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This  paper  describes  the  hardware  architecture 
of the  IBM  RISC  System/6000*  processor,  which 
combines  basic  RISC  principles  with  a 
partitioning of registers  by  function  into  multiple 
ALUs. This  allows a high degree of parallelism  in 
execution  and  permits  a  compiler  to  generate 
highly  optimized  code  to  manage  the  interaction 
among parallel functions.  Floating-point 
arithmetic is  integrated  into  the  architecture,  and 
floating-point  performance  is  comparable  to  that 
of  many  vector  processors. 

Introduction 
The first  RISC machine, the 80 1,  was invented at the 
IBM Thomas J. Watson  Research Center in 1975.  Since 
that time, within IBM, there  have  been  several 
implementations based on the original  ideas.  Each of 
these implementations extended the ideas in different 
ways, including  virtual  addressing,  coprocessor 
extensions, and 110 control. Although  most  of  these 
implementations never  became part of any IBM product, 
some did-the most visible  RISC-based product has  been 
the IBM RT System. 
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Starting in 1985,  most of the original  801  research 
team again  considered the issues  of machine architecture, 
examining not only  System/370, but also  factoring in the 
experience  gained  from the 80 1 and its follow-ons. 
Studies were performed on floating-point organization 
and performance, the effectiveness of the architecture as a 
compiler  target, and, most  significantly,  reexamining the 
effects  of machine organization and architecture on 
parallel  execution and pipelining. 

performance equation: number of instructions (path 
length),  cycles  per instruction, and cycle time.  Since there 
already  existed a dataflow  model of the original 
architecture that had concentrated on reducing the levels 
of  logic required to perform a cycle, it was  felt that as 
long as this  model was not significantly  changed, the 
benefits of newer  technology  with  higher  levels of 
integration would  reduce cycle time. Consequently, no 
architectural effort  was  focused on reducing  cycle time. 
Instead, emphasis was  placed on reducing both number 
of instructions and number of  cycles per instruction. To 
reduce the number of instructions required to perform a 
task, high-leverage compound-function instructions were 
explored  which  could  replace  two or more of the original 
80 1 instructions. The original  design  target for the 80 1 
was to execute one instruction every  cycle. The emphasis 
of this research study was to define an architecture whose 
implementations could  easily  execute more than one 
instruction per  cycle,  otherwise  known  as a superscalar 
architecture. 

The result of this activity  led to a second-generation 
RISC architecture, the so-called  “AMERICA 
architecture.” A small  effort  was initiated at  the Watson 
Research Center to design a system  based on this 

There are three components in the processor 
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architecture. This work  progressed  very rapidly, and it 
soon became  clear that such a system was feasible and 
could realize the expected performance. 

In 1986, the IBM development laboratory in Austin, 
Texas,  which  developed the RT System, accepted the 
AMERICA architecture and began  developing  new 
products based on it. This original research idea has now 
been implemented in the IBM  RISC  System/6000* 
(RS/6000) processor  version of IBMs POWER 
architecture. What follows  is a general description of the 
new architecture, including many examples of  how this 
second-generation RISC architecture achieves  significant 
performance improvements over earlier RISC 
architectures. 

RISC System/6000 architecture 
One  of the  most  notable  features of  the RS/6000 
architecture is  the separation of the components of the 
processor  into  functional  units.  There are three major 
units:  fixed-point,  floating-point, and branch.  Each of these 
components can process  instructions in parallel, with the 
branch unit in overall  control and  responsible  for  the 
integrity of program execution. 

Obviously,  all CPU architectures provide for  fixed- 
point and branch functions, and many even provide for 
floating-point. What makes the RS/6000 architecture 
different is  how it applies the original 801 philosophy, 
which  is to increase the role of the compiler and 
operating system  in managing the hardware, thereby 
simplifying the hardware design. Unlike many other CPU 
designs  in  which a significant amount of hardware is 
devoted to trying to provide maximum parallelism 
among functional units by elaborate register-dependency 
checks, branch prediction, branch-history tables, store/ 
load interlocks, etc., the RS/6000 architecture has 
avoided the need  for  most of this hardware by assigning 
registers to functional units, separating the setting of 
conditions from normal instruction activity, and 
requiring program management of some store/load 
interactions. This exposes the latent parallelism of the 
processor to the compiler and operating system, requiring 
explicit management of the various units and their 
interactions in order to fully exploit the hardware. And, 
like the original 80 1, it sometimes even requires this 
management for programs to function properly. 

The second distinguishing feature of the RISC 
System/6000 architecture is its emphasis on floating- 
point performance. Very  early  in the project, an 
advanced floating-point multiply-add design  was 
conceived that would permit a 64-bit multiply-and-add 
operation to be performed every  cycle. It was also 
observed that floating-point performance is in  very many 
cases  governed by fixed-point performance. For instance, 
most matrix operations require a significant number of 
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address computations for loads and stores. In addition, 
there are many repetitious instructions to be fetched and 
executed. Therefore, to fully exploit the multiply-add 
design, the RS/6000 architecture was designed to perform 
all  storage operations, including address computations, 
on the fixed-point unit, and to perform program fetch 
and branch execution on the branch unit, with all three 
units overlapped. 

From these two features of RS/6000 architecture, the 
basic  design principle was devised:  Seek a system 
organization that offers maximum overlap of the 
functional units, eliminating all dead cycles,  while 
holding to instructions which can usually be executed in 
a single  cycle. 

An example of the possible overlap to be found in  this 
architecture can be seen in the following 2D graphics 
transform problem: 

V’ = A*V+ b, 

or 

x’ = a1 l*x + a12*y + bl,  

y‘ = a21*x + a22*y + b2. 

If x and y are considered to be an array of points, then 
after initialization the following code computes a new array 
of points x’ and y ’: 

loop:  lfdu fp0, x(i) # load and update 
floating-point register 

add 

load and update 

add 

add 

ing-point register 

add 

store and update 

fma fp3,  fp  1, a 1 1, b 1 # floating-point multiply- 

lfdu fp2, y(i) # another floating-point 

fma fp4, fp2, a22, b2 # floating-point multiply- 

fma fp3, fp2, a 12, fp4 # floating-point multiply- 

stfdu fp3, x’(i) # store and update float- 

fma fp4, fp 1, a2 1, fp4 # floating-point multiply- 

stfdu fp4, y’(i) # another floating-point 

bc loop # branch and count 

While the workings  of the instructions are not 
important at this point, note that there are a total of nine 
instructions in the loop consisting of four storage 
instructions which can execute in  the fixed-point unit, 
four floating-point instructions which can execute in  the 
floating-point unit, and one branch instruction which can 
execute in the branch unit. All  of the instructions are 
compound-function instructions (multiply and  add, load 
and update, store and update, branch and count). 
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Considering that the multiply-add instruction performs 
two floating-point operations, these nine instructions 
result in the execution of thirteen operations. However, 
an overlapped implementation will only require four 
instruction times for each iteration of the loop. This, 
then, is an example of the potential of the RSf6000 
POWER architecture. 

