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Over the past eighteen years a variety of
advanced decision support systems have been
built with knowledge-based expert system
(KBES) components. For the past eight years, a
knowledge representation and manipulation
(KRM) scheme called FABA (Functions And
Boolean Arrays) has been used. it has two basic
principles. First, knowledge is viewed as a
functional mapping between input and output
variables, where the functions are expressed as
fact tables or bases and procedure modules.
Second, the function network can be
represented with Boolean arrays. The basics of
FABA, its implementation in APL2, and a simple
example of FABA’s application in a
manufacturing dispatch application for IBM’s
semiconductor facility in Burlington, Vermont,
are described in this paper.

1. Introduction

The knowledge representation and manipulation (KRM)
scheme based on functions and Boolean arrays (FABA)
has been used successfully in a number of applications. of
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which the best known is the Logistics Management
System (LMS) [1-3]. LMS is an advanced decision
support system which serves as a dispatcher, monitoring
and controlling the manufacturing flow of the IBM
Burlington semiconductor facility. Appendix 1 provides
an overview of LMS.

Other applications include Real-time Enrollment and
Training (RET), Executive Information Network (EIN),
Modeling Allowable Resources (MARS) [4], Real-time
Control of Urban Drainage [5], and Expert Aided
Adaptive Control [6]. (The last application is being done
in LISP.)

The individual concepts in FABA have origins in a
wide spectrum of programming techniques and “tool of
thought notations” [7]. The use of functions as a base
unit of organization of knowledge has roots in functional
programming languages such as APL2 and LISP, and the
mathematical concept of functions. Brown, Pakin, and
Polivka [8] provide a general introduction to APL2.

The concept of organizing rules or knowledge modules
in a tree structure or network is used in a variety of
KRM schemes [9-13]. The application of Boolean arrays
to store and manipulate networks has a long history in
the APL community [7, 14-19]. The use of Boolean
arrays and operations to efficiently handle logical
processing is also well established [7, 20-22].

The use of tables to store knowledge has origins in
general array theory [23], relational databases, APL2
[21, 24-28], and Prolog [29]. A general introduction to
APL2 and knowledge representation with general arrays
and tables can be found in [30]. 627
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The programming language concepts of avoiding data
type dependencies, linking data and procedure to
generate a “natural” object, and adaptability to change
have origins in APL2 and object-oriented programming
[311.

The origins of FABA are described in [22, 32-34]. A
detailed description of different aspects of FABA can be
found in [35, 36].

Others in the knowledge-based expert system field have
independently developed approaches with some
similarities to FABA; for example, see [37-40].

2. A brief review of mathematical functions
Functions are a description of the mapping between one
set of independent (input) variables and a dependent
(output) variable. For each set of input variable values,
there is a mapping into only one output variable value.
Different input variable value sets may map into the
same output variable value. The set of possible input
variable value sets is called the domain. The set of
possible output variable values is called the range.

The reader is probably most familiar with functions
where the mapping description is expressed as an
algebraic equation, and the domain and range are
numbers. For example,

W= X+ 4Y.

Sometimes input variables are linked to an output
variable through more than one equation, requiring the
establishment of an intermediate output variable. For
example,

W=f(X,Y)= X’ + 47, )
Z=g(WV)=3W+2V )

is a system of two equations expressing a functional
mapping of the output variable Z from the input
variables V, X, and Y. Z has a direct dependency on V,
but its dependency on X and Y is through the
intermediate output variable W. Formally, this is called a
composite function:

Z=hXY,V)=g°[f=gl/X,Y)V] 3)

where A(X,Y,V’) is the composite of the functions fand g.
To determine the Z value for a set of input values,
caculate W from Equation (1), and then use this W with
V in Equation (2) to calculate Z.

When the function mapping is written in algebra, we
often carry out an algebraic simplification, e.g,

Z=hXY,V)=g° f=g[f(X,Y),V], (3)
Z = h(X,Y,V)=3(X* + 4Y) + 2V, (4a)
Z=hX,Y,V)=3X"+12Y + 2V. (4b)

K. FORDYCE ET AL.

In this case the intermediate output variable W is
eliminated, and we can calculate Z directly.

3. Tables and procedure modules as functions
“Tables” or “fact bases” represent a tabular
representation of a functional relation between input and
output variables, where the domains and ranges are a
finite set of elements. PMs are small procedure modules
used to describe functional relationships which carry out
standard conditional logic and computation on the input
variables to generate the output variables. The linkages
between functions represent composite function
operations.

An example set of functions is shown below:

TABLE 1 (T1)
CHIPTYPE STAGE — SETUP
tiger 1 3
tiger 2 2
lion 1 4
lion 2 4
TABLE 2 (T2)
SETUP — SETUP_TIME
2 20
3 20
4 50
TABLE 3 (T3)
CHIPTYPE SETUP —>PROCESS_TIME
tiger 2 60
tiger 3 50
tiger 4 NA
lion 2 NA
lion 3 NA
lion 4 60
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PROCEDURE MODULE 1 (PM1)

vVPM1 [0V

v
(0] PM1
(11 an THIS FUNCTION DETERMINES
[2] n THE APPROPRIATE SETUP CONDITION
[3] A
[4] A VALUE CALCULATED (QUTPUT VARIABLE) : SETUP _COND
(5] =~
(6] A POSSIBLE OPTIONS FOR OUTPUT VARIABLE: long
(7] =a short
(8] n
(9] a VALUES USED ( INPUT VARIABLE) : SETUP_TIME
[10] =~ PROCESS_TIME
[11] SETUP_COND+C'LONG'
[12] A SETUP_COND IS INITIALLY ASSIGNED THE VALUE LONG
[13] CONDS+(SETUP_TIME<25),(SETUP_TIME<4XPROCESS_TIME)
[14] o IF SETUP _TIME < 25
[(15] a THEN GENERATE A 1 (TRUE), ELSE 0 (FALSE)
[16] a IF SETUP_TIME < (4 x PROCESS_TIME)
[17] a THEN GENERATE A 1, ELSE O
(18] A ASSIGN THIS PAIR OF RESULTS TO COND
(191 > (A/CONDS)/L0O10
(20] A IF BOTH CONDITIONS ARF TRUE BRANCH TO LO10
(211 =0
[22] LO10:
(23] SETUP_COND+C'SHORT'
(24] an SETUP_COND IS ASSIGNED THE VALUE SHORT
[25] =0

Table 1 (T1) is the mapping of the input variables
CHIPTYPE and STAGE into the output variable
SETUP. Table 2 (T2) is the mapping of the input

variable SETUP into the output variable SETUP_TIME.

Table 3 (T3) is the mapping of the input variables
CHIPTYPE and SETUP into the output variable
PROCESS_TIME. Procedure Module 1 (PM1) is the
mapping of the input variables SETUP_TIME and
PROCESS_TIME into the output variable
SETUP_COND.

These relationships can be written in the following
functional notation:

SETUP = TI(CHIPTYPE,STAGE),
SETUP_TIME = T2(SETUP),
PROCESS_TIME = T3(CHIPTYPE,SETUP);
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SETUP_COND = PMI(SETUP_TIME,
PROCESS_TIME).

The concept of a composite function exists within our
table-and-procedure-module method of describing
functions.

