
Instruction by H. S. Warren, Jr.

scheduling for
the IBM RlSC
System/6000
processor

For fast execution on the IBM RISC
System/6000* processor, instructions should be
arranged in an order that uses the arithmetic
units as efficiently as possible. This paper
describes the scheduling requirements of the
machine, and a scheduling algorithm for it that is
used in two compilers.

Introduction
The IBM RISC System/6000* processor is capable of
executing as many as four instructions each cycle: two
by the instruction-cache unit (ICU), one by the fixed-
point unit (FXU), and one by the floating-point unit
(FPU). If the “floating-point multiply-add instruction is
counted as two, it is capable of executing five
instructions at a time. However, there are often delays, or
hold-offs, between instructions. These arise primarily
because of off-chip communication and the pipelined
nature of the floating-point unit. For example, in
executing a load instruction there is a hold-off of one

‘RISC System/6000 is a trademark of International Business Machines Corporation.

Wopyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

cycle because the data must be fetched from the data
cache, which is not on the FXU chip. Floating-point
pipeline delay occurs if the result of one floating-point
instruction is needed by the very next one. This delay
occurs because the floating-point unit requires two cycles
to complete the execution of a single instruction, but
through pipelining it can execute a stream of instructions
at a rate of one per cycle if they are independent (if the
result of one is not needed by the very next instruction).

The purpose of the instruction scheduler is to arrange
the instructions in an order in which they execute the
fastest. It processes the output of the optimizer; code
motion, commoning, strength reduction, etc., have been
done. The output of the scheduler is passed to the final-
assembly part of the compiler. We have found it desirable
to run the scheduler twice: once before register allocation
and once after. Instructions have much more freedom of
movement before register allocation than after, and
scheduling has its greatest effect during the first pass. It is
run after register allocation because the register allocator
may insert “spill” code (loads and stores), which should
be scheduled, and because it makes other minor
alterations of the code such as deleting “move register”
instructions by its coalescing process.

requirements of the RISC System/6000 processor, and
the scheduling algorithm that is currently in use in the
XL compiler family [11 and in an earlier version of that
compiler known as the PL.8 compiler [2]. The same
scheduler is used for all XL languages.

The following sections discuss the scheduling

IBM J. RES. DEVELOP VOL. 34 NO. I JANUARY 1990 H. S. WARREN, JR.

86

Requirements

Fixed- andfloating-point alternation The RISC
SystemJ6000 fixed- and floating-point units operate in
parallel, and each is capable of executing one instruction per
cycle. The branch unit is capable of sending out two
instructions per cycle. Both instructions are sent out to
both execution units, and each execution unit discards
the instructions that are not appropriate to it. This means
that for optimum system performance, the branch unit
should send out one fixed-point and one floating-point
instruction in each cycle. Actually, because of multicycle
instructions such as floating-point divide (1 9 cycles) and
fixed-point multiply (three to five cycles), the true
optimal ordering of a long sequence of instructions is
harder to describe. Because of buffering in the arithmetic
units, however, it is almost always adequate to simply
alternate them, which is what the XL compiler tries to
do. If F denotes a floating-point instruction and X
denotes a fixed-point instruction, an order such as
FXXFFXX . . . would be just as good.

Load delay There is a delay of one cycle in the fixed-
point unit between a fixed-point load and the first use of
the data loaded. An independent fixed-point instruction
(one that does not use the data loaded) should be placed
between the two if possible. If no suitable instruction can
be found, it is not necessary to insert a “no-op” because
the hardware has interlocks on the registers and will wait
when necessary.

For afloating-point load, there is no delay if the use is
a floating-point store instruction. For other uses, there is
usually no delay, because floating-point loads are
processed by the fixed-point unit, and that unit usually
runs ahead of the floating-point unit. However, in
instruction traces one occasionally sees a delay here, and
the present scheduler does try to insert an independent
instruction.

A delay also occurs between a load and the first
instruction to set the same register as the target of the
load, but that is an unusual code sequence because the
item loaded is discarded.

Because of the desirability of alternating the fixed- and
floating-point instructions, there should also be two
floating-point instructions between a fixed-point load and
the first use. That is, if L denotes the load, X denotes an
independent fixed-point instruction, Y denotes the fixed-
point instruction that L feeds, and F denotes a floating-
point instruction, then the optimal order is LFXFY. The
same consideration applies to floating-point delays,
mutatis mutandis.