System organization 
The RISC System/6000 architecture defines separate 
instruction and  data caches. The benefits of this 
organization are discussed by Radin [ 13 and Hopkins [ 2 ] .  
As in the original 80 1, these caches are of a “store-in” 
design and are managed by a combination of hardware 
(for cache loads and cast-outs) and software (for 
synchronization). The instruction cache is associated with 
the branch unit, and the data cache is shared between the 
fixed-point and floating-point units for data access. The 
branch unit manages the instruction cache, and the fixed- 
point unit manages the data cache. The role  of these 
caches in address translation is  discussed in the section 
on  the addressing model. 

Figure 1 shows the RS/6000 system organization. Note 
that the figure also shows  how the registers are 
partitioned among the various units. The reasons for this 
partitioning will become apparent  in  the following 
sections. 

Branch  unit 
Instruction fetch (including instruction address 
generation) and instruction address translation (including 
protection checking) are performed by the branch unit. 
All management of interrupts is handled by the branch 
unit. Thus, machine functions such as the appearance of 
sequential execution of instructions, synchronization at 
interruption, and switching  of state are all handled by the 
branch unit. 

The principal registers of the branch unit  are the link 
register, the count register, the condition register, and the 
machine-state register. The link register  is  used to contain 
the target and/or return instruction address for 
subroutine linkage. The  count register is used to control 
loop iteration. There is a branch instruction that reduces 
the  count register by one and branches on the resulting 
value. The machine-state register controls system states 
such as enablefdisable and relocate onfoff. The condition 
register  is explained later in this section. 

From these  registers, it is  possible for the branch unit 
to fetch the appropriate next instruction, decode it, and 
either execute it, if it is a branch-unit instruction, or 
dispatch it to the fixed-point or floating-point units. The 
branch unit can continue  to do this until either the queue 
of instructions at  the other units is  full or there is a data 
dependency on  one of the local registers  of the branch 
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: Logical view of RISC System/6000 architecture 

unit requiring data from the fixed-point or floating-point 
unit and  the data is not yet available. The architecture 
assumes that  the branch unit will  be able to fetch at least 
three instructions in  one cycle, one for itself and one for 
each of the  other two units. It also assumes that the 
branch unit is capable of dispatching one fixed-point and 
one floating-point instruction every  cycle. Since the 
branch unit is assumed to be  processing the instruction 
stream in advance.of the fixed- and floating-point units, 
the unnecessary complication of a “delayed” branch or 
branch with execute, as  in  the original 80 1, is no longer 
required. 

The following code sequence illustrates the use  of the 
branch-unit registers (and  the overlap of the branch and 
fixed-point units). It is a simple implementation of the C 
subroutine “void bzero(addr,len);”. The purpose of this 
code is to set to zero an area of memory. There are two 
parameters to the subroutine: r3 (GPR 3) contains  the 
address of the string to be zeroed, and r4 contains  the 
length of the string. The LR (link register) contains  the 
return address. 

cmpi 0, r4, 0 # test for length <= 0 
mtspr CTR, r4 # set number of  bytes to zero 
cal r5, O(r0)  # value to store = 0 
bler # return if length <= 0 
ai r3, r3, -1 # decrement addr by 1 25 
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zloop:  stbu 1-5, l(r3) # incr r3 and zero a byte 
bc 16,0, zloop # dec CTR and jump if CTR 

br # return 
! = zero 

The cmpi (compare immediate) instruction tests the 
length  for  zero. The mtspr (move to special-purpose 
register) instruction moves the count to the CTR (count 
register). The cal (compute address  lower) instruction is 
an easy  way to put a zero into 1-5. The bler is a pseudo- 
instruction for a “conditional branch on less than or 
equal,” where the branch target  is in the link register. The 
ai (add immediate) instruction decrements the starting 
address  (because the next instruction will pre-increment 
it). The stbu (store byte  with update) instruction stores 
one byte and updates the target  address  (by one in this 
case).  Updating is  discussed in the section on the fixed- 
point unit. The bc (branch count) pseudo-instruction 
decrements the CTR and, if not zero,  goes to the branch 
target (in this case the previous instruction). 

Note that the code is “scheduled”; that is, the cmpi is 
separated  from the bler that uses the resulting condition, 
and the mtspr is also  separated  from the be. Also note 
that these separations are maximum (for this code). The 
architecture-implied timing of the code in the loop is one 
iteration per cycle; that is, the branch unit does the bler, 
the fixed-point unit does the stbu, and both units are 
completely  overlapped. Another aspect of this 
“scheduled”  code  is that the test  for  zero  length  is not 
done immediately; that is, the mtspr and the ea1 are 
inserted  before the bler. The (correct) assumption here is 
that the normal path is for nonzero length, and that with 
this ordering, this path has minimum cycle time; i.e., the 
bler is  overlapped and therefore  does not take a cycle. 

From studies of compiled  code, it is  clear that the 
proportions of branch, fixed-point, and floating-point 
instructions are not equal.  (Branches  usually constitute 
less than 20 percent of  all instructions executed, and 
most  programs do not have a high percentage of  floating- 
point instructions.) It is  also  clear that the three 
instruction types are not uniformly distributed in the 
code.  However, to achieve optimum fixed- and floating- 
point performance, the compiler should intermix the 
fixed- and floating-point instructions. Some amount of 
instruction queuing with  wider instruction fetch and 
dispatch  could  reduce the level of this requirement on a 
compiler. 

Branch instructions have three types of address 
computations: instruction address  relative,  address 
absolute, and register. The fields  required  for the 
instruction address  relative and address absolute types are 
part of the instruction and can be  executed  immediately. 
When  there  is no condition to be  tested, the size  of this 

26 instruction field  is  26  bits; that is, a relative or 
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absolute  address  can be generated. For conditional 
branches, the relative and absolute address field  is  16  bits; 
that is, a f215 relative or absolute address can be 
generated. The last  type,  register,  is  used when the target 
address  is not known at compile time or is  larger than 26 
bits. The register in this case  is  always a branch-unit 
register,  typically the link register. For maximum 
performance, the compiler needs to move the address to 
the link  register  as  early as possible, so that the target 
instruction may be fetched by the branch unit while the 
instructions between the load of the link register and the 
register branch are still in the instruction queues. For 
unconditional branches, the branch unit may  be 
significantly ahead of the fixed-point and floating-point 
units with  respect to which instructions are currently 
being  executed. 

For branches that depend on the condition register 
(conditional branches), the situation is  somewhat 
different. The condition register is composed of eight 
condition fields.  Two  of the eight are assigned to the 
fixed-point and floating-point units (one to each) to 
contain the results of arithmetic computations. Both 
fixed- and floating-point arithmetic instructions contain a 
bit, the record  bit (Rc) that indicates whether or not the 
corresponding condition field should be  set. All eight 
fields can be  explicitly  set by  fixed- or floating-point 
arithmetic compare instructions. In addition, there are 
special branch-unit instructions that either manage 
(move/save) the fields or perform  logical operations on 
the fields. 

