
Instruction
scheduling
beyond basic
blocks

by M. C. Golumbic
V. Rainish

Instruction scheduling consists of the
rearrangement or transformation of program
statements, usually at the intermediate language
or assembly code level, in order to reduce
possible run-time delays between instructions.
Such transformations must preserve data
dependency and are subject to other
constraints. Highly optimizing compilers
employing instruction-scheduling techniques
have proven to be effective in improving the
performance of pipeline processors.
Considerable attention has been given to
scheduling code within the scope of basic
blocks, i.e., straight-line sections of code. In this
paper we present techniques for scheduling
beyond basic blocks. This allows a further
reduction in run-time delays such as those due,
e.g., to branches and loops, enabling the
exploiting of pipeline architectures which would
not otherwise be possible.

“Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journnl reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

Introduction
Instruction-scheduling algorithms are used in compilers
to reduce run-time delays for the compiled code. This
can be particularly advantageous when compiling for
pipeline machine architectures, which allow increased
throughput by overlapping instruction execution. For
example, if there is a delay of one cycle between fetching
and using a value V, it would be desirable to “cover” this
delay with an instruction that is independent of V and is
“ready” to be executed. Thus, a simple reordering of
selected instructions at compile time can be regarded as a
form of exploiting the potential parallelism inherent in
the code.

Recent research on instruction scheduling for pipeline
machines has focused primarily on optimizations within
basic blocks [1-61. A basic block (BB) scheduler generally
attempts to interleave independent instructions within
each basic block so as to eliminate wasted machine
cycles. Such schedulers are quite effective for programs
with long basic blocks, common in some scientific
applications. Branch instructions, however, restrict the
effectiveness of the pipeline architecture in ways that
cannot be handled with only basic block transformations.

scheduling beyond the scope of basic blocks. We assume
that a good BB scheduler (like that in [5]) is available,
and we develop further transformations to help eliminate

We have therefore investigated techniques for

93

IBM 1. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990 M. C. GOLUMBIC AND V. RAINISH

body of
the loop

loop:
body of

the loop

CMP CRO, cond

BC CRO, loop
. ,

loop: CMP CRO, -cond loop: loop:

BC CRO, out body of
the loop

the loop CMP CRO, Tcond

BC CRO, out

B loop B loop
out: out:

(b) (C)

.

1 Possible schemes for covering the CMP-BC pair with a BB scheduler.

remaining delays (no-ops) that result from branches and
loops. The effect of the delay between a compare and a
subsequent conditional branch, which occurs only if the
branch is taken, suggests a variety of different styles of
loop layout and code replication. These are presented in
the next section. We then turn our attention to
transformations for covering the delays associated with
if-then-else statements.

Loop transformations for reducing delays in the
IBM RISC System/6000* processor
The compare-conditional branch (CMP-BC) pair
produces a three-cycle delay along the target path (i.e., if
the branch is taken). There is no delay along the
sequential path (i.e., if the branch is not taken). The
strategy of a scheduler is to try to eliminate this delay
(partly or completely) by putting one or more
instructions between the compare (CMP) and the
conditional branch (BC) to “cover” the delay. If the total
time t of performing these instructions is three cycles or
more, no delay occurs along any path (target or
sequential). However, when t is less than three cycles, a
delay of (3 - t) cycles occurs if the branch is taken. In a
similar fashion, the instruction triple compare-
conditional branch-unconditional branch (CMP-BC-B)
produces a four-cycle delay if the branch is not taken.

exit loop condition is checked at the end of the loop, as
in scheme (a) of Figure 1. If the CMP-BC pair is only

In most compilers, including the PL.8 compiler [7], the

94 * RISC Systern/6000 is a trademark of International Business Machines Corporation.

