
Representing
knowledge with
functions and
Boolean arrays

by K. Fordyce
J. Jantzen
G. A. Sullivan, Sr.
G. A. Sullivan, Jr.

Over the past eighteen years a variety of
advanced decision support systems have been
built with knowledge-based expert system
(KBES) components. For the past eight years, a
knowledge representation and manipulation
(KRM) scheme called FABA (Functions And
Boolean Arrays) has been used. It has two basic
principles. First, knowledge is viewed as a
functional mapping between input and output
variables, where the functions are expressed as
fact tables or bases and procedure modules.
Second, the function network can be
represented with Boolean arrays. The basics of
FABA, its implementation in APLS, and a simple
example of FABA’s application in a
manufacturing dispatch application for IBM’s
semiconductor facility in Burlington, Vermont,
are described in this paper.

1. Introduction
The knowledge representation and manipulation (KRM)
scheme based on functions and Boolean arrays (FABA)
has been used successfully in a number of applications. of

“Copyright 1989 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM 1. RES. DEVELOP. VOL. 33 NO. 6 NOVEMBER 1989

which the best known is the Logistics Management
System (LMS) [1-31. LMS is an advanced decision
support system which serves as a dispatcher, monitoring
and controlling the manufacturing flow of the IBM
Burlington semiconductor facility. Appendix 1 provides
an overview of LMS.

Other applications include Real-time Enrollment and
Training (RET), Executive Information Network (EIN),
Modeling Allowable Resources (MARS) [4], Real-time
Control of Urban Drainage [51, and Expert Aided
Adaptive Control [6] . (The last application is being done
in LISP.)

The individual concepts in FABA have origins in a
wide spectrum of programming techniques and “tool of
thought notations” [7]. The use of functions as a base
unit of organization of knowledge has roots in functional
programming languages such as APL2 and LISP, and the
mathematical concept of functions. Brown, Pakin, and
Polivka [8] provide a general introduction to APL2.

The concept of organizing rules or knowledge modules
in a tree structure or network is used in a variety of
KRM schemes [9-131. The application of Boolean arrays
to store and manipulate networks has a long history in
the APL community [7, 14- 191. The use of Boolean
arrays and operations to efficiently handle logical
processing is also well established [7,20-221.

The use of tables to store knowledge has origins in
general array theory [23], relational databases, APL2
[21,24-281, and Prolog [29]. A general introduction to
APL2 and knowledge representation with general arrays
and tables can be found in [30].

K. FORDYCE ET AL.

628

The programming language concepts of avoiding data
type dependencies, linking data and procedure to
generate a "natural" object, and adaptability to change
have origins in APL2 and object-oriented programming

The origins of FABA are described in [22,32-341. A
detailed description of different aspects of FABA can be
found in [35,36].

independently developed approaches with some
similarities to FABA; for example, see [37-401.

13 11.

Others in the knowledge-based expert system field have

2. A brief review of mathematical functions
Functions are a description of the mapping between one
set of independent (input) variables and a dependent
(output) variable. For each set of input variable values,
there is a mapping into only one output variable value.
Different input variable value sets may map into the
same output variable value. The set of possible input
variable value sets is called the domain. The set of
possible output variable values is called the range.

where the mapping description is expressed as an
algebraic equation, and the domain and range are
numbers. For example,

The reader is probably most familiar with functions

W = X 2 + 4Y.

Sometimes input variables are linked to an output
variable through more than one equation, requiring the
establishment of an intermediate output variable. For
example,

W = f (X , Y) = X 2 + 4Y, (1)

2 = g(W,V) = 3 W + 2 v (2)

is a system of two equations expressing a functional
mapping of the output variable Z from the input
variables V, X, and Y. 2 has a direct dependency on V,
but its dependency on X and Y is through the
intermediate output variable W. Formally, this is called a
composite function:

z = h(X ,Y ,V = g o f = g[f (X ,Y) ,V l , (3)

where h(X,Y,V) is the composite of the functions f and g.
To determine the Z value for a set of input values,
caculate Wfrom Equation (l) , and then use this Wwith
V in Equation (2) to calculate Z .

When the function mapping is written in algebra, we
often carry out an algebraic simplification, e.g,

2 = h (x Y , v) = g o f = g[f (X ,Y) ,VI , (3)

z = h(X,Y,I/) = 3(X2 + 4 Y) + 2v, (44

2 = h(X,Y,V) = 3X2 + 12Y + 2v. (4b)

K. FORDYCE ET AL.

In this case the intermediate output variable W is
eliminated, and we can calculate Z directly.

3. Tables and procedure modules as functions
"Tables" or "fact bases" represent a tabular
representation of a functional relation between input and
output variables, where the domains and ranges are a
finite set of elements. PMs are small procedure modules
used to describe functional relationships which carry out
standard conditional logic and computation on the input
variables to generate the output variables. The linkages
between functions represent composite function
operations.

An example set of functions is shown below:

TABLE 1 (Tl)

CHIPTYPE STAGE -> SETUP

tiger 1 3
tiger 2 2
lion 1 4
lion 2 4

TABLE 2 (T2)
SETUP -> SETUP-TIME

2
3
4

20
20
50

TABLE 3 (T3)

CHIPTYPE SETUP -> PROCESS-TIME

tiger 2 60
tiger 3 50
tiger 4 NA
lion 2 NA
lion 3 NA
lion 4 60

IBM 1. RES. DEVELOP. VOL. 33 NO. 6 NOVEMBER 1989

PROCEDURE MODULE 1 (PM1)

VPM1 C U I 0

C O] PM1
C11 A T H I S F U N C T I O N D E T E R M I N E S
C 2 1 A THE APPROPRIATE SETUP CONDITION
C 3 1 A
C 4 1 A VALUE CALCULATED (OUTPUT VARIABLE) : S E T U P COND
C 5 1 A
C 6 1 A P O S S I B L E O P T I O N S F O R O U T P U T V A R I A B L E : long
C 7 1 A shor t
C 8 1 A
C 9 1 A VALUES USED (I N P U T V A R I A B L E) : S E T U P T I M E

C 1 1 1 S E T U P C O N D t c ‘ L O N G ’
c 1 2 3 A S E T U P C O N D I S I N I T I A L L Y A S S I G N E D T H E V A L U E L O N G
C 1 3 1 C O N D S t T S E T U P T I M E < 2 5) , (S E T U P T I M E < 4 x P R O C E S S T I M E)
c 1 4 3 A I F S E T U P - T I M E < 2 5
C 1 5 1 A THEN GENERATE A 1 (T R U E) , E L S E 0 (F A L S E)
C 1 6 3 A I F SETUP-TIME < (4 x PROCESS-TIME)
C 1 7 1 A THEN GENERATE A 1 , E L S E 0
C 1 8 1 A A S S I G N T H I S P A I R OF RESULTS TO COND
C 1 9 1 + (h / C O N D S) / L O 1 0
C 2 0 1 A I F BOTH CONDITIONS ARE TRUE BRANCH TO LO10
c 2 1 1 +o
c 2 2 3 L O 1 0 :
C 2 3 3 S E T U P C O N D c c ’ S H O R T ‘
c 2 4 1 A SETUP-COND I S A S S I G N E D T H E V A L U E S H O R T
C 2 5 1 +-0

V

-

C l O I A PROCESS-TIME

- -

Table 1 (Tl) is the mapping of the input variables
CHIPTYPE and STAGE into the output variable
SETUP. Table 2 (T2) is the mapping of the input
variable SETUP into the output variable SETUP-TIME.
Table 3 (T3) is the mapping of the input variables
CHIPTYPE and SETUP into the output variable
PROCESS-TIME. Procedure Module 1 (PM1) is the
mapping of the input variables SETUP-TIME and
PROCESS-TIME into the output variable
SETUP-COND.

functional notation:

SETUP = Tl(CHIPTYPE,STAGE);

SETUP-TIME = T2(SETUP);

PROCESS-TIME = T3(CHIPTYPE,SETUP);

These relationships can be written in the following

SETUP-COND = PM 1 (SETUP-TIME,
PROCESS-TIME).

The concept of a composite function exists within our
table-and-procedure-module method of describing
functions.

For example, the functional relationship between the
input variables CHIPTYPE and STAGE and the output
variable SETUP-TIME can be found by using Tables 1
and 2 and viewing the variable SETUP as an
intermediate output variable:

SETUP-TIME = TCl(CHIPTYPE,STAGE) = T 1 0 T2.