The motivation for  two standard condition fields 
should  be  obvious: Fixed-point and floating-point 
computations involving the setting of conditions are 
completely independent of each other and can proceed in 
parallel. The motivation for  explicit control by the Rc bit 
of the setting of the standard fields  is  twofold:  Only the 
conditions that are to be  tested  need be saved 
(subsequent arithmetic will not change the saved 
condition), and explicitly  identifying an instruction which 
sets the condition makes it easier  for the compiler to 
schedule this instruction as far away as possible from the 
testing of the condition. The motivation for the 
additional condition fields  is the recognition that 
comparisons are independent operations themselves and 
should not have to interfere with  each other by setting a 
common condition code. By giving comparisons their 
own condition field, the comparisons can be scheduled 
earlier,  repeated comparisons can be eliminated, and 
invariant comparisons can be  moved out of inner loops. 
By having the compiler target condition codes and 
comparisons to different  fields in the condition register, 
the hardware can exploit  simple  scoreboarding algorithms 
to detect  dependencies without significantly  affecting 
performance. 
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Figure 2(a) illustrates the use  of multiple condition 
fields,  showing  how  pre-testing  of the conditions enables 
the branch code to be  no more than just the branch logic 
itself. Figure 2(b) shows the instruction stream. 

On entry to this routine, r3, r4, and r5 contain the 
addresses of  x,  y, and z, respectively. The cmp (compare) 
identifies the target condition field and is a fixed-point 
instruction. The nonregister  form of branch (bf-branch 
false pseudo-instruction)  is an instruction to perform a 
relative branch. The lr (load  register)  is a pseudo- 
instruction for  moving the contents of one register to 
another. 

The setting of a condition field  by an arithmetic or 
comparison operation and its  subsequent  testing 
represent one major requirement for coordination 
between the fixed- and floating-point units and the 
branch unit. It was  recognized  very  early that  it would  be 
extremely  difficult to have the setting operation 
immediately followed  by the testing branch and not lose 
cycles. A possible implementation that probabilistically 
reduces  this  dependency, but increases  hardware 
complexity,  is  for the branch unit to conditionally 
dispatch fixed- and floating-point instructions. This then 
becomes an area where an implementation is  faced  with 
the more traditional trade-off  between  significant 
hardware  complexity and better performance. 

Even  when  predicting  whether a branch will  be taken, 
the compiler can help.  There are two  cases  of conditional 
branches that can be  analyzed:  if-then-else  logic and loop 
closure.  In  general,  without additional language  help, it is 
not obvious  which path of the if-then-else logic should  be 
taken. For this case, the best  guess  is  often the fall- 
through case. On the other hand, the branch-back  for 
loop closure  is  almost always taken. An RS/6000 
processor  does not have the same information that a 
compiler  does in analyzing the cases;  however, it does 
have the displacement. (In general, branch addresses are 
obtained from an immediate field in the branch 
instruction.) If the displacement  is  negative, it is a good 
assumption that the branch instruction is part of a loop 
closure and will  be taken.  Otherwise, the fall-through  case 
is the preferred path for the conditional dispatch of 
instructions. 

Part of the cost of separate branch-unit registers  is the 
additional instruction(s) required to move  branch-register 
contents to or from the general-purpose  registers (GPRs). 
Early in the development  cycle, the obvious  choice of 
using a specific GPR as the link register  was  considered, 
thereby  eliminating the instructions required to save and 
restore  an  explicit link register.  It  was  assumed that the 
fixed-point unit could monitor all  loads of the selected 
GPR and ship the new  value to the branch unit. While 
this was certainly  possible, this proposed  mechanism did 
not save  any  cycles  because the coordination and transfer 

I* This procedure returns the middle of three numbers */ 

y2: procedure (x, y, z) returns (fixed bin(31)) reorder: 
declare 

(x, y, z) fixed bin(31), 
mid fixed bin(3lf; 

if y<z then 
mid = y; 

else 
if x<z then 

mid = z; 
else 

mid = x; 
else 

if y> = z then 

else 

if x<y then 

mid = y; 

if x> = z then 

else 
mid = z; 

return (mid); 
mid = x; 

end y2; 

* 
* 

* 

* 

%8: 

1 

I 
I 

CmP 
cmP 
CmP 

bf 
btr 
Ir 
btr 
Ir 
br 

bfr 
Ir 
bfr 
Ir 
br 

rO, X (r3) 

r4, Z (r5) 
r3, Y (r4) 

cr6,  rO,r3 
cr0, rO, r4 
crl, r3, r4 

cr6, It, %8 
crl, It 
r3, r4 
cro, It 
r3, r0 

crl, It 
r3, r4 
crO, It 
r3, rO 

Start of Procedure 
(note r3 will contain answer on return) 
load X, Y, Z into 10, r3, r4 

Precompute conditions 
Compare X and Y, saving result in cr6 
Compare X and Z, saving result in crO 
Compare Y and Z, saving result in crl 

Branch to Label %8 if X ge Y 
Conditional return (Y It Z) (return Y) 
Move 2 to return register 
Conditional return (X It Z) (return Z) 
Move X to return register 
Return (return X) 

Conditional return (return Y) 

Conditional return (return Z) 
Move Z to return register 

Move X to return regisier 
Return (return X) 

still  took at least one cycle. Furthermore, the hardware to 
support this implied transfer would  be more difficult to 
implement and more error prone than that required  for 
explicit transfer instructions. Explicit  register  transfer 
instructions also  expose this dependency to the compiler, 
which can then schedule the transfer as early as possible 
so that the content will be available to a branch 
instruction. For these  reasons, the implied link register 
was rejected. 27 

R.  R. OEHLER  AND R. D. GROVES IBM J. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990 



28 

R. R. OEHLER AND R. D. GROVES IBM 1. RES, DEVELOP. VOL. 34 NO. 1 JANUARY 1990 

The calling  routine: 
bl .glue.foo # branch to foo (actually glue) 
I rTW, 20(rDSA) #restore my TOC 

The glue  routine: 
.glue.foo 1 r12, foo.DESCR(rTOC) # address of descriptor for foo 

st rTOC, 20(rDSA) # save  caller’s  TOC on stack 
I rO, O(r12) # get code address of “callee” 
1 rTOC, 4(r12) # get  TOC  address of “callee” 
mtspr CTR, rO # set target to count reg 
bc # branch  through count reg 

The callee routine: 
.foo mfspr LR, rO # move LR if foo  not  leaf 

mfspr CR, r12 # move CR if foo  alters  it 
stm r13, -144-76(r1) # save GPRs  13-31 if foo alters  them 
st rO, 8(rl) # save LR if foo not  leaf 
st r12,4(rl) # save CR if foo alters it 
stu rl, -szdsa(rl) # decrement  stack  ptr  and  save  hack 

chain 

I rQ szdsa+8(rl) # get LR if saved 
1 r12, szdsa+4(rl) # get CR if saved 
ai rl, r l ,  szdsa # restore  stack  ptr 
mtspr LR, rO # put  back into LR if saved 
Im r13, -144-76(rl) # restore GPRs 13-31 if saved 
mtspr CW, ‘00111000’B, r12 #restore CR2, CR3, CR4 of CR if 

saved 
hr # return  through LR 

However, one observation about program  linkage  did 
cause a change in the architecture. It was assumed that 
one  link  register was  sufficient (and obviously it is).  If 
nested  routines are to be  called, the link  register  (along 
with the other conventional registers)  will  be  saved at the 
point of  call and restored at the point of return. At the 
outermost (“leaf”) level, no registers  need  be  saved  or 
restored. 