M. C. GOLUMBIC AND V. RAlNlSH

partly covered by a BB scheduler, the delay will occur for
each iteration of the loop. An easy way to eliminate this
delay might be to generate loops according to scheme
(b)-to check the negation of the original exit loop
condition at the beginning of the loop and add an
unconditional branch (B) at the end of the body. In such
a case a delay would occur only upon exiting the loop, at
the expense of replicating the entire body. However,
because of the CMP-BC-B triple, it may now be
necessary to cover the CMP-BC pair with instructions
moved up from the body of the loop; a BB scheduler,
whose scope is limited to a single basic block, will not be
able to cover (even partly) the CMP-BC, since it is itself
a two-statement basic block. Similarly, generating loops
as in scheme (c), to favor zero delay for the sequential
path of the CMP-BC pair, requires covering instead the
CMP-BC-B triple because of the conditional branch
followed by the unconditional branch.

Our approach assumes that we have a sophisticated BB
scheduler which accepts loops generated according to
scheme (a) and succeeds in covering the CMP-BC pair as
much as possible within the scope of the basic block. Let
scheme (a’) in Figure 2 denote the loop after BB
scheduling has attempted to cover the delay. If the CMP-
BC pair is only partly covered (t < 3), then perform the
following loop-code replication transformation:

1. Create new label (out) before first command following
the loop (if one does not already exist).

2. Copy the first 4 - t instructions from the beginning of
the loop after the BC. (If the number n of instructions

IBM J. RES. DEVELOP. VOL. 34 NO. 1 JANUARY 1990

in the beginning of the loop is less than 4 - t, then
copy only those n instructions.)

3. Create new label (loopl) after instruction number
(4 - t) .

4. Negate the condition of the CMP, change the target of
the BC, and add an unconditional branch B following
the copied instructions, as illustrated in scheme (d) of
Figure 2.

Solely from the point of view of global register
allocation [8,9], such a transformation could be
performed either before or after register allocation; it does
not influence the outcome of global coloring,’nor does
coloring restrict the transformation. However, because of
coalescing and certain other optimizations [lo], it is
preferable to perform it after register allocation.

After this transformation is executed, the label “loop:”
may become an unused label and, if so, be eliminated; in
addition, “straightening” may merge some of the basic
blocks. At that point, constant propagation and BB
scheduling can be run again on such merged blocks to
obtain further improvement.

In general, our transformation, illustrated for loops,
could be applied similarly to any conditional branch for
which the likelihood of the target path is qualitatively
estimated to be greater than the likelihood of the
sequential path. One might obtain such qualitative
information from source-code analysis, running-test data,
or a priori knowledge.

If-then-else statements with short then and long
else
The CMP-BC-B triple, which produces a four-cycle
delay if the branch is not taken, appears frequently with
instructions generated for $then-else statements with a
“short then” part; an example is shown in Figure 3. In
this sequence of instructions, a three-cycle delay occurs if
the conditional branch is not taken, since the CMP-BC-
B triple is covered by one instruction only (ADD a,a, 1); a
three-cycle delay also occurs if the conditional branch is
taken (assuming that the “out” block is long enough, say
three to four instructions).

It is possible to recognize such sequences in the
intermediate language code and transform them by
reversing the roles of then and else, as shown in Figure 4.
This transformation can easily be applied after register
assignment. By waiting until after register allocation, the
transformation has a more realistic code sequence to
analyze; that is, the assessment of whether the then clause
is shorter than the else clause will be accurate.

Table 1 shows the difference in the instruction delays
in our example before and after the transformation;

‘This code-repllcatlon transform may lengthen the “live” area of some variables, but
it does not introduce any new edges In the interference graph.

IBM J. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

loop: (1)

.

.

.

. (n) -
CMP CRO, cond

. (n + 1)

.

. , . , , . . (n+t)

BC CRO, loop

.

loop: (1)

.

. (4 - t)

loopl:

. (n)

CMP CRO, -cond

. (n + 1)

.

. (n + t)
BC CRO, out

. (1)

.

. (4 - t)

B loopl

out:

(d)

1 Code-replication transformation to cover a CMP-BC pair that is
f otherwise only partly covered by BB scheduling.

Source statements

$(condition) rhen

do;

a = a + 1;

end:

else

do:

a = a + b + c + d + e ;

end:

out:

.

