IBM RISC
System/6000
processor
architecture

by R. R. Oehler
R. D. Groves

This paper describes the hardware architecture
of the IBM RISC System/6000* processor, which
combines basic RISC principles with a
partitioning of registers by function into multiple
ALUs. This allows a high degree of parallelism in
execution and permits a compiler to generate
highly optimized code to manage the interaction
among parallel functions. Floating-point
arithmetic is integrated into the architecture, and
floating-point performance is comparabile to that
of many vector processors.

introduction

The first RISC machine, the 801, was invented at the
IBM Thomas J. Watson Research Center in 1975, Since
that time, within IBM, there have been several
implementations based on the original ideas. Each of
these implementations extended the ideas in different
ways, including virtual addressing, coprocessor
extensions, and I/O control. Although most of these
implementations never became part of any IBM product,
some did—the most visible RISC-based product has been
the IBM RT System.

*RISC System/6000 is a trademark of International Business Machines Corporation.
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Starting in 1985, most of the original 801 research
team again considered the issues of machine architecture,
examining not only System/370, but also factoring in the
experience gained from the 801 and its follow-ons.
Studies were performed on floating-point organization
and performance, the effectiveness of the architecture as a
compiler target, and, most significantly, reexamining the
effects of machine organization and architecture on
parallel execution and pipelining.

There are three components in the processor
performance equation: number of instructions (path
length), cycles per instruction, and cycle time. Since there
already existed a dataflow model of the original
architecture that had concentrated on reducing the levels
of logic required to perform a cycle, it was felt that as
long as this model was not significantly changed, the
benefits of newer technology with higher levels of
integration would reduce cycle time. Consequently, no
architectural effort was focused on reducing cycle time.
Instead, emphasis was placed on reducing both number
of instructions and number of cycles per instruction. To
reduce the number of instructions required to perform a
task, high-leverage compound-function instructions were
explored which could replace two or more of the original
801 instructions. The original design target for the 801
was to execute one instruction every cycle. The emphasis
of this research study was to define an architecture whose
implementations could easily execute more than one
instruction per cycle, otherwise known as a superscalar
architecture. ‘

The result of this activity led to a second-generation
RISC architecture, the so-called “AMERICA
architecture.” A small effort was initiated at the Watson
Research Center to design a system based on this 23
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architecture. This work progressed very rapidly, and it
soon became clear that such a system was feasible and
could realize the expected performance.

In 1986, the IBM development laboratory in Austin,
Texas, which developed the RT System, accepted the
AMERICA architecture and began developing new
products based on it. This original research idea has now
been implemented in the IBM RISC System/6000*
(RS/6000) processor version of IBM’s POWER
architecture, What follows is a general description of the
new architecture, including many examples of how this
second-generation RISC architecture achieves significant
performance improvements over earlier RISC
architectures.

RISC System/6000 architecture

One of the most notable features of the RS/6000
architecture is the separation of the components of the
processor into functional units. There are three major
units: fixed-point, floating-point, and branch. Each of these
components can process instructions in parallel, with the
branch unit in overall control and responsible for the
integrity of program execution.

Obviously, all CPU architectures provide for fixed-
point and branch functions, and many even provide for
floating-point. What makes the RS/6000 architecture
different is how it applies the original 801 philosophy,
which is to increase the role of the compiler and
operating system in managing the hardware, thereby
simplifying the hardware design. Unlike many other CPU
designs in which a significant amount of hardware is
devoted to trying to provide maximum paralielism
among functional units by elaborate register-dependency
checks, branch prediction, branch-history tables, store/
load interlocks, etc., the RS/6000 architecture has
avoided the need for most of this hardware by assigning
registers to functional units, separating the setting of
conditions from normal instruction activity, and
requiring program management of some store/load
interactions. This exposes the latent parallelism of the
processor to the compiler and operating system, requiring
explicit management of the various units and their
interactions in order to fully exploit the hardware. And,
like the original 801, it sometimes even requires this
management for programs to function properly.

The second distinguishing feature of the RISC
System/6000 architecture is its emphasis on floating-
point performance. Very early in the project, an
advanced floating-point multiply-add design was
conceived that would permit a 64-bit multiply-and-add
operation to be performed every cycle. It was also
observed that floating-point performance is in very many
cases governed by fixed-point performance. For instance,
most matrix operations require a significant number of
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address computations for loads and stores. In addition,
there are many repetitious instructions to be fetched and
executed. Therefore, to fully exploit the multiply-add
design, the RS/6000 architecture was designed to perform
all storage operations, including address computations,
on the fixed-point unit, and to perform program fetch
and branch execution on the branch unit, with all three
units overlapped.

From these two features of RS/6000 architecture, the
basic design principle was devised: Seek a system
organization that offers maximum overlap of the
functional units, eliminating all dead cycles, while
holding to instructions which can usually be executed in
a single cycle.

An example of the possible overlap to be found in this
architecture can be seen in the following 2D graphics
transform problem:

V' = A*V + b,

or

x' =all*x+ al2*y + b1,
Y =a2l*x + a22*y + b2.

If x and y are considered to be an array of points, then

after initialization the following code computes a new array

of points x” and y':

loop: Ifdu fp0, x(i) # load and update
floating-point register

fma fp3, fpl, all, bl # floating-point multiply-
add

# another floating-point
load and update

fma fp4, fp2, a22, b2 # floating-point multiply-

add

fma fp3, 2, al2, fpd # floating-point multiply-
add

# store and update float-
ing-point register

fma fpd, fpl, a2l, fp4 # floating-point multiply-
add

# another floating-point
store and update

# branch and count

fdu fp2, (i)

stfdu fp3, x'(i)

stfdu fp4, y’'(1)
bc loop

While the workings of the instructions are not
important at this point, note that there are a total of nine
instructions in the loop consisting of four storage
instructions which can execute in the fixed-point unit,
four floating-point instructions which can execute in the
floating-point unit, and one branch instruction which can
execute in the branch unit. All of the instructions are
compound-function instructions (multiply and add, load
and update, store and update, branch and count).
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Considering that the multiply-add instruction performs
two floating-point operations, these nine instructions
result in the execution of thirteen operations. However,
an overlapped implementation will only require four
instruction times for each iteration of the loop. This,
then, is an example of the potential of the RS/6000
POWER architecture.