One  particular case did  cause  unnecessary  cycles.  As a 
system  strategy,  software  has the notion of bound objects, 
that is, separately  compiled units linked (bound) together, 
with  all internal references  resolved.  Software  also 
requires that such  objects  be  relocatable and sharable. To 
accomplish  sharing  across bound objects, a more 
complicated  linkage convention is  required. This 
convention uses “glue”  code, that is, code introduced to 
manage  cross-object  linkage.  Instead of calling an entry 
in another object  directly, the glue  code is called  first. 

The glue code  loads the appropriate addresses and then 
calls the requested entry. 

As originally  defined, this double  call  makes  use of the 
link  register  four  times:  once as the target for the 
appropriate glue  code,  once  for the return address of the 
calling  program,  once  as the target  for the original entry 
called, and once  for the return address of the glue  code. 
To accomplish  this, the original implementation of the 
glue code  had to save the contents of the link register and 
then load the address of the called entry into  the link 
register.  On the return path, the called entry returns to 
the glue  code,  which  reloads the saved  address into the 
link  register and returns to the calling routine. Other than 
reloading the saved  address, the glue  code  need not be 
returned to, and the original  calling  program can be 
given direct control. 

another branch-unit register to contain a branch-target 
address.  Because this observation was made late in the 
design  cycle, a separate register  could not be  used, so the 
count register  was  chosen to perform this additional 
function. With this new architecture, the calling  program 
loads the address of the appropriate glue  code into the 
link register and branch-and-links through the link 
register,  setting  its return address. The glue  code  now 
loads the count register  with the address of the called 
entry and branches to it. On return, the called routine 
branches  through the link register  directly to the calling 
program. 

sequence  with  these conventions: Each  object maintains 
two pointers: one to the DSA (dynamic save area) and 
the other to the TOC (table of contents). The DSA  is the 
program  stack, and the TOC is the linkage  segment. The 
link  register (LR) is  used to call the “glue.” The glue 
called  is  specific to the actual target routine. The calling 
module  is  responsible  for  reloading its pointer to the 
TOC. 

To accomplish this, it was  necessary to make  available 

Figure 3 shows an out-of-bound-object  linkage 

Note that for leaf procedures  most of these instructions 
are not needed-for simple  leaf  procedures there is no 
need to save or restore  registers.  Even the DSA need not 
be updated. By convention, not all of the CR is saved, 
just the third, fourth, and fifth  nibbles. The mfspr (move 
from  special-purpose  register)  copies data from the 
identified  special-purpose  register to a GPR. This code 
does not deal  with FPRs (floating-point  registers). 

Fixed-point  unit 
Besides handling all  of the normal fixed-point arithmetic 
instructions, the fixed-point unit does  all  data-address 
computations for  both  itself and the floating-point unit. 
In this role, the fixed-point unit schedules the movement 
of data between the floating-point unit and the data 
cache. The role of the floating-point unit is to either 



supply the data going to  the cache or accept the  data 
coming from it, with the source or destination being its 
floating-point  registers. This operation of data transfer 
should be  viewed as not taking a floating-point unit cycle. 
Floating-point loads and stores are fixed-point operations 
and take fixed-point cycles. 

The fixed-point unit is a traditional RISC, and in many 
respects  represents  only a modest change from the 
original 80 1. It has thirty-two 32-bit  registers, three 
operand operations (RT = RA + RB), and a powerful 
rotate and mask  facility. All instructions are 32  bits  long, 
with a 16-bit immediate field where appropriate. The 
immediate field can  be  used  as a displacement, which  is 
relative to a register.  Load and store instructions also 
have an address auto-increment feature. An MQ register 
is  used  for multiply and divide operations as well as 
extended-precision computation. Each arithmetic 
operation computes the three standard conditions of  less 
than, equality, and greater than. Overflow is the fourth 
condition, under control of an overflow control bit. 
Controlling overflow  is  necessary  when extended- 
precision operations are being performed. Even though 
the conditions are generated on each arithmetic 
instruction, the first condition field (back in the branch 
unit) is not set  unless the record bit in the arithmetic 
instruction is  set. 

Other than the inclusion of full multiply and divide 
instructions (instead of multiply step and divide step), the 
most  significant departure in the fixed-point unit from 
the original 80 1 is  for the handling of misaligned data. 
The original 80 1 asserted that all programs and data were 
aligned or could be  aligned.  While this is true of 
programs, some of the  data represented by various 
declarations in old programs is not aligned. To cover this 
case, the 80 1 had an alignment-check  mode. If the mode 
was  off,  all addresses were truncated to  the natural 
boundary of the operands. If alignment-check mode was 
on, all  addresses  were  checked  for conformance of the 
address to  the natural boundary of the operand. If the 
address conformed, the operation proceeded. If it did not, 
the instruction caused  an alignment-check interrupt. 
Software  could then fix up the register, if the operation 
was a load, or  the storage location, if it was a store, and 
then resume the interrupted program at  the next 
instruction. This scheme  is  reasonable  as  long as the 
frequency of use  of  misaligned data is  very  low. In the 
case  of the data found in some programs (usually old 
FORTRAN programs), it  is not. 

The RS/6000 architecture has adopted the following 
strategy  for  dealing  with  misaligned data. It calls  for the 
implementation of  misaligned loads and stores, including 
special  string operations. It is  relatively  easy to conceive 
how this might  work  when  all  of the  data is contained 
within one cache line. To implement this, the hardware 

can appropriately adjust the alignment on the way in or 
out of the cache with a simple  byte multiplexor. A more 
difficult question is  what to  do with  misaligned data that 
straddles cache-line boundaries. If one line is in the cache 
but the other is not, the hardware must pause in the 
middle of an instruction and wait  for the missing cache 
line to cycle. Such hardware is more complicated. An 
even more difficult situation occurs  when the misaligned 
data crosses a protection boundary. (While  paging and 
protection have not yet  been  discussed, think of a 
protection boundary as one where  access  is  allowed on 
one side but may or may not be  allowed on the other. 
The other side  may  be “protected.”) In this case,  if the 
instruction is allowed to start, some of the misaligned 
data will  be moved; the rest might not. In general, there 
is no way to tell ahead of time without “dry-running’’ the 
instruction, that is, probing the  data accesses within each 
protection boundary. If the result of the dry run is 
successful, the instruction is started; if it is not, an 
interrupt is generated. This procedure is  very  costly both 
in hardware and  in time. 

architecture only requires hardware to handle misaligned 
data within a cache line for the all-non-string 
instructions. The architecture allows  for the partial 
completion of an operation and  the generation of an 
alignment-check interrupt when the  data crosses a cache- 
line boundary. System  software can then complete the 
instruction by  fixing up the affected  registers or memory 
locations. This definition will lead to various 
implementations. At a minimum, all data will  be 
accessible within a cache  line. On some machines, all 
data except that crossing a protection boundary will  be 
accessible. Other machines might allow  all data to be 
accessible  (if not protected). System  software must 
implement the alignment-check interrupt, which will 
execute more or less frequently depending on the 
machine on which it executes. 

