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The IBM RlSC  System/6000* (RS/SOOO) floating- 
point  unit (FPU) exemplifies  a  second-generation 
RlSC  CPU architecture  and an  implementation 
which  greatly  increases  floating-point 
performance  and  accuracy.  The  key  feature  of 
the FPU is a  unified  floating-point  multiply-add- 
fused  unit (MAF)  which  performs  the  accumulate 
operation (A x B) + C as  an  indivisible 
operation.  This  single  functional  unit  reduces  the 
latency  for  chained  floating-point  operations, as 
well  as  rounding  errors  and  chip  busing. It also 
reduces  the  number of adderslnormalirers by 
combining  the  addition  required  for fast 
multiplication  with  accumulation.  The MAF unit is 
made practical by a  unique  fast-shifter,  which 
eases  the  overlap of multiplication  and  addition, 
and  a  leading-zero/one  anticipator,  which  eases 
overlap  of  normalization  and  addition.  The 
accumulate  instruction  required  by this 
architecture  reduces  the  instruction path length 
by  combining  two  instructions into one. 
Additionally,  the  RS/6000 FPU is tightly coupled 
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to the  rest of the CPU, unlike typical floating-point 
coprocessor  chips. As a  result,  floating-point 
and  fixed-point  instructions  can be executed 
simultaneously.  Load/store  operations  are 
performed  using  register  renaming  and  store 
buffering to allow  completely  independent 
operation  of load/store with  arithmetic 
operations. Thus, data-cache  accesses  can 
occur in parallel  with  independent  arithmetic 
operations.  This  unit  attains  a  peak  execution 
rate of 50 MFLOPS with  a 25-MHz clock 
frequency  and is capable  of  sustaining  nearly 
that  rate in complex  programs  such  as  graphics 
and  Livermore  loops. 

Introduction 
In the ten years  since it first appeared, RISC  technology 
has  evolved  significantly. An important possibility in the 
application of  RISC architecture to technical 
workstations  is the potential it offers for  greatly improved 
performance in floating-point operations. In the design  of 
the RISC  System/6000*  (RS/6000)  processor,  achieving 
that potential was a major goal. The RS/6000  floating- 
point implementation has in fact  improved the state of 
the art of floating-point architecture for  RISC  machines 
in  two distinct ways: First, it made the FPU a tightly 
coupled processor,  with  a  parallel  set  of  registers  with 
direct  cache  access,  using additional hardware to avoid 
conflicts.  Second, and more significantly, the architecture 
was optimized around a  single unit which combined the 
two  required operations of multiplication and addition, 
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3 ports + 3 ports = 6 ports ‘4 port\ 

Classical multi 

increasing  floating-point  performance  while  reducing the 
required  ports, distinct functional units, and rounding 
errors. We believe that this unit, called the MAF 
(multiply-add-fused) unit, will  be the basis  of future RISC 
floating-point  architectures. 

This paper  is  organized as follows: The next  section 
discusses the motivation for  MAF,  explaining in some 
detail why it is an appropriate addition to the floating- 
point architecture in VLSI. The third section is a 
summary of floating-point  operations,  with  discussion to 
demonstrate the parallelism that is  possible  when the 
multiply and add are fused. This is  followed by a 
description of the two-stage  pipeline  used  for the version 
of IEEE double-precision  floating-point arithmetic used 
in the RS/6000  processor,  with  delays  consistent  with  its 
over-all  superscalar  second-generation  RISC architecture. 
The fourth section  describes the interaction of  logical and 
physical  design  required to incorporate several  advances 
in VLSI arithmetic while accommodating required  delay 
and technological  (physical) constraints. The results are 
summarized in the final  section. 

Multiply-add  motivation 
In  VLSI, connectivity  is a very important factor in both 
cost and performance.  Since the most common use  of 
floating-point multiplication is  for  “dot-product’’ 
operations, a single unit which forms the multiply- 
accumulation operation D = (A x B )  + C would  produce 
a significant reduction in internal busing requirements, as 
shown  in Figures l(a) (classical  scheme) and l(b) (MAF). 
This reduction  from six connections to four is  consistent 
with the RISC philosophy of producing  heavily 
optimized units to attack the most  frequently  required 
functions. In the MAF implementation, only a single 
adder and normalizer are required, thus eliminating an 

output port from the multiplier and one of the input 
ports of the adder. 