System organization

The RISC System/6000 architecture defines separate
instruction and data caches. The benefits of this
organization are discussed by Radin [1] and Hopkins [2].
As in the original 801, these caches are of a “store-in”
design and are managed by a combination of hardware
(for cache loads and cast-outs) and software (for
synchronization). The instruction cache is associated with
the branch unit, and the data cache is shared between the
fixed-point and floating-point units for data access. The
branch unit manages the instruction cache, and the fixed-
point unit manages the data cache. The role of these
caches in address translation is discussed in the section
on the addressing model.

Figure 1 shows the RS/6000 system organization. Note
that the figure also shows how the registers are
partitioned among the various units. The reasons for this
partitioning will become apparent in the following
sections.

Branch unit

Instruction fetch (including instruction address
generation) and instruction address translation (including
protection checking) are performed by the branch unit.
All management of interrupts is handled by the branch
unit. Thus, machine functions such as the appearance of
sequential execution of instructions, synchronization at
interruption, and switching of state are all handled by the
branch unit.

The principal registers of the branch unit are the link
register, the count register, the condition register, and the
machine-state register. The link register is used to contain
the target and/or return instruction address for
subroutine linkage. The count register is used to control
loop iteration. There is a branch instruction that reduces
the count register by one and branches on the resulting
value. The machine-state register controls system states
such as enable/disable and relocate on/off. The condition
register is explained later in this section.

From these registers, it is possible for the branch unit
to fetch the appropriate next instruction, decode it, and
either execute it, if it is a branch-unit instruction, or
dispatch it to the fixed-point or floating-point units. The
branch unit can continue to do this until either the queue
of instructions at the other units is full or there is a data
dependency on one of the local registers of the branch
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unit requiring data from the fixed-point or floating-point
unit and the data is not yet available. The architecture
assumes that the branch unit will be able to fetch at least
three instructions in one cycle, one for itself and one for
each of the other two units. It also assumes that the
branch unit is capable of dispatching one fixed-point and
one floating-point instruction every cycle. Since the
branch unit is assumed to be processing the instruction
stream in advance of the fixed- and floating-point units,
the unnecessary complication of a “delayed” branch or
branch with execute, as in the original 801, is no longer
required.

The following code sequence illustrates the use of the
branch-unit registers (and the overlap of the branch and
fixed-point units). It is a simple implementation of the C
subroutine “void bzero(addr,len);”. The purpose of this
code is to set to zero an area of memory. There are two
parameters to the subroutine: r3 (GPR 3) contains the
address of the string to be zeroed, and r4 contains the
length of the string. The LR (link register) contains the
return address.

cmpi 0,r4,0 # test for length <=0
mtspr CTR, r4 # set number of bytes to zero
cal 15, 0(r0) # value to store = 0

bler # return if length <=0
ai r3,r3, —1 # decrement addr by 1
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zloop: stbu r3, 1(r3) # incr r3 and zero a byte
be 16, 0, zloop # dec CTR and jump if CTR
! = zero
br # return

The cmpi (compare immediate) instruction tests the
length for zero. The mtspr (move to special-purpose
register) instruction moves the count to the CTR (count
register). The cal (compute address lower) instruction is
an easy way to put a zero into r5. The bler is a pseudo-
instruction for a “conditional branch on less than or
equal,” where the branch target is in the link register. The
ai (add immediate) instruction decrements the starting
address (because the next instruction will pre-increment
it). The stbu (store byte with update) instruction stores
one byte and updates the target address (by one in this
case). Updating is discussed in the section on the fixed-
point unit. The bc (branch count) pseudo-instruction
decrements the CTR and, if not zero, goes to the branch
target (in this case the previous instruction).

Note that the code is “scheduled”; that is, the cmpi is
separated from the bler that uses the resulting condition,
and the muspr is also separated from the bc. Also note
that these separations are maximum (for this code). The
architecture-implied timing of the code in the loop is one
iteration per cycle; that is, the branch unit does the bler,
the fixed-point unit does the stbu, and both units are
completely overlapped. Another aspect of this
“scheduled” code is that the test for zero length is not
done immediately; that is, the mtspr and the cal are
inserted before the bler. The (correct) assumption here is
that the normal path is for nonzero length, and that with
this ordering, this path has minimum cycle time; i.e., the
bler is overlapped and therefore does not take a cycle.

From studies of compiled code, it is clear that the
proportions of branch, fixed-point, and floating-point
instructions are not equal. (Branches usually constitute
less than 20 percent of all instructions executed, and
most programs do not have a high percentage of floating-
point instructions.) It is also clear that the three
instruction types are not uniformly distributed in the
code. However, to achieve optimum fixed- and floating-
point performance, the compiler should intermix the
fixed- and floating-point instructions. Some amount of
instruction queuing with wider instruction fetch and
dispatch could reduce the level of this requirement on a
compiler.

Branch instructions have three types of address
computations: instruction address relative, address
absolute, and register. The fields required for the
instruction address relative and address absolute types are
part of the instruction and can be executed immediately.
When there is no condition to be tested, the size of this
instruction field is 26 bits; that is, a +2° relative or
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absolute address can be generated. For conditional
branches, the relative and absolute address field is 16 bits;
that is, a +2" relative or absolute address can be
generated. The last type, register, is used when the target
address is not known at compile time or is larger than 26
bits. The register in this case is always a branch-unit
register, typically the link register. For maximum
performance, the compiler needs to move the address to
the link register as early as possible, so that the target
instruction may be fetched by the branch unit while the
instructions between the load of the link register and the
register branch are still in the instruction queues. For
unconditional branches, the branch unit may be
significantly ahead of the fixed-point and floating-point
units with respect to which instructions are currently
being executed.

For branches that depend on the condition register
(conditional branches), the situation is somewhat
different. The condition register is composed of eight
condition fields. Two of the eight are assigned to the
fixed-point and floating-point units (one to each) to
contain the results of arithmetic computations. Both
fixed- and floating-point arithmetic instructions contain a
bit, the record bit (Rc) that indicates whether or not the
corresponding condition field should be set. All eight
fields can be explicitly set by fixed- or floating-point
arithmetic compare instructions. In addition, there are
special branch-unit instructions that either manage
(move/save) the fields or perform logical operations on
the fields.