Character string operations represent a significant part 
of the mix  of functions being performed and are rarely 
aligned on word boundaries. Our studies have indicated 
that as much as 15 percent of the cycles spent during 
compilation are spent moving  strings. The original 80 1 
used  special instructions that shifted characters in a 
combination of the MQ and a general-purpose  register, 
stored the contents of the general-purpose  register, and 
updated (auto-incremented) the storage address. Thus, it 
was  possible to write a subroutine that, after initial 
alignment, could move four bytes  every  two  cycles  (if the 
loop was “unrolled”). While this may  have been good on 
a machine that had a four-byte data flow, it prevented the 
use  of the much wider data flow  possible in today’s 
technology.  These instructions also required significant 
overhead in setting up  the inner loop. Since more than 

To simplify the hardware requirements, RS/6000 
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# 

# Move  section-R3  Target address, R4 Move  length,  R5 Source address. 
# 
# 
# String  length here is  always at least  21. Scheme is to move chunks of 
# 16  bytes  using LSWSTSX with R4 as the index  reg and use the count 
# reg  as loop control. Move  uses R9-Rl2. Remainder count in R8. 
# 

lil r9, 16  #Chunk  length for move  and  remainder. 
cmpl crl, r5, r3 #Test  if  long  fwd  move  might destruct. 
mtspr XER, r9 #Set move  length. 
rlinm. r8, r4,0, OxOOOOOOOf 

# #R8 =remainder, 
CR bit  2 (eq) = “no remainder.” 

mtctr 16 #Set loop  count-Number chunks to move. 
crand 27.26, 2 #CR  bit 27 = “No pad  and no 

remainder.’’ 
blt crl, backward  #B  If  A(source) < A (target) logically. 

# 
forward: 

# Start chunk  move  at first 16 bytes  of  target area. 
lil r4,O #Beginning Index. 

loopfl: Isx r9,r4, r5 #Get next  chunk of string 
stsx r9, r4, r3 #Store it  away 
ai r4, r4, 16 #Bump index  up 
bdn loopfl #Bump count, Br if chunk(s) left  to do. 
bbtr  27 #Return if no pad  and no remainder. 
bz  crO,  pad #Go do pad  if no  remainder. 

# 
mtxer 18 #Set move count for  remainder. 
Isx r9, r4, r5 #Get the string. 
stsx r9, r4, r3 #Store  the string. 
bzr cr6 #Return  if  pad  not  required. 

b pad #Go pad. 

half the strings  moved are less than eight  bytes, this 
overhead  represents a significant portion of the execution 
cycles for  moving  strings. 

Given the wider data paths implied by the RS/6000 
architecture, it was reasonable to define  string  operations. 
Such operations move  misaligned data from  storage to 
consecutive  registers, or from  consecutive  registers to 
storage. Of course,  these instructions have to deal  with 
the problems of alignment and protection and are 
therefore  defined to allow partial completion of the 

30 operation and complete  restartability.  Since their main 
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advantage is high-speed transfer of long character strings, 
these instructions cannot take alignment-check 
interrupts. The fact that these instructions load and store 
misaligned data significantly  reduces the overhead 
required to enter the inner loop.  With  these instructions, 
the architecture can  achieve data-move performance 
equal to the maximum rate  implied by the data flow 
without very complicated  hardware and without dry- 
running instructions. 

Figure 4 is an excerpt  from the C subroutine “void 
bcopy (to-addr,from-addqlen);”. The purpose of this 
code  is to move the “from” string to the “to” string.  It 
will move the string “backward” if there is a possibility 
that the strings  overlap. The string  length can be  zero. 
The small  section of code  shown  here  will  move a small 
number of bytes (fewer than 16) or move bigger chunks 
until there are only a small number of  bytes to move. 

all  pseudo-instructions for the RS/6000 branch 
instructions. The rlinrn instruction rotates and ANDs 
under mask. The period (.) following rlinrn is the 
indication to return the condition code to the branch 
unit at the end of this instruction. The crand instruction 
logically ANDs two  condition-register  bits, putting the 
result into a designated  condition-register bit. This 
instruction is  executed on the branch unit. The bbtr 
pseudo-instruction branches on the specified condition- 
register  bit. The Isx and stsx instructions respectively  load 
and store strings.  They start from a designated GPR  and 
use consecutively  higher-numbered GPRs. The number 
of bytes  moved is controlled by the value in the fixed- 
point exception  register (XER), a special-purpose  fixed- 
point register  which contains fixed-point arithmetic 
exceptions and control fields for the string instructions. 

The null-terminated strings supported by the C 
language  presented a particular problem in the RS/6000 
architecture. The following  represents the most straight- 
forward loop for implementing strcpy (source,target) with 
r3 containing the address of the source and r4 the address 
of the target: 

The new instructions (blt, bdn, bbtr, bz, bzr, and 6 )  are 

ai r3, -1 # Prepare  addresses  for  pre- 

ai r4, -1 
increment 

loop:  lbzu  r5, l(r3) # Get byte  of string and update 
pointer 

cmpi crO, r5,O # Compare with null 
stbu r5, l(r4) # Store byte away and update 

pointer 
bne crO, loop # Loop if not null 

Since the compare immediate (crnpi) is dependent upon 
the load  byte and zero  with update (Ibzu), the one-cycle 
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data cache  access  will  be  fully  exposed,  resulting in at 
least four fixed-point cycles per  byte transferred. In 
addition, the setting of crO  by the cmpi instruction is  only 
one instruction before the branch not equal (bne) which 
depends upon it. Therefore, some implementations may 
not be able to completely overlap the execution of the 
branch instruction. 

Several alternatives to this problem were examined. 
One proposed solution was to add a compare-bytes 
instruction. This instruction would compare all the bytes 
in a register and return the number of the first  byte from 
the left  which contained a null (or any other arbitrary 
character). This solution allowed  for an inner loop which 
would  load four bytes  in one instruction, compare those 
four bytes  with the compare-bytes instruction, and store 
four bytes  if no null was found. 