In addition to reducing  latency and eliminating 
subunits and ports, the removal of a normalizer increases 
accuracy,  while the single unit forces the architecture to 
produce more efficient  code by forcing the single 
multiply-add instruction. The penalty  for this reduction 
of units and ports is an additional gate  delay in the adder 
section,  caused by a 50 percent  increase in the width of 
the adder. This factor  is more than offset  by the 
reduction in multiplexing of this single  pipeline. 
Additional  physical optimization is  allowed by a large 
self-contained data path which  reduces any overhead 
associated  with this atomic unit. In particular, the adder 
can be  laid out on a more compact grid,  since the only 
connections to the adder are from the multiplier and 
shifters.  Also, this single unit provides a superior target 
for compiler optimization, by providing a single operator 
with  one-cycle  pipeline time, which, in conjunction with 
overlapped  loads,  completely  utilizes the bandwidth of 
the five-port  register  file. This eliminates the uncertainty 
in bandwidth  availability  required of commonly 
“chained” multipliers and adders. In a companion paper, 
Markstein [ 11 shows that the additional accuracy 
provided by the single rounding operation is required in 
order to produce  correct  results  using  Newton-Raphson- 
like  techniques. In summary, there is significant 
motivation for a new floating-point operation based on 
the MAF primitive,  provided that the unit can be 
designed so that it does not impact the cost or cycle time 
significantly. 

Floating-point  operations 
Floating-point operations which deal  with data in 
“scientific notation” are more  complex than fixed-point 
or integer operations. In  double-precision IEEE floating- 
point arithmetic [2], the basic representation is (S, E, M):  
S is a bit  representing the sign  of the number, E is 1 1 bits 
representing the exponent of the number biased by 1023, 
and M is the 52-bit quantity which  is the mantissa, 
stripped of its  leading 1. Let  us represent  two quantities 
in this notation (we  show  only a 9-bit  mantissa  for  ease 
of reading): 

A = (S  = 0, E = 1000000010, M = 010000) 

has a value of +23 X (1/2 + 1/8), or 5, 

B = ( S  = 1, E = 1000000000, M = 100000) 

has a value of -2’ x (1/2 + 1/4), or -1.5. 

Quantities can be summed only when their exponents 
agree, thus: 

A + B = 23 X (1/2 + 1/4) - 2’ X (1/2 + 1/4) = 

A + B = 23 X (1/2 + 1/4) - 23 X (1/8 + 1/16): 
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A + B = I 100, z3 x 0.1100oooo - 23 x O.OOIIOOOO, 

A + B = 23 x 0.01 1 loooo, 

A + B = S = 0, E = 1000000010, 

M = 1100000 = 3.5, 

and 

A X B = 2’ X (1/2 + 1/4) X [-Z3 X (1/2 + 1/8)], 

A X B = S = 1, E = 1000000011, 

M = 11 100000 = -7.5. 

From this representation and the basic operations 
required (multiplication, addition), the base  integer 
operations required for floating-point arithmetic are 
immediately  clear: 

1. Multiplication  requires a parallel  effort  of 
multiplication of the true mantissas and addition of 
the exponents. 

the bit-weighting  of the values to be summed, 
followed  by addition. 

2. Addition  requires a prenormalization stage to align 

In  all cases, normalization (detection of the first 1 and 
shifting out 0 results), followed  by rounding to conform 
to the number of  bits in the result  register, is required in 
each operation. Since multiplication is a costly and time- 
consuming operation involving  multiple  stages of 
summation and a final addition, it seems  only  reasonable 
that the prenormalization can be  completely  overlapped 
with the early  phases of multiplication. Under such a 
scheme, the addend can be shifted in either direction, 
while the product is  fixed in location (Figure 2). This 
allows  full  parallelism of the exponent operation and 
shifting opention. However, if the quantity to be  added 
has a larger exponent than the product, there is a shift 
“overflow”  which  has the potential of incrementation, as 
shown in Figure 2. 