Floating-point defuse delay There is a delay of one or
two cycles in the floating-point unit between any floating-

N. S. WARREN, JR

point instruction and the first use of the computed
quantity. The delay is two if the first instruction feeds the
FRA position (bits 1 1 - 15) of the second, and is otherwise
one. One or two independent floating-point instructions
should be inserted if possible. The extra delay for feeding
the FRA position is due to the lack of a bypass path to
the FRA position [3].

field that can be interchanged with FRA without
changing what the instruction does (the other field is
FRB forfloating add, and FRC for floating multiply and
the floating-multiply-add family of instructions). Thus,
the extra delay can often be avoided by interchanging the
appropriate fields.

Compare-branch delay A complete description of
the delays associated with conditional branches would
be quite complicated, so we describe only the main
effects.

Between a fixed-point compare and a conditional
branch (bc) on the condition register (CR) field that the
compare set, there is a delay of three cycles if the branch
is taken, and usually no delay if the branch falls through.
In the case of a floating-point compare, the delay is six
cycles if the branch is taken, and three if it falls through.
These delays occur in both the fixed-point and floating-
point units.

helpful to understand a little about how the branch unit
operates. As the branch unit sends out instructions, it
decodes them sufficiently to tell whether they set or use
the CR, and if so, which CR field is affected. When it
sends out a compare, it locks the target CR field. When it
sends out an instruction with the “record” bit set, it locks
either CRO or CRl, depending upon whether the
instruction is fixed-point or floating-point. Later, when
the instruction is executed by its execution unit, the
branch unit receives the CR value. It then unlocks the
CR field.

When the branch unit executes a conditional branch
instruction, it waits, if necessary, for the tested CR field
to be unlocked. However, if the CR field is locked, it
“conditionally dispatches” two instructions. This is
sufficient to keep the fixed-point unit busy if the branch
falls through, and if the two conditionally dispatched
instructions and the two instructions following those are
all fixed-point instructions.

If, when a CR field is locked, another instruction is
encountered that sets that CR field, then the branch
unit stops sending out instructions, because it cannot
handle two or more outstanding instructions that set
the same CR field. The programmer should try to
avoid such sequences. For example, consider the
following:

Several of the floating-point instructions have another

To understand the timing of conditional branches, it is

IBM J. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

andil. . . . (Sets CRO implicitly)
cmp crO, . . . (Also sets CRO)
bc crO, . . . (Branch uses CRO)

Both the andil. and the cmp set CRO, so there will be a
delay of three cycles between them (there is an additional
three-cycle delay between the cmp and the be if the
branch is taken). The programmer can avoid the
unnecessary delay by using a different CR field for the
cmp-be. As another example, in the sequence

cmp crO, . . . (Sets CRO)
bc crO, . . . (Branch uses CRO)
cmp crO, . . . (Sets CRO)
bc crO, . . . (Branch uses CRO)

the branch unit will not conditionally dispatch the
second cmp. This makes the sequence run unnecessarily
slowly in the case that the first be falls through. The
programmer should use different CR fields in the first
and second cmp-bc sequences.

substantially by indiscriminate use of the “record” bit.
The record bit should be set only when the CRO/CRI
result is actually needed.

The CR fields are “paired” for the purposes of locking.
The pairs are CRO and CR4, CRI and CR5, CR2 and
CR6, and CR3 and CR7. When an instruction sets CRO,
for example, the branch unit actually locks both CRO and
CR4. Thus, in the first code sequence shown above, the
programmer should use some CR field other than 0 or 4
for the cmp-bc. Similarly, in the second code sequence,
the CR fields should be chosen from different pairs. This
“pairing” is necessitated by timing problems and the
limited fan-in of the CMOS-2 technology, and does not
affect the logical operation of a program.

branches rapidly in succession. For example, for a be that
falls through to another bc, the machine waits for the first
bc to be resolved before it executes the second. That is,
conditional dispatching has been blocked. This occurs
even if the second branch is unconditional. For an
unconditional branch to a conditional branch that falls
through, however, there is usually no delay. The
programmer can take advantage of this by rearranging
loops that end in cmp-bc as follows (see also [4]):

