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scheduling  for 
the IBM RlSC 
System/6000 
processor 

For fast execution on the IBM RISC 
System/6000* processor,  instructions  should be 
arranged  in an order  that uses the  arithmetic 
units as efficiently  as  possible.  This paper 
describes the scheduling  requirements of the 
machine, and a  scheduling  algorithm  for  it  that  is 
used  in  two  compilers. 

Introduction 
The IBM RISC System/6000* processor is capable of 
executing as many as four instructions each cycle: two 
by the instruction-cache unit (ICU), one by the fixed- 
point unit (FXU),  and  one by the floating-point unit 
(FPU). If the “floating-point multiply-add instruction is 
counted  as two, it is capable of executing  five 
instructions at a  time. However, there  are  often delays, or 
hold-offs, between instructions.  These arise primarily 
because of off-chip communication  and  the pipelined 
nature of the floating-point unit. For example, in 
executing a load instruction  there is a hold-off of one 
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cycle because the  data must  be fetched from the  data 
cache, which is not  on  the  FXU chip. Floating-point 
pipeline delay occurs if the result of one floating-point 
instruction is needed by the very next one. This delay 
occurs because the floating-point unit requires two cycles 
to complete the execution of a single instruction, but 
through pipelining it  can execute a  stream of instructions 
at a  rate of one per cycle if they are  independent (if the 
result of one is not needed by the very next instruction). 

The purpose of the instruction  scheduler is to arrange 
the  instructions  in an order in which they execute the 
fastest. It processes the  output of the optimizer;  code 
motion,  commoning, strength  reduction, etc., have been 
done.  The  output of the scheduler is passed to  the final- 
assembly part of the compiler. We have found  it desirable 
to run  the scheduler twice: once before register allocation 
and once  after.  Instructions  have much  more freedom of 
movement before register allocation than after, and 
scheduling has  its greatest effect during  the first pass. It is 
run  after register allocation because the register allocator 
may insert “spill” code  (loads and stores), which should 
be scheduled, and because it makes other  minor 
alterations of the code  such as deleting “move register” 
instructions by its coalescing process. 

requirements of the RISC  System/6000 processor, and 
the scheduling  algorithm that is currently in use in  the 
XL compiler family [ 11 and  in  an earlier version of that 
compiler  known  as the PL.8 compiler [2]. The  same 
scheduler is used for all XL languages. 

The following sections discuss the scheduling 
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Requirements 

Fixed-  andfloating-point alternation The RISC 
SystemJ6000 fixed- and floating-point units operate in 
parallel, and each  is  capable of executing one instruction per 
cycle. The branch unit is  capable of sending out two 
instructions per cycle.  Both instructions are sent out to 
both execution units, and each  execution unit discards 
the instructions that are not appropriate to it. This means 
that for optimum system  performance, the branch unit 
should  send out one fixed-point and one floating-point 
instruction in each cycle. Actually,  because of multicycle 
instructions such as floating-point  divide  (1 9 cycles) and 
fixed-point  multiply (three to five  cycles), the true 
optimal ordering of a long  sequence of instructions is 
harder to describe.  Because of  buffering in  the arithmetic 
units, however, it is  almost  always adequate to simply 
alternate them, which  is  what the XL compiler tries to 
do. If F denotes a floating-point instruction and X 
denotes a fixed-point instruction, an order such as 
FXXFFXX . . . would  be just as  good. 

Load delay There is a delay of one  cycle in the fixed- 
point unit between a fixed-point  load and the first  use  of 
the data loaded. An independent fixed-point instruction 
(one that does not use the data loaded) should be  placed 
between the two  if  possible. If no suitable instruction can 
be found, it is not necessary to insert a “no-op” because 
the hardware  has  interlocks on the registers and will wait 
when  necessary. 

For afloating-point load, there is no delay if the use  is 
a floating-point store instruction. For other uses, there is 
usually no delay,  because  floating-point  loads are 
processed by the fixed-point unit, and that unit usually 
runs ahead of the floating-point unit. However, in 
instruction traces one occasionally sees a delay  here, and 
the present  scheduler  does  try to insert an independent 
instruction. 