This alternative was rejected  for  two  reasons:  First, this 
particular approach cannot easily  be extended to support 
wider data buses to the cache. This approach is  basically 
limited to four bytes  every three or four cycles. The 
second  reason  for  rejecting the compare-bytes instruction 
was the overhead required for set-up and termination. 
Since the inner loop loads four bytes  before  checking  for 
the terminating null character, the loop is  likely to load 
bytes  beyond the end of the string. In order to avoid 
spurious storage protection exceptions  caused by 
accessing  storage that the program  would not normally 
touch if the original  one-byte-at-a-time loop were 
executed, the new inner loop must be  preceded by code 
which  copies enough of the string to force the inner loop 
to be  word-aligned,  which guarantees that  no protection 
boundaries will accidentally  be  crossed. The loop also 
must be  followed  by some “fix-up” code which stores 
only the bytes up  to  and including the null character. 
Character string  statistics indicate that most  strings are 
eight  bytes or less, so the significant  overhead  before and 
after the inner loop significantly  reduces the benefit 
associated  with the compare-bytes instruction. 

to define a load-string-and-compare-bytes (Iscbx) 
instruction. This instruction loads misaligned data into 
consecutive  registers and compares all incoming bytes to 
a comparison character contained in the XER  (usually a 
null). If a match is found, the Equal bit  in crO  will  be set. 
The byte count of the first match is returned in the XER 
count field. The instruction is  defined  such that any 
storage after the first matching byte  must appear to have 
been “untouched” by the instruction. Implementations 
can either “pause” at storage protection boundaries to 
check  for the end of the string, or proceed  across the 
boundary and cancel  any protection exceptions  generated 
after the match. 

With this instruction, implementations can move  null- 
terminated character strings at nearly the full bandwidth 

The solution selected  for the RS/6000 architecture was 

lil rO.16 #Load  byte  count  and null into XER 
mtspr XER,rO 
lil rO,O # Initialize  index to zero 

loop: Iscbx. r5,(r3 +rO) #Get 16 bytes of source  string 
stsx rS,l(r4) #Store up to 16 bytes  at  target 
ai rO,16 #Update  index 
bne crO, loop #Loop if not  null 

of the processor/cache interface. Also, multiple-byte 
comparisons are performed in parallel without having to 
involve the branch unit. The instruction definition also 
minimizes the set-up required for the inner loop so that it 
is  efficient  for short and long  strings. An example of the 
coding  of strcpy (source,target) with r3 containing the 
address  of the source and r4 containing the address of the 
target  using lscbx is  shown in Figure 5. This code 
sequence  is  simple and compact enough that  the 
compiler can generate it in-line whenever strcpy is 
encountered. 

Another aspect  of including string operations in the 
architecture is its effect on subroutine linkage. The 
original 80 1 used a sequence  of stores to save state at 
subroutine call and a sequence of loads to restore state at 
subroutine return. These sequences  were  themselves part 
of the “prolog” and “epilog” code and were called at 
entry to  and exit from every non-“leaf” routine. While 
the additional branch overhead of this linkage can be 
eliminated by the ability of the branch unit to fetch 
ahead, this convention would  have required the link 
register to be  saved  before  calling the prolog and restored 
in the epilog. 

The sequences  of stores and loads also presented a 
problem. Without special hardware that recognized such 
sequences, the maximum transfer rate to storage was one 
word  every instruction, or four bytes  every  cycle. To 
achieve better performance without special hardware, we 
adopted load multiple (LM) and store multiple (STM) 
instructions. Since  these instructions define a sequence of 
registers to be loaded or stored, they permit an 
implementation to achieve its maximum transfer rate. 

LM and STM do require some of the mechanism of 
string operations. While the storage address of  these 
instructions is defined to be word-aligned, the full  length 
of the operands may  cross a protection boundary. Thus, 
LM and STM are defined to allow a page fault during 
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SUBROUTINE MATMPY (A, B, C, n, n l ,  n2, n3) C 
REAL*8 A(O:N,  O:N), B(ON, ON), C(O:N, 0:N) C 
INTEGERI,J,K,NCCC 

DO301 = Q N I  

C(I. J) = 0 
D 0 2 0 J  = 4 N 2  

END 

Ifd 
cmpi 
ai 
ai 
a 

CL.0: 
li 
bt 
Ir 
Ir 

CL.2: 
stfdux 
I r f  
bt 
Ir 
Ir 

CmP 
lctr 

CL.4: 
lfdux 

fma 
lfdu 

bctf 
stfd 

CL.5: 

CmP 
ai 

a 

CL.3: 
bf 

ai 
ai 

CL.1: 
bf 

C 

fp0 = +matmpy(r8,0) 
crl = r30,O 
r9 = r30, I 
r5 = r5, -8 
r5 = r7, r5 

r29 = 0 
CL.3, cr0, It 
r6 = r3 
r8 = r4 

r8, c(r8, r28,O) = fp0 

CL.5, crl, I t  
r l l  = r7 
r10 = r6 
r 9  
cr6 = r0, r30 

fp3, r l l  = a(rll, r31,O) 
fp2, r10 = b(rl0, 8) 

fpl = fpo 

fpl = fpl, fp3, fp2 
CL.4, cr6, gt 
c(r8.0) = fpl 

r29 = r29 1 
cr6 = r29,R7 
r6 = r12,r6 
CL.2, cr6, gt 

cr6 = r7, r5 

r7 = r7,8 
r4 = r4, 8 

CL.0, cr6, gt 

their operation without requiring a dry run. Similarly, 
they  are permitted to perform a partial operation and yet 
be  restartable  from the beginning. 

architecture, it became  reasonable to generate in-line 
prolog and epilog  code. See Figure 3 for use  of the LM 
and STM instructions. 

By including LM and STM in the RS/6000 

Floating-point unit 
The floating-point unit has thirty-two 64-bit  floating- 
point registers. There is  also a floating-point status and 
control register that contains exception indicators, default 
exception  masks, and floating-point conditions. The 
floating-point unit supports ANSI/IEEE Standard 754- 32 
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1985, “IEEE Standard for  Binary Floating-point 
Arithmetic” [3]. The architecture defines the basic 
arithmetic set  of add, subtract, multiply, and divide 
operations. It also  defines the usual floating-point register 
move,  negate, and absolute-value operations. It provides 
for  round-to-single and floating-point compare. Like the 
original 80 1, the RS/6000 architecture requires software 
support for many of the extended functions in order to 
fully conform to the IEEE standard. 

RISC System/6000  floating-point  processing  is 
organized  for double-precision computations. This means 
that data held in the floating-point  registers  is  always 
represented in double-precision format. Thus, when 
single-precision data is loaded, it is expanded into 
double-precision format. Similarly,  when a floating-point 
register  is stored as  single-precision data, it is  first 
converted to single-precision format and then stored. To 
achieve the same results  as a processor  which supports an 
IEEE conforming single-precision mode requires that a 
round-to-single instruction be performed after each 
floating-point arithmetic operation; otherwise the results 
will  be in extended  single-precision format. 

One interesting extension to RS/6000  floating-point 
operation is the definition of a floating-point  register 
lock. When set, this lock prevents the execution of 
floating-point instructions. An attempt to execute any of 
these instructions causes an interrupt identifying the 
attempted use. The floating-point  register  lock and  the 
associated interrupt can be  used  by  software to manage 
the saving and restoring of floating-point registers during 
process  switching or at system  call so that the F’PRs need 
only  be  saved and restored for those tasks  which are 
actually  executing floating-point code. 

As was previously noted, the single  most important 
feature of the floating-point unit is its ability to  do a 
multiply-add instruction every  cycle. Four multiply-add 
instructions were added, to cover the four possible  signs 
of the operations (not  the operands). An interesting side 
effect  of these new instructions is the new precision 
gained from their use. It is now  possible to obtain a more 
precise  result  by doing a multiply-add than by doing a 
multiply followed  by an add, since the full  precision  of 
the intermediate result is used during the multiply-add 
but lost during the two-instruction sequence. 

