Design of the
IBM RISC
System/6000
floating-point
execution unit

by R. K. Montoye
E. Hokenek
S. L. Runyon

The IBM RISC System/6000* (RS/6000) floating-
point unit (FPU) exemplifies a second-generation
RISC CPU architecture and an implementation
which greatly increases floating-point
performance and accuracy. The key feature of
the FPU is a unified floating-point multiply-add-
fused unit (MAF) which performs the accumulate
operation (A X B) + C as an indivisible
operation. This single functional unit reduces the
latency for chained floating-point operations, as
well as rounding errors and chip busing. It also
reduces the number of adders/normalizers by
combining the addition required for fast
multiplication with accumulation. The MAF unit is
made practical by a unique fast-shifter, which
eases the overlap of multiplication and addition,
and a leading-zero/one anticipator, which eases
overiap of normalization and addition. The
accumulate instruction required by this
architecture reduces the instruction path length
by combining two instructions into one.
Additionally, the RS/6000 FPU is tightly coupled

‘RISC System/6000 is a trademark of International Business Machines Corporation.

©Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 34 NO. 1 JANUARY 1990

to the rest of the CPU, unlike typical floating-point
coprocessor chips. As a result, floating-point
and fixed-point instructions can be executed
simultaneously. Load/store operations are
performed using register renaming and store
buffering to allow completely independent
operation of load/store with arithmetic
operations. Thus, data-cache accesses can
occur in parallel with independent arithmetic
operations. This unit attains a peak execution
rate of 50 MFLOPS with a 25-MHz clock
frequency and is capable of sustaining nearly
that rate in complex programs such as graphics
and Livermore loops.

Introduction

In the ten years since it first appeared, RISC technology
has evolved significantly. An important possibility in the
application of RISC architecture to technical
workstations is the potential it offers for greatly improved
performance in floating-point operations. In the design of
the RISC System/6000* (RS/6000) processor, achieving
that potential was a major goal. The RS/6000 floating-
point implementation has in fact improved the state of
the art of floating-point architecture for RISC machines
in two distinct ways: First, it made the FPU a tightly
coupled processor, with a parallel set of registers with
direct cache access, using additional hardware to avoid
conflicts. Second, and more significantly, the architecture
was optimized around a single unit which combined the
two required operations of multiplication and addition, 59

R. K. MONTOYE, E. HOKENEK, AND §. L. RUNYON

60

l Round I

AXB

3 ports + 3ports = 6 ports

(a) (b

(a) Classical multiplier and adder; (b) MAF implementation.

increasing floating-point performance while reducing the
required ports, distinct functional units, and rounding
errors. We believe that this unit, called the MAF
(multiply-add-fused) unit, will be the basis of future RISC
floating-point architectures.

This paper is organized as follows: The next section
discusses the motivation for MAF, explaining in some
detail why it is an appropriate addition to the floating-
point architecture in VLSI. The third section is a
summary of floating-point operations, with discussion to
demonstrate the parallelism that is possible when the
multiply and add are fused. This is followed by a
description of the two-stage pipeline used for the version
of IEEE double-precision floating-point arithmetic used
in the RS/6000 processor, with delays consistent with its
over-all superscalar second-generation RISC architecture.
The fourth section describes the interaction of logical and
physical design required to incorporate several advances
in VLSI arithmetic while accommodating required delay
and technological (physical) constraints. The results are
summarized in the final section.

Multiply-add motivation

In VLSI, connectivity is a very important factor in both
cost and performance. Since the most common use of
floating-point multiplication is for “dot-product”
operations, a single unit which forms the multiply-
accumulation operation D = (4 X B) + C would produce
a significant reduction in internal busing requirements, as
shown in Figures 1(a) (classical scheme) and 1(b) (MAF).
This reduction from six connections to four is consistent
with the RISC philosophy of producing heavily
optimized units to attack the most frequently required
functions. In the MAF implementation, only a single
adder and normalizer are required, thus eliminating an

R. K. MONTOYE, E. HOKENEK, AND S. L. RUNYON

output port from the multiplier and one of the input
ports of the adder.