For example, the functional relationship between the
input variables CHIPTYPE and STAGE and the output
variable SETUP_TIME can be found by using Tables 1
and 2 and viewing the variable SETUP as an
intermediate output variable:

SETUP_TIME = TC1(CHIPTYPE,STAGE) = T1 ° T2.

The concept of “algebraic simplification” can sometimes

be applied by generating a new table. For example, the

composite function TC1 would result in the following

table: 629
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TABLE COMPOSITE 1 (TC1)

CHIPTYPE STAGE —> SETUP_TIME
tiger 1 20
tiger 2 20
lion 1 50
lion 2 50

In APL2 [8, 30], tables map directly into two-
dimensional general arrays. Table 1 can be generated
with the statement

T1 <4 3p "tiger' 13 "tiger' 2 2
'"lion' 1 4 'lion' 2 4
T1 is a matrix with a shape (p ) of four rows and three

columns. The matrix is filled in row by row (row major),
as follows:

COL 1 COL 2 COL 3
ROW 1 tiger 1 3
ROW 2 tiger 2 2
ROW 3 lion 1 4
ROW 4 lion 2 4

APL2 provides indexing into any portion of the
matrix, and a variety of comparison operations. The
following statements will access column 1 and check
whether any element in column 1 is equal to lion:

COL1+«T1[;1]
MATCH1 « (c'lion') =~ C0OL1

In the first statement, the variable COLI1 is assigned (<)
the values in column 1 ([ ; 1) of T1. COLI1 is a vector
with four elements. The second statement matches (=)
the character string or value /ion against each (™) element
in the variable COL1. MATCHLI is a vector with four
elements (0011), one for each member of COL1. An
element of MATCHI is a 1 if the corresponding element
of COL1 has the value lion; else a 0.

Tables can also easily be represented and searched with
simple character arrays (one character per element in an
array) in APL2; Appendix 2 provides an example.

In APL2 a procedure module can be executed at any
time with the execute primitive (2). The system
functions [JEA and JEC provide for the “protected”
execution of a PM.

4. Generating the finite domain of a function
Assume that there are two input values to the function:
CHIPTYPE and PRIORITY. The variable CHIPTYPE
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can be one of two values: tiger or lion. The variable
PRIORITY can be one of three values: hot, warm, or
cold. Then, each combination of values represents one
point in the domain or state space [38]. In this case, there
are 6 (2 X 3) possible unique combinations:

tiger hot,
tiger warm,
tiger cold,
lion hot,
lion warm,
lion cold.

The set of APL2 functions in Appendix 3 generates all
elements in the domain without using recursion. The key
APL2 primitive is encode (T).

Using a related process, we can identify duplicate
entries in a table using the APL2 function shown in
Appendix 4. The key APL2 primitives are decode (T)
and n-wise reduction (2 = /).

5. Generating the network of functions

Using the following two Boolean arrays and some
Boolean array operations in APL2, we can determine
automatically how the different functions relate to one
another [33-35] and automatically generate the
dependency network.

The first item generated is a Boolean matrix called
INMATIP (IP stands for INPUT). This matrix records
which variables are input variables for which functions.
INMATIP has one row for each variable and one column
for each function (table or procedure module). A cell is
assigned a 1 if the variable is in the “input portion” of a
function; else a 0. For this example INMATIP would be

TL T2 T3 PI

CHIPTYPE 1
STAGE 1
SETUP 0
SETUP_TIME 0
PROCESS_TIME 0
SETUP_COND 0

OO O = OO
SO O — O
S = =0 O O

The second item generated is a Boolean matrix called
INMATOP (OP stands for OUTPUT). This matrix
records which variables are-output variables for which
functions. INMATOP has one row for each variable and
one column for each function (table or procedure
module). A cell is assigned a 1 if the variable is in the
“output portion” of a function; else a 0. For this
example, INMATOP would be
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TI T2 T3 Pi

CHIPTYPE
STAGE

SETUP
SETUP_TIME
PROCESS_TIME
SETUP_COND

OO O — OO
(=Nl e NN -]
o= OO OO
-0 O OO

(These two arrays can easily be generated automatically
by writing a small APL2 program to parse the description
of the functions.) With the two arrays we can determine
the variable SETUP_TIME as a function of the variables
CHIPTYPE and STAGE through the intermediate
variable SETUP and other second-order dependencies.
The following APL2 expression gives this information:

INMATVAR « INMATOP v.A & INMATIP
LEVEL _1_LINKS « INMATVAR

LEVEL_2_LINKS
«LEVEL_1_LINKSv.A INMATVAR

INMATVAR is then

INPUT VARIABLES

CHIP
TYPE STAGE SETUP

SETUP PROCESS SETUP
_TIME _TIME _COND

ov CHIPTYPE o [ 0 0 0 0
UA STAGE 0 0 0 0 0 0
TR SETUP 1 1 0 [ 0 0
PI SETUP_TIME 0 0 1 o 0 0
UA PROCESS_TIME 1 0 1 ] 0 0
TB SETUP_COND 0 0 0 1 1 0

INMATVAR contains one row and one column for each
variable in the system. Rows reference output conditions;
columns reference input conditions. INMATVAR shows
“first-order” dependencies between variables. If a variable
is a direct input variable (the columns) to an output
variable (the rows), then that cell has the value 1. If not,
the value is 0. For example, CHIPTYPE and STAGE are
direct input variables to the variable SETUP through T1.
Therefore, the cells (SETUP, CHIPTYPE — row 3,
column 1) and (SETUP, STAGE — row 3, column 2)
have the value 1.

The APL function & generates the transpose of a
matrix. &8 INMATIP is

110000
001000
1 01000
000110

The APL2 operator dot (. ) carries out the inner product
operation, and the APL expression v . A is the primitive
for Boolean matrix multiplication. Let us look in detail at
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how the value in the first row and first column of
INMATVAR is calculated.

The first row of INMATOP is 0 0 0 0. The first column
of & INMATIPis 1 0 10. We then “and” (A) the
corresponding elements, giving 0 0 0 0, and “or” across
(v /000 0) this result, giving 0.

As an alternative to using the APL expression v . A, we
could use the APL function ODA (Appendix 5).

LEVEL_1_LINKS is identical to INMATVAR. It
provides the information about level 1 links or first-order
dependencies between variables.

LEVEL_2_LINKS is

INPUT VARTABLES

CHIP SETUP PROCESS SETUP

TYPE STAGE SETUP _TIME _TIME  _COND
OV  CHIPTYPE ) 0 0 [} [ 0
UA  STAGE 0 0 0 0 0 0
TR  SETUP 0 ) 0 0 0 0
P 1  SETUP_TIME 1 1 0 0 0 0
UA  PROCESS_TIME 1 1 0 0 o 0
TB  SETUP_COND 1 o 1 0 0 0

LEVEL_2_LINKS contains one row and one column
for each variable in the system. Rows reference an output
condition; columns reference an input condition.
LEVEL_2_LINKS shows second-order dependencies
between variables. If a variable is a second-order input
variable to an output variable, then that cell has the value
1. If not, the value is 0. For example, CHIPTYPE and
STAGE are second-order input variables to the variable
SETUP_TIME. SETUP_TIME depends directly on
SETUP (T2). SETUP depends directly on CHIPTYPE
and STAGE (T1). Therefore, SETUP_TIME has a
second-order dependency on CHIPTYPE and STAGE
(T2 to T1), where the linking variable is SETUP, and the
cells (SETUP_TIME, CHIPTYPE — row 4, column 1)
and (SETUP_TIME, STAGE — row 4, column 2) have
the value 1.

