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Instruction  scheduling  consists of the 
rearrangement  or  transformation  of  program 
statements,  usually  at  the  intermediate  language 
or  assembly  code  level, in order to reduce 
possible  run-time  delays  between  instructions. 
Such transformations  must  preserve  data 
dependency  and  are  subject to other 
constraints.  Highly  optimizing  compilers 
employing  instruction-scheduling  techniques 
have  proven to be effective in improving  the 
performance of pipeline  processors. 
Considerable  attention  has  been  given to 
scheduling  code  within  the  scope  of  basic 
blocks, i.e., straight-line  sections  of code. In this 
paper  we  present  techniques  for  scheduling 
beyond  basic  blocks.  This  allows  a  further 
reduction in run-time  delays  such  as  those  due, 
e.g., to branches  and  loops,  enabling  the 
exploiting of pipeline  architectures  which  would 
not  otherwise be possible. 

“Copyright 1990  by International Business Machines Corporation. 
Copying  in printed form for  private  use  is permitted without 
payment of  royalty  provided that (1) each reproduction is done 
without alteration and (2) the Journnl reference and IBM copyright 
notice are included on the first  page. The title and abstract, but no 
other portions, of this paper  may  be  copied or distributed royalty 
free without further permission by computer-based and other 
information-service  systems.  Permission to republish any other 
portion of this paper must be obtained from the Editor. 

Introduction 
Instruction-scheduling algorithms are used in compilers 
to reduce run-time delays  for the compiled  code. This 
can be particularly  advantageous when compiling  for 
pipeline machine architectures,  which  allow  increased 
throughput by overlapping instruction execution. For 
example, if there is a delay  of one cycle  between  fetching 
and using a value V, it would  be  desirable to “cover” this 
delay  with an instruction that is independent of V and is 
“ready” to be  executed. Thus, a simple  reordering of 
selected instructions at compile time can be  regarded as a 
form of exploiting the potential parallelism inherent in 
the code. 

Recent  research on instruction scheduling  for  pipeline 
machines  has  focused  primarily on optimizations within 
basic  blocks [ 1-61. A basic  block  (BB)  scheduler  generally 
attempts to interleave independent instructions within 
each  basic  block so as to eliminate wasted machine 
cycles.  Such  schedulers are quite effective  for  programs 
with  long  basic  blocks, common in some  scientific 
applications.  Branch instructions, however,  restrict the 
effectiveness  of the pipeline architecture in ways that 
cannot be handled  with  only  basic  block transformations. 

scheduling  beyond the scope of basic  blocks. We assume 
that a good BB scheduler  (like that in [ 5 ] )  is  available, 
and we develop further transformations to help eliminate 

We have  therefore  investigated techniques for 
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1 Possible  schemes for covering  the CMP-BC pair  with a BB scheduler. 

remaining  delays (no-ops) that result  from branches and 
loops. The effect  of the delay  between a compare and a 
subsequent conditional branch, which  occurs  only if the 
branch is taken, suggests a variety  of  different  styles  of 
loop layout and code  replication.  These are presented in 
the next  section. We then turn  our attention to 
transformations for  covering the delays  associated  with 
if-then-else statements. 

Loop  transformations  for  reducing  delays  in  the 
IBM RISC System/6000* processor 
The compare-conditional branch (CMP-BC)  pair 
produces a three-cycle  delay  along the target path (i.e., if 
the branch is taken). There is no delay  along the 
sequential path (i.e., if the branch is not taken). The 
strategy of a scheduler is to try to eliminate this delay 
(partly or  completely) by putting one or more 
instructions between the compare (CMP) and the 
conditional branch (BC) to “cover” the delay. If the total 
time t of performing  these instructions is three cycles or 
more, no delay  occurs  along  any path (target or 
sequential).  However,  when t is  less than three cycles, a 
delay of (3 - t )  cycles  occurs  if the branch is taken. In a 
similar fashion, the instruction triple compare- 
conditional branch-unconditional branch (CMP-BC-B) 
produces a four-cycle  delay  if the branch is not taken. 