The motivation for two standard condition fields
should be obvious: Fixed-point and floating-point
computations involving the setting of conditions are
completely independent of each other and can proceed in
parallel. The motivation for explicit control by the Rc bit
of the setting of the standard fields is twofold: Only the
conditions that are to be tested need be saved
(subsequent arithmetic will not change the saved
condition), and explicitly identifying an instruction which
sets the condition makes it easier for the compiler to
schedule this instruction as far away as possible from the
testing of the condition. The motivation for the
additional condition fields is the recognition that
comparisons are independent operations themselves and
should not have to interfere with each other by setting a
common condition code. By giving comparisons their
own condition field, the comparisons can be scheduled
earlier, repeated comparisons can be eliminated, and
invariant comparisons can be moved out of inner loops.
By having the compiler target condition codes and
comparisons to different fields in the condition register,
the hardware can exploit simple scoreboarding algorithms
to detect dependencies without significantly affecting
performance.
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Figure 2(a) illustrates the use of multiple condition
fields, showing how pre-testing of the conditions enables
the branch code to be no more than just the branch logic
itself. Figure 2(b) shows the instruction stream.

On entry to this routine, r3, r4, and r5 contain the
addresses of x, y, and z, respectively. The cmp (compare)
identifies the target condition field and is a fixed-point
instruction. The nonregister form of branch (hf—branch
false pseudo-instruction) is an instruction to perform a
relative branch. The Ir (load register) is a pseudo-
instruction for moving the contents of one register to
another.

The setting of a condition field by an arithmetic or
comparison operation and its subsequent testing
represent one major requirement for coordination
between the fixed- and floating-point units and the
branch unit. It was recognized very early that it would be
extremely difficult to have the setting operation
immediately followed by the testing branch and not lose
cycles. A possible implementation that probabilistically
reduces this dependency, but increases hardware
complexity, is for the branch unit to conditionally
dispatch fixed- and floating-point instructions. This then
becomes an area where an implementation is faced with
the more traditional trade-off between significant
hardware complexity and better performance.

Even when predicting whether a branch will be taken,
the compiler can help. There are two cases of conditional
branches that can be analyzed: if-then-else logic and loop
closure. In general, without additional language help, it is
not obvious which path of the if-then-else logic should be
taken. For this case, the best guess is often the fall-
through case. On the other hand, the branch-back for
loop closure is almost always taken. An RS/6000
processor does not have the same information that a
compiler does in analyzing the cases; however, it does
have the displacement. (In general, branch addresses are
obtained from an immediate field in the branch
instruction.) If the displacement is negative, it is a good
assumption that the branch instruction is part of a loop
closure and will be taken. Otherwise, the fall-through case
is the preferred path for the conditional dispatch of
instructions.

Part of the cost of separate branch-unit registers is the
additional instruction(s) required to move branch-register
contents to or from the general-purpose registers (GPRs).
Early in the development cycle, the obvious choice of
using a specific GPR as the link register was considered,
thereby eliminating the instructions required to save and
restore an explicit link register. It was assumed that the
fixed-point unit could monitor all loads of the selected
GPR and ship the new value to the branch unit. While
this was certainly possible, this proposed mechanism did
not save any cycles because the coordination and transfer
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/* This procedure returns the middle of three numbers */

y2: procedure (X, y, z) returns (fixed bin(31)) reorder;
declare
(x, y, z) fixed bin(31),
mid  fixed bin(31);
if x<(y then
if y<z then
mid=y;
else
if x<<z then
mid=z;
else
mid=x;
else
if y>=zthen
mid=y;
else
if x> =1z then
mid=z;
else
mid =x;
return (mid);
end y2;

@

* Start of Procedure

© (note r3 will contain answer on return)
1 0, X (r3) load X, Y, Z into 10, 13, 14
1 13, Y (r4)
1 4, Z(t5)

* Precompute conditions
cmp cr6, 10, 13 Compare X and Y, saving result in cr6
cmp cr0, 10, r4 Compare X and Z, saving result in cr0

cmp crl, 13, r4 Compare Y and Z, saving result in crl
*

bf cr6, It, %8 Branch to Label %8 if X ge Y

bir cri, It Conditional return (Y it Z) (return'Y)

Ir 3, rd4 Move Z to return register

btr cr0, It Conditional return (X It Z) (return Z)

Ir 13,10 Move X to return register

br Return (return X)
%8

bfr crl, It Conditional return (return Y)

Ir 3,4 Move Z to return register

bfr cr0, It Conditional return (return Z)

Ir 13,10 Move X to return regisier

br Return (return X)

(b)

! Illustration of the use of multiple condition fields in determining the
{ middle of three numbers: (a) program code; (b) instruction stream.

still took at least one cycle. Furthermore, the hardware to

support this implied transfer would be more difficult to

implement and more error prone than that required for

explicit transfer instructions. Explicit register transfer

instructions also expose this dependency to the compiler,

which can then schedule the transfer as early as possible

so that the content will be available to a branch

instruction. For these reasons, the implied link register

was rejected. 27
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The calling routine:
bl .glue.foo
1 rTOC, 20(tDSA)

# branch to foo (actually glue)
# restore my TOC

The glue routine:
.glue.foo 1 r12, foo.DESCRGTOC) # address of descriptor for foo

st 1TOC, 20(rDSA) # save caller’s TOC on stack

1 r0, 0(r12) # get code address of ““callee”
1 rTOC, 4(r12) # get TOC address of “callee”
mispr CTR, r0 # set target to count reg

be # branch through count reg

The callee routine:
foo mfsprLR, r0
mfspr CR, r12
stm  rl3, -144-76(r1)
st 0, 8(rl)
st rl2, 4(rl)
stu  rl, -szdsa(rl)

# move LR if foo not leaf

# move CR if foo alters it

# save GPRs 1331 if foo alters them

# save LR if foo not leaf

# save CR if foo alters it

# decrement stack ptr and save back
chain

1 r0, szdsa+8(rl)
1 rl2, szdsa+4{rl)
ai  rl,rl, szdsa
mtspr LR, 10

Im 13 -144-76(r1)

# get LR if saved

# get CR if saved

# restore stack ptr

# put back into LR if saved

# restore GPRs 13-31 if saved

mtspr CRF, '00111000'B, r12  # restore CR2, CR3, CR4 of CR if
saved
br # return through LR

Using “‘glue’’ code in cross-object linkage.