The linking variables can be found using the following
expression (the function LINKVAR is shown in
Appendix 6):

LEVEL_1_LINK_VAR < INMATVAR

LEVEL_2_LINK_VAR
«LEVEL 1 _LINK VAR LINKVAR INMATVAR

For first-order dependencies, the linking variable is the
linked variable. Therefore, LEVEL_1_LINK_VAR is
the same as INMATVAR.

LEVEL_2_T1INK_VAR is

INPUT VARIABLES

CHIP SETUP PROCESS SETUP

TYPE STAGE SETUP _TIME _TIME  _COND
OV  CHIPTYPE 0 0 0 o [} [
UA  STAGE 0 0 0 0 0 0
TR  SETUP 0 0 0 ° 0 0
PI  SETUP_TIME 3 3 0 0 0 0
UA  PROCESS_TIME 3 3 0 0 0 0
TB  SETUP_COND 5 0 45 0 0 0 631
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LEVEL_2_LINK_VAR contains one row and one
column for each variable in the system. Rows reference
an output condition; columns reference an input
condition. LEVEL_2_LINK_VAR shows the linking
variable for the second-order dependencies between
variables. The number 1 refers to CHIPTYPE, the
number 2 refers to STAGE, etc. For example, this table
shows us that the linking variable for the second-order
dependency between the variable CHIPTYPE and the
variable SETUP_TIME is the variable SETUP (number
3).

Third-order dependencies are found as follows:

LEVEL_3_LINKS
«LEVEL_2_LINKSv.A INMATVAR

LEVEL_3_LINKS is

000000
000000
0000O00O0
0000O0O0TO
0 000O0O
110000

Third-order linking variables are found by

LEVEL_3_LINK_VAR
«LEVEL_2 LINK VAR LINKVAR INMATVAR

LEVEL_3_LINK_VAR is

W o OO Oo o
WO OO OCO

OO OO O
SO OO OO
SO OO OO
OO OO OO

0

The following APL2 statement finds fourth-order
dependencies. (Notice that this matrix contains only Os,
which means that there are no more dependencies to
find.)

LEVEL_4 LINKS
« LEVEL_3_LINKSv.An INMATVAR

LEVEL_4_1LINKS is
00O0O0O0

[=3 a3 ol )
SO OO

0 0
0 0
0 0
0 0

SO OO OO
(el e i« N e B e

000 0

Using the information in these relationship matrices, we
can, for example, determine the component variables
that influence the value of the variable SETUP_TIME:
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SETUP_TIME has a direct dependency on the variable
SETUP via function T2 and a second-order dependency
on the variables CHIPTYPE and STAGE through the
connecting variable SETUP via function T1.

The approach described above provides for simple,
rapid, automatic generation of the dependency network
(including “simultaneous” conditions; see Appendix 7)
from just the knowledge of first-order dependencies.

Using a similar approach, we can build the following
network for the functions of this example:

Using the same Boolean arrays and a slightly more
complicated set of Boolean operations, we can
automatically and quickly generate an ordering of the
functions based on “relative independence” and thus
“focus a knowledge network.”

To explain “relative independence,” let us look at an
example. Given the equations

VOLUME = AREA x HEIGHT, (a)
PERIMETER = (2 x LENGTH) + (2 x WIDTH), (b)
AREA = LENGTH x WIDTH, (c)
and

HEATING COST = 4 x VOLUME, (d)

we would need to execute Equation (a) before Equation
(d), and Equation (c) before Equation (a). We could view
Equations (b) and (c) as making up the most independent
group or class of rules, since their input variables
(LENGTH and WIDTH) are not calculated by any other
equation. Equation (a) would be in the second group or
class, since its input variables are either not calculated by
another equation (HEIGHT) or calculated by an
equation already ordered (AREA). Equation (d) would
make up the third group.

For our example the functions are ordered as follows:

CLASS 1: T1
CLASS 2: T2 T3
CLASS 3: PM1

To explain “focusing,” we return to Equations (a)-(d). If
we have specified values for LENGTH, WIDTH, and
HEIGHT, then the example equation set or network will
calculate values for AREA, PERIMETER, VOLUME,
and HEATING COST. If we tell the equation network to
focus on the variable HEATING COST, it will drop
Equation (b) and not calculate PERIMETER, since
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PERIMETER has no link to HEATING COST. An
automatic “focuser” is shown in Appendix 8.

The information provided from the automatic ordering
of functions and network focusing is very useful in
debugging knowledge sets, organizing them into logical
groups, and identifying parallel content in inferencing.

6. Inferencing by forward chaining

In knowledge-based expert systems (KBES), an inference
engine is used to determine which pieces of knowledge to
use in what order to solve a problem or answer a
question. Fordyce, Norden, and Sullivan [41] provide a
detailed description of inference engines.

The task of a forward-chaining inference engine in a
KBES is to monitor facts in a database, transaction
stream, or interactive session with a user, and then
determine which pieces of knowledge should be invoked
in what order in response to a stimulus from the
environment. Invoking or executing a piece of knowledge
is called firing. In our example, the inference engine
would monitor changes in values for variables
CHIPTYPE, STAGE, etc., and then determine which
functions to execute in what order.

The task of a backward-chaining or goal-driven
inference engine is to monitor inquiries from a user as to
whether a specified outcome, goal, or fact is true or false.
In this case, the inference engine searches through the
database and the knowledge base to verify or determine
whether there is sufficient evidence to conclude that the
specified goal is true. In our example, the user might ask
“Does the variable PROCESS_TIME have a value of
short?” or the more general question, “What is the value
for PROCESS_TIME?” The inference engine would then
search the existing functions and values for variables to
determine the value for PROCESS_TIME.

In this section we describe how the network
information described in the preceding section can be
used efficiently to do inferencing by forward chaining.
We will see that forward chaining is accomplished
essentially by following the function network built from
the Boolean arrays INMATIP and INMATOP. The
backward-chaining procedure is shown in Appendix 9.

For this example we make use of the four-function
knowledge base described in Section 3 and the Boolean
arrays presented in Section 5. Assume that we initially
know the following information:

VARIABLE VALUE
CHIPTYPE tiger
STAGE 2

SETUP unknown
SETUP_TIME unknown
PROCESS_TIME unknown
SETUP_COND unknown
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From this information we generate the Boolean vector
KUVEC (known-unknown vector). This tells us whether
or not a variable has a value. There is one cell for each
variable. A cell is assigned a 1 if the variable has a value;
else a 0. For this example KUVECis 1 10000.

o Cycle 1. Deciding which functions to fire

First, the inference engine (IE) must decide which
functions are candidates for executing or firing. A
function is a candidate if all input variables for the
function have values. POTEN is the variable that holds
the list of legitimate candidates for firing. For this cycle
POTEN is T1. The APL expression which generates
POTEN is

POTEN« A/ [1]KUVEC 2 [1] INMATIP

where INMATIP is the matrix described in Section 2.

Second, the IE eliminates from POTEN those
functions which have previously fired, and which it has
no reason to fire again. (This is the first cycle, so this step
can be skipped for this cycle.) If POTEN is empty at the
end of this step, the inferencing process is finished.

