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Over  the  past  eighteen  years  a  variety  of 
advanced  decision  support  systems have  been 
built  with  knowledge-based  expert  system 
(KBES)  components.  For  the  past  eight  years,  a 
knowledge  representation  and  manipulation 
(KRM)  scheme called FABA  (Functions  And 
Boolean  Arrays)  has been used. It has  two  basic 
principles.  First,  knowledge  is  viewed as a 
functional  mapping between input  and  output 
variables,  where  the  functions are expressed as 
fact  tables or bases  and procedure modules. 
Second,  the  function  network  can be 
represented  with  Boolean  arrays.  The  basics  of 
FABA,  its  implementation  in  APLS,  and  a  simple 
example of  FABA’s  application  in  a 
manufacturing  dispatch  application  for  IBM’s 
semiconductor  facility  in  Burlington,  Vermont, 
are  described  in  this  paper. 

1. Introduction 
The knowledge  representation and manipulation (KRM) 
scheme  based on functions and Boolean  arrays  (FABA) 
has  been  used  successfully in a number of applications. of 

“Copyright 1989 by International Business Machines Corporation. 
Copying in printed form for  private use is permitted without 
payment of  royalty  provided that (1) each reproduction is done 
without alteration and (2) the Journal reference and IBM copyright 
notice are included on the first  page. The title and abstract, but no 
other portions, of this paper may be copied or distributed royalty 
free without further permission by computer-based and other 
information-service systems.  Permission to republish any other 
portion of this paper must be obtained from the Editor. 

IBM 1. RES. DEVELOP. VOL. 33 NO. 6 NOVEMBER 1989 

which the best known  is the Logistics  Management 
System  (LMS) [ 1-31.  LMS is an advanced  decision 
support system  which  serves as a  dispatcher, monitoring 
and controlling the manufacturing flow  of the IBM 
Burlington semiconductor facility.  Appendix  1  provides 
an overview  of  LMS. 

Other applications include  Real-time Enrollment and 
Training (RET), Executive Information Network  (EIN), 
Modeling  Allowable  Resources  (MARS)  [4],  Real-time 
Control of Urban Drainage [ 51, and Expert  Aided 
Adaptive Control [ 6 ] .  (The last application is  being done 
in LISP.) 

The individual concepts in FABA have  origins in a 
wide spectrum of programming techniques and “tool of 
thought notations” [7]. The use of functions as a  base 
unit of organization of  knowledge  has roots in functional 
programming  languages  such as APL2 and LISP, and the 
mathematical concept of functions. Brown, Pakin, and 
Polivka [8] provide  a  general introduction to APL2. 

The concept of organizing  rules or knowledge  modules 
in a tree structure or network is used in a  variety of 
KRM schemes [9-131. The application of  Boolean arrays 
to store and manipulate networks  has  a  long  history in 
the APL community [7, 14-  191. The use  of  Boolean 
arrays and operations to efficiently handle logical 
processing  is  also  well  established  [7,20-221. 

The use  of  tables to store  knowledge  has  origins in 
general  array  theory  [23],  relational  databases,  APL2 
[21,24-281, and Prolog  [29].  A  general introduction to 
APL2 and knowledge  representation  with  general  arrays 
and tables can be found in [30]. 
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The programming language concepts of  avoiding data 
type  dependencies, linking data  and procedure to 
generate a "natural" object, and adaptability to change 
have  origins in APL2 and object-oriented programming 

The origins of  FABA are described in [22,32-341. A 
detailed description of  different  aspects  of FABA can be 
found in [35,36]. 

independently developed approaches with some 
similarities to FABA; for example, see [37-401. 

13 11.  