However, one observation about program linkage did
cause a change in the architecture. It was assumed that
one link register was sufficient (and obviously it is). If
nested routines are to be called, the link register (along
with the other conventional registers) will be saved at the
point of call and restored at the point of return. At the
outermost (“leaf™) level, no registers need be saved or
restored.

One particular case did cause unnecessary cycles. As a
system strategy, software has the notion of bound objects,
that is, separately compiled units linked (bound) together,
with all internal references resolved. Software also
requires that such objects be relocatable and sharable. To
accomplish sharing across bound objects, a more
complicated linkage convention is required. This
convention uses “glue” code, that is, code introduced to

manage cross-object linkage. Instead of calling an entry
in another object directly, the glue code is called first.

R. R. OEHLER AND R. D. GROVES

The glue code loads the appropriate addresses and then
calls the requested entry.

As originally defined, this double call makes use of the
link register four times: once as the target for the
appropriate glue code, once for the return address of the
calling program, once as the target for the original entry
called, and once for the return address of the glue code.
To accomplish this, the original implementation of the
glue code had to save the contents of the link register and
then load the address of the called entry into the link
register. On the return path, the called entry returns to
the glue code, which reloads the saved address into the
link register and returns to the calling routine. Other than
reloading the saved address, the glue code need not be
returned to, and the original calling program can be
given direct control.

To accomplish this, it was necessary to make available
another branch-unit register to contain a branch-target
address. Because this observation was made late in the
design cycle, a separate register could not be used, so the
count register was chosen to perform this additional
function. With this new architecture, the calling program
loads the address of the appropriate glue code into the
link register and branch-and-links through the link
register, setting its return address. The glue code now
loads the count register with the address of the called
entry and branches to it. On return, the called routine
branches through the link register directly to the calling
program.

Figure 3 shows an out-of-bound-object linkage
sequence with these conventions: Each object maintains
two pointers: one to the DSA (dynamic save area) and
the other to the TOC (table of contents). The DSA is the
program stack, and the TOC is the linkage segment. The
link register (LR) is used to call the “glue.” The glue
called is specific to the actual target routine. The calling
module is responsible for reloading its pointer to the
TOC.

Note that for leaf procedures most of these instructions
are not needed—for simple leaf procedures there is no
need to save or restore registers. Even the DSA need not
be updated. By convention, not all of the CR is saved,
just the third, fourth, and fifth nibbles. The mfspr (move
from special-purpose register) copies data from the
identified special-purpose register to a GPR. This code
does not deal with FPRs (floating-point registers).

Fixed-point unit

Besides handling all of the normal fixed-point arithmetic
instructions, the fixed-point unit does all data-address
computations for both itself and the floating-point unit.
In this role, the fixed-point unit schedules the movement
of data between the floating-point unit and the data
cache. The role of the floating-point unit is to either
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supply the data going to the cache or accept the data
coming from it, with the source or destination being its
floating-point registers. This operation of data transfer
should be viewed as not taking a floating-point unit cycle.
Floating-point loads and stores are fixed-point operations
and take fixed-point cycles.

The fixed-point unit is a traditional RISC, and in many
respects represents only a modest change from the
original 801. It has thirty-two 32-bit registers, three
operand operations (RT = RA + RB), and a powerful
rotate and mask facility. All instructions are 32 bits long,
with a 16-bit immediate field where appropriate. The
immediate field can be used as a displacement, which is
relative to a register. Load and store instructions also
have an address auto-increment feature. An MQ register
is used for multiply and divide operations as well as
extended-precision computation. Each arithmetic
operation computes the three standard conditions of less
than, equality, and greater than. Overflow is the fourth
condition, under control of an overflow control bit.
Controlling overflow is necessary when extended-
precision operations are being performed. Even though
the conditions are generated on each arithmetic
instruction, the first condition field (back in the branch
unit) is not set unless the record bit in the arithmetic
instruction is set.

Other than the inclusion of full multiply and divide
instructions (instead of multiply step and divide step), the
most significant departure in the fixed-point unit from
the original 801 is for the handling of misaligned data.
The original 801 asserted that all programs and data were
aligned or could be aligned. While this is true of
programs, some of the data represented by various
declarations in old programs is not aligned. To cover this
case, the 801 had an alignment-check mode. If the mode
was off, all addresses were truncated to the natural
boundary of the operands. If alignment-check mode was
on, all addresses were checked for conformance of the
address to the natural boundary of the operand. If the
address conformed, the operation proceeded. If it did not,
the instruction caused an alignment-check interrupt.
Software could then fix up the register, if the operation
was a load, or the storage location, if it was a store, and
then resume the interrupted program at the next
instruction. This scheme is reasonable as long as the
frequency of use of misaligned data is very low. In the
case of the data found in some programs (usually old
FORTRAN programs), it is not.

The RS/6000 architecture has adopted the following
strategy for dealing with misaligned data. It calls for the
implementation of misaligned loads and stores, including
special string operations. It is relatively easy to conceive
how this might work when all of the data is contained
within one cache line. To implement this, the hardware
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can appropriately adjust the alignment on the way in or
out of the cache with a simple byte multiplexor. A more
difficult question is what to do with misaligned data that
straddles cache-line boundaries. If one line is in the cache
but the other is not, the hardware must pause in the
middle of an instruction and wait for the missing cache
line to cycle. Such hardware is more complicated. An
even more difficult situation occurs when the misaligned
data crosses a protection boundary. (While paging and
protection have not yet been discussed, think of a
protection boundary as one where access is allowed on
one side but may or may not be allowed on the other.
The other side may be “protected.”) In this case, if the
instruction is allowed to start, some of the misaligned
data will be moved; the rest might not. In general, there
is no way to tell ahead of time without “dry-running” the
instruction, that is, probing the data accesses within each
protection boundary. If the result of the dry run is
successful, the instruction is started; if it is not, an
interrupt is generated. This procedure is very costly both
in hardware and in time.