Third, the IE decides which of the functions in
POTEN should be fired in this cycle. This decision is
often called conflict resolution. Our method is to identify
the “most independent” function class represented in
POTEN, and then keep in POTEN only the functions in
that class. In this cycle there is only one function class
represented in POTEN, so POTEN is now T1.

Fourth, the IE executes the functions that have been
selected. The variable SETUP now has the value 2.

In this case, executing the function means searching
Table 1 to determine whether there is a row which has
the value tiger in the first column and the value 2 in the
second column. If a match is found, the value in column
3 of the “matched” row is assigned to the variable
SETUP. “Searching” through the tables to find a match is
easy in APL2, as shown below.

Table 1 (T1) is a matrix with four rows and three

columns:

tiger 1 3
tiger 2 2
lion 1 4
lion 2 4

We can access columns 1 and 2 as follows:

TABLE1[;1 2]
tiger 1
tiger 2
lion 1
lion 2

The variable X can be assigned the known values for 633
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CHIP_TYPE and STAGE,

X<« "tiger' 2.

By the expression

SETUP« (TABLE1[;12]Aa.=X)/TABLE1[;3]

The value for SETUP is then found to be 2.

If no match is found in Table 1, we still consider the
function to have been executed, but we assign to the
variable SETUP the value “no_value_found.” (There are
alternatives to this approach, but we do not discuss them
in this paper.)

e Cycle 1: Updating summary information

Since the values of some of the variables have been
altered by the function firings, the summary information
is no longer current, and the IE must update each of
these data structures.

First, it updates an item called FIRELOG. FIRELOG
keeps track of which functions were candidates for firing
and which functions were in fact fired at each cycle.
FIRELOG is now

CYCLE FUNCTION STATUS
1 Tl 1

The first column shows the cycle, the second the
function, and the third whether the function was fired (1)
or not (0).

Second, the IE generates a vector called VCVEC
(variable change vector). There is one position for each
variable, in the same order as the rows for INMATIP. A
cell is assigned a 1 if the variable was affected by the
function firings; else a 0. A variable is affected if it is in
the output portion of a function that has fired. The IE
can get this information by using POTEN and
INMATOP. From POTEN we know which functions
were fired, and from INMATOP we know which
variables are in the “then,” or output, portion of each
function. For this cycle VCVECis001000:

VARIABLE

CHIPTYPE
STAGE

SETUP
SETUP_TIME
PROCESS_TIME
SETUP_COND

CHANGE STATUS

OO O =00
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The APL2 expression which generates VCVEC is

v/ [2] INMATOPL ; POTEN]

or

v/ [2] (cPOTEN) O[2]1 INMATOP.

Third, the IE updates KUVEC, which is now
111000.

Fourth (and last), the IE keeps a history log of variables
that have been affected. The change status for a variable
at a given cycle is assigned a value of 1 if the variable was
affected in the corresponding cycle; else a 0. The IE uses
this information to determine whether a function that
has been fired should be fired again. The information is
stored in the matrix VCMAT (variable change matrix),
which has one column for each cycle.

VCMAT is now

VARIABLE

CHIPTYPE
STAGE

SETUP
SETUP_TIME
PROCESS_TIME
SETUP_COND

CYCLE 1

SO0~ OO

The IE has now finished updating its summary
information and is ready to proceed to the next inference
cycle.

o Cycle 2: Deciding which functions to fire
First, the IE determines candidates for firing. POTEN is
initially T1, T2, and T3.

Second, the IE eliminates from POTEN those
functions which have previously fired, and which it has
no reason to fire again. POTEN is now T2 and T3.

Third, the IE decides which of the functions in
POTEN should be fired in this cycle. Both T2 and T3 are
in the same function order class, so POTEN is still T2
and T3.

Fourth, the IE executes the functions that have been
selected. The variable SETUP_TIME now has the value
20. The variable PROCESS_TIME now has the value 60.

o Cycle 2: Updating summary information
First, the IE updates FIRELOG, which becomes
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CYCLE FUNCTION STATUS
1 Tl 1
2 T2 1
2 T3 1

Second, the IE generates VCVEC, which becomes, for
this cycle, 0001 10:

VARIABLE CHANGE STATUS

CHIPTYPE 0
STAGE

SETUP
SETUP_TIME
PROCESS_TIME
SETUP_COND

S = = OO

Third, the IE updates KUVEC, which becomes
111110.

Fourth, the IE updates the history log of variables that
have been affected. VCMAT is now

VARIABLE CYCLE | CYCLE 2
CHIPTYPE 0 0
STAGE 0 0
SETUP 1 0
SETUP_TIME 0 1
PROCESS_TIME 0 1
SETUP_COND 0 0

The IE has now completed the second inference cycle
and is ready to proceed to the third.

e Cycle 3: Deciding which functions to fire
First, the IE determines candidates for firing. POTEN is
initially T1, T2, T3, and PM1.

Second, the IE eliminates from POTEN those
functions which have previously fired, and which it has
no reason to fire again. POTEN is now PM1.

Third, the IE decides which of the functions in
POTEN should be fired in this cycle. POTEN is still
PM1.

Fourth, the IE executes the functions that have been
selected. The variable SETUP__.COND now has the value
short. In this case the APL2 function PM1 is run.

o Cycle 3: Updating summary information
First, the IE updates FIRELOG, which is now
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CYCLE FUNCTION STATUS
1 Tl 1
2 T2 1
2 T3 1
3 PM1 1

Second, the IE generates VCVEG; for this cycle
VCVECis00000 1:

VARIABLE CHANGE STATUS

CHIPTYPE 0
STAGE

SETUP
SETUP_TIME
PROCESS_TIME
SETUP_COND

—_ O O O O

Third, the IE updates KUVEC, which becomes
111111,
Fourth, the IE updates VCMAT, which becomes

CYCLE2 CYCLE3
0

VARIABLE CYCLE 1

CHIPTYPE
STAGE

SETUP
SETUP_TIME
PROCESS_TIME
SETUP_COND

S - - O OO
—_ O O OO

[= =il )

The IE has now completed the third inference cycle, and
is ready to proceed to the next.

o All done

The IE now determines that there is no reason to fire any
more functions and ends processing. Given the new set of
values for CHIP_TYPE and STAGE, the appropriate
values for SETUP, SETUP._TIME, PROCESS_TIME,
and SETUP_COND have all been determined by
processing the knowledge in our four functions.

7. Integrating FABA and transactions
In the following example we illustrate how FABA is
integrated with a manufacturing-lot transaction stream
and tracking database. (Appendix 1 describes the
manufacturing dispatch system.)
The manufacturing facility comprises lots to be
processed, operations to be performed on the lots, and
machines which carry out the operations. For each lot
that is put into the manufacturing stream, the following
information is recorded: 635
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LOT TRACKING DATA BASE

LOT_1ID LOT_FAMILY | PRIORITY DUE_DATE | OPR_FAMILY |MACH_FAMILY
11129 tiger

11130 tiger

11132 lion

LOT TRACKING DATA BASE

LOT_ID SETUP SETUP_TIME EST_LV TIME DELTA_SCHD
11129

11130

11132

When a lot is put into production, the first two
variables (LOT_ID and LOT_FAMILY) in the record
are given values. In this example there are three lots in
the tracking database. (The field LOT_ID is listed twice
for the convenience of the reader.)