A delay  also  occurs  between a load and the first 
instruction to set the same register  as the target of the 
load, but that is an unusual code  sequence  because the 
item loaded is discarded. 

Because  of the desirability of alternating the fixed- and 
floating-point instructions, there should  also  be  two 
floating-point instructions between a fixed-point  load and 
the first  use. That is, if L denotes the load, X denotes an 
independent fixed-point instruction, Y denotes the fixed- 
point instruction that L feeds, and F denotes a floating- 
point instruction, then the optimal order is LFXFY. The 
same consideration applies to floating-point  delays, 
mutatis  mutandis. 

Floating-point defuse delay There is a delay  of one or 
two  cycles in the floating-point unit between  any  floating- 
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point instruction and the first  use of the computed 
quantity. The delay  is  two  if the first instruction feeds the 
FRA position (bits 1 1 - 15) of the second, and is  otherwise 
one. One or two independent floating-point instructions 
should  be inserted if  possible. The extra delay  for  feeding 
the FRA position is due to the lack of a bypass path to 
the FRA position [3]. 

field that can be interchanged with  FRA without 
changing  what the instruction does (the other field  is 
FRB forfloating  add, and FRC for floating  multiply and 
the floating-multiply-add family of instructions). Thus, 
the extra delay can often be avoided by interchanging the 
appropriate fields. 

Compare-branch delay A complete  description of 
the delays  associated  with conditional branches would 
be quite complicated, so we describe  only the main 
effects. 

Between a fixed-point compare and a conditional 
branch (bc) on the condition register (CR) field that  the 
compare set, there is a delay of three cycles if the branch 
is taken, and usually no delay if the branch falls through. 
In the case  of a floating-point compare, the delay  is six 
cycles  if the branch is taken, and three if it falls through. 
These  delays occur in both the fixed-point and floating- 
point units. 

helpful to understand a little about how the branch unit 
operates. As the branch unit sends out instructions, it 
decodes them sufficiently to tell  whether  they  set or use 
the CR, and if so, which CR field is affected.  When it 
sends out a compare, it locks the target CR field.  When it 
sends out an instruction with the “record” bit  set, it locks 
either CRO or CRl, depending upon whether the 
instruction is  fixed-point or floating-point. Later, when 
the instruction is executed by its execution unit, the 
branch unit receives the CR value. It then unlocks the 
CR  field. 

When the branch unit executes a conditional branch 
instruction, it waits,  if  necessary, for the tested CR field 
to be  unlocked.  However, if the CR field  is  locked, it 
“conditionally dispatches”  two instructions. This is 
sufficient to keep the fixed-point unit busy  if the branch 
falls through, and if the two conditionally dispatched 
instructions and the two instructions following  those are 
all  fixed-point instructions. 

If,  when a CR field  is  locked, another instruction is 
encountered that sets that CR field, then the branch 
unit stops sending out instructions, because it cannot 
handle  two  or  more outstanding instructions that set 
the same CR field. The programmer should try to 
avoid  such  sequences. For example,  consider the 
following: 

Several  of the floating-point instructions have another 

To understand the timing of conditional branches, it is 
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andil. . . . (Sets CRO implicitly) 
cmp crO, . . . (Also  sets CRO) 
bc  crO, . . . (Branch uses CRO) 

Both the andil. and the cmp set CRO, so there will  be a 
delay of three cycles  between them (there is an additional 
three-cycle  delay  between the cmp and  the be if  the 
branch is taken). The programmer can avoid the 
unnecessary  delay by using a different CR field for the 
cmp-be. As another example, in  the sequence 

cmp crO, . . . (Sets CRO) 
bc  crO, . . . (Branch uses CRO) 
cmp crO, . . . (Sets CRO) 
bc crO, . . . (Branch uses CRO) 

the branch unit will not conditionally dispatch the 
second cmp. This makes the sequence run unnecessarily 
slowly  in the case that the first be falls through. The 
programmer should use different CR fields  in the first 
and second cmp-bc sequences. 

substantially by indiscriminate use  of the “record” bit. 
The record bit should be set only when the CRO/CRI 
result  is actually needed. 