If the “overflow”  is  as much as the number of bits in 
the mantissa, no bits  from the product interact with the 
bits  from the added quantity. If the quantity to be added 
has an exponent greater than the number of bits in the 
mantissa, there is a set of “underflow”  bits  which  must  be 
accumulated according to the rules of the IEEE. When 
the difference  exceeds  2M,  all bits of the addend become 
‘‘underflow”  bits, and as  such play no part in the 
computation other than the final rounding. Thus, the 
penalty to be  paid  for combining the operations is an 
incrementer of the length of the mantissa.  Since the result 
of a multiply-add operation has 3m bits, and the m most 
precise  bits  must  be returned as the result  mantissa, the 
normalization operation is considerably more complex 
than a traditional multiplier and adder. A significant 
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amount of innovation was added to the design to hide 
the normalization delay  completely and make this 
addition/normalization path comparable in time to the 
multiplication/shifting path. Thus, a natural two-stage 
pipeline  arose, in which multiplication and partial 
compression  occurred in parallel  with the 
prenormalization, and addition occurred in parallel  with 
postnormalization. The pipeline  is  shown in Figure 3. 

Sign-magnitude capability 
Since  all numbers and operations are represented in sign- 
magnitude form, it is natural to make the conversion 
from the adder-convenient one’s-complement  form to the 
representation-convenient sign-magnitude form as simple 
as  possible.  While the exponent values are being 
processed into a shift  distance, the signs are also  being 
processed.  If the sign  of the addend is different  from the 
sign  of the product, all the bits of the shifted  result are 
complemented. The addlincrement is  performed in 
one’s-complement form, which  involves an end-around 
carry. The buffering  scheme (to be  described later) makes 
this end-around carry require only a single  gate  delay  for 
all  bits.  Finally, if the sign  of the result  is  negative, the 
bits of the word are complemented, so that the sign- 
magnitude result  is  correctly output. 

IEEE compatibility 
In order to be  usable in the workstation  marketplace, the 
MAF unit had to be compatible with the IEEE binary 
standard. As Figure 3 shows, this was accomplished by 
building units which operate on hexadecimal data, and 
adding binary converters  which  operate in certain dead 
periods in the pipeline. For example, the alignment 
shifter was chosen to be  hexadecimal  because of the vast 
reduction in number of shift  positions,  which  allowed a 
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very  efficient layout. The binary shifter,  which operates 
on much smaller  fields,  uses data available earlier (the 
low-order bit positions) and can be “hidden” before the 
larger  hexadecimal shifter/complementer. Thus, there is 
no cycle-time impact on the binary device. In the case  of 
the normalization shifter, the binary part of this shift is 
the first operation in the “cleanup” cycle and is 
sufficiently  small that it does not add to either the 
rounding phase or the return to the pipeline. In order to 
maintain two-cycle  pipeline operation for rounding 
operations, a dual scheme was  used: 

1 .  If the number was to return through the addend 
62 pipeline, the full increment, conditional to  the proper 

IEEE scheme, was performed at  the same time as the 
addition and preparation for rounding. This is 
possible  because the exponent addition and  the 
incrementation take about the same time. 

2.  If the number was to return through the multiplicand 
pipeline, the function B X (A  + increment) is 
performed in the multiplier, allowing the information 
that B is to be incremented to arrive as late as 
possible, and forming an “explicit” increment of A by 
adding another copy of B to A X B in the multiplier. 

These techniques allowed  two-cycle behavior with 
minimal cycle-time impact. 

Dataflow implementation 
As  is the case  for  all  well-designed custom chips, the 
logical  design  of the MAF dataflow was performed in 
parallel  with the physical  design, producing a very 
efficient chip. In this section we discuss the logical and 
physical  design in detail for the separate sections of the 
dataflow: the multiplier, the shifters, the adder, and the 
leading-zero/one anticipator [ 31. 

interaction between the desired  logical operation of the 
subsections and their efficient interaction, and since the 
most  aggressive  logical operation in the RS/6000 
processor  is the previously  described  two-cycle  MAF, this 
section is devoted to a detailed description of the logical 
and physical implementation of the critical segments  of 
this activity. Particular emphasis is on two critical 
aspects, 1) true performance and 2) space required using 
the two  levels of metal  available at  the time. For 
simplicity, a tool/design  discipline  called Macro Layout 
Generator (MLG) was  used throughout this effort [4]. 
It forced  all connections onto the metal-l/metal-2 grid, 
which  is conveniently aligned  with the gates, including 
drain/source and gate contacts. In other words, 
the technology  allows one metal-2  wire  for  every 
contacted gate, and  the gates are parallel to metal 2, 
allowing  easy contact to metal 1. See Figure 4 for an 
example of MLG output. 

multiplier, we begin our discussion  with that unit. 