Because of the CR locking, the processor can be slowed

The machine will be slowed if it has to execute

b in
loop: bc- crn, out

loop: . . . in: . . .
. . . * . . .
cmp crn, . . . cmp crn, . . .
bc crn, loop b loop

out:

IBM J. RES, DEVELOP. VOL. 34 NO. 1 JANUARY 1990

The first loop will have a three-cycle delay, and the
second will have no delay, provided the code shown as
“. . .” amounts to at least four fixed-point cycles. By
“bc- ” above we mean the original bc instruction with
the sense reversed. Of course, if two or three instructions
can be found to place between the cmp and the bc, or if
the loop can be changed to use a branch on the count
register rather than on the CR, that is preferable.

Excessive floating-point stores (stf) A floating-point
store instruction normally takes one cycle in both the
fixed- and floating-point units. However, if there are
more than four consecutive stfs, there may be a delay of
one cycle, in the fixed-point unit, for each stfafter the
fourth.

This delay is caused by the fact that the fixed-point
unit may compute addresses faster than the floating-point
unit can compute the quantities to be stored. There is a
“pending store queue” of length four that holds the
virtual addresses of floating-point data to be stored. If the
queue is full, further stfs are held up until a slot in the
queue becomes available.

Store-load-use delay The load-use delay is magnified by
the presence of a store preceding the load, with the
effective addresses referring to the same 16-byte block of
memory. The length of the delay depends upon whether
the instructions are fixed- or floating-point, as shown
below. ST and L denote fixed-point store and load
instructions, and STF and LF denote floating-point store
and load instructions.

ST- L-use: 3 ST- LF-use: 2

STF-L-use: 5 STF-LF-use: 5

The delay is in the fixed-point unit for L and in the
floating-point unit for LF. It occurs between the load and
the use of the data loaded, but it can be ameliorated by
including instructions either between the store and the
load or between the load and the use.

The STF-L and ST-LF sequences are of some
importance because they are used for conversions
between fixed- and floating-point instructions.

m f p r and mfcr delay There is a delay of one cycle in
the fixed-point unit between move from special-purpose
register or move from condition register and the first use
of the data moved to a GPR. The delay length is the
same no matter what the special-purpose register is (even
if it is on the fixed-point chip).

mtlr-br delay The sequence move to link register
followed by branch (un)conditional register is often used
for subroutine return and for branches to targets that are
variable. The delay here is four cycles.

H. S. WARREN, JR.

88

Leaf subroutines can normally avoid this delay by
leaving the return address in the link register, so the mtlr
is not required. For these, the br instruction normally
takes no time at all, as it is executed in parallel with
arithmetic unit processing. More complex subroutines
often have a load multiple instruction in their epilog.
This can be placed between the mtlr and the br; if the
load multiple loads four or more registers, the br is again
free. Hence it is only those subroutines of intermediate
complexity that suffer this delay.

mtctr-bct delay Between move to count register and a bc
that uses the count register, there is a four-cycle delay.

CR-logic instruction delays The RISC System/6000
instruction set includes a complete set of logic instructions
for manipulating bits of the CR, e.g., crand, which forms
the logical and of the bits at two CR positions and puts
the result in a third bit position. These instructions are
executed by the branch unit. The presence of several
consecutive instructions of this type may cause delays in
the execution units, because the branch unit will not be
able to deliver instructions fast enough. In a sequence of
alternating fixed- and floating-point instructions, having
more than two consecutive CR-logic instructions will
cause a delay in each arithmetic unit. In a sequence of
fixed-point instructions, having more than five
consecutive CR-logic instructions will cause a delay in
the fixed-point unit.

immediately by a conditional branch on the bit set.
There is no delay for a CR-logic instruction followed

Moving to andfrom the FPSCR Executing move to
floating-point status and control register fields (mtji-f)
causes a pipeline drain in the floating-point unit. This
causes a delay of two cycles. However, the delay cannot
be covered by floating-point instructions, so it really acts
as if mtfsf were a three-cycle instruction.

The immediate forms (mtfsi, mtfsbl, and mtfsbo),
however, do not cause a pipeline drain nor any delay;
they are simply one-cycle instructions.