The concept of “algebraic simplification” can sometimes
be applied by generating a new table. For example, the
composite function TC 1 would result in the following
table: 629

IBM J. RES, DEVELOP, VOL. 33 NO. 6 NOVEMBER 1989 K. FORDYCE ET AL.

can be one of two values: tiger or lion. The variable
PRIORITY can be one of three values: hot, warm, or
cold. Then, each combination of values represents one TABLE COMPOSITE 1 (TC1)

CHIPTYPE STAGE -> SETUP-TIME point in the domain or state space [38]. In this case, there

tiger 1 20
are 6 (2 X 3) possible unique combinations:

tiger
lion tiger hot,
lion tiger warm,

tiger cold,

In APL2 [8,30], tables map directly into two-
lion hot,
lion warm,

dimensional general arrays. Table 1 can be generated lion cold.
with the statement

T 1 is a matrix with a shape (p) of four rows and three
columns. The matrix is filled in row by row (row major),
as follows:

COL 1 COL 3 COL2

ROW 1 3 1 tiger c I

I I I I

ROW 3 4 1 lion

ROW 4 4 2 lion

APL2 provides indexing into any portion of the
matrix, and a variety of comparison operations. The
following statements will access column 1 and check
whether any element in column 1 is equal to lion:

C O L l + T l C ; l I

M A T C H I + (C’l ion’) = “ C O L I

In the first statement, the variable COLl is assigned (+)
the values in column 1 (C ; 1 1) of TI. COLl is a vector
with four elements. The second statement matches (E)
the character string or value lion against each (”) element
in the variable COLl. MATCH1 is a vector with four
elements (00 1 I), one for each member of COLl . An
element of MATCH I is a 1 if the corresponding element
of COLI has the value lion; else a 0.

Tables can also easily be represented and searched with
simple character arrays (one character per element in an
array) in APL2; Appendix 2 provides an example.

In APL2 a procedure module can be executed at any
time with the execute primitive (a) . The system
functions U E A and U E C provide for the “protected”
execution of a PM.

4. Generating the finite domain of a function
Assume that there are two input values to the function:

630 CHIPTYPE and PRIORITY. The variable CHIPTYPE

The set of APL2 functions in Appendix 3 generates all
elements in the domain without using recursion. The key
APL2 primitive is encode (T).

Using a related process, we can identify duplicate
entries in a table using the APL2 function shown in
Appendix 4. The key APL2 primitives are decode (T)
and n-wise reduction (2 = /).

5. Generating the network of functions
Using the following two Boolean arrays and some
Boolean array operations in APL2, we can determine
automatically how the different functions relate to one
another [33-351 and automatically generate the
dependency network.

The first item generated is a Boolean matrix called
INMATIP (IP stands for INPUT). This matrix records
which variables are input variables for which functions.
INMATIP has one row for each variable and one column
for each function (table or procedure module). A cell is
assigned a 1 if the variable is in the “input portion” of a
function; else a 0. For this example INMATIP would be

TI T2 T3 P1

CHIPTYPE 1 0 1 0
STAGE 1 0 0 0
SETUP 0 1 1 0
SETUP-TIME 0 0 0 1
PROCESS-TIME 0 0 0 1
SETUP-COND 0 0 0 0

The second item generated is a Boolean matrix called
INMATOP (OP stands for OUTPUT). This matrix
records which variables are output variables for which
functions. INMATOP has one row for each variable and
one column for each function (table or procedure
module). A cell is assigned a 1 if the variable is in the
“output portion” of a function; else a 0. For this
example, INMATOP would be

K. FORDYCE ET AL. IBM 1. RES. DEVELOP. VOL. 33 NO. 6 NOVEMBER 1989

T1 T2 T3 P1

CHIPTYPE 0 0 0 0
STAGE 0 0 0 0
SETUP 1 0 0 0
SETUP-TIME 0 1 0 0
PROCESS-TIME 0 0 1 0
SETUP-COND 0 0 0 1

(These two arrays can easily be generated automatically
by writing a small APL2 program to parse the description
of the functions.) With the two arrays we can determine
the variable SETUP-TIME as a function of the variables
CHIPTYPE and STAGE through the intermediate
variable SETUP and other second-order dependencies.
The following APL2 expression gives this information:

INMATVAR 4 INMATOP v . A 4 I N M A T I P

LEVEL-1-LINKS f INMATVAR

LEVEL-2-LINKS
4 LEVEL-1-LINKS v . A INMATVAR

INMATVAR is then

INPUT VARIABLES

CHIP SETUP PROCESS SETUP
TYPE STAGE SETUP -TIME -TIME -CON0

U A STAGE
0 V CHIFTYPE 0 0 0 0

0 0 0 0
0 0
0 0

T R SETUP 1 1 0 0
P I SETUP-TIME 0 0 1 0

0 0

U A PROCESS-TIME 1 0 1 0
0 0

T B SETUP-COND 0 0 0 1
0 0
1 0

INMATVAR contains one row and one column for each
variable in the system. Rows reference output conditions;
columns reference input conditions. INMATVAR shows
“ first-order’’ dependencies between variables. If a variable
is a direct input variable (the columns) to an output
variable (the rows), then that cell has the value 1. If not,
the value is 0. For example, CHIPTYPE and STAGE are
direct input variables to the variable SETUP through T 1.
Therefore, the cells (SETUP, CHIPTYPE - row 3,
column 1) and (SETUP, STAGE - row 3, column 2)
have the value 1.

The APL function 4 generates the transpose of a
matrix. 4 INMATIP is

1 1 0 0 0 0
0 0 1 0 0 0
1 0 1 0 0 0
0 0 0 1 1 0

how the value in the first row and first column of
INMATVAR is calculated.

of 4 INMATIP is 1 0 1 0. We then “and” (A) the
corresponding elements, giving 0 0 0 0, and “or” across
(v / 0 0 0 0) this result, giving 0.

could use the APL function ODA (Appendix 5).

provides the information about level 1 links or first-order
dependencies between variables.

The first row of INMATOP is 0 0 0 0. The first column

As an alternative to using the APL expression v . A , we

LEVELLLINKS is identical to INMATVAR. It

L E V E U L I N K S is

INPUT VARIABLES

CHIP SETUP
TYPE STAGE SETUP -TIME

0 V CHIPTYPE 0 0 0 0
U A STAGE 0 0 0 0
T R SETUP 0 0 0 0
P I SETUP-TIME 1 1 0 0
U A PROCESS-TIME 1 1 0 0
T B SETUP-CORD 1 0 1 0

PROCESS SETUP
-TIME -COND

0 0
0 0
0 0
0 0
0 0
0 0

LEVEL2LINKS contains one row and one column
for each variable in the system. Rows reference an output
condition; columns reference an input condition.
LEVELLLINKS shows second-order dependencies
between variables. If a variable is a second-order input
variable to an output variable, then that cell has the value
1. If not, the value is 0. For example, CHIPTYPE and
STAGE are second-order input variables to the variable
SETUP-TIME. SETUP-TIME depends directly on
SETUP (T2). SETUP depends directly on CHIPTYPE
and STAGE (Tl). Therefore, SETUP-TIME has a
second-order dependency on CHIPTYPE and STAGE
(T2 to Tl), where the linking variable is SETUP, and the
cells (SETUP-TIME, CHIPTYPE - row 4, column 1)
and (SETUP-TIME, STAGE - row 4, column 2) have
the value 1.

The linking variables can be found using the following
expression (the function LINKVAR is shown in
Appendix 6):

LEVEL-1-LINK-VAR 4 INMATVAR

LEVEL-2-LINK-VAR
f LEVEL-1-LINK-VAR LINKVAR INMATVAR

For first-order dependencies, the linking variable is the
linked variable. Therefore, LEVELLLINLVAR is
the same as INMATVAR.

LEVELLLINLVAR is

INPUT VARIABLES

CHIP S E W PROCESS SETUP
TYPE STAGE SETUP TIME TIME COND

0 V CHIPTYPE 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0

The APL2 operator dot (.) carries out the inner product
operation, and the APL expression v . A is the primitive ~ ~ ~ ~ $ & i : : 0 0

for Boolean matrix multiplication. Let us look in detail at T B SETUP-COND 5 o 4 s o 0 0 631

IBM J. RES, DEVELOP. VOL. 33 NO. 6 NOVEMBER 1989 K. FORDYCE ET AL.

LEVEL-2-LINLVAR contains one row and one
column for each variable in the system. Rows reference
an output condition; columns reference an input
condition. LEVEL-2LINLVAR shows the linking
variable for the second-order dependencies between
variables. The number 1 refers to CHIPTYPE, the
number 2 refers to STAGE, etc. For example, this table
shows us that the linking variable for the second-order
dependency between the variable CHIPTYPE and the
variable SETUP-TIME is the variable SETUP (number
3).

Third-order dependencies are found as follows:

LEVEL-3-LINKS
f LEVEL-2-LINKS v . A INMATVAR

LEVEL-3-LINKS is

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0

Third-order linking variables are found by

LEVEL-3-LINK-VAR
+ LEVEL-2-LINK-VAR LINKVAR INMATVAR

LEVEL-3-LINLVAR is

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
3 3 0 0 0 0

The following APL2 statement finds fourth-order
dependencies. (Notice that this matrix contains only Os,
which means that there are no more dependencies to
find.)

LEVEL-4-LINKS
f LEVEL-3-LINKS v . A INMATVAR

LEVEL-4-LINKS is

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Using the information in these relationship matrices, we
can, for example, determine the component variables

632 that influence the value of the variable SETUP-TIME:

SETUP-TIME has a direct dependency on the variable
SETUP via function T2 and a second-order dependency
on the variables CHIPTYPE and STAGE through the
connecting variable SETUP via function T 1.

The approach described above provides for simple,
rapid, automatic generation of the dependency network
(including “simultaneous” conditions; see Appendix 7)
from just the knowledge of first-order dependencies.