Since the key to  an efficient chip is significant 

Since the largest share of the MAF circuitry is in the 

Multiplier 
Fast-multiplication techniques are well known, and  are 
based on two  results: In 195 1, Booth  discovered that 
signed numbers could  be multiplied using a recoding 
technique [5] which  resulted in N/2 additions or 
subtractions to multiply two  N-bit  two’s-complement 
numbers. Booth’s method was extended in 196 1 by 
MacSorley [6], and in 1964, at  the University of Illinois, 
Wallace [7] showed that multiplication could be 
performed in logo,,, N plus an addition of  two  N-bit 
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numbers, using a construct called a “Wallace tree.” Over 
the years,  these techniques were  exploited and proved 
optimal. We  use  Booth’s method and an extension of 
Wallace  trees more usable in VLSI to produce a VLSI 
CMOS multiplier that is  highly  efficient. 

An explanation of  Wallace multiplication is a good 
starting place to describe the MAF multiplier. Since 
multiplication in its simplest form is the addition of N 
N-bit  words (or, using  Booth’s invention, N/2), the 
objective is to add together  as  quickly  as  possible  all N 
words.  Using an N-bit  carry-save adder, three words can 
be input and two  words output. If this technique is 
simultaneously applied to all N words of the multiply 
(using N/3 adders of N bits each), a single  delay  of a full 
adder can  reduce the problem from a summation of N 
words to a summation of 2N/3 words. This technique 
can  be  applied  iteratively until there are only  two  words 
left to be summed, and the summation can then be done 
using the carry-lookahead techniques discussed later. 
Since  each  stage  reduces by one third the number of 
terms to be added, the number of  stages  is log,,,,, N; 
that is, 

0 Three terms or fewer can  be  reduced to two in one 

0 Four terms or fewer can be reduced to two in two 

Six terms or fewer can  be  reduced to two in three 

Nine terms or fewer can be reduced to two  in four 

stage. 

stages. 

stages. 

stages. 

Additionally, it requires about N’ - 2N full adders to 
sum the N terms to two.  Using Booth’s technique to 
produce N/2 terms of  length N reduces the number 
of carry-save adders by two, but only removes 
log(,,,, N - log(2,,) (N/2), or one to two  full adder delays. 

To be  more  efficient, the number of  stages must be 
reduced. This is  because the VLSI technology  used, 
CMOS,  has  significant  delay due to the long  wiring 
required in a Wallace  tree. Thus, a reduction in the 
number of  long-wire  stages  is  significant in terms of 
performance. The major extension of the multiplier 
beyond  what appears in the literature is that of (7, 3) 
counting. Traditional Wallace multiplication uses carry- 
save adders to count the value  of three operands into two 
results, one which has a binary weight  of 1 and one 
which  has a binary weight  of 2. The logical extension 
adds seven  objects to a set  of  results, one result  which has 
a binary weight  of 1, one result  which has a binary weight 
of  2, and one result  which  has a binary weight  of 4. The 
VLSI advantages are quite apparent, since the most 
expensive feature of  VLSI  is connectivity. The (3,2) 
adder has five connections and removes one bit from the 
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problem. The (7, 3) adder has ten connections and 
removes four bits from the problem. Thus, the (7, 3) 
adder requires only half  as many connections as the (3,2) 
adder to produce a final  result. If a circuit with little 
upper-level  wiring can be produced efficiently to perform 
this operation, this structure will create fewer  wiring 
demands than a Wallace adder. Additionally, the (7, 3) 
adder reduces by a factor of  2.5 the number of  stages 
needed,  since each stage  reduces the  number of 
remaining terms to be summed by a factor of (7/3), in 
comparison to (312). While the cell  is more complicated 
and slow, the number of  long  wires that must be driven is 
reduced by that factor of 2.5,  resulting in a timing- 
efficient  design  as  well. Thus, a combination of  Booth 
encoding and (7, 3) addition produces a very  efficient 
multiplier, but it still must be implemented in CMOS 
VLSI. 