Generated instructions

CMP CRO, cond

BC CRO, else

ADD a ,aJ

B out

else: ADD a,a,b

ADD a , a s

ADD a,a,d

ADD a,a,e

out:

.

clearly, the transformation is always worthwhile. The
next section, however, presents a more general technique
which includes this optimization.

M. C. GOLUMBIC AND V. RAINISH

Before transformation After transformation

CMP CRO, cond CMP CRO, -cond

BC CRO, else BC CRO, then

then: else:
B out

else:
.

. B out

.......... then:
out: out:

.

Before gluing After gluing

CMP CRO, cond CMP CRO, cond

BC else BC new-else

then: instruction-then new-then: instruction-then

B out instruction-out-l

else: instruction-else
out: instruction-out-1

.

. instruction-out-n

. B outl

. new-else: instruction-else

end-out: instruction-out-n instruction-out-l

outl:
.

.
instruction-out-n

B outl

out: instruction-out-1

............

.
instruction-out-n

outl:

Table 1

Then Else

Delay before transformation 3 3
Delay after transformation 3 0

Glued blocks for speedup of if-then-else
statements
For statements with both “short then” and “short else”
parts, the transformation described in the preceding
section is not applicable. For example,

i f[a(i) > 01

else count2 = count2 + 1:
then countl = countl + 1;

produces a three-cycle delay if a(i) > 0 because of the
CMP-BC-B triple, and a three-cycle delay due to the
CMP-BC pair otherwise. In certain situations, which we
now describe, we may reduce the delay.

In this transformation, which we call gluing (see Figure
5), we copy the basic block following the ifstatement and
create two new basic blocks, newdhen and new-else.
After such a transformation, the delay along the target
path remains the same as before, but the delay along the
sequential path is reduced (and probably disappears).

can copy it without any change, but if it ends with an
instruction which is not a branch, we must add an
unconditional branch to the end of the blocks of both the
new-then and new-else.

In these two cases we can create new blocks before the
first call to the scheduler, because “gluing” may help to
cover register-holding delays in the out block itself. If the
out block ends with CMP-BC, we can copy only the
instructions before the BC, create a new label before the
BC, and put an unconditional branch to this label at the
end of the new-then and new-else blocks.

In general, gluing can be applied in a similar manner
whenever we find a CMP-BC-B triple that is covered by
fewer than four instructions. The transformation
increases the size of basic blocks and creates new
opportunities for constant propagation.

If the out block ends with an unconditional branch, we

Summary
To take greatest advantage of pipelined architectural
features, we have presented a number of structural
transformations of loops and branches, thus extending
the “vision” of a code scheduler beyond basic blocks.
These transformations augment a basic block scheduler
that is already good, and extend its capability to cover
delays.

M. C. GOLUMBIC AND V. RAINISH IBM J. RES, DEVELOP, VOL. 34 NO. I JANUARY 1990

The techniques presented here have been implemented
in the context of a future version of the PL.8 compiler.
Experiments indicate an average run-time speedup of
four to five percent beyond that achieved by the BB
scheduler [SI on code compiled for the RISC
System/6000 CPU.

Acknowledgments
The authors would like to express their thanks to D.
Bernstein, M. E. Hopkins, P. W. Markstein, R. Pinter,
and H. S. Warren, Jr. for many fruitful discussions.

References
I . D. Bernstein, H. Boral, and R. Y. Pinter, “Optimal Chaining in

Expression Trees,” IEEE Trans. Computers 37, No. I 1, 1366-
1374 (November 1988).

2. P. B. Gibbons and S. S. Muchnick, “Efficient Instruction

3

4.

5 .

6.

7.

8.

9.

10.