To simplify the hardware requirements, RS/6000
architecture only requires hardware to handle misaligned
data within a cache line for the all-non-string
instructions. The architecture allows for the partial
completion of an operation and the generation of an
alignment-check interrupt when the data crosses a cache-
line boundary. System software can then complete the
instruction by fixing up the affected registers or memory
locations. This definition will lead to various
implementations. At a minimum, all data will be
accessible within a cache line. On some machines, all
data except that crossing a protection boundary will be
accessible. Other machines might allow all data to be
accessible (if not protected). System software must
implement the alignment-check interrupt, which will
execute more or less frequently depending on the
machine on which it executes.

Character string operations represent a significant part
of the mix of functions being performed and are rarely
aligned on word boundaries. Our studies have indicated
that as much as 15 percent of the cycles spent during
compilation are spent moving strings. The original 8§01
used special instructions that shifted characters in a
combination of the MQ and a general-purpose register,
stored the contents of the general-purpose register, and
updated (auto-incremented) the storage address. Thus, it
was possible to write a subroutine that, after initial
alignment, could move four bytes every two cycles (if the
loop was “unrolled”). While this may have been good on
a machine that had a four-byte data flow, it prevented the
use of the much wider data flow possible in today’s
technology. These instructions also required significant
overhead in setting up the inner loop. Since more than 29
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#

# Move section—R3 Target address, R4 Move length, R5 Source address.
#
#
# String length here is always at least 21. Scheme is to move churnks of
# 16 bytes using LSX/STSX with R4 as the index reg and use the count
# reg as loop control. Move uses R9—R12. Remainder count in R8.

#

1il 19, 16 #Chunk length for move and remainder.
cmpl  crl 513 #Test if long fwd move might destruct.
mtspr  XER, 19 #Set move length.
rlinm. 8, r4, 0, 0x0000000f
# #R8 = remainder,
CR bit 2 {(eq) == ““no remainder.”
mtctr 16

crand  27,26,2

#Set loop count—Number chunks to move.
#CR bit 27 = “No pad and no
remainder.”

blt crl, backward  #B If A(source) <C A (target) logically.
#
forward:

# Start chunk move at first 16 bytes of target area.
lil 4,0

loopfl: Isx r9,r4, 15
stsx 19, 14,13

#Beginning Index.
# Get next chunk of string
#Store it away

ai 4,14, 16 #Bump index up
bdn loopf1 #Bump count, Br if chunk(s} left to do.
bbtr 27 #Return if no pad and no remainder.
bz cr0, pad #Go do pad if no remainder.
#
mtxer 18 #Set move count for remainder.
Isx r9, 4,15 #Get the string.
stsx r9, 14,13 #Store the string.
bzr cré #Return if pad not required.
b pad #Go pad.

Example of a string move, assuming no string overlap.

half the strings moved are less than eight bytes, this
overhead represents a significant portion of the execution
cycles for moving strings.

Given the wider data paths implied by the RS/6000
architecture, it was reasonable to define string operations.
Such operations move misaligned data from storage to
consecutive registers, or from consecutive registers to
storage. Of course, these instructions have to deal with
the problems of alignment and protection and are
therefore defined to allow partial completion of the
operation and complete restartability. Since their main
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advantage is high-speed transfer of long character strings,
these instructions cannot take alignment-check
interrupts. The fact that these instructions load and store
misaligned data significantly reduces the overhead
required to enter the inner loop. With these instructions,
the architecture can achieve data-move performance
equal to the maximum rate implied by the data flow
without very complicated hardware and without dry-
running instructions.

Figure 4 is an excerpt from the C subroutine “void
bcopy (to_addr,from_addr,len);”. The purpose of this
code is to move the “from” string to the “to” string. It
will move the string “backward” if there is a possibility
that the strings overlap. The string length can be zero.
The small section of code shown here will move a small
number of bytes (fewer than 16) or move bigger chunks
until there are only a small number of bytes to move.

The new instructions (blt, bdn, bbtr, bz, bzr, and b) are
all pseudo-instructions for the RS/6000 branch
instructions. The r/inm instruction rotates and ANDs
under mask. The period (-) following rlinm is the
indication to return the condition code to the branch
unit at the end of this instruction. The crand instruction
logically ANDs two condition-register bits, putting the
result into a designated condition-register bit. This
instruction is executed on the branch unit. The bbtr
pseudo-instruction branches on the specified condition-
register bit. The Isx and stsx instructions respectively load
and store strings. They start from a designated GPR and
use consecutively higher-numbered GPRs. The number
of bytes moved is controlled by the value in the fixed-
point exception register (XER), a special-purpose fixed-
point register which contains fixed-point arithmetic
exceptions and control fields for the string instructions.

The null-terminated strings supported by the C
language presented a particular problem in the RS/6000
architecture. The following represents the most straight-
forward loop for implementing strcpy (source,target) with
r3 containing the address of the source and r4 the address
of the target:

# Prepare addresses for pre-
increment

ai r3, -1
ai r4, -1
loop: Ibzu 15, 1(r3)  # Get byte of string and update
pointer
cmpi cr0,r5,0 # Compare with null
stbu 15, 1(r4)  # Store byte away and update
pointer
bne cr0,loop # Loop if not null

Since the compare immediate (cmpi) is dependent upon
the load byte and zero with update (/bzu), the one-cycle
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data cache access will be fully exposed, resulting in at
least four fixed-point cycles per byte transferred. In
addition, the setting of cr0 by the cmpi instruction is only
one instruction before the branch not equal (bre) which
depends upon it. Therefore, some implementations may
not be able to completely overlap the execution of the
branch instruction.

Several alternatives to this problem were examined.
One proposed solution was to add a compare-bytes
instruction. This instruction would compare all the bytes
in a register and return the number of the first byte from
the left which contained a null (or any other arbitrary
character). This solution allowed for an inner loop which
would load four bytes in one instruction, compare those
four bytes with the compare-bytes instruction, and store
four bytes if no null was found.

This alternative was rejected for two reasons: First, this
particular approach cannot easily be extended to support
wider data buses to the cache. This approach is basically
limited to four bytes every three or four cycles. The
second reason for rejecting the compare-bytes instruction
was the overhead required for set-up and termination.
Since the inner loop loads four bytes before checking for
the terminating null character, the loop is likely to load
bytes beyond the end of the string. In order to avoid
spurious storage protection exceptions caused by
accessing storage that the program would not normally
touch if the original one-byte-at-a-time loop were
executed, the new inner loop must be preceded by code
which copies enough of the string to force the inner loop
to be word-aligned, which guarantees that no protection
boundaries will accidentally be crossed. The loop also
must be followed by some “fix-up” code which stores
only the bytes up to and including the null character.
Character string statistics indicate that most strings are
eight bytes or less, so the significant overhead before and
after the inner loop significantly reduces the benefit
associated with the compare-bytes instruction.