To exploit the level  of computational power  offered  by 
the multiply-add operations, data must be given to  and 
taken from the floating-point unit by a means at least as 
fast  as the multiply-add execution time. This has  been 
accomplished by using the fixed-point unit as the address 
generator and data mover  for the floating-point unit  and 
by including a large number of floating-point registers, 
which act as a buffer. These facilities,  when applied to 
standard math library functions, have  led to some 
remarkable results. 
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The paper by P. W. Markstein [4] in this issue 
illustrates the benefits of this approach. For instance, 
studies of various  matrix operations have  shown that the 
RS/6000 processor  achieves  performance  usually 
associated  only  with  vector  machines.  Additionally, if a 
particular matrix operation algorithm  is  sensitive to the 
geometry and replacement  algorithm of the data cache, 
significantly improved performance  is obtainable. 
Figure 6 shows a matrix multiply operation that achieves 
near-optimum performance. 

Figure 7 illustrates the case  of inner product. 
The Ifd instruction loads a floating-point  register. The 

lfdu instruction loads a floating-point  register and updates 
the address. The stfd instruction stores a floating-point 
register. The CL.0 loop in this code contains four 
instructions or five operations. There are two  fixed-point 
instructions, one floating-point instruction, and one 
branch instruction, so an implementation of this 
architecture could  perform this loop in two instruction 
times. 

Another very important aspect of fully exploiting 
floating-point  performance  is the method of presentation 
of floating-point  exceptions and the precision in 
identifying the instructions that cause  floating-point 
exceptions.  Exceptions are a natural and perhaps an 
expected  consequence of floating-point operations, and 
most  can be handled by default  rules.  (Default  exception 
handling is defined by the IEEE standard.) These  default 
rules  can be  managed  completely in hardware and 
require no program intervention after initialization. 

The IEEE default  rules do not always provide the 
desired  result,  however.  Since the standard allows  for 
program  fix-up  after an exception, the architecture 
problem then is  how to define a mechanism to permit 
program  fix-up. The most  straightforward approach is to 
specify that a floating-point interrupt at the failing 
instruction will occur  whenever there is a floating-point 
exception that is not defaulted. The hardware implication 
of this is that all instructions after a floating-point 
instruction must  be conditional until it is  known that no 
exceptions are possible on that instruction. Some 
floating-point instructions take many cycles, and 
exceptions  may not be  known until the last  cycle  of the 
instruction. Therefore,  most implementations would 
serialize  on  floating-point  instructions-if not the first, 
then the second; if not all, then some. The inclusion of a 
floating-point interrupt would  sacrifice much of the 
potential  floating-point  performance. 

An alternative strategy  is not to report an interrupt at 
all, but simply to set a bit indicating that a floating-point 
exception has occurred.  It  is then up to a program to test 
for  floating-point  exceptions.  Different  compiler  strategies 
can be  used  as to where  it  is appropriate to test  for  these 
exceptions.  Since the definition of the exception  also 

LOOP3-INNER PRODUCT 
SUBROUTINE LOOP3(N) 
REAL*S X(looO), Z(looO), Q 
IJK = 1 
D 0 3 K   = I J K , N  
Q = Q+Z(K)*X(Kj 
CONTINUE 
END 

I 
I 
cmpi 
ht 
ai 
Ifd 
mtspr 

CL.0: 
Ifd 
lfdu 

fma 
hctf 
stfd 

CL.1: 
li 
br 

Subroutine for Inner Product 

r3,n(r3,0) Load N from argument pointer 

r5,.&loop3$(r2,0) Addressahility local data (Q) 

crO,r3,1 Test N, result to crO 

CL.l,crO,lt See if N< I ,  exit if so 

r4,r5,8 set address of start of X 

fp0,q(r5,0) fetch Q into fp0 

CTR,r3 set ctr = N 

fp2,z(r4,8008) load Z(K) into fp2 

fpl,x(r4,8) load X(K) into fpl, bump address 
of x 

fPo3f@,fp2,fpl  Q = Q+Z(Kj*X(K) 
CL.O,crO,gt Branch on Count 

f@&5,0) Store Q 

r3,O Set return value 
Return 

includes the setting of summary information, it is 
possible to test at the end of a program, at the end of a 
subprogram, or  at the end of a statement where a 
floating-point operation was  used. This level  of precision 
can  be controlled by linker/compiler option. None of 
these  tell  exactly  where the exception occurred; they 
simply  identify that it occurred.  In  most  cases, this 
information is  sufficient. 

However,  if the exact  failing instruction must be 
known, there are two  possible  strategies. One can insert a 
test  for the exception after each  floating-point instruction, 
or one can tag  each queued and/or executing  floating- 
point instruction with its address.  Inserting  code to test 
for  every  possible  exception  is  yet another mode for the 
compiler to manage,  necessitates recompilation, and can 
significantly expand execution time. Address  tagging  of 
“active”  floating-point instructions identifies the failing 
instruction exactly.  However, it does require that the 33 
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32-bit  effective  address 

19120 311 

registers 
segment 

or I/O 
Virtual 
Page 
index 

Virtual 52-bit 

number address 

Translation 
look-aside buffers 

Page frame table 

Byte 
offset 

Protection 
and  locking 

Real  address 

' Virtual address generation and translation. 

implementation keep track of the address  tags.  Moreover, 
it is not synchronous; that is,  if an exception  occurs, the 
location of the failing instruction is  reported, but not 
before the program  has  gone  beyond that point. Fix-up 
may  still  be  possible, but in general this method only 
permits localization of the failing instruction. Consider 
the case  of the inner-product loop described in Figure 7. 
This loop  consists of  two floating-point  loads, one 
floating-point  multiply-add, and one branch. The 
"active"  floating-point instructions will  all  be instances of 
the same  multiply-add instruction. If an exception 
occurs,  what  is  known  is the address of the instruction, 
not the iteration number. The benefit  of this approach is 
speed;  floating-point  performance  is not limited by 
exception  recognition. The drawback, as outlined above, 
is the precision  with  which the fault  is determined. 

RISC System/6000 architecture adopted a two-part 
strategy. The principal approach would  be  test-code 
insertion, with the compilers  able to insert such  code at 
the statement or (sub)program  level. The linker also 
supports the enabling of  test  code at program  exit, 
ensuring the ability to report a floating-point  exception if 
it occurs  anywhere  within the program. 
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To avoid  recompilation in order to identify the failing 
operation  exactly, the architecture also adopted a 
synchronize  mode,  in which an interrupt can be 
generated,  identifying the failing instruction by running 
the machine with one floating-point instruction 
dispatched at a time. This technique has the same 
weakness  as  code insertion; that is, floating-point 
performance  is  greatly  reduced.  However, it may not be 
as  bad as code insertion, because the synchronization can 
be managed by hardware rather than by extra  code 
inserted by the software.  It  is  expected that the mode will 
only  be  used  by certain programs, and then only to debug 
their  algorithms. 