There is a normal floating-point delay between move
from FPSCR (m@.s) and the first use of the target register
(two cycles if it feeds the FRA position, one cycle
otherwise).

Other scheduling considerations

Minimizing “liveness” Scheduling tends to increase
register pressure, so it is important not to “overschedule.”
That is, loads should not generally be moved back farther
than necessary. As a simple example of this, suppose a
basic block consists of three load-store pairs. We consider
three possible orders of this below, where the code is

H. S. WARREN, JR.

physical register):

L r101,. . . L r101,. . .
ST r101,. . . L r102,. . .
L r102,. . . L r103,. . .
ST r102,. . . ST r101,. . .
L r103,. . . ST r102,. . .
ST r103,. . . ST r103,. . .

(a) (b)

shown before register allocation (i.e., “r 10 1 ” denotes a
symbolic register that has not yet been assigned to a

L r101, . . .
L r102, ...
ST r101,. . .
L 1-103, . . .
ST r102,. . .
ST r103,. . .

(c)

Order (a) is how the code would probably be arranged
before scheduling, assuming it was produced by three
consecutive assignment statements in the source
program. This order takes nine cycles to execute, because
of the one-cycle delays between each load and store.
Order (b) executes in only six cycles, but it suffers from
“overscheduling” in that the register allocator will have to
assign three distinct physical registers to r 10 1, r 102, and
r103. Order (c) also executes in only six cycles, but
requires only two physical registers, as rlOl and r103 can
be assigned to the same register. Thus (c) is the best
order.

On the other hand, the possibility of cache misses
suggests that loads should be moved as far back as
possible. This is a difficult trade-off to make.

Incidentally, this example also shows the value of
scheduling before registers are allocated. If it were not
done then, sequence (a) would be the input to the register
allocator, and it would most likely assign r 10 1, r 102, and
r103 to the same physical register, preventing any
rearrangements.

Avoiding semantic changes Floating-point instructions
should generally not be moved across subroutine calls,
because the floating-point instructions set status bits in
the FPSCR, and the called subroutine may be testing
them.

Many instructions cannot be safely moved back across
conditional branches, even though on the surface it may
seem valid, because the conditional branch may be
preventing the execution of the instruction when
conditions are such that executing it would cause an
error condition. This applies to most loads and stores
(which can cause various forms of the data storage
interrupt), and to the floating-point instructions (because
of the FPSCR). Fixed-point instructions other than loads
and stores may be freely moved provided the OE bit is off
(if the OE bit is on, movement may be undesirable
because of the summary overflow bit in the XER).

The leveling algorithm
The instruction-scheduling problem has its origin in
microprogramming. Microcoded machines can often

IBM J. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

execute two or more instructions simultaneously by
packing them into the same microinstruction, provided
there are no data dependencies between them, and they
are appropriate types of operations. The “microcode
compaction” problem, as it is called, is very similar to the
problem of arranging the instructions in an optimal order
in the presence of hold-offs. Reference [5] is a good
review of the state of the art about ten years ago.

The scheduling algorithm used in the XL and PL.8
compilers is based on a “dependency graph,” which is
constructed for each basic block. The dependency graph
has a node for each instruction, and a directed arc
between two nodes if one of the instructions must
precede the other for any reason. If the first instruction
computes something used by the second, that is called a
“forward dependency.” If the second instruction alters
something (a register or storage) used by the first, that is
called a “reverse dependency.” Most delays occur for
forward dependencies. The arcs in the dependency graph
are labeled with the amount of the delay, or hold-off,
between the instructions.

following source code (fixed-point arithmetic):
As an example, consider the basic block containing the

A = B + C - D ;

IFE>OTHEN. .

for which the intermediate language code (before register
allocation) is the following:

L
L
ADD
L
SUB
ST
L
CMP
BC

r 100, B(r200)
r101, C(r200)
r102, r100, rlOl
r103, D(r200)
r104, 1-102, r103
r104, A(r200)
r105, E(r200)
r106, r105, 0
r106, . . .

This has the dependency graph shown in Figure 1, where
the notations L.B, L C , etc., denote a load of B, C, etc.
Although the ST instruction has no forward nor reverse
dependency with the bc (conditional branch), an arc is
placed between them to reflect the fact that the ST (and
in fact all the instructions in the basic block) must be
executed before the bc.