In addition to reducing latency and eliminating
subunits and ports, the removal of a normalizer increases
accuracy, while the single unit forces the architecture to
produce more efficient code by forcing the single
multiply-add instruction. The penalty for this reduction
of units and ports is an additional gate delay in the adder
section, caused by a 50 percent increase in the width of
the adder. This factor is more than offset by the
reduction in multiplexing of this single pipeline.
Additional physical optimization is allowed by a large
self-contained data path which reduces any overhead
associated with this atomic unit. In particular, the adder
can be laid out on a more compact grid, since the only
connections to the adder are from the multiplier and
shifters. Also, this single unit provides a superior target
for compiler optimization, by providing a single operator
with one-cycle pipeline time, which, in conjunction with
overlapped loads, completely utilizes the bandwidth of
the five-port register file. This eliminates the uncertainty
in bandwidth availability required of commonly
“chained” multipliers and adders. In a companion paper,
Markstein [1] shows that the additional accuracy
provided by the single rounding operation is required in
order to produce correct results using Newton-Raphson-
like techniques. In summary, there is significant
motivation for a new floating-point operation based on
the MAF primitive, provided that the unit can be
designed so that it does not impact the cost or cycle time
significantly.

Floating-point operations

Floating-point operations which deal with data in
“scientific notation” are more complex than fixed-point
or integer operations. In double-precision IEEE floating-
point arithmetic [2], the basic representation is (S, E, M):
S is a bit representing the sign of the number, E is 11 bits
representing the exponent of the number biased by 1023,
and M is the 52-bit quantity which is the mantissa,
stripped of its leading 1. Let us represent two quantities
in this notation (we show only a 9-bit mantissa for ease
of reading):

A=(S=0, E= 1000000010, M = 010000)
has a value of +2° x (1/2 + 1/8), or 5,
B=(S=1, E = 1000000000, M = 100000)
has a value of =2' X (1/2 + 1/4), or —1.5.

Quantities can be summed only when their exponents
agree, thus:

A+B=2 %12+ 1/4) =2 x (1/2 + 1/4) =
A+B=2x(1/2+ 1/4) = 2> x (1/8 + 1/16):

IBM J. RES. DEVELOP. VOL. 34 NO. 1 JANUARY 1990

A+ B = 1100, 2° X 0.11000000 ~ 2* x 0.00110000,
A+ B=2"x 001110000,

A+ B=S=0, E= 1000000010,

M = 1100000 = 3.5,

and

Ax B=2"x(1/2 + 1/4) x [-2° x (1/2 + 1/8)],
AXx B=S=1, E= 1000000011,

M = 11100000 = —7.5.

From this representation and the basic operations
required (multiplication, addition), the base integer
operations required for floating-point arithmetic are
immediately clear:

1. Multiplication requires a parallel effort of
multiplication of the true mantissas and addition of
the exponents.

2. Addition requires a prenormalization stage to align
the bit-weighting of the values to be summed,
followed by addition.

In all cases, normalization (detection of the first 1 and
shifting out O results), followed by rounding to conform
to the number of bits in the result register, is required in
each operation. Since multiplication is a costly and time-
consuming operation involving multiple stages of
summation and a final addition, it seems only reasonable
that the prenormalization can be completely overlapped
with the early phases of multiplication. Under such a
scheme, the addend can be shifted in either direction,
while the product is fixed in location (Figure 2). This
allows full parallelism of the exponent operation and
shifting operation. However, if the quantity to be added
has a larger exponent than the product, there is a shift
“overflow” which has the potential of incrementation, as
shown in Figure 2.

If the “overflow™ is as much as the number of bits in
the mantissa, no bits from the product interact with the
bits from the added quantity. If the quantity to be added
has an exponent greater than the number of bits in the
mantissa, there is a set of “underflow” bits which must be
accumulated according to the rules of the IEEE. When
the difference exceeds 2/, all bits of the addend become
“underflow” bits, and as such play no part in the
computation other than the final rounding. Thus, the
penalty to be paid for combining the operations is an
incrementer of the length of the mantissa. Since the result
of a multiply-add operation has 3m bits, and the 7 most
precise bits must be returned as the result mantissa, the
normalization operation is considerably more complex
than a traditional multiplier and adder. A significant

IBM J. RES. DEVELOP. VOL. 34 NO. 1 JANUARY 1990

AXB
(Overflow) 2m resutt bits
Increment range Add range

T
Range 1
1

|
of useful | C I
1

}

AXB+C

Schematic of MAF normalization.