efficiently  within the space required for the  top layer  of 
wiring  for the circuit. Since our objective  was the design 
of a 56-bit multiplier [56 bits to allow the construction of 
either a 53-bit  (IEEE) or 56-bit (HEX) double-precision 
unit], the wiring requirements for 713 counters were 

A key objective in VLSI is to build the design 
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shown to require a width of  18 transistor locations or M2 
(metal-2) wires  per  cell. The most  efficient  cell 
organization was to produce a mirrored pair of  cells  with 
twice that width which shared a common control bay,  as 
shown  in Figure 5. 

The first  stage  consisted  of a cell  with  seven 4-input 
multiplexors (for the Booth method), requiring 28 
control and data inputs, all  using  polysilicon,  which thus 
fit into the 36-track-wide  cell. The second  stage was a 
7-input, 3-output cell,  using  full  adders to save area while 
retaining the low wiring/driving requirements of a (7,  3) 
adder. As shown in Figure 6,  the complete multiplier 
uses  all the M2 and all the polysilicon  available, and 
requires  only 4 mm X 5 mm of area in a 1.2-pm 
technology. 

Shijiers 
The problem of shifting/rotating data in an efficient 
manner is important in VLSI, and MAF puts 
considerable  pressure on both the performance and the 

64 cost of  very  large shifters. We adopted a particularly 
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novel solution, which  provided a (probably) minimum- 
height  configuration (in terms of metal-1  wiring tracks 
required) and an extremely  fast  shift time which  was 
extended to include both  sticky-bit computation 
(required  for IEEE) and a novel  32-bit rotator (required 
for  fixed-point computations). We first  describe the 32-bit 
left/right rotator, because it provides the most illustrative 
case for the technique of partial-decode  shifters. The 
objective  is to rotate a 32-bit quantity, either left or right, 
using a minimum of silicon area and a minimum of 
delay  from the control word (C,, . . . , C,), the direction 
signal (D), and the data inputs (C,, . + . , C,,). Notice that 
left rotation is  simply  right rotation of the two's 
complement of the control word. The two  classical 
approaches are as follows: 

1. Decode the control lines to 32, one of  which  will  be 
high, and control thirty-two 32-wide  pass-device 
multiplexors [8]. This technique requires 32 data and 
32 control lines,  plus  significant  space  for the large 

I Multiplier  cell. 
. .. . .. 

b. boo. 'looo. '1500. 5000. k o o .  5000. Ssob: 

1 Multiplier  unit. 
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(and therefore  slow)  pass-device multiplexor. The 
main virtue of this "fully  decoded" technique is 
simplicity  of  design. 

direction) as controls for five  2-way  switches, rotating 
16,  8,  4, 2, 1, 1 positions left  with C,, C,, C,, C, , C,, 
and D. This requires 64  wires  for data, since the first 
section connects both i to 16 + i and 16 + i to i, 
requiring 32  wires.  Each subsequent stage requires 
twice  as many wires  as its rotation distance. This 
"fully encoded" technique offers  ease  of control and is 
particularly suitable if  two-way switches are extremely 
fast. 

2.  Use the undecoded control lines (XOR D, the 

Clearly, there must be an intermediate solution which 
decodes into more than one stage and requires 
considerably fewer control wires than  the first approach 
and fewer data wires than the second.  Choosing to 
produce an eight-way  multiplex on the first-stage  shift 
and rotating (0, 4,  8,  12,  16,  20,  24, 28) bit positions, and 
a five-way multiplex on the second  stage,  shifting (0, 1, 2, 
3, 4) bit positions,  has  sufficient  range  for  all rotation 