The solution selected for the RS/6000 architecture was
to define a load-string-and-compare-bytes (Iscbx)
instruction. This instruction loads misaligned data into
consecutive registers and compares all incoming bytes to
a comparison character contained in the XER (usually a
null). If a match is found, the Equal bit in cr0 will be set.
The byte count of the first match is returned in the XER
count field. The instruction is defined such that any
storage after the first matching byte must appear to have
been “untouched” by the instruction. Implementations
can either “pause” at storage protection boundaries to
check for the end of the string, or proceed across the
boundary and cancel any protection exceptions generated
after the match.

With this instruction, implementations can move null-
terminated character strings at nearly the full bandwidth
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lil 0,16 #Load byte count and null into XER
mtspr  XER,r0
1il r0,0 # Initialize index to zero
loop: lscbx. 15,3 +10) #Get 16 bytes of source string
StsX 15,1(r4) #Store up to 16 bytes at target
ai 10,16 #Update index
bne cr0,loop #Loop if not null

of the processor/cache interface. Also, multiple-byte
comparisons are performed in parallel without having to
involve the branch unit. The instruction definition also
minimizes the set-up required for the inner loop so that it
is efficient for short and long strings. An example of the
coding of strcpy (source,target) with r3 containing the
address of the source and r4 containing the address of the
target using /scbx is shown in Figure 5. This code
sequence is simple and compact enough that the
compiler can generate it in-line whenever strcpy is
encountered.

Another aspect of including string operations in the
architecture is its effect on subroutine linkage. The
original 801 used a sequence of stores to save state at
subroutine call and a sequence of loads to restore state at
subroutine return. These sequences were themselves part
of the “prolog” and “epilog” code and were called at
entry to and exit from every non-“leaf” routine. While
the additional branch overhead of this linkage can be
eliminated by the ability of the branch unit to fetch
ahead, this convention would have required the link
register to be saved before calling the prolog and restored
in the epilog.

The sequences of stores and loads also presented a
problem. Without special hardware that recognized such
sequences, the maximum transfer rate to storage was one
word every instruction, or four bytes every cycle. To
achieve better performance without special hardware, we
adopted load multiple (LM) and store multiple (STM)
instructions. Since these instructions define a sequence of
registers to be loaded or stored, they permit an
implementation to achieve its maximum transfer rate.

LM and STM do require some of the mechanism of
string operations. While the storage address of these
instructions is defined to be word-aligned, the full length
of the operands may cross a protection boundary. Thus,
LM and STM are defined to allow a page fault during 31
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SUBROUTINE MATMPY (A, B, C, n,nl, n2,n3)C
REAL*8 A(O:N, 0:N), B(O:N, 0:N), C(O:N, 0:N) C
INTEGERLJ,K,NCCC

DO30I = 0NI
DO20J = O, N2
CL,0) =0
DO10K = 0,N3
C(LJ) = CQL H+AQ K)*BK, H10 CONTINUE20 CONTINUE
30 CONTINUE

END
ifd fp0 = + matmpy(r8, 0)
cmpi crl =130,0
ai r9 =r30 1
ai 5 =1r5-8
a 5 = 17,15
CL.0:
i 29 =0
bt CL.3, cr0, 1t
Ir 6 =13
Ir 8 =rd
CL.2:
stfdux 18, c(r8 128,0) = fp0
Irf fp1 = fp0
bt CL.5 crl, 1t
Ir rll =17
Ir ri0 = r6

r9
cmp cr6 = 10, 130

ifdux fp3, r1l = a(rll, 131, 0)
Ifdu fp2, r10 = b(r10, 8)
fma fpt = fpl, fp3, fp2
betf CL 4, ab, gt

stfd c(18, 0) = fpl

CL.5:
ai 29 =29 1
cmp crb = 129,127
a 6 = rl2, 16
bf CL.2, cr6, gt
CL.3:
c cré = 17,15
ai 4 =148
ai 17 =178
bf CL.0O, c16, gt
CL.1:

Optimized matrix multiply operation.

their operation without requiring a dry run. Similarly,
they are permitted to perform a partial operation and yet
be restartable from the beginning.

By including LM and STM in the RS/6000
architecture, it became reasonable to generate in-line
prolog and epilog code. See Figure 3 for use of the LM
and STM instructions.

Floating-point unit

The floating-point unit has thirty-two 64-bit floating-
point registers. There is also a floating-point status and
control register that contains exception indicators, default
exception masks, and floating-point conditions. The
floating-point unit supports ANSI/IEEE Standard 754-
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1985, “IEEE Standard for Binary Floating-Point
Arithmetic” [3]. The architecture defines the basic
arithmetic set of add, subtract, multiply, and divide
operations. It also defines the usual floating-point register
move, negate, and absolute-value operations. It provides
for round-to-single and floating-point compare. Like the
original 801, the RS/6000 architecture requires software
support for many of the extended functions in order to
fully conform to the IEEE standard.

RISC System/6000 floating-point processing is
organized for double-precision computations. This means
that data held in the floating-point registers is always
represented in double-precision format. Thus, when
single-precision data is loaded, it is expanded into
double-precision format. Similarly, when a floating-point
register is stored as single-precision data, it is first
converted to single-precision format and then stored. To
achieve the same results as a processor which supports an
IEEE conforming single-precision mode requires that a
round-to-single instruction be performed after each
floating-point arithmetic operation; otherwise the results
will be in extended single-precision format.

One interesting extension to RS/6000 floating-point
operation is the definition of a floating-point register
lock. When set, this lock prevents the execution of
floating-point instructions. An attempt to execute any of
these instructions causes an interrupt identifying the
attempted use. The floating-point register lock and the
associated interrupt can be used by software to manage
the saving and restoring of floating-point registers during
process switching or at system call so that the FPRs need
only be saved and restored for those tasks which are
actually executing floating-point code.

