linear  search for each imported symbol  would  be 
inappropriate. Rather, as each module is  loaded, a hash 
table of its  exported  symbols  is  built; the size  of the hash 
table  is  chosen to be  greater than the number of exported 
symbols. Thus, the import-symbol  search time is linear in 
the number of imported symbols.  When a shared-library 
module  is  pre-relocated, its symbol  hash  table  is  built and 
then reused at each  use of the library. 

Each module contains a list of the file names of the 
libraries  used by the module. Each  symbol is labeled  with 
the specific library  from  which it came, and only that 
library  is  searched to resolve the symbol at load time. 
This further reduces the cost of load-time resolution, and 
also  makes it possible to verify that a pre-relocation can 
be  used without re-resolving the symbols of the pre- 
relocated  modules.  (If  symbols were  resolved  by searching 
a list of modules, adding a module to the list or adding 
an exported  symbol to a module  would  potentially 
change  all  symbol  resolutions.) 

An encoding of symbol  type  is  carried  with  each 
symbol; this is a hash of the language  definition of the 
symbol into a fixed,  ten-byte  field.  Because the field has a 
fixed length (and is short) and because  only  equality  is 
checked, the cost of this enforcement is  low. The 
probability that two  different  types will match by 
accident after hashing is smaller than the probability that 
the machine will miscompare  two  values, and can be 
ignored. 

Kernel  name  space 
Rather than using  system  call or trap instructions for 
kernel  calls,  kernel  symbols are imported in the same 
way as other shared-library  symbols. The file name /unix 
is  associated  by convention with  symbols  exported by the 
kernel.  When the kernel is built, some of its  symbols are 
indicated as exports, just as for  any other shared module. 
At system initialization, an exports hash  table  is  built  for 
these  kernel  symbols.  In addition, some of the symbols 
can be designated  as  syscalls. At initialization, each 
syscall  symbol  is  given the value of an interface routine, 
which  issues a system  call instruction that leads to the 
actual kernel entry point. Thus, to the using  program, 
system  calls are indistinguishable  from other callable 
routines. 
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Archives 
Traditionally,  UNIX-based  libraries  are  archives of 
programs,  each  the  result of a separate  compilation. A 
shared  module  is in fact a prebound  collection of such 
programs.  Thus,  such a module  could serve  as a library, 
and  we  have  used  the  two  terms  interchangeably  above. 
However, the linker and loader also support archives, 
some of  whose members may  be  shared modules. 
Remember that a prebound shared module contributes 
only its exported symbols to the link; whenever  such a 
symbol is imported, its file name is recorded. If it is an 
archive member, its member name is  recorded as well. 

As an example of a shared library, consider 1ibc.a. This 
library contains several programs which cannot be 
shared; these include crt0.o and 1ongjmp.o. Each of these 
will  be an archive member. In the simplest  shared 
realization, all other object programs are bound into a 
single  shared module, which  is  placed in a single archive 
member. 1ibc.a consists  of the private objects and  the 
shared module. At Id time, only the few private programs 
and the exports list of the shared module need to be 
processed,  speeding the Id step. At run time, the shared 
member of 1ibc.a finds its way into  the shared-library 
region and is  pre-relocated. Thus, when a program is 
loaded, the loader need  only  look up  the imported 
symbols in the already prepared hash table for this 
member and copy the pre-relocated data of 1ibc.a into  the 
process-private area. 

Packaging 
Packaging  is the partitioning of a program into a 
collection of libraries and modules. It might appear that 
our design,  which includes library names within the using 
programs,  would make it difficult to change certain 
packaging  decisions once made. In order to reduce this 
problem, the linker and loader allow  for the “import of 
exports.” A module or library  which exports a symbol 
may in fact “produce” the definition by importing it from 
some other module. This allows the implementation of 
an interface to be  moved,  leaving an indirection in its old 
location so that pre-existing  using programs will continue 
to work. 

implementation of an interface from one member of an 
archive to another. In particular, it allows an archive 
member to be broken into several  pieces  if it grows too 
large  over time. 

treatment of syscalls. Whether a particular kernel  facility 
such  as open is in fact implemented in 1ibc.a or in the 
kernel  is a packaging  decision  which we would  like to 
defer. syscalls are represented  as  being imported from 
/unix, which the loader takes as the name for the kernel 
services.  However, we do not require each using module 

This mechanism can be  used to move the 

Another use  of this mechanism is found in our 

102 to indicate that its kernel imports came from /mix, as 
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this would  preclude  ever  moving part of a syscall 
implementation into  the library. Rather, a shared 
member of 1ibc.a will import (from /mix) and export 
these  symbols. When a program  is linked using libc.a, it 
will import the syscalls from this member. The 
implementation of these  services can thus be  moved by 
changing libc.a, without rebinding the using  programs. 
(Because a hash  table  is  used,  these extra symbols do  not 
increase the cost of  resolving 1ibc.a imports.) 

providers and users. 
Similar packaging  changes are available to other library 

New  system  services 
In addition to supporting exec, the loader provides 
several  new  services. The most important of  these are 
kernel loading and  the load system  call. 

