Preface

The 1BM Journal of Research and Development has
committed this issue to a description of the architecture
and machine design of the IBM RISC System/6000*
processor, along with some of the innovations in the
implementation of the AIX* operating system, Version 3,
that is used with that processor. Written by the system
designers, the articles presented here explain in detail
many of the advances in architecture, machine
organization, hardware design, and the management of
instructions, programs, and storage facilities that
characterize this new family of superscalar RISC
workstations and servers.

IBM RISC technology originated in 1974, and evolved
continuously through a number of laboratory
architectures and experimental machines. That
experience, traced in the article by Cocke and Markstein,
provided a number of technology transfers to the IBM
product line—the I/O processor in the IBM 3090, the
microprocessor in the IBM 9370, and the RISC platform
of the IBM RT System. Most notably, however, it led to an
understanding of design optimization, based only partially
on traditional RISC principles, that is directly reflected in
the IBM POWER (Performance Optimization With
Enhanced RISC) architecture and its implementation in
the RISC Systerm/6000 (RS/6000) processor:

First, it was recognized that gains in pure cycle time
afforded by a reduced instruction set are often offset by
the hardware complexity arising from parallel structures
and pipelining in modern RISC designs. Cycle time is thus
affected more by basic device and circuit technology than
by RISC implementation as such. Further, since execution
time depends not only on cycle time but also on
instruction path length and the average number of cycles
per instruction required for execution, it was recognized
that the main advantage of RISC lay in optimizing the
trade-off between instruction complexity and cycles per
instruction. Finally, it was recognized that the penalties of
that trade-off, regardless of which way it is resolved, had
become much smaller than they were when RISC was first
conceived. Optimizing compilers had become available
that could be used by highly parallel architectures to
maximize parallel instruction execution, and advances in
VLSI and CMOS technology had made possible hardware
implementations of such architectures that would
minimize physical loading and delay.

The design goal, then, was to minimize the average
number of cycles required by the instruction set by
minimizing the net product of instruction complexity
(path length) and cycles per instruction. This approach
led directly to the attributes of POWER architecture and
the RS/6000 processor:

*RISC System/6000 and AIX are trademarks of International Business Machines
Corporation.

PREFACE

¢ A highly parallel superscalar architecture, employing
separate but integrated functional units and caches and
wide data buses, which permits the dispatch and
execution of multiple instructions per cycle.

¢ Anoptimized hardware implementation that achieves
both a low cycle time and a small cycles-per-instruction
ratio. It is hard-wired rather than microcoded, and
pipelined. Pipeline delay due to branching is minimized
by a large number of instruction buffers and a wide-
bandwidth interface between the instruction cache and
the branch unit, which permits sufficient branch look-
ahead that branches are effectively eliminated from the
instruction stream. Since the arithmetic units never see
branches directly and the instruction stream is rarely
interrupted by branches, branching in most cases occurs
in, effectively, zero cycles. In addition, an innovative
floating-point execution unit, which is not a coprocessor
but is tightly coupled to the rest of the CPU, embodies
an accumulate function that combines a floating-point
multiply with a floating-point add (or subtract) in a
single operation that executes with no more delay than
either function alone. This combination of parallelism
and functional optimization permits an execution rate
as high as five instructions per cycle—a branch, a
condition-register operation, a fixed-point operation,
and a floating-point operation (which, if it happens to
be the accumulate instruction, has the effect of two
operations).

¢ A register-oriented instruction set, which incorporates
string operations and floating-point operations as well
as primitives and is fully exposed to the compiler.
Complex instructions are (in general) included when the
equivalent power and function cannot be achieved
as quickly by sequences of simple instructions.

¢ An optimizing compiler that employs optimized
scheduling algorithms to take full advantage of the
parallel hardware architecture.

® An operating system implementation that is also
optimized for the parallel architecture, meeting special
requirements for the management of programs,
program libraries, and storage facilities.

The papers which follow describe this design in detail.

Bakoglu, Grohoski, and Montoye provide an overview
of the hardware as a complete system. They describe the
system configurations currently available and describe
their performance and functional capabilities.

Ocehler and Groves describe the evolution of the
superscalar POWER architecture and the design
decisions that led to the present implementation.
Grohoski describes the actual implementation in the
machine organization of the RS/6000 processor, with

IBM J. RES. DEVELOP. VOL. 34 NO. 1 JANUARY [990




special emphasis on the synchronization of register
operations and instruction-stream processing.

Montoye, Hokenek, and Runyon describe the
floating-point execution unit, with emphasis on the
motivation and design of the “multiply-add-fused” (MAF)
unit which performs the special accumulate operation.
They also provide a summary of floating-point operations
as affected by that function, discuss the two-stage pipeline
that was designed to be consistent with the over-all
architecture, and review the integration of logical and
physical design required for VLSI implementation. In a
second paper on the FPU, Hokenek and Montoye
describe a novel technique called leading-zero
anticipation (LZA), which is used in the MAF to
normalize floating-point results and allows normalization
and addition to take place in a single cycle.

The RISC System/6000 processor incorporates a
unified hardware self-testing procedure that can be run
during system bring-up. The scheme employs embedded
on-chip test processors, an on-card control sequencer, and
an external processor used during bring-up to set
breakpoints and display and modify the machine state.
The method is especially suited to the testing of logic
chips containing embedded RAM arrays (which describes
most of the chips in the RS/6000 processor), and is
described in the paper by Ratiu and Bakoglu.

Well-designed instruction scheduling algorithms are
essential to the performance of the optimizing compiler;
in his paper, Warren describes the algorithm that was
developed to meet the scheduling requirements of the
RS/6000 instruction set and architecture. As Warren
notes, however, there is potential for even greater
scheduling sophistication in future systems; Golumbic and
Rainish explore one such possibility in their paper on
scheduling beyond basic blocks.

The AIX operating system, Version 3, as implemented
for the POWER architecture, incorporates a number of
new developments in program and program library
management and in the organization and management of
storage facilities. These are discussed, respectively, in
papers by Auslander and by Chang, Mergen, et al.

The RISC System/6000 processor was designed to
comply with the IEEE standard for binary floating-point
arithmetic. This requirement, and the speed and
precision available in the RS$/6000 FPU, motivated a
reexamination of the algorithms used to perform division,
square root, and the elementary functions such as sin and
exp. In his paper on computation, Markstein describes
new results which ensure correct last-bit rounding for
these functions without special testing.

It is not possible to capture in a dozen papers the
complete inventory of research, design, and development
achievements that are reflected in the RISC System/6000
product family. We believe the most important ones are

IBM I. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

here, however, and we appreciate very much the
cooperation of the authors, who spent time they could
scarcely afford to help the Journal present them

accurately.

N. M. Donofrio, President
IBM Advanced Workstations Division

PREFACE