The scheduler constructs the dependency graph by
examining all the (n2 - n)/2 pairs in the n-instruction
basic block. For each instruction pair, the registers are
examined to see whether or not one instruction sets a
register that the other one sets or uses. Although a simple
hashing technique is used to speed up the register
matches, construction of the dependency graph remains
the most time-consuming part of the scheduler.

; Example dependency graph.

The pair of instructions are also examined to see if
they interfere through storage. The storage classes and
other dictionary information are used to see whether the
instructions cannot possibly refer to the same storage
location (e.g., the STATIC and AUTOMATIC classes
cannot overlap). If they are in the same or possibly
overlapping classes, the base register and displacement
are examined to see if they definitely refer to different
storage locations. This handles cases such as a store into
A(1) followed by a load from either A(I + 1) or A(I - 1);
in this case there is no storage dependency, and it might
very well be advantageous to place the load before the
store.

walked upward and each node is labeled with the
maximum delay from the node to the end of the basic
block. This is calculated by adding the delay times from
the end of the basic block up to each node. If two or
more paths converge on the same node (a situation not
shown in Figure l), the maximum value calculated along
the paths is used.

Next, instructions are selected in, basically, decreasing
order of the delay times from each node to the end. 89

After the dependency graph has been constructed, it is

H. S. WARREN. JR IBM J. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

90

Refemng to Figure 1, the four “load” instructions are
eligible in that they have no predecessors in the
dependency graph. The one with the largest delay to the
end of the basic block is chosen first. This is the load of
E, which has a four-cycle delay to the end of its path,
whereas the other loads have only a one-cycle delay to
the end of their paths.

As instructions are selected, the algorithm updates a
“current time” value, which is initially zero, by
incrementing it by the execution time of the instruction
just selected (the execution time is one cycle for most
instructions). The instruction selected is removed from
the dependency graph.

Also, as each instruction is selected, its immediate
successors in the dependency graph are marked with a
time value equal to the updated current time plus the
delay from the instruction just selected to the successor.
This “earliest time” value is used to hold off instructions,
if possible, until after the required delay has elapsed.

Refemng again to Figure 1, after putting out the load
of E at time 0, the CMP is marked with an earliest time
of 2. Now the algorithm looks for an instruction that has
no successors in the dependency graph, and whose
earliest time is less than or equal to the current time (1).
The loads of B, C, and D satisfy this. One is chosen
nearly arbitrarily; the load of B is chosen because it
occurred first in the original code. The current time is
updated to 2, and the ADD is marked with an earliest
time of 3.

two remaining loads, which have an earliest time of 0,
and the CMP, which has an earliest time of 2. The CMP
can be selected, because its earliest time has been
reached. Of the three instructions that are equally good
candidates at this point, the CMP is chosen because
it has the greatest delay to the end of its path (three
cycles).

Next, only the loads of C and D are eligible in the
sense of having no predecessors. The algorithm makes
the nearly arbitrary choice of C. The “earliest time” for
the ADD is changed to 5, since the load of C was selected
at time 3.

order of the instructions is

Next, the instructions that have no predecessors are the

The algorithm continues in this way, and the final

L r105, E(r200)
L r100, B(r200)
CMP r106, r105, 0
L r101, C(r200)
L r103, D(r200)
ADD r102, r100, rlOl
SUB r104, r102, r103
ST r 104, A(r200)
BC r106, . . .

The algorithm found an optimal order. There are no
uncovered delays, and the above code executes in eight
cycles on the RISC System/6000 processor.

However, the strategy of choosing first the instruction
that is farthest from the end in terms of delay along its
path is merely a heuristic and does not always get the
best order. As an example of where it fails, consider
Figure 1 with the loads of D and E omitted. The
algorithm would then choose the CMP first. Then it
would be forced to choose the two loads and the ADD,
and there would be an uncovered delay between the
second load and the ADD. However, the best order
would place the two loads first, then choose the CMP as a
cover for the second load, and then choose the ADD,
SUB, ST, and BC. There are just enough instructions to
cover the CMP-BC delay of 3, so there is no delay with
this ordering.