Using a similar approach, we can build the following
network for the functions of this example:

Using the same Boolean arrays and a slightly more
complicated set of Boolean operations, we can
automatically and quickly generate an ordering of the
functions based on “relative independence” and thus
“focus a knowledge network.”

example. Given the equations
To explain “relative independence,” let us look at an

VOLUME = AREA X HEIGHT, (a)

PERIMETER = (2 X LENGTH) + (2 X WIDTH), (b)

AREA = LENGTH X WIDTH, (c)

and

HEATING COST = 4 X VOLUME, (dl

we would need to execute Equation (a) before Equation
(d), and Equation (c) before Equation (a). We could view
Equations (b) and (c) as making up the most independent
group or class of rules, since their input variables
(LENGTH and WIDTH) are not calculated by any other
equation. Equation (a) would be in the second group or
class, since its input variables are either not calculated by
another equation (HEIGHT) or calculated by an
equation already ordered (AREA). Equation (d) would
make up the third group.

For our example the functions are ordered as follows:

CLASS 1: T1
CLASS 2: T2 T3
CLASS 3: PMl

To explain “focusing,” we return to Equations (a)-(d). If
we have specified values for LENGTH, WIDTH, and
HEIGHT, then the example equation set or network will
calculate values for AREA, PERIMETER, VOLUME,
and HEATING COST. If we tell the equation network to
focus on the variable HEATING COST, it will drop
Equation (b) and not calculate PERIMETER, since

K. FORDYCE ET AL. IBM J . RES. DEVELOP. VOL. 33 NO. 6 NOVEMBER 1989

PERIMETER has no link to HEATING COST. An
automatic “focuser” is shown in Appendix 8.

of functions and network focusing is very useful in
debugging knowledge sets, organizing them into logical
groups, and identifying parallel content in inferencing.

The information provided from the automatic ordering

6. lnferencing by forward chaining
In knowledge-based expert systems (KBES), an inference
engine is used to determine which pieces of knowledge to
use in what order to solve a problem or answer a
question. Fordyce, Norden, and Sullivan [41] provide a
detailed description of inference engines.

The task of a forward-chaining inference engine in a
KBES is to monitor facts in a database, transaction
stream, or interactive session with a user, and then
determine which pieces of knowledge should be invoked
in what order in response to a stimulus from the
environment. Invoking or executing a piece of knowledge
is calledfiring. In our example, the inference engine
would monitor changes in values for variables
CHIPTYPE, STAGE, etc., and then determine which
functions to execute in what order.

The task of a backward-chaining or goal-driven
inference engine is to monitor inquiries from a user as to
whether a specified outcome, goal, or fact is true or false.
In this case, the inference engine searches through the
database and the knowledge base to verify or determine
whether there is sufficient evidence to conclude that the
specified goal is true. In our example, the user might ask
“Does the variable PROCESS-TIME have a value of
short?” or the more general question, “What is the value
for PROCESS-TIME?” The inference engine would then
search the existing functions and values for variables to
determine the value for PROCESS-TIME.

In this section we describe how the network
information described in the preceding section can be
used efficiently to do inferencing by forward chaining.
We will see that forward chaining is accomplished
essentially by following the function network built from
the Boolean arrays INMATIP and INMATOP. The
backward-chaining procedure is shown in Appendix 9.

For this example we make use of the four-function
knowledge base described in Section 3 and the Boolean
arrays presented in Section 5. Assume that we initially
know the following information:

VARIABLE VALUE

CHIPTYPE tiger
STAGE 2
SETUP unknown
SETUP-TIME unknown
PROCESS-TIME unknown
SETUP-COND unknown

”

IBM J . RES DEVELOP. VOL 33 NO. 6 NOVEMBER 1989

From this information we generate the Boolean vector
KUVEC (known-unknown vector). This tells us whether
or not a variable has a value. There is one cell for each
variable. A cell is assigned a 1 if the variable has a value;
else a 0. For this example KUVEC is 1 1 0 0 0 0.

Cycle I : Deciding which functions to fire
First, the inference engine (IE) must decide which
functions are candidates for executing or firing. A
function is a candidate if all input variables for the
function have values. POTEN is the variable that holds
the llst of legitimate candidates for firing. For this cycle
POTEN is TI. The APL expression which generates
POTEN is

POTEN f A / C 11 KUVEC 2 C 11 I N M A T I P

where INMATIP is the matrix described in Section 2.

functions which have previously fired, and which it has
no reason to fire again. (This is the first cycle, so this step
can be skipped for this cycle.) If POTEN is empty at the
end of this step, the inferencing process is finished.

Third, the IE decides which of the functions in
POTEN should be fired in this cycle. This decision is
often called conflict resolution. Our method is to identify
the “most independent” function class represented in
POTEN, and then keep in POTEN only the functions in
that class. In this cycle there is only one function class
represented in POTEN, so POTEN is now T 1.

Fourth, the IE executes the functions that have been
selected. The variable SETUP now has the value 2.

In this case, executing the function means searching
Table 1 to determine whether there is a row which has
the value tiger in the first column and the value 2 in the
second column. If a match is found, the value in column
3 of the “matched” row is assigned to the variable
SETUP. “Searching” through the tables to find a match is
easy in APL2, as shown below.

columns:

tiger 1 3
tiger 2 2
lion 1 4
lion 2 4

We can access columns 1 and 2 as follows:

T A B L E 1 C ; 1 2 3

tiger 1
tiger 2
lion 1
lion 2

The variable X can be assigned the known values for

Second, the IE eliminates from POTEN those

Table 1 (TI) is a matrix with four rows and three

K . FORDYCE ET AL.

633

CHIP-TYPE and STAGE, The APL2 expression which generates VCVEC is

X+ tiger I 2 . v / c 2 3 INMATOPC ; POTENI

By the expression or

The value for SETUP is then found to be 2.
If no match is found in Table 1, we still consider the

function to have been executed, but we assign to the
variable SETUP the value “no-value-found.” (There are
alternatives to this approach, but we do not discuss them
in this paper.)

0 Cycle I : Updating summary information
Since the values of some of the variables have been
altered by the function firings, the summary information
is no longer current, and the IE must update each of
these data structures.

First, it updates an item called FIRELOG. FIRELOG
keeps track of which functions were candidates for firing
and which functions were in fact fired at each cycle.
FIRELOG is now

CYCLE FUNCTION STATUS

1 TI 1

The first column shows the cycle, the second the
function, and the third whether the function was fired (1)
or not (0).

(variable change vector). There is one position for each
variable, in the same order as the rows for INMATIP. A
cell is assigned a 1 if the variable was affected by the
function firings; else a 0. A variable is affected if it is in
the output portion of a function that has fired. The IE
can get this information by using POTEN and
INMATOP. From POTEN we know which functions
were fired, and from INMATOP we know which
variables are in the “then,” or output, portion of each
function. For this cycle VCVEC is 0 0 1 0 0 0:

Second, the IE generates a vector called VCVEC

VARIABLE CHANGE STATUS

CHIPTYPE 0
STAGE 0
SETUP 1
SETUP-TIME 0
PROCESS-TIME 0

634 SETUP-COND 0

K. FORDYCE ET AL

Third, the IE updates KUVEC, which is now
1 1 1 0 0 0 .

Fourth (and last), the IE keeps a history log of variables
that have been affected. The change status for a variable
at a given cycle is assigned a value of 1 if the variable was
affected in the corresponding cycle; else a 0. The IE uses
this information to determine whether a function that
has been fired should be fired again. The information is
stored in the matrix VCMAT (variable change matrix),
which has one column for each cycle.

VCMAT is now

VARIABLE CYCLE 1
CHIPTYPE 0
STAGE 0
SETUP 1
SETUP-TIME 0
PROCESS-TIME 0
SETUP-COND 0

The IE has now finished updating its summary
information and is ready to proceed to the next inference
cycle.

0 Cycle 2: Deciding which functions to fire
First, the IE determines candidates for firing. POTEN is
initially TI, T2, and T3.

Second, the IE eliminates from POTEN those
functions which have previously fired, and which it has
no reason to fire again. POTEN is now T2 and T3.

Third, the IE decides which of the functions in
POTEN should be fired in this cycle. Both T2 and T3 are
in the same function order class, so POTEN is still T2
and T3.

Fourth, the IE executes the functions that have been
selected. The variable SETUP-TIME now has the value
20. The variable PROCESS-TIME now has the value 60.

0 Cycle 2: Updating summary information
First, the IE updates FIRELOG, which becomes

IBM J. RES. DEVELOP. VOL. 33 NO. 6 NOVEMBER 1989

CYCLE FUNCTION STATUS

1 TI 1
2 T2 1
2 T3 1

Second, the IE generates VCVEC, which becomes, for
this cycle, 0 0 0 1 1 0:

VARIABLE CHANGE STATUS

CHIPTYPE 0
STAGE 0
SETUP 0
SETUP-TIME 1
PROCESS-TIME 1
SETUP-COND 0

Third, the IE updates KUVEC, which becomes

Fourth, the IE updates the history log of variables that
1 1 1 1 10.

have been affected. VCMAT is now

VARIABLE CYCLE 1 CYCLE 2

CHIPTYPE 0 0
STAGE 0 0
SETUP 1 0
SETUP-TIME 0 1
PROCESS-TIME 0 1
SETUP-COND 0 0

The IE has now completed the second inference cycle
and is ready to proceed to the third.