amount of innovation was added to the design to hide
the normalization delay completely and make this
addition/normalization path comparable in time to the
multiplication/shifting path. Thus, a natural two-stage
pipeline arose, in which multiplication and partial
compression occurred in parallel with the
prenormalization, and addition occurred in parallel with
postnormalization. The pipeline is shown in Figure 3.

o Sign-magnitude capability

Since all numbers and operations are represented in sign-
magnitude form, it is natural to make the conversion
from the adder-convenient one’s-complement form to the
representation-convenient sign-magnitude form as simple
as possible. While the exponent values are being
processed into a shift distance, the signs are also being
processed. If the sign of the addend is different from the
sign of the product, ali the bits of the shifted result are
complemented. The add/increment is performed in
one’s-complement form, which involves an end-around
carry. The buffering scheme (to be described later) makes
this end-around carry require only a single gate delay for
all bits. Finally, if the sign of the result is negative, the
bits of the word are complemented, so that the sign-
magnitude result is correctly output.

o [EEE compatibility

In order to be usable in the workstation marketplace, the
MATF unit had to be compatible with the IEEE binary
standard. As Figure 3 shows, this was accomplished by
building units which operate on hexadecimal data, and
adding binary converters which operate in certain dead
periods in the pipeline. For example, the alighment
shifter was chosen to be hexadecimal because of the vast
reduction in number of shift positions, which allowed a

R. K. MONTOYE, E. HOKENEK, AND S. L. RUNYON

61

62

A B C
MUX MUX
A X B + INCR X B |-t Shifter

Latch 1 L Latch
1 I_I
Adder Leading-zero
anticipator
Hex normalize
shifter B A

| Lach |

L Binary normalize‘J

-

I IEEE round 4|->‘

Register file

MAF pipeline.

very efficient layout. The binary shifter, which operates
on much smaller fields, uses data available earlier (the
low-order bit positions) and can be “hidden” before the
larger hexadecimal shifter/complementer. Thus, there is
no cycle-time impact on the binary device. In the case of
the normalization shifter, the binary part of this shift is
the first operation in the “cleanup” cycle and is
sufficiently small that it does not add to either the
rounding phase or the return to the pipeline. In order to
maintain two-cycle pipeline operation for rounding
operations, a dual scheme was used:

1. If the number was to return through the addend
pipeline, the full increment, conditional to the proper

R. K. MONTOYE, E. HOKENEK, AND S. L, RUNYON

IEEE scheme, was performed at the same time as the
addition and preparation for rounding. This is
possible because the exponent addition and the
incrementation take about the same time.

2. If the number was to return through the multiplicand
pipeline, the function B X (4 + increment) is
performed in the multiplier, allowing the information
that B is to be incremented to arrive as late as
possible, and forming an “explicit” increment of 4 by
adding another copy of B to A X B in the multiplier.

These techniques allowed two-cycle behavior with
minimal cycle-time impact.

Dataflow implementation

As is the case for all well-designed custom chips, the
logical design of the MAF dataflow was performed in
parallel with the physical design, producing a very
efficient chip. In this section we discuss the logical and
physical design in detail for the separate sections of the
dataflow: the multiplier, the shifters, the adder, and the
leading-zero/one anticipator [3].

Since the key to an efficient chip is significant
interaction between the desired logical operation of the
subsections and their efficient interaction, and since the
most aggressive logical operation in the RS/6000
processor is the previously described two-cycle MAF, this
section is devoted to a detailed description of the logical
and physical implementation of the critical segments of
this activity. Particular emphasis is on two critical
aspects, 1) true performance and 2) space required using
the two levels of metal available at the time. For
simplicity, a tool/design discipline called Macro Layout
Generator (MLG) was used throughout this effort [4].

It forced all connections onto the metal-1/metal-2 grid,
which is conveniently aligned with the gates, including
drain/source and gate contacts. In other words,

the technology allows one metal-2 wire for every
contacted gate, and the gates are parallel to metal 2,
allowing easy contact to metal 1. See Figure 4 for an
example of MLG output.