The CR fields are “paired” for the purposes of  locking. 
The pairs are CRO and CR4, CRI and CR5,  CR2 and 
CR6, and CR3 and CR7. When an instruction sets CRO, 
for example, the branch unit actually locks both CRO and 
CR4. Thus, in the first code sequence shown above, the 
programmer should use some CR field other than 0 or 4 
for the cmp-bc. Similarly, in  the second code sequence, 
the CR fields should be chosen from different pairs. This 
“pairing” is necessitated by timing problems and the 
limited fan-in of the CMOS-2 technology, and does not 
affect the logical operation of a program. 

branches rapidly in succession. For example, for a be that 
falls through to another bc, the machine waits for the first 
bc to be  resolved  before it executes the second. That is, 
conditional dispatching has been blocked. This occurs 
even  if the second branch is unconditional. For an 
unconditional branch to a conditional branch that falls 
through, however, there is  usually no delay. The 
programmer can take advantage of this by rearranging 
loops that end in cmp-bc as follows  (see also [4]): 

Because  of the CR locking, the processor can be  slowed 

The machine will  be  slowed  if it has to execute 

b in 
loop: bc- crn, out 

loop: . . .  in: . . . 
. . .  * . . .  
cmp crn, . . . cmp crn, . . . 
bc crn, loop b loop 

out: 
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The first loop will have a three-cycle delay, and the 
second will have no delay, provided the code shown as 
“. . .” amounts  to at least four fixed-point cycles. By 
“bc- ” above we mean the original bc instruction with 
the sense  reversed. Of course, if two or three instructions 
can be found to place  between the cmp and the bc, or if 
the loop can be changed to use a branch on the count 
register rather than on  the CR, that is preferable. 

Excessive floating-point stores (stf) A floating-point 
store instruction normally takes one cycle in  both  the 
fixed- and floating-point units. However,  if there are 
more than four consecutive stfs, there may be a delay  of 
one cycle, in  the fixed-point unit, for each stfafter the 
fourth. 

This delay  is caused by the fact that  the fixed-point 
unit may compute addresses faster than  the floating-point 
unit can compute  the  quantities  to be stored. There is a 
“pending store queue” of length four that holds the 
virtual addresses of floating-point data to be stored. If the 
queue is full, further stfs are held up until a slot in  the 
queue becomes available. 

Store-load-use delay The load-use delay is  magnified by 
the presence  of a store preceding the load, with the 
effective addresses referring to the same 16-byte  block  of 
memory. The length of the delay depends upon whether 
the instructions are fixed- or floating-point, as shown 
below. ST and L denote fixed-point store and load 
instructions, and  STF  and  LF denote floating-point store 
and load instructions. 

ST- L-use: 3 ST- LF-use: 2 

STF-L-use: 5 STF-LF-use: 5 

The delay  is in  the fixed-point unit for L and in  the 
floating-point unit for LF. It occurs between the load and 
the use  of the data loaded, but it can be ameliorated by 
including instructions either between the store and the 
load or between the load and the use. 

The STF-L and ST-LF sequences are of some 
importance because they are used for conversions 
between  fixed- and floating-point instructions. 

m f p r  and mfcr delay There is a delay  of one cycle in 
the fixed-point unit between move from special-purpose 
register or move  from condition register and the first  use 
of the  data moved to a GPR. The delay length is the 
same no  matter what the special-purpose register  is (even 
if it is on the fixed-point chip). 

mtlr-br delay The sequence move to link register 
followed  by branch (un)conditional register is often used 
for subroutine  return and for branches to targets that are 
variable. The delay here is four cycles. 
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Leaf subroutines can normally  avoid this delay by 
leaving the return address in the link register, so the mtlr 
is not required. For these, the br instruction normally 
takes no time at all,  as  it  is  executed in parallel  with 
arithmetic unit processing.  More  complex subroutines 
often  have a load multiple instruction in their epilog. 
This can  be  placed  between the mtlr and the br; if the 
load multiple loads  four or more registers, the br is  again 
free.  Hence  it  is  only  those subroutines of intermediate 
complexity that suffer this delay. 

mtctr-bct delay Between move to count register and a bc 
that uses the count register, there is a four-cycle  delay. 