exit loop condition is  checked at the end of the loop, as 
in scheme (a) of Figure 1. If the CMP-BC pair  is  only 

In  most  compilers,  including the PL.8 compiler [7], the 
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partly  covered by a BB scheduler, the delay  will occur for 
each iteration of the loop. An  easy  way to eliminate this 
delay  might  be to generate  loops  according to scheme 
(b)-to check the negation of the original  exit loop 
condition at the beginning of the loop and add an 
unconditional branch (B) at the end of the body.  In  such 
a case a delay  would  occur  only upon exiting the loop, at 
the expense  of  replicating the entire body.  However, 
because of the CMP-BC-B triple, it may  now  be 
necessary to cover the CMP-BC pair  with instructions 
moved up from the body of the loop; a BB scheduler, 
whose  scope  is  limited to a single  basic  block,  will not be 
able to cover  (even partly) the CMP-BC, since it is itself 
a two-statement basic  block.  Similarly,  generating loops 
as in scheme  (c), to favor  zero  delay for the sequential 
path of the CMP-BC pair, requires  covering  instead the 
CMP-BC-B triple because of the conditional branch 
followed  by the unconditional branch. 

Our approach assumes that we have a sophisticated BB 
scheduler  which  accepts  loops  generated  according to 
scheme (a) and succeeds in covering the CMP-BC pair as 
much as  possible  within the scope of the basic  block.  Let 
scheme (a’) in Figure 2 denote the loop after BB 
scheduling  has attempted to cover the delay. If the CMP- 
BC pair  is  only  partly  covered ( t  < 3), then perform the 
following  loop-code  replication transformation: 

1. Create new label (out) before  first command following 
the loop (if one does not already  exist). 

2.  Copy the first 4 - t instructions from the beginning of 
the loop after the BC. (If the number n of instructions 
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in  the beginning of the loop is  less than 4 - t, then 
copy only those n instructions.) 

3. Create new label (loopl) after instruction number 
(4 - t ) .  

4. Negate the condition of the CMP, change the target of 
the BC, and add an unconditional branch B following 
the copied instructions, as illustrated in scheme (d) of 
Figure 2.  

Solely from the point of  view of  global  register 
allocation [8,9], such a transformation could be 
performed either before or after register allocation; it does 
not influence the outcome of global  coloring,’nor does 
coloring restrict the transformation. However,  because  of 
coalescing and certain other optimizations [lo], it is 
preferable to perform it after register allocation. 

After this transformation is executed, the label “loop:” 
may become an unused label and, if so, be eliminated; in 
addition, “straightening” may  merge some of the basic 
blocks. At that point, constant propagation and BB 
scheduling can be run again on such merged  blocks to 
obtain further improvement. 

In general, our transformation, illustrated for loops, 
could be applied similarly to any conditional branch for 
which the likelihood of the target path is qualitatively 
estimated to be greater than  the likelihood of the 
sequential path.  One might obtain such qualitative 
information from source-code analysis, running-test data, 
or a priori knowledge. 

If-then-else statements  with short then and  long 
else 
The CMP-BC-B triple, which produces a four-cycle 
delay  if the branch is not taken, appears frequently with 
instructions generated for $then-else statements with a 
“short then” part; an example is shown in Figure 3. In 
this sequence of instructions, a three-cycle  delay occurs if 
the conditional branch is not taken, since the CMP-BC- 
B triple is covered by one instruction only (ADD a,a, 1); a 
three-cycle  delay  also occurs if the conditional branch is 
taken (assuming that the “out” block  is long enough, say 
three to four instructions). 

It is possible to recognize such sequences in  the 
intermediate language  code and transform them by 
reversing the roles of then and else, as shown in Figure 4. 
This transformation can easily be applied after register 
assignment. By waiting until after register allocation, the 
transformation has a more realistic code sequence to 
analyze; that is, the assessment  of whether the then clause 
is shorter than the else clause will  be accurate. 