Since the largest share of the MAF circuitry is in the
multiplier, we begin our discussion with that unit.

o Multiplier

Fast-multiplication techniques are well known, and are
based on two results: In 1951, Booth discovered that
signed numbers could be multiplied using a recoding
technique [5] which resulted in N/2 additions or
subtractions to multiply two N-bit two’s-complement
numbers. Booth’s method was extended in 1961 by
MacSorley [6], and in 1964, at the University of Illinois,
Wallace [7] showed that multiplication could be
performed in log,, , N plus an addition of two N-bit

IBM J. RES. DEVELOP. VOL. 34 NO. | JANUARY 1990

numbers, using a construct called a “Wallace tree.” Over
the years, these techniques were exploited and proved
optimal. We use Booth’s method and an extension of
Wallace trees more usable in VLSI to produce a VLSI
CMOS multiplier that is highly efficient.

An explanation of Wallace multiplication is a good
starting place to describe the MAF multiplier. Since
multiplication in its simplest form is the addition of N
N-bit words (or, using Booth’s invention, N/2), the
objective is to add together as quickly as possible all ¥
words. Using an N-bit carry-save adder, three words can
be input and two words output. If this technique is
simultaneously applied to all N words of the multiply
(using N/3 adders of N bits each), a single delay of a full
adder can reduce the problem from a summation of N
words to a summation of 2N/3 words. This technique
can be applied iteratively until there are only two words
left to be summed, and the summation can then be done
using the carry-lookahead techniques discussed later.
Since each stage reduces by one third the number of
terms to be added, the number of stages is log,, 5, N;
that is,

¢ Three terms or fewer can be reduced to two in one
stage.

e Four terms or fewer can be reduced to two in two
stages.

o Six terms or fewer can be reduced to two in three
stages.

o Nine terms or fewer can be reduced to two in four
stages.

Additionally, it requires about N? — 2N full adders to
sum the N terms to two. Using Booth’s technique to
produce N/2 terms of length N reduces the number
of carry-save adders by two, but only removes
log,,5, N — log, 5, (N/2), or one to two full adder delays.
To be more efficient, the number of stages must be
reduced. This is because the VLSI technology used,
CMOS, has significant delay due to the long wiring
required in a Wallace tree. Thus, a reduction in the
number of long-wire stages is significant in terms of
performance. The major extension of the multiplier
beyond what appears in the literature is that of (7, 3)
counting. Traditional Wallace multiplication uses carry-
save adders to count the value of three operands into two
results, one which has a binary weight of 1 and one
which has a binary weight of 2. The logical extension
adds seven objects to a set of results, one result which has
a binary weight of 1, one result which has a binary weight
of 2, and one result which has a binary weight of 4. The
VLSI advantages are quite apparent, since the most
expensive feature of VLSI is connectivity. The (3, 2)
adder has five connections and removes one bit from the

IBM J. RES. DEVELOP. VOL. 34 NO. 1 JANUARY 1990

-

i

TR
g il A

Example of MLG output.

problem. The (7, 3) adder has ten connections and
removes four bits from the problem. Thus, the (7, 3)
adder requires only half as many connections as the (3, 2)
adder to produce a final result. If a circuit with little
upper-level wiring can be produced efficiently to perform
this operation, this structure will create fewer wiring
demands than a Wallace adder. Additionally, the (7, 3)
adder reduces by a factor of 2.5 the number of stages
needed, since each stage reduces the number of
remaining terms to be summed by a factor of (7/3), in
comparison to (3/2). While the cell is more complicated
and slow, the number of long wires that must be driven is
reduced by that factor of 2.5, resulting in a timing-
efficient design as well. Thus, a combination of Booth
encoding and (7, 3) addition produces a very efficient
multiplier, but it still must be implemented in CMOS
VLSI.

A key objective in VLSI is to build the design
efficiently within the space required for the top layer of
wiring for the circuit. Since our objective was the design
of a 56-bit multiplier [S6 bits to allow the construction of
either a 53-bit (IEEE) or 56-bit (HEX) double-precision
unit], the wiring requirements for 7/3 counters were

R. K. MONTOYE, E. HOKENEK, AND S. L. RUNYON

63

64

Ay

i
o

% Multiplier cell.

shown to require a width of 18 transistor locations or M2
(metal-2) wires per cell. The most efficient cell
organization was to produce a mirrored pair of cells with
twice that width which shared a common control bay, as
shown in Figure 5.