Kernel loading 
In traditional systems,  new  device  drivers, syscalls, or 
kernel  services  can only be added by rebuilding the 
kernel and rebooting. The kernel loader, however, 
provides instead for dynamic changes to the kernel 
without rebooting. The loading of  these programs is 
similar to the user-level load. A loaded program can 
name imports from other modules,  which are implicitly 
loaded  with it. Additionally, if a loaded program exports 
symbols,  these are added to the kernel name space. If any 
of these  symbols are marked syscall, they will also  be 
installed as new system  calls,  available to subsequently 
loaded  user programs. 

dynamic installation and replacement of  device drivers, 
physical or network file system implementations, and 
other kernel mechanisms. 

The sysconfig system  call  uses the loader to implement 

load 
The load system  call  allows a running program to add 
other modules to the process. The rules  for loading these 
are similar to the initial exec load. The newly loaded 
module can import symbols from modules that have 
already  been loaded, or from other modules that will 
then automatically be loaded. In addition, any module 
may import deferred symbols.  These are left  unresolved 
when the using module is linked. IF BINDDEFERRED, 
the default, is  specified for the using module, each of 
these  symbols will  be automatically resolved by the first 
subsequently  loaded module which exports it. If 
NOBINDEFERRED is specified, the loadbind system  call 
must be  used to cause resolution of deferred symbols in 
the using module from a specified exporting module that 
has  already  been  loaded. The exporting module may  have 
been  loaded  before or after the using module. 

modules for unloading. These modules are removed from 
The unload system  call marks previously  loaded 
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the process image only when all  uses can also be 
removed. 

Complications 
As with  most new facilities, some complications are 
inevitable. malloc and the use  of -end cause trouble when 
a program is loaded in pieces.  We  preserve -end as the 
last address in  the  data of the execed program. However, 
subsequent loads do not change its value. Thus, new 
programs using the load system  call should not also 
depend on -end. We  have also moved brk and sbrk into 
the kernel. Programs which directly examine the break 
value locations maintained by these  services will fail. 
Also, programs must use sbrk correctly. They must not 
assume that sequential sbrk calls will always allocate 
sequential memory, because the loader competes with the 
user program for  user memory space. 

Programs which  replace a 1ibc.a service  like malloc or 
printf cannot expect their replacement to affect shared- 
library uses  of the service.  If that is the  intention,  the 
using program must be linked to a private copy of 1ibc.a. 
The linker provides an option for including private 
copies  of  all libraries, and warnings if a user program 
redefines a shared-library symbol. 

The fact that sharable modules are kept in the shared 
library between  uses exacerbates the text-busy problem. 
In  many UNIX-based implementations a text-busy file 
cannot even be removed, let alone written. 

We do allow text-busy files to be removed. However, 
the programmer must be aware that once a sharable 
program has been  used, he cannot  just rewrite it with a 
new  version, but  must remove the old  version  first.  (Of 
course, removing a file while it is  still in use  is 
implemented correctly in that all existing  uses continue 
to use the old  value.) 

Copying 
In a number of  places, we have indicated that values are 
copied. File contents are copied into both the process- 
private area and the shared-library region. Shared-library 
data is  copied and pre-relocated. Pre-relocated data is 
copied into the process-private area. In  fact, all these 
“copies” are normally done using  well-known virtual- 
memory management techniques to delay actual copies 
until needed. 

In addition, the virtual-memory manager and file 
system are expected to cache file contents in memory, 
even  when the file is  closed and later reopened. It is a 
goal  of this design that repetitive execution of a given 
program will occur with no disk  accesses in steady state. 

Performance 
We expect the performance cost  of the shared-library 
load to be a small part of the total fork/exec idiom. In 
the end, this cost should be dominated by the  number of 
unique data copies implied by its semantics. In order to 

reach this goal, we have  used  several techniques. The 
import/export semantics minimize the  number of 
symbols  which must be  processed for each load. The 
technique of pre-relocation allows us to perform the 
expensive  process  of relocating large shared libraries in 
advance, caching the results, so that  the cost  of each load 
depends on  the size and complexity of the using 
program, not  the services it uses. Preliminary 
measurements indicate that these goals can be met. 

Conclusions 
The AIX Version 3 linker and loader for the RISC System/ 
6000 processor have succeeded in implementing a high- 
performance, mostly transparent shared-library system. 
Programs are  converted to shared-library use by linking 
them against shared versions of traditional libraries. We 
have found that using the  exports  construct,  rather than 
reproducing Id at load time, causes little if any trouble 
even with existing programs. New versions of libraries can 
be built and used without relinking using programs. 
Finally, the execution overhead of the mechanism is  small 
and linear in the number of symbols needed by the using 
program. 

traditional exec services seems evident. The usefulness  of 
the new loader services awaits the test of time. 
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