Table 1 shows the difference in the instruction delays 
in our example before and after the transformation; 

‘This code-repllcatlon transform may  lengthen the “live”  area of some  variables, but 
it does not introduce any new  edges  In the interference graph. 
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1 Code-replication  transformation  to  cover  a CMP-BC pair  that  is 
f otherwise  only  partly  covered by BB scheduling. 

Source  statements 

$(condition) rhen 

do; 

a = a +  1; 

end: 

else 

do: 

a = a + b + c + d + e ;  

end: 

out: . . . . . . . . . .  

. . . . . . . . . .  

Generated instructions 

CMP CRO, cond 

BC CRO, else 

ADD a ,aJ  

B out 

else: ADD a,a,b 

ADD a , a s  

ADD a,a,d 

ADD a,a,e 

out: . . . . . . . . . .  

. . . . . . . . . .  

clearly, the transformation is  always worthwhile. The 
next section, however, presents a more general technique 
which includes this optimization. 

M. C. GOLUMBIC  AND V. RAINISH 



Before  transformation After  transformation 
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B out instruction-out-l 

else: instruction-else . . . . . . . . . . . . . .  
out: instruction-out-1 . . . . . . . . . . . . . .  

. . . . . . . . . . . . . .  . . . . . . . . . . . . . .  

. . . . . . . . . . . . . .  instruction-out-n 

. . . . . . . . . . . . . .  B outl 

. . . . . . . . . . . . . .  new-else: instruction-else 

end-out: instruction-out-n instruction-out-l 

outl: . . . . . . . . . . . . . .  . . . . . . . . . . . . . .  
. . . . . . . . . .  

. . . . . . . . . . . . . .  
instruction-out-n 

B outl 

out:  instruction-out-1 

............ 

. . . . . . . . . . . . . .  
instruction-out-n 

outl: . . . . . . . . . . . . . .  

Table 1 

Then Else 

Delay  before  transformation 3 3 
Delay  after  transformation 3 0 

Glued  blocks for speedup of if-then-else 
statements 
For statements with both “short then” and “short else” 
parts, the transformation described in the preceding 
section  is not applicable. For example, 

i f[a(i)  > 01 

else count2 = count2 + 1: 
then countl = countl + 1; 

produces a three-cycle  delay  if a(i) > 0 because of the 
CMP-BC-B triple, and a three-cycle  delay due  to the 
CMP-BC pair  otherwise.  In certain situations, which we 
now describe, we may  reduce the delay. 

In this transformation, which we call gluing (see Figure 
5), we copy the basic  block  following the ifstatement and 
create  two new  basic  blocks, newdhen and new-else. 
After  such a transformation, the delay  along the target 
path remains the same as before, but  the delay  along the 
sequential path is  reduced (and probably  disappears). 

can  copy it without any change, but if it ends with an 
instruction which  is not a branch, we must add an 
unconditional branch to the end of the blocks of both the 
new-then and new-else. 

In  these  two  cases we can create new blocks  before the 
first  call to the scheduler,  because  “gluing”  may  help to 
cover  register-holding  delays in the out block  itself.  If the 
out block ends with CMP-BC, we can copy  only the 
instructions before the BC, create a new label  before the 
BC, and  put  an unconditional branch to this label at the 
end of the new-then and new-else blocks. 

In  general,  gluing can be  applied in a similar manner 
whenever we find a CMP-BC-B triple that is  covered by 
fewer than four instructions. The transformation 
increases the size of basic  blocks and creates new 
opportunities for constant propagation. 

If the out block ends with an unconditional branch, we 

Summary 
To take greatest advantage of pipelined architectural 
features, we have  presented a number of structural 
transformations of loops and branches, thus extending 
the “vision” of a code  scheduler  beyond  basic  blocks. 
These transformations augment a basic  block  scheduler 
that is  already  good, and extend  its  capability to cover 
delays. 
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The techniques presented here have  been implemented 
in  the context of a future version  of the PL.8 compiler. 
Experiments indicate an average run-time speedup of 
four to five percent beyond that achieved by the BB 
scheduler [SI on code compiled for the RISC 
System/6000 CPU. 
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