The first stage consisted of a cell with seven 4-input
multiplexors (for the Booth method), requiring 28
control and data inputs, all using polysilicon, which thus
fit into the 36-track-wide cell. The second stage was a
7-input, 3-output cell, using full adders to save area while
retaining the low wiring/driving requirements of a (7, 3)
adder. As shown in Figure 6, the complete multiplier
uses all the M2 and all the polysilicon available, and
requires only 4 mm X 5 mm of areain a 1.2-um
technology.

o Shifters

The problem of shifting/rotating data in an efficient
manner is important in VLSI, and MAF puts
considerable pressure on both the performance and the
cost of very large shifters. We adopted a particularly

R. K. MONTOYE, E. HOKENEK, AND S. L. RUNYON

novel solution, which provided a (probably) minimum-
height configuration (in terms of metal-1 wiring tracks
required) and an extremely fast shift time which was
extended to include both sticky-bit computation
(required for IEEE) and a novel 32-bit rotator (required
for fixed-point computations). We first describe the 32-bit
left/right rotator, because it provides the most illustrative
case for the technique of partial-decode shifters. The
objective is to rotate a 32-bit quantity, either left or right,
using a minimum of silicon area and a minimum of
delay from the control word (C,, - - -, C,), the direction
signal (D), and the data inputs (C,, - - -, C,,). Notice that
left rotation is simply right rotation of the two’s
complement of the control word. The two classical
approaches are as follows:

1. Decode the control lines to 32, one of which will be
high, and control thirty-two 32-wide pass-device
multiplexors [8]. This technique requires 32 data and
32 control lines, plus significant space for the large

‘0001

‘0002

(1

11
[
i
1
L
1

w

8 L

S i
1
H
1 3
]
g]

=

S

S

S

n

o

S

o

i Multiplier unit.

IBM J. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

I Inverter
Shift
0,1,2,3, 4—|
Rotate
0,4, 8, 12, 16, 20, 24, 28—‘{

Data ——I

(@

‘0022 ‘0oge ‘008t *0081 *00h1 ‘002t 'goot '0os ‘008 *00h ‘0oe

2200. Eﬂﬁd. 1800. 1800. 1200. 1006, 800.
{Lower) shift of 0, 1, 2, 3,4

&

(a) 32-bit rotator circuit; (b) completed unit.

R

(and therefore slow) pass-device multiplexor. The
main virtue of this “fully decoded” technique is
simplicity of design.

2. Use the undecoded control lines (XOR D, the
direction) as controls for five 2-way switches, rotating
16, 8, 4, 2, 1, 1 positions left with C,, C,, C,, C,, C,,
and D. This requires 64 wires for data, since the first
section connects both i to 16 + i and 16 + i to |,
requiring 32 wires. Each subsequent stage requires
twice as many wires as its rotation distance. This
“fully encoded” technique offers ease of control and is
particularly suitable if two-way switches are extremely
fast.

Clearly, there must be an intermediate solution which
decodes into more than one stage and requires
considerably fewer control wires than the first approach
and fewer data wires than the second. Choosing to
produce an eight-way multiplex on the first-stage shift
and rotating (0, 4, 8, 12, 16, 20, 24, 28) bit positions, and
a five-way multiplex on the second stage, shifting (0, 1, 2,
3, 4) bit positions, has sufficient range for all rotation

IBM J. RES. DEVELOP. VOL. 3¢ NO. 1 JANUARY 1990

amounts. This “partial-decode” scheme, so named
because it decodes partial groups, allows for significant
improvement in both area and delay by requiring only

8 + 4 or 13 control wires and only 32 + 5 (with an
additional optimization) or 32 + 9 (without the
additional optimization) data wires by consuming all but
the last five bits of shift in the first stage. Additionally,
the data path is composed of only two (relatively) small
multiplexors in series, allowing the use of an NMOS
circuit to avoid the classical problems of pass-device
design. See Figure 7(a) for the circuit used for the data
path. Additionally, the control path consists of an
inverter, a three-input NAND, and a two-way pass-device
multiplexor. In order to provide both left and right
rotation, the two’s complement of the control word must
be performed. This is simply accomplished by
complementing the control bits and adding 1. The
complementation is accomplished in the first (8-way)
multiplexor by a two-way pass-device switch, which
produces the output of the complemented bits of the
control word if left is selected, and in the second (5-way)
multiplexor by a two-way pass-device switch which adds

R. K. MONTOYE, E. HOKENEK, AND S§. L. RUNYON

65

66

“000L “0009 "0005 “000h

*000€ ‘gooe "000% 0,
_— - —

160-bit shifter.