CR-logic instruction delays The RISC System/6000 
instruction set includes a complete  set of  logic instructions 
for manipulating bits of the CR, e.g., crand, which forms 
the logical and of the bits at two CR  positions and puts 
the result  in a third bit  position.  These instructions are 
executed by the branch unit. The presence of  several 
consecutive instructions of this type  may  cause  delays in 
the execution  units,  because the branch unit will not be 
able to deliver instructions fast  enough. In a sequence of 
alternating fixed- and floating-point instructions, having 
more than two  consecutive  CR-logic instructions will 
cause a delay in each arithmetic unit. In a sequence of 
fixed-point instructions, having  more than five 
consecutive  CR-logic instructions will cause a delay in 
the fixed-point unit. 

immediately by a conditional branch on the bit  set. 
There  is no delay  for a CR-logic instruction followed 

Moving to  andfrom  the  FPSCR Executing move to 
floating-point status and control  register fields  (mtji-f) 
causes a pipeline drain in the floating-point unit. This 
causes a delay of two  cycles.  However, the delay cannot 
be  covered  by floating-point instructions, so it really acts 
as if mtfsf were a three-cycle instruction. 

The immediate forms (mtfsi,  mtfsbl, and mtfsbo), 
however, do not cause a pipeline drain nor  any  delay; 
they are simply  one-cycle instructions. 

There is a normal floating-point  delay  between move 
from  FPSCR (m@.s) and the first use  of the target  register 
(two cycles  if it feeds the FRA  position,  one cycle 
otherwise). 

Other  scheduling  considerations 

Minimizing “liveness” Scheduling tends to increase 
register  pressure, so it is important not to “overschedule.” 
That is, loads  should  not  generally  be  moved  back farther 
than necessary. As a simple  example of this,  suppose a 
basic  block  consists  of three load-store  pairs. We consider 
three possible orders of this below,  where the code is 
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physical  register): 

L r101,. . . L r101,. . . 
ST r101,. . . L r102,. . . 
L r102,. . . L r103,. . . 
ST r102,. . . ST r101,. . . 
L r103,. . . ST r102,. . . 
ST r103,. . . ST r103,. . . 

(a) (b) 

shown  before  register  allocation  (i.e., “r 10 1 ” denotes a 
symbolic  register that has not yet  been  assigned to a 

L r101, . . .  
L r102, ... 
ST r101,. . . 
L 1-103, . .  . 
ST r102,. . . 
ST r103,. . . 

(c) 

Order (a) is  how the code  would  probably  be  arranged 
before  scheduling,  assuming it was produced by three 
consecutive  assignment statements in the source 
program. This order takes nine cycles to execute,  because 
of the one-cycle  delays  between  each load and store. 
Order (b) executes in only  six  cycles, but it suffers from 
“overscheduling” in that the register allocator will have to 
assign three distinct physical  registers to r 10 1, r 102, and 
r103. Order (c) also executes in only  six  cycles, but 
requires  only  two  physical  registers, as rlOl and r103 can 
be  assigned to the same register. Thus (c) is the best 
order. 

On the other hand, the possibility  of  cache  misses 
suggests that loads should be  moved as far  back as 
possible. This is a difficult  trade-off to make. 

Incidentally, this example  also  shows the value  of 
scheduling  before  registers are allocated. If it were not 
done then, sequence (a) would  be the input  to the register 
allocator, and it would  most  likely  assign r 10  1, r 102, and 
r103 to the same physical  register,  preventing any 
rearrangements. 

Avoiding semantic changes Floating-point instructions 
should  generally not be  moved  across subroutine calls, 
because the floating-point instructions set status bits in 
the FPSCR, and the called subroutine may  be  testing 
them. 