The value for PRIORITY is a transaction received
from production control (PC). An initial value between 1
and 100 is placed in PRIORITY when the lot is
launched; this value can change once a day. We will give
the name PRIORITY_PC to the variable holding the
initial priority value transmitted from production
control. The program module PM11 translates this value
into one of four values, HOT, WARM, COLD, or ICE:

PM11
output variable: PRIORITY

input variable: PRIORITY_PC
translate

PRIORITY_PC

(a value between 1 and 100) to
PRIORITY

(one of the following values:
HOT, WARM, COLD, or ICE)

I

DUE_DATE when the lot is launched; this value can
change at any time. The value for DUE_DATE takes the
form YY/DAY (last two digits of the year and Julian
day; for example, 89/134). We call the variable holding
the initial date transmitted from the order book
DUE_DATE_OB. PM 12 translates this value into the
form MM/DD/YY (for example, 05/14/89):

PM12

output variable: DUE_DATE

input variable: DUE_DATE_OB
translate

DUE_DATE_OB

(in the form YY/DAY) to
DUE_DATE

(in the form MM/DD/YY)

The value for DUE_DATE is a transaction received

636 from the order book (OB). An initial value is placed in
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The value for the variable OPR_FAMILY (operation
family) is changed in the record each time the lot enters a
new manufacturing operation. This transaction is sent
from the floor tracking system (FTS). The value for
MACH_FAMILY (machine family) is based on
OPR_FAMILY. Table 11 (T11) provides this value:
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TABLE 11 (T11)

and procedures on data into one natural unit. This is a
common practice in APL2 and a key principle of object-
oriented programming.)

The value for the variable SETUP (required
configuration for the machine to run this lot at this
operation) is based on LOT_FAMILY and
OPR_FAMILY. Table 12 (T12) provides this value:

TABLE 12 (T12)
LOT_FAMILY OPR_FAMILY -> SETUP
tiger bend brown
lion bend blue
tiger bake yellow
lion bake red
tiger test green
lion test green

The value for the variable SETUP_TIME (time to
reconfigure this machine to the setup needed for this lot)
is based on MACH_FAMILY. Table 13 (T13) provides
this value:

OPR_FAMILY -> MACH_FAMILY
bend XXX
bake yyy PM13
test VA AA

output variable: EST_LV

input variable: LOT_ID
LOT_FAMILY
OPR_FAMILY
RUNTIME

determine an estimated leave time
for this lot from this operation.
outside data used: raw process time

machine availability

function:

DELTA_SCHD is an estimate of the number of days
the lot is behind (minus to schedule) or ahead (plus to
schedule) of schedule. This value is calculated by PM 14
and is a time-dependent variable. It is recalculated on
request from the user, or when either DUE_DATE or
PRIORITY changes value, and otherwise every four
hours. TIME stores the last time at which an update has
been made to the DELTA_SCHED variable.

TABLE 13 (T13)

MACH_FAMILY -> SETUP_TIME
XXX 20
yyy 15
VA4 A 40

EST_LYV is the estimated time until the lot leaves the
operation where it is currently located. This value is
obtained from PM13. PM13 makes use of information
from manufacturing process specification variables such
as raw process time and machine availability, the lot
tracking database, and some decision rules to estimate
when the lot will leave this operation. EST_LYV is a run-
time variable, and is recalculated whenever a query is
made against this field. (Note that PM13 combines data
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PM14
output variable: DELTA_SCHD

input variable: LOT_ID
LOT_FAMILY
PRIORITY
DUE_DATE
TIME

function: determine an estimated number of
days the lot is behind or ahead of
schedule.

outside data used: process flow data

machine availability

These relationships can be written in the following
functional notation:
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LOT_ID = input field when lot is launched.
LOT_FAMILY = input field when lot is launched.
PRIORITY = PMI11 (PRIORITY_PC).
DUE__DATE = PM12 (DUE_DATE_OP).
OPR_FAMILY = input field when lot changes

operation.

MACH_FAMILY = TI11 (OPR_FAMILY).

SETUP = TI12 (LOT_FAMILY,

OPR_FAMILY).
SETUP..TIME =T13 (MACH_FAMILY)

=TI3 » Tl (OPR_FAMILY).

EST_LV = PM13 (LOT_ID, LOT_FAMILY,

OPR_FAMILY, RUNTIME).
TIME = records last time an update is

made to DELTA_SCHED.
DELTA_SCHD =PMI14 (LOT_ID, LOT_FAMILY,

PRIORITY, DUE_DATE, TIME).
INMATIP is

PM11 PMI2Z TI1 Tiz T13 PM13 PMl4
LOT_ID 0 0 0 0 0 1 1
LOT_FAMILY 0 0 0 1 0 1 1
PRIORITY_PC 1 0 0 0 0 0 0
PRIORITY 0 0 0 0 0 0 1
DUE_DATE_OB 0 1 0 0 0 0 0
DUE_DATE 0 0 0 0 0 0 1
OPR_FAMILY 0 0 1 1 0 1 0
MACH_FAMILY 0 0 0 0 1 0 0
SETUP 0 0 0 0 0 0 0
RUNTIME 0 0 0 0 0 1 0
SETUP_TIHE 0 0 0 0 0 0 0
EST_LV 0 0 0 0 0 0 0
TIME 0 0 0 0 0 0 1
DELTA_SCHD 0 0 0 0 0 0 0
INMATOP is
PM11 PM12 Ti11 T12 TI3 PM13 PM14

LOT_ID 0 0 0 0 0 0 0
LOT_FAMILY 0 0 0 0 0 0 0
PRIORITY_PC 0 0 0 0 0 0 0
PRIORITY 1 0 0 0 0 0 0
DUE_DATE_OB 0 0 0 0 0 0 0
DUE_DATE 0 1 0 0 0 0 0
OPR_FAMILY 0 0 0 0 0 0 0
MACH_FAMILY 0 0 1 0 0 0 0
SETUP 0 0 0 1 0 0 0
SETUP_TIHE 0 0 0 0 1 0 0
RUNTIME 0 0 0 0 0 0 0
EST_LV 0 0 0 0 0 1 0
TIME 0 0 0 0 0 0 0
DELTA_SCHD 0 0 0 0 0 0 1

Let us look at an example. Assume that lot 11129
enters the operation “bake” and that a new due date or
delivery date is set. The variable OPR_FAMILY for lot
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11129 is assigned the value bake. The variable
DUE_DATE_OP for lot 11129 is assigned the value
89/145. This triggers the following inference cycle:

* PM12 is fired, generating the value 05/25/89 for the
variable DUE_DATE. T11 is fired, generating the
value yyy for MACH_FAMILY. T12 is fired,
generating the value yellow for SETUP.

® T13 is fired, generating the value 15 for SETUP_
TIME. PM13 is fired, generating a value for EST_LV.
PM 14 is fired, generating a value for DELTA_SCHD.

8. Summary

In this paper we have described a knowledge
representation and manipulation (KRM) scheme called
FABA. This KRM scheme serves as the base for a
multiple-goal-advocate approach to dispatch decision
making [2, 3, 6].