Cycle 3: Deciding which functions toJire
First, the IE determines candidates for firing. POTEN is
initially TI, T2, T3, and PM1.

functions which have previously fired, and which it has
no reason to fire again. POTEN is now PMI.

Third, the IE decides which of the functions in
POTEN should be fired in this cycle. POTEN is still
PM1.

Fourth, the IE executes the functions that have been
selected. The variable SETUP-COND now has the value
short. In this case the APL2 function PMI is run.

Second, the IE eliminates from POTEN those

Cycle 3: Updating summary information
First, the IE updates FIRELOG, which is now

IBM 1. RES. DEVELOP. VOL. 33 NO. 6 NOVEMBER 1989

CYCLE FUNCTION STATUS

1 TI 1
2 T2 1
2 T3 1
3 PM 1 1

Second, the IE generates VCVEC; for this cycle
VCVECis00000 1:

VARIABLE CHANGE STATUS

CHIPTYPE 0
STAGE 0
SETUP 0
SETUP-TIME 0
PROCESS-TIME 0
SETUP-COND 1

-

Third, the IE updates KUVEC, which becomes

Fourth, the IE updates VCMAT, which becomes
1 1 1 1 1 1 .

VARIABLE CYCLE 1 CYCLE 2 CYCLE 3

CHIPTYPE 0 0 0
STAGE 0 0 0
SETUP 1 0 0
SETUP-TIME 0 1 0
PROCESS-TIME 0 1 0
SETUP-COND 0 0 1

The IE has now completed the third inference cycle, and
is ready to proceed to the next.

0 All done
The IE now determines that there is no reason to fire any
more functions and ends processing. Given the new set of
values for CHIP-TYPE and STAGE, the appropriate
values for SETUP, SETUP-TIME, PROCESS-TIME,
and SETUP-COND have all been determined by
processing the knowledge in our four functions.

7. Integrating FABA and transactions
In the following example we illustrate how FABA is
integrated with a manufacturing-lot transaction stream
and tracking database. (Appendix 1 describes the
manufacturing dispatch system.)

The manufacturing facility comprises lots to be
processed, operations to be performed on the lots, and
machines which carry out the operations. For each lot
that is put into the manufacturing stream, the following
information is recorded:

K. FORDYCE ET AL.

LOT TRACKING DATA RASE

. . . LOT TRACKING DATA BASE 1 L101TL211 1 SETUP I SETUP-TIME I EST-LV 1 TIME 1 DELTA-SCIID 1
11130

11132

When a lot is put into production, the first two
variables (LOT-ID and LOTJAMILY) in the record
are given values. In this example there are three lots in
the tracking database. (The field LOT-ID is listed twice
for the convenience of the reader.)

The value for PRIORITY is a transaction received
from production control (PC). An initial value between 1
and 100 is placed in PRIORITY when the lot is
launched; this value can change once a day. We will give
the name PRIORITYJC to the variable holding the
initial priority value transmitted from production
control. The program module PM 1 1 translates this value
into one of four values, HOT, WARM, COLD, or ICE:

PM11

output variable: PRIORITY

input variable: PRIORITY-PC

translate
PRIORITY-PC
(a value between 1 and 100) t o
PRIORITY
(one of the following values:
HOT, WARM, COLD, or ICE)

c

The value for DUE-DATE is a transaction received
636 from the order book (OB). An initial value is placed in

I K. FORDYCE ET AL.

I
DUE-DATE when the lot is launched; this value can
change at any time. The value for DUE-DATE takes the
form YY/DAY (last two digits of the year and Julian
day; for example, 89/ 134). We call the variable holding
the initial date transmitted from the order book
DUE-DATE-OB. PM12 translates this value into the
form MM/DD/YY (for example, 05/14/89):

PM12

output variable: DUE-DATE

input variable: DUE-DATE-OB

translate
DUE-DATE-OB
(in the form YY/DAY) t o
DUE-DATE
(i n t h e form MM/DD/YY)

The value for the variable O P U A M I L Y (operation
family) is changed in the record each time the lot enters a
new manufacturing operation. This transaction is sent
from the floor tracking system (ITS). The value for
MACH-FAMILY (machine family) is based on
OPRFAMILY. Table 11 (T1 1) provides this value:

IBM 1. RES. DEVELOP. VOL. 33 NO. 6 NOVEMBER 1989

TABLE 11 (T11)

OPR-FAMILY -> MACH-FAMILY
bend
bake
test

xxx
YYY
227,

The value for the variable SETUP (required
configuration for the machine to run this lot at this
operation) is based on LOT-FAMILY and
OPRFAMILY. Table 12 (T 12) provides this value:

TABLE 12 (T12)

LOT-FAMILY OPR-FAMILY -> SETUP

tiger bend brown
1 ion bend blue

t i g e r bake ye1 low
1 ion bake red

tiger test green
1 ion t e s t green

The value for the variable SETUP-TIME (time to
reconfigure this machine to the setup needed for this lot)
is based on MACHJAMILY. Table 13 (T 13) provides
this value:

~-

TABLE 13 (T13)

MACH-FAMILY -> SETUP-TIME

xxx
YYY
zzz

20
15
40

EST-LV is the estimated time until the lot leaves the
operation where it is currently located. This value is
obtained from PM 13. PM 13 makes use of information
from manufacturing process specification variables such
as raw process time and machine availability, the lot
tracking database, and some decision rules to estimate
when the lot will leave this operation. ESTLV is a run-
time variable, and is recalculated whenever a query is
made against this field. (Note that PM 13 combines data

and procedures on data into one natural unit. This is a
common practice in APL2 and a key principle of object-
oriented programming.)

1

PM13

output variable: EST-LV

input variable: LOT-ID
LOTJAMILY
OPRFAMILY
RUNTIME

function: determine an estimated leave time

outside data used: raw process time
for this lot from this operation.

machine availability

DELTLSCHD is an estimate of the number of days
the lot is behind (minus to schedule) or ahead (plus to
schedule) of schedule. This value is calculated by PM 14
and is a time-dependent variable. It is recalculated on
request from the user, or when either DUEDATE or
PRIORITY changes value, and otherwise every four
hours. TIME stores the last time at which an update has
been made to the DELTLSCHED variable.

PM14

output variable: DELTLSCHD

input variable: LOT-ID
LOTJAMILY
PRIORITY
DUEDATE
TIME

function: determine an estimated number of
days the lot is behind or ahead of
schedule.

machine availability
outside data used: process flow data

These relationships can be written in the following
functional notation:

IBM I. RES. DEVELOP, VOL. 33 NO. 6 NOVEMBER 1989 K. FORDYCE ET AL.

LOT-ID = input field when lot is launched. 1 1 129 is assigned the value bake. The variable

LOTJAMILY = input field when lot is launched.
DUE-DATE-OP for lot 1 1 129 is assigned the value
89/ 145. This triggers the following inference cycle:

PRIORITY = PM 1 1 (PRIORITY-PC).

DUE-DATE = PM 12 (DUE-DATE-OP). PM12 is fired, generating the value 05/25/89 for the

OPRJAMILY = input field when lot changes variable DUE-DATE. T11 is fired, generating the
value yyy for MACHJAMILY. T 12 is fired,
generating the value yellow for SETUP.

operation.

MACHJAMILY = T11 (OPRJAMILY). T 13 is fired, generating the value 15 for SETUP-

SETUP = T 12 (LOTJAMILY,
OPRFAMILY).

TIME. PM 13 is fired, generating a value for EST-LV.
PM 14 is fired, generating a value for DELTLSCHD.

SETUP-TIME = T 13 (MACHJAMILY) 8. Summary
= T13 0 T1 (OPRFAMILY). In this paper we have described a knowledge

EST-LV
representation and manipulation (KRM) scheme called

multiple-goal-advocate approach to dispatch decision
= PM1 FABA. This KRM scheme serves as the base for a

OPRJAMILY, RUNTIME).

TIME = records last time an update is making [2, 3, 61.
made to DELTASCHED. FABA uses tables and procedure modules to store

knowledge. We have found that these two methods of
= PM1 storing knowledge have some significant advantages over

PR10R1TY7 DUE-DATE, rules [36,42]. For example, each of these items can be

INMATIP is

PMii PM12 Tli T12 T13 PM13 PM14
LOT-ID
LOT-FAM I LY
PRIORITY-PC

DUE-DATE-OB
PRIORITY

DUE-DATE
OPR-FAMILY
MACH-FAMILY
SETUP
RUNTIME
SETUP-TIME
EST-LV
TIME
DELTA-SCHD

INMATOP is

LOT-ID
LOT-FAMILY
PRIORITY-PC

-

PRIORITY
DUE-DATE-OB
DUE-DATE

MACH-FAMILY
OPR-FAMILY

SETUP
SETUP-TIME
RUNTIME
EST-LV
TIME
DELTA-SCHD

0 0 0 0 0 1 1
0 0 0 1 0 1 1
1 0 0 0 0 0 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 1 1 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
o o o n o o o

PMll PM12 Tll T12 T13 PM13 PM14
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1

Let us look at an example. Assume that lot 11 129
enters the operation “bake” and that a new due date or

638 delivery date is set. The variable OPRFAMILY for lot

viewed as a function. First-order dependencies or links
between functions are represented with two simple
Boolean arrays. The information in these arrays can be
obtained easily and automatically by writing a small
APL2 program to parse the description of the functions.
Working with these two arrays, some simple APL2
Boolean operations can quickly generate the entire
function network. Deciding which functions to execute
and when to execute them requires only some simple
manipulations of the two Boolean arrays and a means for
keeping track of when transactions occur. We have found
this approach particularly effective in real-time,
transaction-based, knowledge-based systems.