Refinements to the basic algorithm
The complete algorithm employs a few other criteria to
determine the ordering. There is no “planning” or
“lookahead” associated with these other criteria; they are
merely used as tie-breakers when choosing the instruction
to select next. The complete selection scheme is described
below. For ease of exposition it is described as a
subsetting process, although it is implemented by
scanning the remaining instructions, choosing the “best”
one to select. The scan is done once for each instruction
selected.

1.

2.

3.

4.

5 .

6.
7.

8.

Initialize the set of all those instructions that have
not yet been selected, and that have no predecessors
in the dependency graph (these are the “legal” ones).
Refine the subset to those instructions whose earliest
time has amved or, if none, those with the smallest
earliest time.
If one or more instructions have been selected, and if
the current subset contains one or more instructions
of opposite type (fixed/floating) from the last one
selected, then refine the current subset to those of
this opposite type.
Refine the subset to those of maximum total delay
along the path of each instruction to the end of the
basic block.
Refine the subset to those of minimum “liveness
weight.”
Refine the subset to those with greatest “uncovering.”
Refine the subset to the unique instruction that came
first in the original ordering.
Select the single instruction that is in the subset at
this point, and then repeat this process until all
instructions in the basic block have been selected.

The “liveness weight” criterion is used for a simple
scheme that reduces register spills. Each instruction is

H. S. WARREN, JR IBM J. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

assigned a “weight” as follows:

0 Move-register (fixed-point or floating-point)
1 Instructions with no target registers (stores and traps)
2 Most instructions
3 Loads (from storage)
4 Instructions with no source registers (e.g., Load

Immediate)

The ‘‘lightweight’’ instructions are selected first (if there is
a tie for all the more important criteria). The move
register instructions have the lightest weight for a
technical reason: The register allocator does a better job
of coalescing if these are kept close to the instruction that
defines the source of the move register. Stores and traps
are selected early because they have “uses” but no
“definitions.” Hence, they may free up registers, but they
never increase the number that are currently live.
Similarly, an instruction such as load immediate is
selected late, because it increases the number of registers
that are live and does not free any.

The weights are stratified with respect to subroutine
CALLs. That is, instructions between the beginning of
the basic block and the first CALL are given weights
from 0 to 4; those between this CALL and the next have
their weights increased by ten, etc. This has the effect of
making it less likely that instructions will be moved
across CALLs. Our experience has been that moving
instructions across CALLs tends to increase the number
of times a definition and its use bridge a CALL; such a
bridge is undesirable because the CALL instruction has a
large register “kill.”

Reducing spills seems to be a very difficult problem.
We tried some more complicated schemes, but the simple
one described above seemed to work about as well as
any.

The “uncovering” step mentioned above is an attempt
to get better scheduling by having a wider choice at each
step. If there is no choice between two instructions up to
the point that this is considered, the algorithm computes
how many instructions will become ready if either is
selected next. By “ready” we mean here that the
instruction has no predecessors in the dependency graph
and its earliest time will have been reached. If there is a
difference, the one is chosen that maximizes the number
of instructions made ready. This heuristic tends to
improve the schedule in a number of respects,
particularly in the alternation of fixed- and floating-point
instructions.

Other machines
We have described the instruction scheduler as it pertains
to the RISC System/6000 processor. The same program
also schedules for the 801 and ROMP-C [6]. To tailor it

IBM J . RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

to these other machines is mainly a matter of adjusting a
few parameters such as the delays and execution times.
However, for the ROMP the scheduler also avoids having
more than two consecutive load or store instructions,
because of the presence of the “load-store queue,” which
is of length 2. For the ROMP and the 801, the scheduler
also attempts to place an optimal instruction next to a
branch, for “branch with execute” (delayed branch)
generation.

Future directions
The current trend is toward computers with more
scheduling requirements, i.e., more situations that require
scheduling for good performance, and larger hold-offs.
The high-quality compiler of the future will employ more
sophisticated scheduling techniques than have been
described here. Significant work has already been done in
this area, particularly for the VLIW (very long instruction
word) architectures [7, 81. Theoretical work is presented
in [9] and [101.

The existing XL compiler family will probably be
extended so that the scheduler will move code across
basic blocks when that gives an improvement. One
approach toward this is discussed in this issue [4]. Other
approaches are discussed in [1 11 and [121.