As was previously noted, the single most important
feature of the floating-point unit is its ability to do a
multiply-add instruction every cycle. Four multiply-add
instructions were added, to cover the four possible signs
of the operations (not the operands). An interesting side
effect of these new instructions is the new precision
gained from their use. It is now possible to obtain a more
precise result by doing a multiply-add than by doing a
multiply followed by an add, since the full precision of
the intermediate result is used during the multiply-add
but lost during the two-instruction sequence.

To exploit the level of computational power offered by
the multiply-add operations, data must be given to and
taken from the floating-point unit by a means at least as
fast as the multiply-add execution time. This has been
accomplished by using the fixed-point unit as the address
generator and data mover for the floating-point unit and
by including a large number of floating-point registers,
which act as a buffer. These facilities, when applied to
standard math library functions, have led to some
remarkable results.
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The paper by P. W. Markstein [4] in this issue
illustrates the benefits of this approach. For instance,
studies of various matrix operations have shown that the
RS/6000 processor achieves performance usually
associated only with vector machines. Additionally, if a
particular matrix operation algorithm is sensitive to the
geometry and replacement algorithm of the data cache,
significantly improved performance is obtainable.

Figure 6 shows a matrix multiply operation that achieves
near-optimum performance.

Figure 7 illustrates the case of inner product.

The /fd instruction loads a floating-point register. The
Ifdu instruction loads a floating-point register and updates
the address. The stfd instruction stores a floating-point
register. The CL.0 loop in this code contains four
instructions or five operations. There are two fixed-point
instructions, one floating-point instruction, and one
branch instruction, so an implementation of this
architecture could perform this loop in two instruction
times.

Another very important aspect of fully exploiting
floating-point performance is the method of presentation
of floating-point exceptions and the precision in
identifying the instructions that cause floating-point
exceptions. Exceptions are a natural and perhaps an
expected consequence of floating-point operations, and
most can be handled by default rules. (Default exception
handling is defined by the IEEE standard.) These default
rules can be managed completely in hardware and
require no program intervention after initialization.

The IEEE default rules do not always provide the
desired result, however. Since the standard allows for
program fix-up after an exception, the architecture
problem then is how to define a mechanism to permit
program fix-up. The most straightforward approach is to
specify that a floating-point interrupt at the failing
instruction will occur whenever there is a floating-point
exception that is not defaulted. The hardware implication
of this is that all instructions after a floating-point
instruction must be conditional until it is known that no
exceptions are possible on that instruction. Some
floating-point instructions take many cycles, and
exceptions may not be known until the last cycle of the
instruction. Therefore, most implementations would
serialize on floating-point instructions—if not the first,
then the second; if not all, then some. The inclusion of a
floating-point interrupt would sacrifice much of the
potential floating-point performance.

An alternative strategy is not to report an interrupt at
all, but simply to set a bit indicating that a floating-point
exception has occurred. It is then up to a program to test
for floating-point exceptions. Different compiler strategies
can be used as to where it is appropriate to test for these
exceptions. Since the definition of the exception also
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C LOOP3-INNER PRODUCT
SUBROUTINE LOOP3(N)
REAL*8 X(1000), Z(1000), Q

DK =1

DO 3K =1JK,N

Q = Q+ZK)*X(K)
3 CONTINUE

END
(@
* Subroutine for Inner Product
1 r3,n(r3,0) Load N from argument pointer
1 15,.&loop3$(12,0) Addressability local data (Q)
cmpi cr0,r3,1 Test N, result to cr0
bt CL.1,cr0,1t See if N<C1, exit if so
ai r4,r5,8 set address of start of X
Ifd £p0,q(r5,0) fetch Q into fp0
mtspr CTR,r3 setetr = N
CL.0:
id p2,z(r4,8008) load Z(K) into fp2
ifdu fpl,x(14,8) load X(K) into fp1, bump address
of X
fma 1p0,fp0,fp2,fpl Q = Q+ZK)*X(X)
betf CL.0,cr0,gt Branch on Count
stfd p0,q(15,0) Store Q
CL.1:
h 3,0 Set return value
br Return

®

Example of an inner-product loop for a matrix operation: (a) program
code; (b) instruction stream,

includes the setting of summary information, it is
possible to test at the end of a program, at the end of a
subprogram, or at the end of a statement where a
floating-point operation was used. This level of precision
can be controlled by linker/compiler option. None of
these tell exactly where the exception occurred; they
simply identify that it occurred. In most cases, this
information is sufficient.

However, if the exact failing instruction must be
known, there are two possible strategies. One can insert a
test for the exception after each floating-point instruction,
or one can tag each queued and/or executing floating-
point instruction with its address. Inserting code to test
for every possible exception is yet another mode for the
compiler to manage, necessitates recompilation, and can
significantly expand execution time. Address tagging of
“active” floating-point instructions identifies the failing
instruction exactly. However, it does require that the
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implementation keep track of the address tags. Moreover,
it is not synchronous; that is, if an exception occurs, the
location of the failing instruction is reported, but not
before the program has gone beyond that point. Fix-up
may still be possible, but in general this method only
permits localization of the failing instruction. Consider
the case of the inner-product loop described in Figure 7.
This loop consists of two floating-point loads, one
floating-point multiply-add, and one branch. The
“active” floating-point instructions will all be instances of
the same multiply-add instruction. If an exception
occurs, what is known is the address of the instruction,
not the iteration number. The benefit of this approach is
speed; floating-point performance is not limited by
exception recognition. The drawback, as outlined above,
is the precision with which the fault is determined.

RISC System/6000 architecture adopted a two-part
strategy. The principal approach would be test-code
insertion, with the compilers able to insert such code at
the statement or (sub)program level. The linker also
supports the enabling of test code at program exit,
ensuring the ability to report a floating-point exception if
it occurs anywhere within the program.
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To avoid recompilation in order to identify the failing
operation exactly, the architecture also adopted a
synchronize mode, in which an interrupt can be
generated, identifying the failing instruction by running
the machine with one floating-point instruction
dispatched at a time. This technique has the same
weakness as code insertion; that is, floating-point
performance is greatly reduced. However, it may not be
as bad as code insertion, because the synchronization can
be managed by hardware rather than by extra code
inserted by the software. It is expected that the mode will
only be used by certain programs, and then only to debug
their algorithms.