LSB

i

A+ B A+B

lt—(a0

(@) (b)

(a) Addition; (b) binary partitioning for carry-selection addition.

1 to the complemented result if the rotator is in left
mode. Finally, the last four bits of the first stage are
duplicated to avoid the long wiring of bits 28--32 to bits
0-4. Conveniently, these bits fit in the control section
with the decoding circuitry. In summary, a 32-bit rotator
is built requiring a minimum of control and data wires,
and two rows of multiplexor circuitry. It has a single-
stage delay in the data path (2 ns in 1-um CMOS) and a
four-stage control path (6 ns). Its mask-level data is
shown in Figure 7(b).

Very fast wide-shifters are a necessity in the multiply-
add. By using this partial-decode structure and NMOS-
like circuits to allow large “dotting” within the function,
a 160-bit shifter with sticky-bit accumulation and post-
complementation can be performed within 6 ns of the
time the shift amount is calculated. This is accomplished
by using a binary preshifter, a stage-one shift of 16 bit
positions (0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160),
and a final shift of four bit positions. The wide OR
required for sticky-bit calculation is accomplished by
ORing the control signals. Despite the apparent large
number of first-stage shift inputs, only a four-way
multiplexor is required in stage one, since there are fewer
than 64 input bits. The mask-level design appears in
Figure 8. Additionally, a comparable-performance
normalization shifter is used in conjunction with

R. K. MONTOYE, E. HOKENEK, AND §. L. RUNYON

completely overlapped zero detection to allow two-cycle
accumulation without cycle-time degradation.

o Logarithmic adders

To execute a multiply-add, a very large adder (106+ bits)
followed by a 53-bit incrementer is required. For N as
large as 160, logarithmic solutions are required, because
even less costly carry-skip schemes, whose delay is
approximately v, are significantly less competitive than
they were at 32 bits. Note that v32 = 6, while log 32 = 5,
but V160 = 13, while log 160 = 8. It was shown as early
as 1965 by Winograd [9] that addition requires a
minimum of log (n) time, where 7 is the number of bits
to be added. We give a very simple proof of the log (V)
delay, and use it to derive both the function and the
layout scheme which holds this bound, including fan-out
and wiring delays, while requiring N log (N) area.

In Figure 9(a), two N-bit numbers are being added. In
Figure 9(b), the problem is partitioned into two
problems: one N/2 addition for the least precise
operands, and two N/2-bit additions (one with a carry-in
signal and one without) for the most precise N/2 bits.
The result for the most precise N/2 bits is selected in this
carry-select scheme [10], since the carry input selects the
correct addition. Clearly, this process can be applied to
each of the two sub-additions, and the recursion is
terminated with a one-bit addition, producing 2" bits of
correct carries in N stages of carry selection.

To simplify the carry equation derivation, let us note
the fact that addition can be partitioned into two tasks:
carry generation and sum generation based on the half-
sum being XORed with the carry-in to the bit position.
Define G as the signal which is on if a carry results
independently of carry-in, and P as the signal which is on
if a carry results only in the presence of an input carry.
The merged generate is due either to a high-group
generate or to a low-group generate with a high-group
propagate; the merged propagate is formed when both the
low group and the high group have a propagate.
Algebraically,

G=G+ Pg,
P = Pp,

IBM J. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

MSB

/
¢
7

Buffer LSB

)/[Aﬂuaﬁon
-

"0001 “ooet “00n1

800. 1000. 1200.

(a) Abstract 8-bit adder; (b) actual 32-bit adder unit.

leading to the classical carry-lookahead formula.
However, fan-out is a significant penalty, and the carry-
select scheme doubles its maximum fan-out every section
(as it must to completely double the number of correct
carry signals in each stage). The principle that makes the
system workable is the fact that in the carry-select
scheme, only half the signals are being evaluated each
cycle, since the less significant bits are not under
evaluation. The empty locations created by this half
usage of evaluation circuits allow for significant buffering,
where both the number of gates in parallel for drive and
the load are doubled at every stage, leaving a fan-out of
about three for every section. Figure 10(a) shows a
schematic representation of the adder, while Figure 10(b)
shows the mask-level design for a 32-bit version of the
adder. Notice that the wiring for paralleling gates

shows the carry-select nature of the system.

o Leading-zero/one anticipation

To reduce the latency of the MAF unit to a minimum of
two cycles, the normalization function is overlapped with
the addition function. The unit required is a /leading-

IBM J. RES. DEVELOP. VOL. 34 NO. | JANUARY 1990

1400.