amounts. This "partial-decode'' scheme, so named 
because it decodes partial groups,  allows  for  significant 
improvement in both area and delay by requiring only 
8 + 4 or 13 control wires and only 32 + 5 (with an 
additional optimization) or 32 + 9 (without the 
additional optimization) data wires  by consuming all but 
the last five bits of  shift in the first  stage. Additionally, 
the data path is composed of only two  (relatively) small 
multiplexors in series,  allowing the use  of an NMOS 
circuit to avoid the classical problems of  pass-device 
design.  See Figure 7(a) for the circuit used for the  data 
path. Additionally, the control path consists of an 
inverter, a three-input NAND, and a two-way  pass-device 
multiplexor. In order to provide both left and right 
rotation, the two's complement of the control word must 
be performed. This is  simply accomplished by 
complementing the control bits and adding 1. The 
complementation is  accomplished in the first  (8-way) 
multiplexor by a two-way  pass-device  switch,  which 
produces the  output of the complemented bits of the 
control word  if  left  is  selected, and in the second (5-way) 
multiplexor by a two-way  pass-device  switch  which adds 
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1 to the complemented result if the rotator is in left 
mode.  Finally, the last four bits of the first  stage are 
duplicated to avoid the long  wiring of bits 28-32 to bits 
0-4. Conveniently,  these  bits fit in the control section 
with the decoding  circuitry. In summary, a 32-bit rotator 
is  built  requiring a minimum of control and data wires, 
and two  rows  of multiplexor  circuitry.  It  has a single- 
stage  delay in the data path (2 ns in 1-pm  CMOS) and a 
four-stage control path (6 ns).  Its  mask-level data is 
shown  in Figure 7(b). 

Very  fast  wide-shifters are a necessity in the multiply- 
add. By using this partial-decode structure and NMOS- 
like  circuits to allow  large  "dotting"  within the function, 
a 160-bit  shifter  with  sticky-bit accumulation and post- 
complementation can be  performed  within 6 ns of the 
time the shift amount is  calculated. This is  accomplished 
by using a binary preshifter, a stage-one  shift of 16 bit 
positions (0, 16,  32,  48,  64, 80, 96,  112,  128,  144,  160), 
and a final  shift  of  four  bit  positions. The wide OR 
required  for  sticky-bit calculation is  accomplished by 
ORing the control signals.  Despite the apparent large 
number of  first-stage  shift inputs, only a four-way 
multiplexor  is  required in stage  one,  since there are fewer 
than 64 input bits. The mask-level  design appears in 
Figure 8. Additionally, a comparable-performance 

66 normalization  shifter  is used in conjunction with 

completely  overlapped  zero detection to allow  two-cycle 
accumulation without cycle-time  degradation. 

Logarithmic adders 
To execute a multiply-add, a very  large adder (106+ bits) 
followed  by a 53-bit incrementer is  required. For N as 
large as 160, logarithmic solutions are required,  because 
even  less  costly  carry-skip  schemes,  whose  delay  is 
approximately A, are significantly  less competitive than 
they  were at 32 bits. Note that & = 6,  while  log  32 = 5, 
but J%6 = 13,  while  log  160 = 8. It was  shown  as  early 
as  1965  by  Winograd [9]  that addition requires a 
minimum of  log ( n )  time, where n is the number of bits 
to be added. We  give a very simple  proof of the log (N) 
delay, and use it to derive both the function and the 
layout  scheme which holds this bound, including fan-out 
and wiring  delays,  while  requiring N log (N) area. 

In Figure 9(a), two  N-bit numbers are being  added. In 
Figure 9(b), the problem  is partitioned into two 
problems: one N/2 addition for the least  precise 
operands, and two  N/2-bit additions (one with a carry-in 
signal and one without) for the most  precise  N/2  bits. 
The result  for the most  precise N/2 bits  is  selected in this 
carry-select scheme [lo], since the carry input selects the 
correct addition. Clearly, this process can be  applied to 
each  of the two  sub-additions, and the recursion  is 
terminated with a one-bit addition, producing 2N  bits of 
correct  carries in N stages of carry selection. 