Many instructions cannot be  safely  moved  back  across 
conditional branches,  even though on the surface it may 
seem  valid,  because the conditional branch may  be 
preventing the execution of the instruction when 
conditions are such that executing it would  cause an 
error condition. This applies to most  loads and stores 
(which can cause  various  forms of the data storage 
interrupt), and to the floating-point instructions (because 
of the FPSCR).  Fixed-point instructions other than loads 
and stores  may  be freely  moved  provided the OE bit  is off 
(if the OE  bit  is on, movement may  be  undesirable 
because of the summary overflow bit in the XER). 

The  leveling  algorithm 
The instruction-scheduling problem  has its origin in 
microprogramming.  Microcoded machines can often 
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execute  two or more instructions simultaneously by 
packing them into the same microinstruction, provided 
there are no data dependencies  between them, and they 
are appropriate types of operations. The “microcode 
compaction” problem, as it is  called,  is  very  similar to the 
problem of arranging the instructions in an optimal order 
in the presence  of  hold-offs.  Reference [5] is a good 
review  of the state of the art about ten years  ago. 

The scheduling  algorithm  used in the XL and PL.8 
compilers  is  based on a “dependency graph,” which  is 
constructed  for  each  basic  block. The dependency  graph 
has a node  for  each instruction, and a directed arc 
between  two  nodes if one of the instructions must 
precede the other for  any  reason. If the first instruction 
computes something used  by the second, that is  called a 
“forward  dependency.” If the second instruction alters 
something (a register  or  storage)  used by the first, that is 
called a “reverse  dependency.”  Most  delays  occur  for 
forward  dependencies. The arcs in the dependency  graph 
are labeled  with the amount of the delay, or hold-off, 
between the instructions. 

following  source  code  (fixed-point arithmetic): 
As an example,  consider the basic  block containing the 

A = B + C - D ;  

IFE>OTHEN. .  

for  which the intermediate language  code  (before  register 
allocation) is the following: 

L 
L 
ADD 
L 
SUB 
ST 
L 
CMP 
BC 

r 100,  B(r200) 
r101, C(r200) 
r102,  r100, rlOl 
r103, D(r200) 
r104,  1-102,  r103 
r104,  A(r200) 
r105, E(r200) 
r106,  r105, 0 
r106, . . . 

This has the dependency  graph  shown in Figure 1, where 
the notations L.B, L C ,  etc., denote a load  of B, C, etc. 
Although the ST instruction has no forward nor reverse 
dependency  with the bc (conditional branch), an arc is 
placed  between them to reflect the fact that the ST (and 
in fact  all the instructions in the basic  block)  must be 
executed  before the bc. 

The scheduler constructs the dependency  graph by 
examining  all the (n2  - n)/2 pairs in the n-instruction 
basic  block. For each instruction pair, the registers  are 
examined to see whether or not one instruction sets a 
register that the other one  sets or uses. Although a simple 
hashing technique is  used to speed up the register 
matches, construction of the dependency  graph remains 
the most  time-consuming part of the scheduler. 

; Example dependency graph. 

The pair of instructions are also  examined to see  if 
they  interfere through storage. The storage  classes and 
other dictionary information are used to see whether the 
instructions cannot possibly  refer to the same storage 
location  (e.g., the STATIC and AUTOMATIC  classes 
cannot overlap).  If  they are in the same or possibly 
overlapping  classes, the base  register and displacement 
are examined to see  if they  definitely  refer to different 
storage  locations. This handles  cases  such as a store into 
A(1) followed by a load from either A(I + 1) or A(I - 1); 
in this case there is no storage  dependency, and it might 
very  well  be advantageous to place the load before the 
store. 

walked upward and each node is  labeled  with the 
maximum delay from the node to the end of the basic 
block. This is calculated by adding the delay times from 
the end of the basic  block up  to each  node. If two or 
more paths converge on the same node (a situation not 
shown in Figure l), the maximum value  calculated  along 
the paths is used. 