FABA uses tables and procedure modules to store
knowledge. We have found that these two methods of
storing knowledge have some significant advantages over
rules [36, 42]. For example, each of these items can be
viewed as a function. First-order dependencies or links
between functions are represented with two simple
Boolean arrays. The information in these arrays can be
obtained easily and automatically by writing a small
APL2 program to parse the description of the functions.
Working with these two arrays, some simple APL2
Boolean operations can quickly generate the entire
function network. Deciding which functions to execute
and when to execute them requires only some simple
manipulations of the two Boolean arrays and a means for
keeping track of when transactions occur. We have found
this approach particularly effective in real-time,
transaction-based, knowledge-based systems.

The FABA KRM scheme is clearly a product of the
rich data structures provided by APL2. APL2 array data
structures and associated operations permit the easy
storage and manipulation of tables, and APL2 functions
do the same for procedure modules. APL?2 is clearly a
notation for thought [7, 43] that facilitates a new view of
problems and their solution in KRM [20].

Appendix 1: Overview of LMS

The Logistics Management System (LMS) is a real-time,
imbedded-transaction-based, integrated-decision and
knowledge-based expert support system which serves as a
dispatcher, monitoring and controlling the
manufacturing flow of the IBM semiconductor facility
near Burlington, Vermont. This facility develops and
manufactures semiconductor memory and logic
subsystems for current and future IBM products.
Burlington produces some of the world’s most complex
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computer components, which are used throughout the
IBM product line.

Dispatch scheduling decisions concerning monitoring
and controlling of the actual manufacturing flow, or
logistics. Decisions are made concerning trade-offs
between running test lots for changes in an existing
product or a new product, and running regular
manufacturing lots, prioritizing late lots, and positioning
preventive maintenance downtime, production of similar
product to reduce setup time, assigning personnel to
machines, covering for absences, and reestablishing
steady production flow after a machine has been down.

LMS captures and stores in real time all manufacturing
transactions, and maintains and provides access to
knowledge bases and models. It permits the user and
analyst to easily update knowledge bases and models as
needed. LMS provides the dispatch decision makers with
easy and flexible access to

1. Relational databases that contain the latest
manufacturing transactions, such as the status of a
machine, the location of a lot, the due date of a lot, or
the availability of an operator.

2. Knowledge bases that contain such information as
how to characterize a transaction (Is it a lot
movement, a change in the status of a machine, or a
change in an order?), how to characterize the lot type
(Is it a test lot from the lab, a test lot from
manufacturing engineering, an express lot for an
important order, etc.?), the setup required for a lot,
setup time, rework requirements, test requirements,
alert conditions, product routing, throughput rates,
preferred tools, operator training, operator schedules,
average downtime for a machine, and how to
calculate elapsed time. (Elapsed time would be defined
as the calculation present time minus adjusted elapsed
time; adjustments can be made for machine
availability, second-shift work, a holiday, etc.).

3. Models that estimate how far ahead or behind
schedule a lot is and the relative priority status of a
lot, identify lots with the same setup requirements,
establish global flow control levels (protective work in
progress, recommended output from a work cell for
the day, etc.) to guide production and avoid local
optimization to the detriment of the global system,
and assess the impact of machine dedication.

4. Heuristics to integrate the data, knowledge, and
models to identify opportunities.

LMS provides dispatch decision makers with fast,
flexible, and integrated access to this information.
Support takes two forms: passive or decision-support, and
intervention. In the decision-support mode, LMS
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passively waits for the user to make a request for
information. In the intervention mode, LMS monitors
the transaction stream and actively uses its knowledge
bases and models to issue alerts and recommend what
actions to take next.

Example 1

Assume that tester 1 is running lot type A and has a lot
type B in its queue, and that tester 2 is running lot type B
and has a lot type A in its queue. The testers are
identical. There is an opportunity to eliminate two
machine setups by exchanging the waiting lots, but an
information system is needed to identify this opportunity
because (1) the lot type is unknown until the box it is
stored in is opened and the associated “paperwork” read,
and (2) the two testers are not located close to each other.

Example 2

Assume that the stepper machine is almost finished
processing a lot of type A. It has two lots of type C
waiting to be processed. Both lots are ahead of schedule,
but if they are not processed shortly, they will require
recoating (a 15-minute process). The coating machine is
almost finished with processing a lot of type A, and has
five other A’s waiting. All of the A’s are behind schedule.
The opportunity is to send the C’s back to be recoated
and keep the stepper set up to handle the A’s.

Example 3

Assume that the tester is set up to process lot type B and
has five more lots of that type waiting. But it also has an
express lot of type C waiting. The laboratory is waiting
for this lot for a critical development project. None of the
type B lots are behind schedule. The retooling time is 20
minutes. The opportunity is to retool and test lot type C.

Example 4
Assume that the following sequence occurs for a
photolithography machine:

1. Load a specific mask (contains the image of the circuit
pattern required) on the machine.

2. Make a test run for low-tolerance lots.

3. Send the test run to be inspected, leaving the machine
idle.

4. Wait for the inspection results.

5. Complete the low-tolerance lots.

6. Complete the high-tolerance lots that require the same
mask, but require only a visual inspection at the
machine location.

The production rate would improve if high-tolerance lots
could be processed while the low-tolerance lots were

being inspected, but to do this, it must be known which 639
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lots in the queue have the same setup requirement, what
tests are required for each lot, what the raw process time
for each lot will be on this machine, and what the relative
priorities are among all waiting lots.

LMS has helped IBM Burlington improve its
throughput and ability to meet delivery schedules
(serviceability). It is a critical component in running
major areas of the manufacturing facility. The process
operator on the manufacturing floor receives advice on
scheduling. The manager is alerted to opportunities that
have appeared or are about to emerge. The maintenance
technician is given information on the impact of
machines that are out of service, and is alerted to their
conditions.

Appendix 2: Handling tables with simple arrays
Following is an example of setting up and searching a
table with simple character arrays:

T1«410p "tiger 1 3 tiger 2 2 lion 1 4 lion 2 4 '

Tlis

tiger 1 3
tiger 2 2
lion 1 4
lion 2 4

T1 is a matrix with four rows and ten columns; each
element T1 is a single EBCDIC character. The first five
columns of T1 contain the values for CHIPTYPE.
Columns 6 and 7 contain the values for STAGE, and
Columns 8 and 9 contain the values for SETUP.
Therefore, COL1 is obtained as follows:

COL1«T1[;15])

The APL function iota (1) generates the values 1234 5.
COLIl1 is

tiger
tiger
lion
lion

The variable MATCH1 can be generated as follows:
MATCH1 « COL1A .= "lion'

MATCH11is00 1 1.
Alternatively, MATCHI can be calculated as

MATCH1 « A/ [2] 'lion' =[2]C0L1

Appendix 3: APL functions for finding state
space

Assume three input variables, V1, V2, and V3. The
variable V1 can be one of three values: BILL, BOB, or
JOE. The variable V2 can be one of two values: NYC or
BOSTON. The variable V3 can be one of three values:
USA, EUROPE, or ASIA. In this case, there are 18

(3 X 2 x 3) possible combinations. These variable values
are stored in the variable VARLIST as a single character
vector. The slash (/) is used as a delimiter between
variables:

VARLIST+«'BILL BOBJOE / NYC BOSTON
/ USA EUROPE ASTA/ '

The APL2 function SPACE generates the state space
from the information provided in VARLIST:

SPACE VARLIST

BILL NYC USA
BILL NYC EUROPE
BILL NYC ASIA
BILL BOSTON USA
BILL BOSTON EUROPE
BILL BOSTON ASIA
BOB NYC USA
BOB NYC EUROPE
BOB NYC ASIA
BOB BOSTON USA
BOB BOSTON EUROPE
BOB BOSTON ASIA
JOE NYC USA
JOE NYC EUROPE
JOE NYC ASIA
JOE BOSTON USA
JOE BOSTON EUROPE
JOE BOSTON ASIA

fol Z«SPACE X;DIVIDER;LIST;INDX;JK;JK1;JK2;JK3

(1] =n

[21] n THIS FN DETERMINES ALL POSSIBLE COMBINATIONS FOR
[3] n SET OF VALUES FOR DIFFERENT VARIABLES.