To simplify the carry equation derivation, let  us note 
the fact that addition can be partitioned into two  tasks: 
carry  generation and sum generation  based on the half- 
sum  being  XORed  with the carry-in to the bit  position. 
Define G as the signal  which  is on if a carry results 
independently of carry-in, and P as the signal  which  is on 
if a carry  results  only in the presence of an  input carry. 
The merged  generate is due either to a high-group 
generate or to a low-group  generate  with a high-group 
propagate; the merged  propagate  is formed when both the 
low group and the high group have a propagate. 
Algebraically, 

G = G + Pg, 

P = Pp, 
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(a) Abstract 8-bit adder; (b) actual 32-bit adder unit. 

leading to the classical  carry-lookahead formula. 
However,  fan-out is a significant  penalty, and the carry- 
select scheme doubles its maximum fan-out  every  section 
(as it must to completely double the number of correct 
carry  signals in each  stage). The principle that makes the 
system  workable  is the fact that in the carry-select 
scheme,  only  half the signals are being  evaluated  each 
cycle,  since the less  significant bits are not under 
evaluation. The empty locations  created by this half 
usage  of evaluation  circuits  allow  for  significant  buffering, 
where both the number of gates in parallel  for  drive and 
the load are doubled at every  stage,  leaving a fan-out of 
about three for every section. Figure 10(a) shows a 
schematic  representation of the adder, while Figure 10(b) 
shows the mask-level  design  for a 32-bit  version  of the 
adder. Notice that the wiring  for  paralleling  gates 
shows the carry-select nature of the system. 

Leading-zerolone anticipation 
To reduce the latency of the MAF unit to a minimum of 
two  cycles, the normalization function is overlapped  with 
the addition function. The unit required  is a leading- 
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zerolone  anticipator [3], which inputs the generate and 
propagate  signals  from the adder and outputs the shift 
distance.  Since the carry  propagation  is  known to take 
log ( N )  time, it would  be  very  profitable  if the 011 count 
could  be computed in this same  period. In a manner 
similar to adder carry propagation, the first instance of a 
nonzero element can be determined, subject to a single 
bit  correction due to carry  propagation from the low- 
order end of the word. We describe the serial solution to 
the carry  propagation, and make this solution parallel by 
the same method as that used  for the adder. 

significant bits to the least.  Label  each input set of bits as 
G (both inputs are on), P (exactly one input is on), and Z 
(no inputs are on). Notice that a string of propagate 
tokens signals that the sign  of the word  is  unresolved; the 
first Z labels the word  negative,  while the first G labels 
the word  positive.  Additionally,  after the word is 
negative, the next  non-G  signals the first  digit  of 
significance,  since a string of G symbols produces all “1” 
symbols.  Similarly, in the case  of a positive  word, the 
next non-Z represents the first  non-zero in the word, and 

Examine the inputs to the adder from the most 
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thus determines the shift amount. Figure 11 represents 
this state diagram. 

section, and operated in log ( N )  time. The leading- 
zero/one anticipator (LZA) operates over a similar 
doubling process  with the following  two  exceptions: The 
first  stage  is a four-step  process, to allow the more 
complex LZA parallel cell to fit in four bits  of the adder 
cell. The conclusion of the LZA is an OR of the three 
states representing P, G, and Z for  each  hexadecimal 
position. This OR is further coded into shift positions 
(0 . . . 7 )  X 16 + (0 . . .4) X 4, to feed the shifter. In  the 
RS/6000 implementation, the delays  for  hexadecimal 
shifting match the delays  for add/complement output, 
thus allowing the control and  data of the shifter to  amve 
si,nultaneously. 

Notice that the adder was made parallel in  the previous 

Chip physical  data 
The RS/6000  floating-point unit was fabricated on a 

68 12.7-mm X 12.7-mm  die  using  triple-level metal and 
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single  polysilicon  with a gate  length  of 1.2 pm (drawn). It 
operates at 40 ns under worst-case conditions and 
dissipates 4 W of power. Figure 12 shows a 
microphotograph of the RS/6000 FPU chip. 

Summary 
Experimental first-generation RISC machines such as the 
801 [ 1 11 were built at IBM as  long  as ten years  ago. 
However, the floating-point unit described in this paper is 
the component which  stresses the second-generation- 
RISC nature of the RISC System/6000  processor. Its 
single MAF (multiply-add-fused) unit increases the 
throughput and accuracy  of  floating-point arithmetic 
while requiring an instruction set which others only 
emulate. Its reduced complexity has  allowed  for the 
design  of a completely overlapped zerolone detector to 
reduce  overall  system  latency.  Its careful logical/physical 
correlation allows  for  reduced  wiring area and reduced 
delay in the logarithmic multiplication and provably 
logarithmic addition required for the massive  168-bit 
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