The FABA KRM scheme is clearly a product of the
rich data structures provided by APL2. APL2 array data
structures and associated operations permit the easy
storage and manipulation of tables, and APL2 functions
do the same for procedure modules. APL2 is clearly a
notation for thought [7,43] that facilitates a new view of
problems and their solution in KRM [20].

Appendix 1: Overview of LMS
The Logistics Management System (LMS) is a real-time,
imbedded-transaction-based, integrated-decision and
knowledge-based expert support system which serves as a
dispatcher, monitoring and controlling the
manufacturing flow of the IBM semiconductor facility
near Burlington, Vermont. This facility develops and
manufactures semiconductor memory and logic
subsystems for current and future IBM products.
Burlington produces some of the world‘s most complex

I K. FORDYCE ET AL. IBM I. RES. DEVELOP. VOL. 33 NO. 6 NOVEMBER 1989

computer components, which are used throughout the
IBM product line.

and controlling of the actual manufacturing flow, or
logistics. Decisions are made concerning trade-offs
between running test lots for changes in an existing
product or a new product, and running regular
manufacturing lots, prioritizing late lots, and positioning
preventive maintenance downtime, production of similar
product to reduce setup time, assigning personnel to
machines, covering for absences, and reestablishing
steady production flow after a machine has been down.

transactions, and maintains and provides access to
knowledge bases and models. It permits the user and
analyst to easily update knowledge bases and models as
needed. LMS provides the dispatch decision makers with
easy and flexible access to

Dispatch scheduling decisions concerning monitoring

LMS captures and stores in real time all manufacturing

3.

4.

Relational databases that contain the latest
manufacturing transactions, such as the status of a
machine, the location of a lot, the due date of a lot, or
the availability of an operator.
Knowledge bases that contain such information as
how to characterize a transaction (Is it a lot
movement, a change in the status of a machine, or a
change in an order?), how to characterize the lot type
(Is it a test lot from the lab, a test lot from
manufacturing engineering, an express lot for an
important order, etc.?), the setup required for a lot,
setup time, rework requirements, test requirements,
alert conditions, product routing, throughput rates,
preferred tools, operator training, operator schedules,
average downtime for a machine, and how to
calculate elapsed time. (Elapsed time would be defined
as the calculation present time minus adjusted elapsed
time; adjustments can be made for machine
availability, second-shift work, a holiday, etc.).
Models that estimate how far ahead or behind
schedule a lot is and the relative priority status of a
lot, identify lots with the same setup requirements,
establish global flow control levels (protective work in
progress, recommended output from a work cell for
the day, etc.) to guide production and avoid local
optimization to the detriment of the global system,
and assess the impact of machine dedication.
Heuristics to integrate the data, knowledge, and
models to identify opportunities.

LMS provides dispatch decision makers with fast,

passively waits for the user to make a request for
information. In the intervention mode, LMS monitors
the transaction stream and actively uses its knowledge
bases and models to issue alerts and recommend what
actions to take next.

Example 1
Assume that tester 1 is running lot type A and has a lot
type B in its queue, and that tester 2 is running lot type B
and has a lot type A in its queue. The testers are
identical. There is an opportunity to eliminate two
machine setups by exchanging the waiting lots, but an
information system is needed to identify this opportunity
because (1) the lot type is unknown until the box it is
stored in is opened and the associated “paperwork” read,
and (2) the two testers are not located close to each other.

Example 2
Assume that the stepper machine is almost finished
processing a lot of type A. It has two lots of type C
waiting to be processed. Both lots are ahead of schedule,
but if they are not processed shortly, they will require
recoating (a 15-minute process). The coating machine is
almost finished with processing a lot of type A, and has
five other A’s waiting. All of the A’s are behind schedule.
The opportunity is to send the C‘s back to be recoated
and keep the stepper set up to handle the A’s.

Example 3
Assume that the tester is set up to process lot type B and
has five more lots of that type waiting. But it also has an
express lot of type C waiting. The laboratory is waiting
for this lot for a critical development project. None of the
type B lots are behind schedule. The retooling time is 20
minutes. The opportunity is to retool and test lot type C.

Example 4
Assume that the following sequence occurs for a
photolithography machine:

1. Load a specific mask (contains the image of the circuit
pattern required) on the machine.

2. Make a test run for low-tolerance lots.
3. Send the test run to be inspected, leaving the machine

4. Wait for the inspection results.
5. Complete the low-tolerance lots.
6 . Complete the high-tolerance lots that require the same

idle.

mask, but require only a visual inspection at the
machine location.

flexible, and integrated access to this information. The production rate would improve if high-tolerance lots
Support takes two forms: passive or decision-support, and could be processed while the low-tolerance lots were
intervention. In the decision-support mode, LMS being inspected, but to do this, it must be known which 639

K. FORDYCE ET AL. IBM J. RES. DEVELOP. VOL. 33 NO. 6 NOVEMBER 1989

lots in the queue have the same setup requirement, what
tests are required for each lot, what the raw process time
for each lot will be on this machine, and what the relative
priorities are among all waiting lots.

LMS has helped IBM Burlington improve its
throughput and ability to meet delivery schedules
(serviceability). It is a critical component in running
major areas of the manufacturing facility. The process
operator on the manufacturing floor receives advice on
scheduling. The manager is alerted to opportunities that
have appeared or are about to emerge. The maintenance
technician is given information on the impact of
machines that are out of service, and is alerted to their
conditions.

Appendix 2: Handling tables with simple arrays
Following is an example of setting up and searching a
table with simple character arrays:

T l f 4 l O p ' t i g e r 1 3 t i g e r 2 2 l i o n 1 4 l i o n 2 4 '

T1 is

tiger 1 3
tiger 2 2
lion 1 4
lion 2 4

T1 is a matrix with four rows and ten columns; each
element T1 is a single EBCDIC character. The first five
columns of T1 contain the values for CHIPTYPE.
Columns 6 and 7 contain the values for STAGE, and
Columns 8 and 9 contain the values for SETUP.
Therefore, COL 1 is obtained as follows:

C O L l + T l [; 1 5 1

The APL function iota (I) generates the values 1 2 3 4 5.
COLl is

tiger
tiger
lion
lion

The variable MATCH 1 can be generated as follows:

MATCHl f C O L l h .= ' l ion'

MATCH1 i s 0 0 1 1 .
Alternatively, MATCH I can be calculated as

MATCHl + A / C21 ' l ion' = [2 l C O L l

Appendix 3: APL functions for finding state
space
Assume three input variables, VI, V2, and V3. The
variable VI can be one of three values: BILL, BOB, or
JOE. The variable V2 can be one of two values: NYC or
BOSTON. The variable V3 can be one of three values:
USA, EUROPE, or ASIA. In this case, there are 18
(3 x 2 X 3) possible combinations. These variable values
are stored in the variable VARLIST as a single character
vector. The slash (/) is used as a delimiter between
variables:

V A R L I S T f ' B I L L BOB J O E / NYC BOSTON
/ U S A EUROPE A S I A / '

The APL2 function SPACE generates the state space
from the information provided in VARLIST:

SPACE VARLIST

BILL NYC USA
BILL NYC EUROPE
BILL NYC ASIA
BILL BOSTON USA
BILL BOSTON EUROPE
BILL BOSTON ASIA
BOB NYC USA
BOB NYC EUROPE
BOB NYC ASIA
BOB BOSTON USA
BOB BOSTON EUROPE
BOB BOSTON ASIA
JOE NYC USA
JOE NYC EUROPE
JOE NYC ASIA
JOE BOSTON USA
JOE BOSTON EUROPE
JOE BOSTON ASIA

E 0 1 Z t S P A C E X ; D I V I D E R ; L I S T ; I N D X ; J K ; J K l ; J K J 3
c11 A

C 2 1 A T H I S F N D E T E R M I N E S A L L P O S S I B L E C O M B I N A T I O N S F O R
C 3 3 A S E T O F V A L U E S F O R D I F F E R E N T V A R I A B L E S .
C 4 1 A
C 5 1 A X IS T H E S E T O F V A L U E S F O R E A C H V A R I A B L E .
C 6 1 A A N E X A M P L E O F X I S :

640 C 7 1 A B I L L J I M B O B / N Y C B O S T O N /

K FORDYCE ET AL. IBM J RE5 DE\.ELOP. VOL. 33 NO. 6 NOVEMBER 1989

C 8 1 A V A R I A B L E 1 I S N A M E S A N D T H E P O S S I B L E V A L U E S A R E :
C 9 1 A B I L L J I M BOB

C111 A N Y C B O S T O N
C 1 2 1 A T H E D I V I D E R B E T W E E N E A C H V A R I A B L E IN T H I S C A S E I S /
C 1 3 1 A IN G E N E R A L I T I S T H E L A S T N O N - B L A N K C H A R A C T E R IN X
C 1 4 1 A