Next, instructions are selected in, basically,  decreasing 
order of the delay times from  each node to the end. 89 

After the dependency  graph  has  been constructed, it is 
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Refemng to Figure 1, the four “load” instructions are 
eligible in that they  have no predecessors in the 
dependency  graph. The one with the largest  delay to the 
end of the basic  block  is  chosen  first. This is the load  of 
E, which  has a four-cycle  delay to the end of its path, 
whereas the other loads  have  only a one-cycle  delay to 
the end of their paths. 

As instructions are selected, the algorithm updates a 
“current time” value,  which  is  initially  zero, by 
incrementing it by the execution time of the instruction 
just selected (the execution time is  one cycle for  most 
instructions). The instruction selected  is  removed from 
the dependency  graph. 

Also,  as  each instruction is selected,  its immediate 
successors in the dependency  graph are marked  with a 
time value equal to the updated current time plus the 
delay  from the instruction just selected to the successor. 
This “earliest time” value  is  used to hold off instructions, 
if possible, until after the required  delay  has  elapsed. 

Refemng again to Figure  1, after putting out the load 
of E at time 0, the CMP is marked  with an earliest time 
of  2.  Now the algorithm  looks  for an instruction that has 
no successors in the dependency  graph, and whose 
earliest time is  less than or equal to the current time (1). 
The loads of B, C, and D satisfy  this. One is  chosen 
nearly arbitrarily; the load of B is  chosen  because it 
occurred  first in the original  code. The current time is 
updated to 2, and the ADD  is  marked  with an earliest 
time of  3. 

two remaining  loads, which have an earliest time of 0, 
and the CMP,  which  has an earliest time of  2. The CMP 
can  be  selected,  because its earliest time has  been 
reached. Of the three instructions that are equally  good 
candidates at this point, the CMP is  chosen  because 
it  has the greatest  delay to the end of its path (three 
cycles). 

Next,  only the loads of C and D are eligible in the 
sense  of  having no predecessors. The algorithm  makes 
the nearly arbitrary choice of C. The “earliest time” for 
the ADD  is  changed to 5, since the load of C was  selected 
at time 3. 

order of the instructions is 

Next, the instructions that have no predecessors are the 

The algorithm continues in this way, and the final 

L r105,  E(r200) 
L r100,  B(r200) 
CMP r106,  r105, 0 
L r101, C(r200) 
L r103, D(r200) 
ADD  r102,  r100, rlOl 
SUB r104,  r102,  r103 
ST r 104,  A(r200) 
BC r106, . . . 

The algorithm found an optimal order. There are no 
uncovered  delays, and the above  code  executes in eight 
cycles on the RISC  System/6000  processor. 

However, the strategy of choosing  first the instruction 
that is  farthest  from the end in terms of  delay  along its 
path is  merely a heuristic and does not always  get the 
best order. As an example  of  where it fails,  consider 
Figure 1 with the loads of D and E omitted. The 
algorithm  would then choose the CMP first. Then it 
would  be  forced to choose the two  loads and the ADD, 
and there would  be an uncovered  delay  between the 
second load and the ADD.  However, the best order 
would  place the two  loads  first, then choose the CMP as a 
cover  for the second  load, and then choose the ADD, 
SUB, ST, and BC. There are just enough instructions to 
cover the CMP-BC  delay  of  3, so there is no delay  with 
this ordering. 

Refinements  to  the  basic  algorithm 
The complete algorithm  employs a few other criteria to 
determine the ordering. There is no “planning” or 
“lookahead” associated  with  these other criteria; they are 
merely  used as tie-breakers  when  choosing the instruction 
to select  next. The complete  selection  scheme  is  described 
below. For ease of exposition it is  described  as a 
subsetting  process, although it is implemented by 
scanning the remaining instructions, choosing the “best” 
one to select. The scan is done once  for  each instruction 
selected. 

1. 

2. 

3. 

4. 

5 .  

6. 
7. 

8. 