"0091 "oo8t "000e ‘00¢c

1600. 1800. 2000. 2200.

zerofone anticipator [3], which inputs the generate and
propagate signals from the adder and outputs the shift
distance. Since the carry propagation is known to take
log (N) time, it would be very profitable if the 0/1 count
could be computed in this same period. In a manner
similar to adder carry propagation, the first instance of a
nonzero element can be determined, subject to a single
bit correction due to carry propagation from the low-
order end of the word. We describe the serial solution to
the carry propagation, and make this solution parallel by
the same method as that used for the adder.

Examine the inputs to the adder from the most
significant bits to the least. Label each input set of bits as
G (both inputs are on), P (exactly one input is on), and Z
(no inputs are on). Notice that a string of propagate
tokens signals that the sign of the word is unresolved; the
first Z labels the word negative, while the first G labels
the word positive. Additionally, after the word is
negative, the next non-G signals the first digit of
significance, since a string of G symbols produces all
symbols. Similarly, in the case of a positive word, the
next non-Z represents the first non-zero in the word, and

“1”

R. K. MONTOYE, E. HOKENEK, AND S. L. RUNYON

PG

‘000h "00SE "00O0€

‘00sac

4500. 4000. 3500. 3000.

2500.

G
z
— P
G
z
®
‘0002 "00s1 "0001 "00S "0

2000.

1500.

(a) Adder state diagram; (b) LZA state diagram; (c) completed LZA unit.

thus determines the shift amount. Figure 11 represents
this state diagram.

Notice that the adder was made parallel in the previous
section, and operated in log (V) time. The leading-
zero/one anticipator (LZA) operates over a similar
doubling process with the following two exceptions: The
first stage is a four-step process, to allow the more
complex LZA parallel cell to fit in four bits of the adder
cell. The conclusion of the LZA is an OR of the three
states representing P, G, and Z for each hexadecimal
position. This OR is further coded into shift positions
©O---7)X 16 + (0 - - - 4) X 4, to feed the shifter. In the
R$/6000 implementation, the delays for hexadecimal
shifting match the delays for add/complement output,
thus allowing the control and data of the shifter to arrive
simnultaneously.

e Chip physical data

The RS/6000 floating-point unit was fabricated on a
12.7-mm X 12.7-mm die using triple-level metal and

R. K. MONTOYE, E. HOKENEK, AND S. L. RUNYON

single polysilicon with a gate length of 1.2 um (drawn). It
operates at 40 ns under worst-case conditions and
dissipates 4 W of power. Figure 12 shows a
microphotograph of the RS/6000 FPU chip.

Summary

Experimental first-generation RISC machines such as the
801 [11] were built at IBM as long as ten years ago.
However, the floating-point unit described in this paper is
the component which stresses the second-generation-
RISC nature of the RISC System/6000 processor. Its
single MAF (multiply-add-fused) unit increases the
throughput and accuracy of floating-point arithmetic
while requiring an instruction set which others only
emulate. Its reduced complexity has allowed for the
design of a completely overlapped zero/one detector to
reduce overall system latency. Its careful logical/physical
correlation allows for reduced wiring area and reduced
delay in the logarithmic multiplication and provably
logarithmic addition required for the massive 168-bit

IBM J. RES. DEVELOP. VOL. 34 NO. 1 JANUARY 1990

£000. #000. po0o. 000. 0000. 2000.

12000,
N
12000.

6000. §000. 10000,
6000. 8000. 10000.

4p00.
4000.

o o
o o
© o
o~ o

000, 000. 0o0. 000. pooo, 2000.

L

Mask-level diagram of completed FPU chip.

adder/accumulator. The state of the art in floating-point Acknowledgments

and VLSI arithmetic has been enhanced in many ways First of all, there would be no second-generation RISC

by the RS/6000 FPU; companion papers [12, 13] machine without John Cocke, whose ideas and

describe its integration with other innovations in the pioneering work established the substance of IBM RISC

architecture and hardware implementation of the technology. Ravi Nair provided extensive support for

RS/6000 processor. MLG. Acknowledgment is also due the entire RISC 69

IBM J. RES. DEVELOP. VOL. 34 NO. 1 JANUARY 1990 R. K. MONTOYE, E. HOKENEK, AND S. L. RUNYON

70

System/6000 development team, with particular thanks
to M. P. Patel and P. T. Patel for their support of the
work described in this paper.