C l 6 l A B I L L N Y C
1 1 7 1 A B I L L B O S T O N
C 1 8 1 A J I M N Y C
C 1 9 1 A J I M B O S T O N
C 2 0 1 A B O B N Y C
c 2 1 1 A B O B B O S T O N
C 2 2 1 A
C 2 3 1 A J. + I N I T I A L I Z A T I O N
C 2 4 1 X + D B L X
C 2 5 1 X + , (' ' t X) c X
C 2 6 l D I V I D E R + l + X
C 2 7 1 L I S T + l p X
C 2 8 1 R

C 2 9 3 JK+ (D I V I D E R = " X) / L I S T

1 3 1 3 R J K 1 I S T H E N U M B E R O F P O S S I B L E V A L U E S F O R E A C H V A R I A B L E
C 3 2 1 A F O L L O W I N G O U R E X A M P L E P R O B L E M J K 1 I S 3 2
C 3 3 1 I N D X t C O M B I N A T I O N S J K 1
C 3 4 1 T H I S F I N D S A L L U N I Q U E C O M B I N A T I O N S IN N U M E R I C FORM
C 3 5 I A F O R O U R E X A M P L E I N D X I S :
C 3 6 1 A 1 1
C 3 7 1 A 1 2
L 3 8 1 A 2 1
C 3 9 1 R 2 2
C 4 0 1 A 3 1
r 4 1 1 A 3 2
[4 2] JK2++\01 1 C J K 1
C 4 3 3 R T H I S C A L C U L A T E S R E L A T I V E D I S P L A C E M E N T F O R E A C H V A L U E
[4 4 1 R F O R O U R E X A M P L E J K 2 I S 0 3
C 4 5 1 I N D X + J K 2 + [2 1 I N D X
C 4 6 1 R T H I S A D D S J K 2 C 1 1 TO C O L l OF I N D X E T C .
C 4 7 1 A IN OUR E X A M P L E I N D X I S N O W
C 4 8 1 A 1 4
C 4 9 1 A 1 5
1 5 0 1 A 2 4
C 5 1 1 A 2 5
C 5 2 1 A 3 4
C 5 3 1 R 3 5
C 5 4 1 J K 3 t L I S T - J K
C 5 5 1 X + X C J K 3 1
C 5 6 1 A X I S T H E D I F F E R E N T V A L U E S F O R T H E V A R I A B L E S l W I T H O U T D I V I D E R S
C 5 7 1 Z + (p I N D X) p X C , I N D X l
C 5 8 1 A Z I S T H E A N S W E R

C O I A+DBL B
C11 A A I S T H E C H A R A C T E R V E C T O R B W I T H
C 2 1 A L E A D I N G / T R A I L I N G B L A N K S R E M O V E D 641

[l o] V A R I A B L E 2 I S C I T I E S A N D T H E P O S S I B L E V A L U E S A R E :

C 1 5 1 A Z W I L L H A V E T H E S O L U T I O N :

-

[3 0] J K l + 1 + 1 2 - / 0 1 J K
-

-

IBM J . RES. DEVELOP, VOL. 33 NO. 6 NOVEMBER 1989 K. FORDYCE ET AL.

C 3 1 A A N D I N T E R M E D I A T E B L A N K S U B S T R I N G S R E P L A C E D B Y S I N G L E B L A N K S
[4 1 A + - l + l + (” ’ 5 B) / B + ’ , B , 1 1

C O I
c 1 1
c 2 1
C 3 1
C 4 1
[5 1
C 6 l
1 7 1
C 8 1
C 9 l
ClOl
c111
c 1 2 1
C 1 3 1
1 1 4 1
C 1 5 1
C l 6 1
C 1 7 1
C 1 8 1

Z t C O M B I N A T I O N S X ; J K
R T H I S F I N D A L L P O S S I B L E C O M B I N A T I O N S
R WHERE X C I I I S THE NUMBER OF MEMBERS OF S E T 1
A X C 2 1 I S THE NUMBER OF MEMBERS OF S E T 2

R X C N] I S THE NUMBER O F MEMBERS OF S E T N

A COL 1 OF Z R E F E R S T O T H E S E T C O R R E S P O N D I N G TO X C l l
A COL 2 OF Z R E F E R S T O T H E S E T C O R R E S P O N D I N G T O X C 2 1
R E T C .

A T H E A P L 2 P R I M I T I V E T DOES BASE NUMBER SYSTEM WORK

A
A

A

A

x+,x
J K + x / X
JK+O I I (- 1 + J K)
Z + X T J K
Z+Q Z
Z + Z + l

Appendix 4: APL function for finding duplicate
table entries
We can represent a table with an integer substituted for
each variable value. A is such a representation of a table:

A IS
2 1 3
1 1 2
2 1 3
3 2 3
2 2 3
3 2 3
2 1 3

B is the number of different values for each variable:

B IS

3 2 3

The function DUPLICATE finds all duplicate entries.
Running DUPLICATE with A and B, we obtain

B DUPLICATE A
2 1 3
2 1 3
3 2 3

I

In this example the table entry 2 1 3 appears twice and
the table entry 3 2 3 appears once. The function
DUPLICATE is listed below:

VDUPLICATECOIV
C O I Z+X DUPLICATE Y; ID; INDX; W
C 11 A THIS FINDS DUPLICATES OF RULES
C 2 I WHEN THE RULES ARE IN THE FORM
C31 A 1 1 2
C41 A 2 1 3
C 5 1 R . . .
[SI A 1 2 1
C71 R
C 8 1 A Y IS THE RULES
C 9 1 A X IS THE NUMBER OF STATES FOR EACH

A VARIABLE
C 10 1 IDtXL-l+$Y
C 11 1 INDXthID
C1 2 1 YtYCINDX;]
C131 IDtIDCINDXI
C 14 1 ID+2=/ID
C 15 1 ID+O I ID
C l S l Z+ID/ClIY

Appendix 5: APL function ODA
The function ODA is written

L O] Z+X ODA Y ; J K ; J K l ; N ; I
1 1 1 R T H I S F U N C T I O N I S AN A L T E R N A T I V E T O X v . A Y

642 c 2 1 Z+((l + P X) , (- l + P Y)) P O

K. FORDYCE ET AL. IBM J . RES, DEVELOP. VOL. 33 NO. 6 NOVEMBER 1989

C 3 l A I N I T I A L I Z E T H E OUTCOME M A T R I X
C 4 1 A T H I S I S I N I T I A L I Z E D T O A L L Z E R O S (0) .
C 6 1 A I T HAS THE SAME NUMBER OF ROWS AS X ,
C 7 1 A AND THE SAME NUMBER O F COLUMNS A S Y
C 8 1 J K 4 1 1 f p X
C 9 1 A T H I S I S A L I S T O F THE COLUMNS IN X
ClOl A I F X HAS S I X COLUMNS THEN T H I S J K I S 1 2 3 4 5 6
C111 N - + l f p Z
C 1 2 1 A NUMBER OF ROWS IN Z
C 1 3 1 I t 1
C 1 4 1 A I I S THE CYCLE COUNTER
C 1 5 1 L 1 0 :
C l 6 1 A S T A R T O F LOOP WHICH PRODUCES Z
C 1 7 1 J K l + X C I ; l / J K
1 1 8 1 + (O = l + p J K l) / L 2 0
C 1 9 1 J K l + Y C , J K l ; l
C 2 0 1 J K ~ + - V / [~ I J K ~
C 2 1 1 Z C I ;] + J K l
c 2 2 1 L 2 0 :
C 2 3 1 + - (N 2 I + I + l) / L l O
C 2 4 1 A CHECK I F COMPLETED EACH ROW OF X , I F NOT BRANCH TO L 1 0
C 2 5 1 +O

-

I
In this function the program loops or cycles through the
matrix X one row at a time to build the outcome matrix
(2). We can examine how this works with

INMATVAR f INMATOP ODA Q I N M A T I P

INMATVAR is initialized to be all zeros; i.e., we assume
that a variable does not have a first-order dependency on
another variable until it is proven otherwise.

(X C I ; 3). This is the CHIP row; it has the value 0 0 0 0.
If a cell has a 1, the variable CHIP is an outcome variable
for the corresponding function. If not, the cell has a value
0. We thus wish to find the corresponding column
numbers where that element of X C I ; 3 is not 0. This is
done by the APL2 expression

In cycle one (I = l), we read the first row of X

J K l c X C I ; 3 / J K A REMEMBER J K I S 1 2 3 4
A T H I S E X P R E S S I O N P A S S E S
A BACK I N T O J K 1 T H O S E
A VALUES O F J K WHERE THE
A CORRESPONDINGELEMENT
A O F X C I ; 1 I S 1

In this cycle JK1 is a null vector. This tells us that the
variable CHIP is not an outcome variable from any other
function. It therefore has no first-order dependencies, and
we can stop processing this row of X . The APL2
expression

+ (O = l + p J K l) / L 2 0

tells us that JK1 is a null vector and branches to L20. At

L20 we increment the cycle counter, check whether we
have reached the end of X and, if not, start the process
over again for the next row in X .