4] =a

[5] A X IS THE SET OF VALUES FOR FACH VARIABLE.

[6] n AN EXAMPLE OF X IS:

[71 o BILL JIM BOB / NYC BOSTON /
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(8]

(9]

(101
(111
[12]
[13]
[14]
[(15]
[16]
[17]
(18]
{191
[20]
[211]
[22]
[23]
[24]
[25]
{261
(271
[28]
[29]
[30]
[31]
[32]
[33]
[3u]
[35]
[36]
(371
rasg]
[39]
[40]
rae1]
[42]
[43]
Cuu]
[us]
[u6]
(u7]
(48]
[49]
[50]
(511
[52]
[53]
[54]
[55]
[56]
[57]
(58]

(0]

(11
(2]

a VARIABLE 1 IS NAMES AND THE POSSIBLE VALUES ARE:

] BILL JIM BOB

VARIABLE 2 IS CITIES AND THE POSSIBLE VALUES ARE:
NYC BOSTON

THE DIVIDER BETWEEN FACH VARIABLE IN THIS CASE IS /

IN GENERAL IT IS THE LAST NON-BLANK CHARACTER IN X

D

Z WILL HAVE THE SOLUTION:
BILL NYC
BILL BOSTON
JIM NYC
JIM BOSTON
BOB NYC
BOB BOSTON

» P DPD®D®»D®D®DD®DD D DD®DD

v v INITIALIZATION
X<«DBL X
X«, (" '"2X)cX
DIVIDER< 14X
LIST«1pX
2]
JK<«(DIVIDER = "X)/LIST
JK1< 1+|2-/0,JK
A JK1 IS THE NUMBER OF POSSIBLE VALUES FOR EACH VARIABLE
a FOLLOWING OUR EXAMPLE PROBLEM JK1 IS 3 2
INDX<COMBINATIONS JK1
a THIS FINDS ALL UNIQUE COMBINATIONS IN NUMERIC FORM
a FOR OUR EXAMPLE INDX IS:

A 11
A 1 2
A 2 1
A 2 2
A 31
A 3 2

JK2++\0, 1+JK1

a THIS CALCULATES RELATIVE DISPLACEMENT FOR FACH VALUE
a FOR OUR EXAMPLE JK2 IS 0 3

INDX<«JK2+[2]INDX

a THIS ADDS JK2[1] TO COL1 OF INDX ETC.

A IN QUR EXAMPLE INDX IS NOW

A 1

DD D DD D
WN N -
F oo F 0 F

3 5
JK3I+LIST~JK
X«X[JK3]
a X IS THE DIFFERENT VALUES FOR THE VARIABLES, WITHOUT DIVIDERS
Z«(pINDX)pX[,INDX]
f Z IS THE ANSWER

A«DBL B
an A IS THE CHARACTER VECTOR B WITH
a LEADING/TRAILING BLANKS REMOVED 641
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(3] n AND INTERMEDIATE BLANK SUBSTRINGS REPLACED BY SINGLE BLANKS
(4] A« 71414 (~! ' ¢ B)/B<«' ',B," '

(0] Z«COMBINATIONS X;JK
[1)] = THIS FIND ALL POSSIBLE COMBINATIONS
(2] o WHERF X[1] IS THE NUMBER OF MEMBERS OF SET 1

[3] A X[2]1 IS THE NUMBER OF MEMBERS OF SET 2

(4] = e

£5] A X{N] IS THE NUMBER OF MEMBERS OF SET N

(61 n

[7] a COL 1 OF 7 REFERS TO THE SET CORRESPONDING TO X[1]
[8] A COL 2 OF Z REFERS TO THE SET CORRESPONDING TO X[2]
[9]1 =n ETC.

[10] =a

(11] a THE APL2 PRIMITIVE T DOES BASE NUMBER SYSTEM WORK
[12] n

(131 X<«,X

[14] JK«x/X

[15] JK<«O0,1( 1+JK)
[16] Z<«XTJK

[17] Z<%&2Z

(18] Z<«Z+1

[

Appendix 4: APL function for finding duplicate In this example the table entry 2 1 3 appears twice and
table entries the table entry 3 2 3 appears once. The function
We can represent a table with an integer substituted for DUPLICATE is listed below:
each variable value. A is such a representation of a table:

VDUPLICATELOIV
[0] Z«X DUPLICATE Y; ID; INDX; W
[1) A THIS FINDS DUPLICATES OF RULES

AIS
2

1 3

1 1 2 [2] A WHEN THE RULES ARE IN THE FORM

2 1 38 [3 A 1 1 2

3 2 3 f4l n 2 1 3

2 2 3 [5] » . . .

3 2 83 [6] A~ 1 2 1

2 1 3 £71 n
[8] AYISTHERULES

B is the number of different values for each variable: [9] nXISTHE NUMBER OF STATES FOR EACH
[10] ID<«X1 1+8Y

3 2 8 [11] INDX<«AID

: . [12] Y<«Y[INDX;]
The function DUPLICATE finds all duplicate entries. [13] ID«IDLINDX]
Running DUPLICATE with A and B, we obtain [141 ID<«2=/ID

[15]1 ID+«0,ID
(16] Z«ID/(11Y

BDUPLICATE A
2 1 3

2 1 3
3 2 3 Appendix 5: APL function ODA
|  The function ODA is written

[o] Z«X ODA Y;JK;JK1;N;I
[1] a THIS FUNCTION IS AN ALTERNATIVE TO X v.A Y
642 (2] Z«((14pX),(T14pY))poO
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[3] a INITIALIZE THE QUTCOME MATRIX

[u] af THIS IS INITIALIZED TO ALL ZEROS {(0).
(6] a IT HAS THE SAMFE NUMBER OF ROWS AS X,
[7] n AND THE SAME NUMBER OF COLUMNS AS Y
(8] JK«1 14pX

[9] A THIS IS A LIST OF THE COLUMNS IN X
[10]1 a IF X HAS SIX COLUMNS THEN THIS JK IS 1 2 3 4 5 6
{111 N<l4p2

[12]1 a NUMBER OF ROWS IN Z

(131 I+«1

[14] a I IS THE CYCLE COUNTER

[15] L10:

[(16] a START OF LOOP WHICH PRODUCES 7Z

[17] JK1<«X[I;1/JK

[18] ~>(0=14pJK1)/L20

[19] JK1<Y[,JK1; ]

[20] JK1+v/[11JK1

[21] Z[I;]«JK1

[22] L20:

[23] > (Nz2zI<«I+1)/L10

{24]) a CHECK IF COMPLETED FACH ROW OF X, IF NOT BRANCH TO L10
[25] >0

In this function the program loops or cycles through the
matrix X one row at a time to build the outcome matrix
(Z). We can examine how this works with

INMATVAR « INMATOP ODA RINMATIP

INMATVAR is initialized to be all zeros; i.c., we assume
that a variable does not have a first-order dependency on
another variable until it is proven otherwise.