Initialize the set  of  all  those instructions that have 
not yet  been  selected, and that have no predecessors 
in the dependency  graph  (these are the “legal” ones). 
Refine the subset to those instructions whose  earliest 
time has amved or, if none, those  with the smallest 
earliest  time. 
If one or more instructions have  been  selected, and if 
the current subset contains one or more instructions 
of opposite  type  (fixed/floating) from the last one 
selected, then refine the current subset to those of 
this opposite  type. 
Refine the subset to those of maximum total delay 
along the path of  each instruction to the end of the 
basic  block. 
Refine the subset to those of minimum “liveness 
weight.” 
Refine the subset to those  with  greatest “uncovering.” 
Refine the subset to the unique instruction that came 
first in the original  ordering. 
Select the single instruction that is in the subset at 
this point, and then repeat this process until all 
instructions in the basic  block  have  been  selected. 

The “liveness  weight” criterion is  used  for a simple 
scheme that reduces  register  spills.  Each instruction is 
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assigned a “weight”  as  follows: 

0 Move-register  (fixed-point or floating-point) 
1 Instructions with no target  registers (stores and traps) 
2 Most instructions 
3 Loads (from storage) 
4 Instructions with no source  registers  (e.g.,  Load 

Immediate) 

The ‘‘lightweight’’ instructions are selected  first  (if there is 
a tie for  all the more important criteria). The move 
register instructions have the lightest  weight  for a 
technical reason: The register allocator does a better job 
of coalescing  if  these  are kept close to the instruction that 
defines the source of the move  register. Stores and traps 
are selected  early  because  they  have  “uses” but no 
“definitions.” Hence, they may free up registers, but they 
never  increase the number that  are currently live. 
Similarly, an instruction such  as load immediate is 
selected  late,  because it increases the number of  registers 
that are live and does not free any. 

The weights are stratified  with  respect to subroutine 
CALLs. That is, instructions between the beginning  of 
the basic  block and  the first  CALL are given  weights 
from 0 to 4; those between this CALL and  the next have 
their weights  increased by ten, etc. This has the effect  of 
making it less  likely that instructions will  be  moved 
across CALLs. Our experience  has  been that moving 
instructions across  CALLs tends to increase the number 
of times a definition and its use bridge a CALL;  such a 
bridge  is  undesirable  because the CALL instruction has a 
large  register “kill.” 

Reducing  spills  seems to be a very  difficult problem. 
We tried some more complicated schemes, but  the simple 
one described  above  seemed to work about as well as 
any. 

The “uncovering” step mentioned above  is an  attempt 
to get better scheduling by having a wider  choice at each 
step. If there is no choice  between  two instructions up  to 
the point that this is considered, the algorithm computes 
how many instructions will become  ready if either is 
selected  next. By “ready” we mean here that the 
instruction has no predecessors in the dependency graph 
and its  earliest time will have  been  reached.  If there is a 
difference, the one is  chosen that maximizes the number 
of instructions made ready. This heuristic tends to 
improve the schedule in a number of  respects, 
particularly in the alternation of  fixed- and floating-point 
instructions. 

Other  machines 
We have  described the instruction scheduler as it pertains 
to  the RISC  System/6000  processor. The same program 
also  schedules  for the 801 and ROMP-C  [6]. To tailor it 
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to these other machines is mainly a matter of adjusting a 
few parameters such as the delays and execution times. 
However,  for the ROMP  the scheduler also  avoids  having 
more than two consecutive load or store instructions, 
because  of the presence  of the “load-store queue,” which 
is  of length 2. For the  ROMP  and  the 801, the scheduler 
also attempts to place an optimal instruction next to a 
branch, for “branch with execute” (delayed branch) 
generation. 

Future  directions 
The current trend is toward computers with more 
scheduling requirements, i.e., more situations that require 
scheduling for good performance, and larger  hold-offs. 
The high-quality compiler of the future will employ more 
sophisticated scheduling techniques than have  been 
described  here.  Significant  work  has already been done  in 
this area, particularly for the VLIW (very  long instruction 
word) architectures [7, 81. Theoretical work  is  presented 
in [9] and [ 101. 

The existing XL compiler family will probably be 
extended so that  the scheduler will  move code across 
basic  blocks  when that gives an improvement. One 
approach toward this is  discussed  in this issue  [4]. Other 
approaches are discussed in [ 1 11 and [ 121. 
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