In cycle 2 (I = 2), we examine the STAGE row of
INMATOP. This is all zeros, so there are no first-order
dependencies. In cycle 3 (I = 3), we examine the SETUP
row of INMATOP, which has the value 0 1 0 0. The
value for JKl (corresponding column number) is 1. This
tells us that the variable STAGE is an outcome variable
for the function with an index of 1 (function Tl). If
function 1 has any input variables, SETUP has a first-
order dependency on these variables.

The matrix QINMATIP provides the following
information: Each row in QINMATIP corresponds to a
function. If a variable is an input variable to that
function, its cell has a value of 1; if not, it has a value
of 0.

variable STAGE is an output variable of the
corresponding function. (In this case we are only
interested in row 1 .) This is done by the APL expression

ODA then reads any row of QINMATIP in which the

J K l + Y C , J K l ; l

JKl has the value 1 1 0 0 0 0. This tells us that the
variables CHIPTYPE and STAGE are input variables to
function 1, and thus SETUP has a first-order dependency
on them. Therefore, these cells in Z are changed to 1s.

The APL2 expression

handles the situation in which a variable being

IBM I. RES. DEVELOP. VOL. 33 NO. 6 NOVEMBER 1989 K. FORDYCE ET AL.

investigated is an output variable of more than one Appendix 7: Simultaneous conditions
function. It essentially ensures that as long as a variable is An example of a simultaneous set of equations would be
an input variable to at least one of these functions, it is
listed as a first-order dependency. PROFIT = REVENUE - (EXPENSE + BONUS)

The APL2 expression BONUS = .05 X PROFIT

ZC 1 ; l+JKl In this case REVENUE and EXPENSE are known

replaces the row of Z which corresponds to the row of X variables, and PROFIT and BONUS are unknown.

being investigated with the new information on first- An example using function notation might be the

order dependencies. following:

Appendix 6: APL function LINKVAR
The function LINKVAR is written

C03 Z + X L I N K V A R Y ; J K ; J K l ; J K 2 ; N ; I As an example of such a condition in manufacturing,
C 13 A THIS FN FINDS THE LINKING assume that the machine to which a lot is assigned

v1 = f(V2, V3)
v 2 = g(V 1, V3)
V3 = h(V1, V2)

A VARIABLE FOR N-ORDER depends on the current estimate of how far behind or
A DEPENDENCIES ahead (delta) of schedule the lot is. The delta schedule

c 2 1 Z + ((l+PX), (-14PY))PClPO estimate depends on the machine to which the lot is
C 3 1 JK+t-l+pX assigned.
C41 N+l+pZ
C 5 l I+l
C 6 l L10:
C 7 1 JKl+XCI;l/JK
C 8 1 + (O = l + p J K l) /L20

Appendix 8: APL functions used in focusing
First, we use the following APL2 function to generate a
matrix showing all dependencies between functions
(tables and procedure modules) in our knowledge base:

C O l
c 1 1
c 2 1
C 3 1
C41
C 5 1
C S I
C71
C 8 1

VRULEALLCOIV
RULELINKStINMATIP RULEALL INMATOP; J K

A THIS FUNCTION DETERMINES ALL THE RULES
R THAT INFLUENCE ANY SPECIFIC RULE
RULELINKSt (QINMATIPvINMATOP) v . AINMATOP

L10:
JKtRULELINKS
RULELINKS+RULELINKS~(RULELINKS~.ARULELINKS)
+(-JK = RULELINKS) /L10
+ O

C 9 1 J K 2 + Y C , J K l;]
ClOI JK2tJKlxCllJK2 T1 T2 T3 PI

I The result is

C111 JK2ccClIJK2
C 1 2 1 JK2+ELIMXO"JK2
C 1 3 1 ZCI; l+JK2
C141 L20:
C 1 5 1 +(NLI+I+l) /L10
C l 6 1 +O
C 0 1 Z+ELIMXO X; JK1
C 11 A T H I S IS CALLED BY LINKVAR

C 3 1 JKl+X+O
C41 m(O=v/JK1)/'JK1C11+l'
C 5 1 Z+JKl /X

C 2 1 X+,X

LINKVAR operates similarly to ODA, except that it
keeps track of the linking variable and not the new

644 dependency.

T1 1 0 0 0
T2 1 1 0 0
T3 1 0 1 0
P1 1 1 1 1

In RULELINKS there is one row and one column for
each function in the system. Rows reference an output
condition; columns reference an input condition.
RULELINKS shows all dependencies between functions.
If a function is an input function to an output function,
the corresponding cell has the value 1; if not, its value is
0. For example, T3 has SETUP as an input variable. TI
calculates SETUP; therefore, T 1 is an input function to
T3 and the cell (T3, T1) has a 1.

corresponds to the variable on which we want to focus,
Next, we select the row of INMATOP which

I K. FORDYCE ET AL. IBM 1. RES. DEVELOP. VOL. 33 NO. 6 NOVEMBER 1989

and store it as the vector VF. For this example assume
that we wish to focus on the variable PROCESS-TIME.
Then VF is

VFcINMATOPC 5 ; I

or 0 0 1 0. The following APL2 statement generates the
list of functions which affect the variable
PROCESS-TIME:

(v / [l I VF A C13 R U L E L I N K S)
/IT11 ‘T2’ ‘ T 3 ’ ‘Pl’

The result is T 1 and T3.

Appendix 9: Outline of backward chaining
Backward chaining is easy to implement. If, for example,
we needed to determine a value for PROCESS-TIME,
we would follow the following steps:

0 Find a function for which PROCESS-TIME is an out-
put variable. If there is none, end processing.

In this case the answer is TABLE 3.
Determine the input variables for this function.

Determine whether these variables have values.
In this case the answer is CHIP-TYPE and SETUP.

CHIP-TYPE has a value.
SETUP does not have a value.

0 If they do have values, execute the function. If not,
repeat the process on the variables without values. In
this case, we need to find a value for SETUP.

Find a function where SETUP is an output variable.

Determine the input variables for this function.

Determine whether these variables have values.

In this case the answer is TABLE I .

In this case the answer is CHIP-TYPE and STAGE.

CHIP-TYPE has a value.
STAGE has a value.

Execute the function TABLE 1.
SETUP now has the value 2.

Feed this new information to the calling step.
0 Now that SETUP has a value, execute function

TABLE 3.
PROCESS-TIME now has the value 60.

References
1 . E. Feigenbaum, P. McCorduck, and P. Nii, The Rise ofthe

Expert Company: How Visionary Companies Are Using Expert
Systems to Make Huge fro& Times Books, New York, 1988.

2. K. Fordyce and G. Sullivan, “Logistics Management System:
Implementing the Technology of Logistics with Knowledge
Based Expert Systems,” in Innovative Applications ofArtificia1
Inrelligence, H. Schorr and A. Rappaport, Eds., AAAl and MIT
Press, Cambridge, MA, 1989, pp. 183-200.

3. K. Fordyce and G. Sullivan, “Logistics Management System:
Implementing the Technology of Logistics with an Advanced
Decision Support System.” Interfaces 20 (1989), to be published

4. K. Fordyce and G. Sullivan, “Looking at Worksheet Modeling
with Expert System Eyes,” in Expert Systemsfor Business, B.

IBM J . RES, DEVELOP VOL. 3 3 YO 6 NOVEMBER 1989

Silverman, Ed., Addison-Wesley Publishing Co., Reading, MA,
1987, pp. 246-285.

Drainage,” working paper, Electric Power Engineering Dept.,
Technical University of Denmark, KD-2800, Lyngby, Denmark,
1989.

6. G. Sullivan, Jr., “Expert Aided Adaptive Control,” working
paper, Rensselaer Polytechnic Institute, Troy, NY, 1989.

7. K. Iverson, “1979 Turing Award Lecture: Notation as a Tool for
Thought,” Commun. ACM 23, No. 8,444-465 (1980).

8. J. Brown, S. Pakin, and R. Polivka, A f L 2 at a Glance, Prentice-
Hall, Inc., Englewood Cliffs, NJ, 1988.

9. E. Charniak and D. McDermott, Introduction to Arlificial
Intelligence, Addison-Wesley Publishing Co., Reading, MA,
1985.

IO. C. Forgy, “Rete: A Fast Algorithm for the Many Pattern/Many
Object Pattern Match Problem,” Artificial Intelligence 9, No. 1,

1 I . M. Genesereth and N. Nilson, Logical Foundations of Artificial

12. N. Nilson, Principles of Artificial Intelligence, Morgan-Kaufman,

13. J. Sowa, Conceptual Structure, Addison-Wesley Publishing Co.,

14. F. Evans and P. Larsen, Structural Design of Control Systems,

5. J. Jantzen and L. Amdisen, “Real-Time Control of Urban

17-38 (1982).

Intelligence, Morgan-Kaufman, Los Altos, CA, 1987.

Los Altos, CA, I98 I .

Reading, MA, 1984.

lecture notes, Electric Power Engineering Department, Technical
University of Denmark, DK-2800, Lyngby, Denmark, 1983.

Large Scale Systems,” in Lecture Notes in Control and
Information Sciences, Vol. 17, A. Balakrishnan and M. Thoma,
Eds., Springer-Verlag, Heidelberg, 1979.