In cycle one (I = 1), we read the first row of X
(XL I;1). Thisis the CHIP row; it has the value 00 0 0.
If a cell has a 1, the variable CHIP is an outcome variable
for the corresponding function. If not, the cell has a value
0. We thus wish to find the corresponding column
numbers where that element of X[ I ; ] is not 0. This is
done by the APL2 expression

JK1+X[I;1/JK A REMEMBERJKIS1 2 3 4
A THIS EXPRESSION PASSES
A BACK INTO JK1 THOSE
p VALUES OF JK WHERE THE
A CORRESPONDING ELEMENT
AROFXLI;1IS1

In this cycle JK1 is a null vector. This tells us that the
variable CHIP is not an outcome variable from any other
function. It therefore has no first-order dependencies, and
we can stop processing this row of X. The APL2
expression

+(0=14pJK1)/L20

tells us that JK1 is a null vector and branches to 1L20. At
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L20 we increment the cycle counter, check whether we
have reached the end of X and, if not, start the process
over again for the next row in X.

In cycle 2 (I = 2), we examine the STAGE row of
INMATOP. This is all zeros, so there are no first-order
dependencies. In cycle 3 (I = 3), we examine the SETUP
row of INMATOP, which has the value 0 1 0 0. The
value for JK1 (corresponding column number) is 1. This
tells us that the variable STAGE is an outcome variable
for the function with an index of 1 (function T1). If
function 1 has any input variables, SETUP has a first-
order dependency on these variables.

The matrix RINMATIP provides the following
information: Each row in RINMATIP corresponds to a
function. If a variable is an input variable to that
function, its cell has a value of 1; if not, it has a value
of 0.

ODA then reads any row of RINMATIP in which the
variable STAGE is an output variable of the
corresponding function. (In this case we are only
interested in row 1.) This is done by the APL expression

JK1<Y[ ,JK1; ]

JK1 has the value 1 1000 0. This tells us that the

variables CHIPTYPE and STAGE are input variables to

function 1, and thus SETUP has a first-order dependency

on them. Therefore, these cells in Z are changed to 1s.
The APL2 expression

JK1+v/[1]JK1

handles the situation in which a variable being 643
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investigated is an output variable of more than one Appendix 7: Simultaneous conditions
function. It essentially ensures that as long as a variable is ~ An example of a simultaneous set of equations would be

an input variable to at least one of these functions, it is

listed as a first-order dependency.
The APL2 expression

Z[1; 1+JK1

replaces the row of Z which corresponds to the row of X
being investigated with the new information on first-

PROFIT = REVENUE — (EXPENSE + BONUS)
BONUS = .05 x PROFIT

In this case REVENUE and EXPENSE are known
variables, and PROFIT and BONUS are unknown.
An example using function notation might be the

order dependencies. following:
Appendix 6: APL function LINKVAR va ;((‘\’,21 X/?)
The function LINKVAR is written V3=h(Vl,V2)
(0] Z+«X LINKVARY;JK;JK1;JK2;N; T As an example of such a condition in manufacturing,
[1] A THISFNFINDSTHELINKING assume that the machine to which a lot is assigned
n VARIABLE FOR N-ORDER depends on the current estimate of how far behind or

A DEPENDENCIES

ahead (delta) of schedule the lot is. The delta schedule

[21] Z«((14pX), (T14pY))pci1p0 estimate depends on the machine to which the lot is

[3] JK+1 14pX

[ul N«14p2

[5] I+1

[61 L10:

7] JK1+X[I;1/JK
[8] >(0=14pJK1)/L20

assigned.

Appendix 8: APL functions used in focusing
First, we use the following APL2 function to generate a
matrix showing all dependencies between functions

| (tables and procedure modules) in our knowledge base:

VRULEALL[O]V
(0] RULELINKS<«INMATIP RULFALL INMATOP;JK
(1] A THIS FUNCTION DETERMINES ALL THE RULES
[2] A THAT INFLUENCE ANY SPECIFIC RULE
[3] RULELINKS« (QRINMATIPVINMATOP)v .AINMATOP
(4] L10:
(5] JK<«RULELINKS
(6] RULELINKS<«RULELINKSv (RULELINKSY .ARULELINKS)
L7] +(~JK = RULELINKS)/L10
(8] +0
[9] JK2<Y[ ,JK1; ) 1 The result 1s
[10] JK2+JKI1x[1]1JK2 T1 T2 T3 Pl
[11] JK2+C[1]JK.2. T1 ) 0 0 0
(121 JK2«ELIMX0 JK?2 T 1 ) 0 0
[13] ZLI;]«JK?2 T3 1 0 1 0
[14] L20: P1 1 | 1 i
[15] > (N2I<«I+1)/L10
[16] =0 In RULELINKS there is one row and one column for
[0] Z«ELIMX0 X; JK1 each function in the system. Rows reference an output
[1] ATHIS IS CALLED BY LINKVAR condition; columns reference an input condition.
[2] X<, X RULELINKS shows all dependencies between functions.
[3] JK1+X=0 If a function is an input function to an output function,
[u4] ¢ (0=v/JK1)/'JK1[1]+1"' the corresponding cell has the value 1; if not, its value is
[5] Z+«JK1/X 0. For example, T3 has SETUP as an input variable. T1
calculates SETUP; therefore, T1 is an input function to
LINKVAR operates similarly to ODA, except that it T3 and the cell (T3, T1) hasa 1.
keeps track of the linking variable and not the new Next, we select the row of INMATOP which

dependency.
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corresponds to the variable on which we want to focus,
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and store it as the vector VF. For this example assume
that we wish to focus on the variable PROCESS_TIME.
Then VF is

VF«INMATOP(S; ]

or 00 10. The following APL2 statement generates the
list of functions which affect the variable
PROCESS_TIME:

(v/[11VFA[L1]1RULELINKS)
J'T1' T2t '3t 'p1!

The result is T1 and T3.

Appendix 9: Outline of backward chaining
Backward chaining is easy to implement. If, for example,
we needed to determine a value for PROCESS_TIME,
we would follow the following steps:

¢ Find a function for which PROCESS_TIME is an out-
put variable. If there is none, end processing.
¢ In this case the answer is TABLE 3.
e Determine the input variables for this function.
e In this case the answer is CHIP_TYPE and SETUP.
o Determine whether these variables have values.
e CHIP_TYPE has a value.
e SETUP does not have a value.
If they do have values, execute the function. If not,
repeat the process on the variables without values. In
this case, we need to find a value for SETUP,
¢ Find a function where SETUP is an output variable.
« In this case the answer is TABLE 1.
¢ Determine the input variables for this function.
« In this case the answer is CHIP_TYPE and STAGE.
¢ Determine whether these variables have values.
e CHIP_TYPE has a value.
e STAGE has a value.
¢ Execute the function TABLE 1.
¢ SETUP now has the value 2.
¢ Feed this new information to the calling step.
o Now that SETUP has a value, execute function
TABLE 3.
¢ PROCESS_TIME now has the value 60.
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