Storage model 
The storage  model of RS/6000 architecture is an 
extension of the 801 (and the RT System)  model. All 
computed addresses  (called  effective  addresses) are 32 bits 
wide.  Excluding the special  case  of  programmed I/O, the 
model  has  two  addressing  modes,  real and virtual. If the 
machine is in real  mode, the effective  address  equals the 
real  address, and the full 32 bits are used to access  real 
storage. If the machine is in virtual  mode, a translation 
step must be  performed. The overall approach to 
translation can be found in [5,6]. The differences 
between  RISC  System/6000 and the RT System are 
these: The segment  identifier  (SID) in the RS/6000  is 24 
bits  wide,  resulting in a 52-bit  virtual  address. The real 
page  size  is 4096  bytes, and a full  32-bit  real  address  is 
supported. For special  segment  processing, the 
transaction identifier (TID) had  been  extended to 16 bits, 
and each  lock  bit spans 128  bytes (or 32  lock  bits  per  4- 
Kbyte  page). Figure 8 graphically  illustrates the data flow 
of this translation process. 

RISC/6000 architecture has  extended the special 
segment  locking to grant locks to transactions without 
generating  lock  faults.  When the system  software can 
determine that there is  only one active transaction in a 
particular page, the translation mechanism can be 
enabled to automatically grant access and  turn  on the 
appropriate lock  bit  for  each  new  lock  line  access.  Of 
course, if another transaction wishes to access the page, 
software  must then capture the lock information and 
return to the standard method of lock  processing.  In 
addition, under very special circumstances the RS/6000 
storage  model permits read  access to  data in special 
segments without checking either TIDs or lock  bits. This 
access  is not recorded. The situation most appropriate for 
this is during journal writing,  where the system, not the 
transaction, is outputting the data. 

RISC  System/6000 architecture has an interesting 
strategy for managing the caches.  In the effective  address 
resolution path, it is important that the TLB lookup be 
done in parallel  with the cache-directory lookup. (If it is 
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done sequentially, which  is the most straightforward way, 
an extra cycle  is added to all  loads, and perhaps to stores 
as well.)  Doing the lookups in parallel requires either that 
the hash functions be identical or that the bits used  be 
invariant with  respect to translation. Keeping the hash 
functions identical means that functions which  use 
multiple parts of the address (such as the SID and some 
of the virtual offset) cannot be  used,  since looking up a 
real address may result in a very  different congruence 
class from that which results from looking up the virtual 
address currently mapped at that real  address. This 
problem, sometimes called the cache-aliasing problem, 
forces many implementations to serialize the lookups, or 
to guess  for the correct class. The penalty for an incorrect 
guess  is another cycle in the load path. The alternate 
approach (choosing invariant bits for cache lookup) leads 
either to limited cache sizes or  to requirements on 
virtual-equals-real (V = R) software mapping. 

The RS/6000 architecture has chosen to restrict any 
page that can be  addressed both virtual and real to be 
identical in the cache hash-function bits in both spaces or 
for the operating system to perform the appropriate 
cache-line  flushes to maintain consistency. Almost  all of 
the RS/6000 software runs in virtual mode. This 
restriction affects only the low  levels  of interrupt handling 
and  startup code. 

As  was previously noted, the  data cache uses a “store- 
in,” not a “write-through,’’ algorithm. Additionally, there 
is no coordination of stores in  the  data cache with the 
possible contents of the instruction cache. (This is the 
same strategy that was  used on  the original 80 1 .) A 
consequence of this strategy  is that software must manage 
the synchronization between  caches. Similarly, there is 
no coordination between the caches and I/O. Data 
moved by 1/0 comes from or goes to main storage 
directly. Thus, software must also manage this 
synchronization. 

The RISC System/6000 architecture has added to this 
complexity. Because  of the branch unit and its ability to 
fetch ahead, it is  difficult to identify precisely  which 
instructions have been prefetched and/or dispatched but 
not yet executed by the fixed-point or floating-point 
units. With  software-managed  caches,  however, this must 
be known or controlled with certainty. Consider the case 
of program modification, e.g., a loader-generated piece of 
code such as glue  code.  After the instructions to generate 
this code are executed, the data cache line(s) containing 
these instructions must be stored back, and any line in 
the instruction cache that might contain old  copies  of the 
unmodified code must be flushed. These store-back and 
flush operations must be synchronized. RS/6000 
architecture (and the 80 1 )  provide cache-synchronizing 
primitives to accomplish this function. In the former, 
however,  it  is  conceivable that  the branch unit will  be 

looking far enough ahead that  the unmodified 
instructions will have  been prefetched and/or dispatched 
before the synchronizing primitives are executed. The 
architecture fix for this is to require a flush  of the 
prefetch mechanism (and  the instruction buffers) 
whenever a cache-synchronize instruction is executed. It 
is  very  easy (and safe) to overspecify  when 
synchronization of this form is required. Consider the 
cases  of various state changes  associated with interrupts. 
Some, such as I/O, require synchronization because a 
new translation mode  must be  used. Others, such as 
supervisor calls, do not. Because  of the performance 
consequences of this form of synchronization, RS/6000 
architecture has chosen to minimize the  number of 
instructions requiring synchronization. Careful attention 
is required by the hardware implementation and system 
software to neither miss places  where synchronization is 
required nor include places  where it is not required, so as 
to optimize between correct execution and maximum 
performance. 

changing of segment registers. On task  switch, most of 
the segment registers must be  saved and reloaded with 
the new  task’s contents. This is coded as many 
consecutive move-to-segment-register (mtsr) instructions. 
Since this code is  also executing out of a segment, the 
“safest” definition is to synchronize the processor on 
every mtsr just  in case it changes the code segment 
translation. For task switch, this would  be an unnecessary 
burden, since the code segment of the task-switch routine 
is not being changed. Therefore, the architecture requires 
that software include an explicit synchronize instruction 
after an mtsr which  changes code translation. 

A good example of this type of situation is the 

Conclusions 
The RISC System/6000 architecture has made significant 
improvements in implementing the ideas of the original 
80 1. As is  always the case, most of the changes are in  the 
details learned over many years by writing compilers and 
system code for 80 1 -style machines. The most important 
advance in  the RISC System/6000 implementation has 
been to integrate floating-point arithmetic into the 
architecture and concentrate on the parallel aspects of 
execution. This has led to  an architecture that offers 
remarkable floating-point performance, comparable to 
that offered  by many vector processors. The architecture 
is  rich enough to encourage the implementation of the 
multiple ALUs and much wider data paths that future 
technologies will probably make possible. 

The real distinction of the RISC System/6000 
approach over traditional RISCs, then, is that the 
architecture has partitioned the registers by function, 
allowing simultaneous execution with limited 
coordination. By exposing the areas of coordination 35 

IBM J.  RES. DEVELOP. VOL. 34 NO. I JANUARY 1990 R. R. OEHLER AND  R.  D. GROVES 



required, this  architecture  permits a compiler to generate 
highly optimized code which manages functional 
interaction to achieve parallelism that is close to the 
theoretical maximum for a given implementation. 
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