Acknowledgments
The original scheduler was designed by Richard Goldberg
for the PL.8 compiler. That program handled the 801
and the original ROMP. The more complex scheduling
requirements of the RISC System/6000 processor and
ROMP-C necessitated a redesign, which was done by this
author with the assistance of Richard Goldberg, David
Bernstein, and Peter Hsu. Joanne B. Minish recoded it
for incorporation into the XL compiler family.

References
1. AIX/RT FORTRAN Reference Manual, Order No. SCO9-1267,

available through IBM branch offices.
2. M. A. Auslander and M. E. Hopkins, “An Overview of the PL.8

Compiler,” Proceedings of the ACM Symposium on Compiler
Construction, ACM Press, New York, June 1982, pp. 22-31;
also, M. E. Hopkins, “Compiling for the RT PC ROMP,”
Reduced Instruction Set Computers, Second Edition, IEEE
Computer Society Press, Los Alamitos, CA, 1990, pp. 146- 153.

3. R. K. Montoye, E. Hokenek, and S. L. Runyon, “Design of the
IBM RISC System/6000 Floating-point Execution Unit,” IBM
J. Res. Develop. 34, 59-70 (1990, this issue); G. F. Grohoski,
“Machine Organization of the IBM RISC System/6000
Processor,” IBMJ. Res. Develop. 34,37-58 (1990, this issue).

4. M. C. Golumbic and V. Rainish, “Instruction Scheduling
Beyond Basic Blocks,” IBM J. Res. Develop. 34,93-97 (1990,
this issue).

5. David Landskov, Scott Davidson, Bruce Shriver, and Patrick W.
Mallett, “Local Microcode Compaction Techniques,” Comput.
Sum. 12,261-294 (September 1980).

Technology at IBM,” IBM J. Res. Develop. 34, 4-1 1 (1990, this
issue).

6. John Cocke and V. Markstein, “The Evolution of RISC

n. s. WARREN, JR.

7. Joseph A. Fisher, “Trace Scheduling: A Technique for Global
Microcode Compaction,” IEEE Trans. Computers C-30,478-
490 (July 1981).

8. Kemal Ebcioglu, “Some Design Ideas for a VLIW Architecture
for Sequential-Natured Software,” Research Report RC-13795,
IBM Thomas J. Watson Research Center, Yorktown Heights,
NY, November 1987.

9. David Bernstein and Izidor Gertner, “Scheduling Expressions on
a Pipelined Processor with a Maximal Delay of One Cycle,”
ACM Trans. Prog. Lang. Syst. 11,57-66 (January 1989).

10. D. Bernstein, J. M. Jaffe, R. Y. Pinter, and M. Rodeh, “Optimal
Scheduling of Arithmetic Operations in Parallel with Memory
Access,” Technical Report 88.136, Israel Scientific Center,
Technion City, Haifa, Israel, May 1985.

Compilation Technique,” Technical Report 85-678, Department
of Computer Science, Cornell University, Ithaca, NY, May
1985.

12. Kemal Ebcioglu, “A Compilation Technique for Software
Pipelining of Loops with Conditional Jumps (Preliminary
Version),” Proceedings of the 20th Annual Workshop on
Microprogramming (Micro 20), Colorado Springs, CO,
December 1-4, 1987 (ACM Order No. 520870), pp. 69-79.

1 1. Alexandru Nicolau, “Percolation Scheduling: A Parallel

Received February 28, 1989; accepted for publication
January 30, 1990

92

H. S. WARREN, JR

Henry S. Warren, Jr. IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York 10598.
Dr. Warren graduated from Rensselaer Polytechnic Institute in 1960
with the B.S.E.E. degree. He received his M.S. in mathematics and
Ph.D. in computer science from New York University in 1964 and
1980, respectively. Dr. Warren joined IBM’s Federal Systems
Division in 196 I , helping to develop several military command and
control systems. He joined the Research Division in 1973, and has
been a member of the 801 development group since 1978. Most of
his recent work has been on the PL.8 compiler, for which work he
received an Outstanding Contribution Award in I98 I . Dr. Warren is
a member of the IEEE Computer Society, Eta Kappa Nu, and Tau
Beta Pi.

IBM I. RES. I IEVELOP. VOL. 34 NO. I J ANUARY 1990