Scheduling for a Pipelined Architecture,” Proceedings ofthe
ACMSymposium on Compiler Construction, ACM Press, New
York, June 1986, pp. 11-16.
J. R. Goodman and W.-C. Hsu, “Code Scheduling and Register
Allocation in Large Basic Blocks,” Proceedings of the
International Conference on Supercomputing, St. Malo, France,
ACM Press, New York, July 1988, pp. 442-452.
J. L. Hennessy and T. Gross, “Postpass Code Optimization of
Pipeline Constraints,” ACM Trans. Prog. Lang. & Syst. 5, 422-
448 (July 1984).
H. S. Warren, Jr., “Instruction Scheduling for the IBM RISC
System/6000 Processor,” IBM J. Res. Develop. 34, 85-92 (1990,
this issue).
S. Weiss and J. E. Smith, “A Study of Scalar Compilation
Techniques for Pipelined Supercomputers,” Proceedings of the
Second International Conference on Architectural Support for
Programming Languages and Operating Systems, Palo Alto,
CA, October 1987; IEEE, New York, 1987, Catalog No.

M. A. Auslander and M. E. Hopkins, “An Overview of the PL.8
Compiler,” Proceedings of the ACM Symposium on Compiler
Construction, ACM Press, New York, June 1982, pp. 22-31.
G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E.
Hopkins, and P. W. Markstein, “Register Allocation via
Coloring,” Comput. Lang. 6, 47-57 (198 1).
G. J. Chaitin, “Register Allocation and Spilling via Graph
Coloring,” Proceedings of the ACM Symposium on Compiler
Construction, ACM Press, New York, June 1982, pp. 98-105.
D. Bernstein, D. Q. Goldin, M. C. Golumbic, H. Krawczyk, Y.
Mansour, I. Nahshon, and R. Y. Pinter, “Spill Code
Minimization Techniques for Optimizing Compilers,”
Proceedings of the ACM SIGPLAN ’89 Conference on
Programming Language Design and Implementation, ACM
Press, New York, June 1989, pp. 258-263.

87CH2440-6, pp. 105-109.

Received February 28, 1989; accepted for publication
January 30, 1990

IBM J . RES. DEVELOP, VOL. 34 NO. 1 JANUARY 1990

Martin Charles Golumbic IBM Israel Science and Technology
Center, Technion City, Haifa, Israel. Dr. Golumbic is a research staff
member at the IBM Israel Science and Technology Center and an
associate professor at Bar-Ilan University. He is the founding editor-
in-chief of the series Annals of Mathematics and Artificial
Intelligence, a member of the editorial board of the journal Discrete
Applied Mathematics, and a member of the advisory board of the
International Journal of Expert Systems: Research and Applications.
Dr. Golumbic received his Ph.D. in mathematics from Columbia
University in 1975. Before moving to Israel in 1982, he served as an
assistant professor of computer science at the Courant Institute of
Mathematical Sciences of New York University and a visiting
scientist at the Universiti de Paris and the Weizmann Institute of
Science. He is the author of the book Algorithmic Graph Theory and
Perfect Graphs and many research articles in the areas of
combinatorial mathematics, algorithmic analysis, expert systems,
artificial intelligence, and programming languages. Dr. Golumbic has
been a guest editor of Discrete Mathematics, associate editor of the
volume “Approaches to Intelligent Decision Support,” Annals of
Operations Research 12, and editor of the forthcoming book
Advances in Artificial Intelligence, Natural Language and
Knowledge-based Systems. His current area of research is in
combinatorial mathematics interacting with real-world problems in
computer sciences and artificial intelligence. He is a member of Phi
Beta Kappa, Pi Mu Epsilon, Phi Kappa Phi, and Phi Eta Sigma.

Vladimir Rainish IBMIsrael Science and Technology Center,
Technion City, Haifa, Israel. Mr. Rainish has been a research fellow
at the IBM Israel Scientific Center since 1988. He received the M.Sc.
and B.Sc. degrees in computer science from the Moscow Transport
Institute in 198 1. After moving to Israel in 1985, he worked at Scitex
Corporation, Herzliya. Mr. Rainish’s current area of research is code
optimization for pipelined machines.

97

M. C. GOLUMBIC AND V. RAINISH