References

1. P. W. Markstein, “Computation of Elementary Functions on the
IBM RISC System/6000 Processor,” IBM J. Res. Develop. 34,
111-119 (1990, this issue).

2. “IEEE Standard for Binary Floating-Point Arithmetic,” ANSI/
IEEE Standard No. 754, American National Standards Institute,
Washington, DC, 1988.

3. E. Hokenek and R. K. Montoye, “Leading-Zero Anticipator
(LZA) in the IBM RISC System/6000 Floating-Point Execution
Unit,” IBM J. Res. Develop. 34, 71-77 (1990, this issue).

4. R. Nair, “MLG—A Case for Virtual Grid Symbolic Layout
Without Compaction,” Proceedings of the IEEE International
Conference on Computer-Aided Design (ICCAD-87), Santa
Clara, CA, November 1987, pp. 180-183.

5. A. D. Booth, “A Signed Multiplication Technique” (Part 2),
Quart. J. Mech. & Appl. Math. 4, 236-240 (1951).

6. O. L. MacSorley, “High Speed Arithmetic in Binary
Computers,” Proc. IRE 49, 67-91 (January 1961).

7. C. S. Wallace, “A Suggestion for Parallel Multipliers,” IEEE
Trans. Electron. Comput. EC-13, 14-17 (1964).

8. C. Mead and L. Conway, Introduction to VLSI Systems,
Addison-Wesley Publishing Co., Reading, MA, 1980.

9. S. Winograd, “On the Time Required for Binary Addition,”

J. ACM 12, 277-285 (1965).

10. J. Slansky, “Conditional-Sum Addition Logic,” IEEE Trans.
Electron. Comput. EC-9, 226-231 (1960).

11. G. Radin, “The 801 Minicomputer,” Proceedings of the
Symposium on Architectural Support for Programming
Languages and Operating Systems, in ACM SIGARCH
Computer Architecture News 10, No. 2, 39-47 (1982).

12. R. R. Oghler and R. D. Groves, “IBM RISC System/6000
Processor Architecture,” IBM J. Res. Develop. 34, 23-36 (1990,
this issue).

13. G. F. Grohoski, “Machine Organization of the IBM RISC
System/6000 Processor,” IBM J. Res. Develop. 34, 37-58 (1990,
this issue).

Received March 6, 1989; accepted for publication October
30, 1989

R. K. MONTOYE, E. HOKENEK, AND S. L. RUNYON

Robert K. Montoye IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York 10598.
Dr. Montoye received his B.S. in 1977 in physics and his M.S. in
1981 and Ph.D. in 1983 in computer science from the University of
Illinois. He joined IBM in 1983 and began research into high-
performance CMOS design, including the MAF floating-point unit.
Dr. Montoye is the author of numerous articles and holds patents in
parallel processing, VLSI architectures, and design automation.

Erdem Hokenek IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York 10598.
Dr. Hokenek received the B.S., M.S., and Ph.D. degrees in electrical
engineering from the Technical University of Istanbul, Turkey, and
the Swiss Federal Institute of Technology, Zurich, Switzerland, in
1974, 1976, and 1985, respectively. As a postdoctoral World Trade
Visiting Scientist, he was assigned in 1985 to the Thomas J. Watson
Research Center, Yorktown Heights, New York, where he joined the
VLSI Department as a Research Staff Member in 1986.

Stephen L. Runyon IBM Advanced Workstations Division,
11400 Burnet Road, Austin, Texas 78758. Mr, Runyon received the
B.E.E. degree from the Georgia Institute of Technology in 1980, and
the M.S.E. degree in electrical engineering from the University of
Texas in 1985. He worked for IBM during the summers of 1976
through 1980 while attending college, and joined IBM in Austin as a
full-time employee in 1981. Since that time he has worked in Austin
on the design of NMOS and CMOS VLSI chips.

IBM J. RES. DEVELOP. VOL. 34 NO. 1 JANUARY 1990