16. R. Tajan, “Testing Flow Graph Reducibility,” J. Computer &
Syst. Sci. 9. No. 3, 355-365 (December 1974).

17. K. Fordyce and G. Sullivan, “Equation Manlpulating Expert
Systems,” Internal Technical Report, IBM Data Systems
Division, Kingston, NY, 1982.

Complexity: AIM-Advanced Interactive Modeling, IBM Latin
America, Mt. Pleasant, NY 10591, 1989, available through IBM
hranch offices.

19. P. Ravn, A Structural Approach to Financial Planning Systems,
Ph.D. Thesis, Electric Power Engineering Department,
Technical University of Denmark, DK-2800, Lyngby, Denmark,
1983.

APL2,” APL87 Conference Proceedings, A f L Quote Quad 17,
No. 4, 356-361 (1987).

Conference Proceedings, A f L Quote Quad 17, No. 4, 386-390
(1987).

Development Aids,” APL85 Conference Proceedings, APL
Quote Quad 15, No. 4, 106-1 13 (1985).

23. T. More, “A Theory of Arrays with Applications to Databases,”
IBM Cambridge Scientific Center Report, Order No. G320-2106,
September 1975, available through IBM branch offices.

24. J. Brown, “A Generalization of APL,” Ph.D. Dissertation, Dept.
of Computer and Information Science, Syracuse University,
Syracuse, NY, Clearing House 74h0004942 AD-770488./5,
1971.

25. James A. Brown, “A Development of’APL2 Syntax,” I B M J .
Res. Develop. 29, No. 1, 37-48 (1985).

26. M. Berry, “APL and the Search for Truth: A Set of Functions to
Play New Eleusis,” APL8 1 Conference Proceedings, A f L Quote
Quad 12, No. I . 47-53 (1981).

27. E. Eusebi and J. Brown, “APL2 and AI: A Study of Search,”
APL86 Conference Proceedings, A f L Quote Quad 16, No. 4,

28. Manuel Alfonseca, “Frames, Semantic Networks, and Object-

15. 0. Franksen, P. Falster, and F. Evans, “Qualitative Aspects of

18. S. Lichtenthal, APL2 Helping to Cope with Business

20. J. Brown and M. Alfonseca, “Solutions to Logic Problems in

2 I . E. Eusebi, “Inductive Reasoning from Relations,” APL87

22. K. Fordyce and (3. Sullivan, “Artificial Intelligence

295-300 (1987).

Oriented Programming in APL2,” IBM J. Res. Develop. 33, No.
5, 502-510 (1989). 645

K. FORDYCE ET AL.

29. W. Clocksin and C. Mellish, Programming in Prolog, 2nd ed.,

30. J. Brown, E. Eusebi, K. Fordyce, and G. Sullivan, “APL and

3 1. B. Cox, Object Oriented Programming, Addison-Wesley

32. K. Fordyce and G. Sullivan, “A Boolean Array Based Algorithm

Springer-Verlag, New York, 1984.

Expert Systems,” AIEXPERT 2, No. 7, 72-84 (1987).

Publishing Co., Reading, MA, 1987.

in APL for Forward Chaining in Rule Based Production Expert
Systems,” APL Quote Quad 16, No. 3, 5-12 (1986).

33. K. Fordyce and G. Sullivan, “Boolean Array Structures for a
Rule Based Forward Chaining Inference Engine,” APL87
Conference Proceedings, APL Quote Quad 17, No. 4, 185-195
(1987).

Arrays,” APL89 Conference Proceedings, APL Quote Quad 19,
34. J. Jantzen, “Inference Planning Using Digraphs and Boolean

NO. 4, 200-203 (1989).
35. K. Fordyce and G. Sullivan, “Boolean Array Based Inference

Engines,” Internal Technical Report, IBM Data Systems
Division, Kingston, N Y , 1989; to be published in Proceedings of
the APL and Expert Systems Conference, Syracuse University,
August 1989.

36. K. Fordyce and G. Sullivan, “Table Based Function Mappings
and Knowledge Representation,” Internal Technical Report,
IBM Data Systems Division, Kingston, N Y , 1989; to be
published in Proceedings of the APL and Expert Systems
Conference, Syracuse University, August 1989.

37. T. Rish, R. Reboh, P. Hart, and R. Duda, “A Functional
Approach to Integrating Database and Expert Systems,”
Commun. ACM31, No. 12, 1424-1437 (1988).

38. J. Seagle and P. Duchessi, Acquiring Expert Rules with the Aid
of Decision Tables, Monograph, Department of Management
Science and Information Systems, School of Business, State
University of New York, Albany, N Y , 1989.

39. R. Braun, “Expert System Tools for Knowledge Analysis,”

40. G. Goldbogen, “Rules vs. Methods,” Technical Note, Rensselaer

4 1. K. Fordyce, P. Norden, and G. Sullivan, “Review of Expert

AIEXPERT4, NO. 10,22-29 (1989).

Polytechnic Institute, Troy, NY, 1988.

Systems for the Management Science Practitioner,” Interfaces

42. M. Alfonseca, “Procedural or Non-Procedural Languages: The
17, NO. 2,64-77 (1987).

Mixed Solution,” Cybernetics and Systems: The Way Ahead,
Vol. I , J. Rose, Ed., Thales Publications, Lytham St. Annes,
England, pp. 35-38.

Electronic System Design Magazine, pp. 10-1 1 (October 1989).
43. C. Jansky, “Guest Editorial: A Tool for Thought,” ESD: The

Received July 31, 1989; accepted for publication November
30, 1989

Kenneth Fordyce IBM Data Systems Division, Engineering /
Scientific Computing Center, Kingston, New York 12401. Dr.
Fordyce consults with IBM customers and internal IBM groups in
the technical computing areas of knowledge-based expert systems,
decision support, statistics, and operations research. He has
published a number of papers in these areas. He is currently an
advisor for Expert System Applications journal, and an area editor
for Production and Operations Management journal. He has served
as an adjunct faculty member at Marist College, and at the Albany
and New Paltz campuses of the State University of New York. Dr.
Fordyce’s education includes an MS. (1979) in operations research
and statistics and a Ph.D. (1985) in administrative and engineering
systems from Union College, Schenectady, New York.

Jan Jantzen Technical University of Denmark, Electric Power
Engineering Department, DK-2800 Lyngby, Denmark. Since 1986
Dr. Jantzen has been a professor at the Technical University of
Denmark, where he is currently teaching and doing research in fuzzy
control and systems design using digraphs. He received both his M.S.
in electrical engineering in 1979 and his Ph.D. in systems science in
1982 from the Technical University. Dr. Jantzen has held positions
as visiting scientist at the IBM Thomas J. Watson Research Center
(1986), computer consultant at SIM-CORP, Inc., Copenhagen
(1984- 1989, Queen’s Quest visiting scholar at Queen’s University,
Kingston, Ontario, Canada (1982- 1983), and systems designer at
LK-NES, Inc., Copenhagen (1979-1982).

Gerald A. Sullivan, Sf. IBM General Technology Division, Essex
Junction, Vermont 05452. Mr. Sullivan is a senior engineer and
manager of IBM Burlington’s Advanced Industrial Engineering
Department. He directs a number of advanced decision-support
system projects as part of the Burlington CFM/CIM strategy, and is
an active participant in company-wide activities in this area.
Additionally, he consults directly with IBM customers on issues in
manufacturing and knowledge-based expert systems. In 1989 Mr.
Sullivan received awards from the American Association of Artificial
Intelligence (AAAI) and The Institute of Management Science
(TIMS), recognizing his work in developing and implementing a
manufacturing dispatch system called LMS. From 1977 through
1980 Mr. Sullivan was assigned to the IBM Americas/Far East
Corporation, where he developed and implemented a series of
executive-decision-support systems for the multilingual operations of
A/FE. From 1973 through 1976, he developed and implemented a
rules-based system for plans and controls in the IBM Field
Engineering Division. From 197 1 to 1973, he developed a system to
link plants and education centers via electronic mail to keep
planning databases stable. Mr. Sullivan received outstanding
contribution awards from IBM for both these systems. He has
authored a number of papers and made presentations at numerous
conferences on topics in manufacturing decision support, and expert
systems.

Gerald A. Sullivan, Jr. Department of Mechanical Engineering,
Aeronautical Engineering, and Mechanics, Rensselaer Polytechnic
Institute (RPI), Troy, New York 12180. Mr. Sullivan is a Ph.D.
student in mechanical engineering at RPI. His dissertation topic,
expert aided adaptive control, involves developing real-time
knowledge-based systems (KBS) that provide two-way
communication between the KBS and sensors and algorithms and
use time as a key decision variable. Additionally, Mr. Sullivan is
working for the NASA Lewis Laboratory on the development of
Space Shuttle main-engine diagnostics. He received his B.S. in
mechanical engineering in 1985 from the University of Vermont,
where he also received outstanding achievement awards in physics
and mechanical engineering and graduated summa cum laude. He
received his MS. in mechanical engineering in 1987 from RPI.

646

K. FORDYCE ET AL. IBM I. RES, DEVELOP. VOL. 33 NO. 6 NOVEMBER 1989