Storage model

The storage model of RS/6000 architecture is an
extension of the 801 (and the RT System) model. All
computed addresses (called effective addresses) are 32 bits
wide. Excluding the special case of programmed 1/O, the
model has two addressing modes, real and virtual. If the
machine is in real mode, the effective address equals the
real address, and the full 32 bits are used to access real
storage. If the machine is in virtual mode, a translation
step must be performed. The overall approach to
translation can be found in [5, 6]. The differences
between RISC System/6000 and the RT System are
these: The segment identifier (SID) in the RS/6000 is 24
bits wide, resulting in a 52-bit virtual address. The real
page size is 4096 bytes, and a full 32-bit real address is
supported. For special segment processing, the
transaction identifier (TID) had been extended to 16 bits,
and each lock bit spans 128 bytes (or 32 lock bits per 4-
Kbyte page). Figure 8 graphically illustrates the data flow
of this translation process.

RISC/6000 architecture has extended the special
segment locking to grant locks to transactions without
generating lock faults. When the system software can
determine that there is only one active transaction in a
particular page, the translation mechanism can be
enabled to automatically grant access and turn on the
appropriate lock bit for each new lock line access. Of
course, if another transaction wishes to access the page,
software must then capture the lock information and
return to the standard method of lock processing. In
addition, under very special circumstances the RS/6000
storage model permits read access to data in special
segments without checking either TIDs or lock bits. This
access is not recorded. The situation most appropriate for
this is during journal writing, where the system, not the
transaction, is outputting the data.

RISC System/6000 architecture has an interesting
strategy for managing the caches. In the effective address
resolution path, it is important that the TLB lookup be
done in parallel with the cache-directory lookup. (If it is

IBM J. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990




done sequentially, which is the most straightforward way,
an extra cycle is added to all loads, and perhaps to stores
as well.) Doing the lookups in parallel requires either that
the hash functions be identical or that the bits used be
invariant with respect to translation. Keeping the hash
functions identical means that functions which use
multiple parts of the address (such as the SID and some
of the virtual offset) cannot be used, since looking up a
real address may result in a very different congruence
class from that which results from looking up the virtual
address currently mapped at that real address. This
problem, sometimes called the cache-aliasing problem,
forces many implementations to serialize the lookups, or
to guess for the correct class. The penalty for an incorrect
guess is another cycle in the load path. The alternate
approach (choosing invariant bits for cache lookup) leads
either to limited cache sizes or to requirements on
virtual-equals-real (V = R) software mapping.

The RS/6000 architecture has chosen to restrict any
page that can be addressed both virtual and real to be
identical in the cache hash-function bits in both spaces or
for the operating system to perform the approprnate
cache-line flushes to maintain consistency. Almost all of
the RS/6000 software runs in virtual mode. This
restriction affects only the low levels of interrupt handling
and startup code.

As was previously noted, the data cache uses a “store-
in,” not a “write-through,” algorithm. Additionally, there
is no coordination of stores in the data cache with the
possible contents of the instruction cache. (This is the
same strategy that was used on the original 801.) A
consequence of this strategy is that software must manage
the synchronization between caches. Similarly, there is
no coordination between the caches and I/O. Data
moved by I/O comes from or goes to main storage
directly. Thus, software must also manage this
synchronization.

The RISC System/6000 architecture has added to this
complexity. Because of the branch unit and its ability to
fetch ahead, it is difficult to identify precisely which
instructions have been prefetched and/or dispatched but
not yet executed by the fixed-point or floating-point
units. With software-managed caches, however, this must
be known or controlled with certainty. Consider the case
of program modification, e.g., a loader-generated piece of
code such as glue code. After the instructions to generate
this code are executed, the data cache line(s) containing
these instructions must be stored back, and any line in
the instruction cache that might contain old copies of the
unmodified code must be flushed. These store-back and
flush operations must be synchronized. RS/6000
architecture (and the 801) provide cache-synchronizing
primitives to accomplish this function. In the former,
however, it is conceivable that the branch unit will be
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looking far enough ahead that the unmodified
instructions will have been prefetched and/or dispatched
before the synchronizing primitives are executed. The
architecture fix for this is to require a flush of the
prefetch mechanism (and the instruction buffers)
whenever a cache-synchronize instruction is executed. It
is very easy (and safe) to overspecify when
synchronization of this form is required. Consider the
cases of various state changes associated with interrupts.
Some, such as I/O, require synchronization because a
new translation mode must be used. Others, such as
supervisor calls, do not. Because of the performance
consequences of this form of synchronization, RS/6000
architecture has chosen to minimize the number of
instructions requiring synchronization. Careful attention
is required by the hardware implementation and system
software to neither miss places where synchronization is
required nor include places where it is not required, so as
to optimize between correct execution and maximum
performance.

A good example of this type of situation is the
changing of segment registers. On task switch, most of
the segment registers must be saved and reloaded with
the new task’s contents. This is coded as many
consecutive move-to-segment-register (mtzsr) instructions.
Since this code is also executing out of a segment, the
“safest” definition is to synchronize the processor on
every misr just in case it changes the code segment
translation. For task switch, this would be an unnecessary
burden, since the code segment of the task-switch routine
is not being changed. Therefore, the architecture requires
that software include an explicit synchronize instruction
after an mtsr which changes code translation.

Conclusions

The RISC System/6000 architecture has made significant
improvements in implementing the ideas of the original
801. As is always the case, most of the changes are in the
details learned over many years by writing compilers and
system code for 801-style machines. The most important
advance in the RISC System/6000 implementation has
been to integrate floating-point arithmetic into the
architecture and concentrate on the parallel aspects of
execution. This has led to an architecture that offers
remarkable floating-point performance, comparable to
that offered by many vector processors. The architecture
is rich enough to encourage the implementation of the
multiple ALUs and much wider data paths that future
technologies will probably make possible.

The real distinction of the RISC System/6000
approach over traditional RISCs, then, is that the
architecture has partitioned the registers by function,
allowing simultaneous execution with limited
coordination. By exposing the areas of coordination 35
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required, this architecture permits a compiler to generate
highly optimized code which manages functional
interaction to achieve parallelism that is close to the
theoretical maximum for a given implementation.
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