Others in the knowledge-based expert system field have 

2. A brief  review of mathematical  functions 
Functions are a description of the mapping between one 
set  of independent (input) variables and a dependent 
(output) variable. For each set  of input variable  values, 
there is a mapping into only one output variable  value. 
Different input variable  value  sets  may map  into the 
same output variable  value. The set  of  possible input 
variable  value  sets  is  called the domain. The set  of 
possible output variable  values  is  called the range. 

where the mapping description is  expressed  as an 
algebraic equation, and the domain and range are 
numbers. For example, 

The reader  is  probably  most familiar with functions 

W =  X 2  + 4Y. 

Sometimes input variables are linked to  an output 
variable through more than one equation, requiring the 
establishment of an intermediate output variable. For 
example, 

W =  f ( X , Y )  = X 2  + 4Y, ( 1 )  

2 = g(W,V) = 3 W +   2 v  (2) 

is a system  of  two equations expressing a functional 
mapping of the output variable Z from the input 
variables V, X, and Y. 2 has a direct dependency on V, 
but its  dependency on X and Y is through the 
intermediate output variable W. Formally, this is  called a 
composite function: 

z = h(X ,Y ,V  = g o f  = g[ f (X ,Y ) ,V l ,   ( 3 )  

where h(X,Y,V) is the composite of the functions f and g. 
To determine the Z value  for a set  of input values, 
caculate Wfrom Equation (l) ,  and then use this Wwith 
V in Equation (2 )  to calculate Z .  

When the function mapping is  written in algebra, we 
often  carry out  an algebraic  simplification, e.g, 

2 = h ( x Y , v )  = g o f =  g[ f (X ,Y) ,VI ,   (3)  

z = h(X,Y,I/) = 3(X2 + 4 Y )  + 2v, (44  

2 = h(X,Y,V) = 3X2 + 12Y + 2v. (4b) 
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In this case the intermediate output variable W is 
eliminated, and we can calculate Z directly. 

3. Tables  and  procedure  modules as functions 
"Tables" or "fact bases" represent a tabular 
representation of a functional relation between input  and 
output variables,  where the domains and ranges are a 
finite  set  of  elements. PMs are small procedure modules 
used to describe functional relationships which carry out 
standard conditional logic and computation on the input 
variables to generate the  output variables. The linkages 
between functions represent composite function 
operations. 

An example  set of functions is  shown  below: 

TABLE 1 (Tl) 

CHIPTYPE STAGE -> SETUP 

tiger 1 3 
tiger 2 2 
lion 1 4 
lion 2 4 

TABLE 2 (T2) 
SETUP -> SETUP-TIME 

2 
3 
4 

20 
20 
50 

TABLE 3 (T3) 

CHIPTYPE SETUP -> PROCESS-TIME 

tiger 2 60 
tiger 3 50 
tiger 4 NA 
lion 2 NA 
lion 3 NA 
lion 4 60 
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PROCEDURE  MODULE  1   (PM1)  

VPM1 C U I 0  

C O ]  PM1 
C11 A T H I S   F U N C T I O N   D E T E R M I N E S  
C 2 1  A THE  APPROPRIATE  SETUP  CONDITION 
C 3 1  A 
C 4 1  A VALUE  CALCULATED  (OUTPUT  VARIABLE)  : S E T U P  COND 
C 5 1  A 
C 6 1  A P O S S I B L E   O P T I O N S   F O R   O U T P U T   V A R I A B L E :  long 
C 7 1  A shor t  
C 8 1  A 
C 9 1  A VALUES  USED ( I N P U T   V A R I A B L E )  : S E T U P   T I M E  

C 1 1 1   S E T U P   C O N D t c ‘ L O N G ’  
c 1 2 3  A S E T U P  C O N D  I S  I N I T I A L L Y  A S S I G N E D  T H E  V A L U E  L O N G  
C 1 3 1   C O N D S t T S E T U P   T I M E < 2 5 ) , ( S E T U P   T I M E < 4 x P R O C E S S   T I M E )  
c 1 4 3  A I F  S E T U P - T I M E  < 2 5  
C 1 5  1 A THEN  GENERATE A 1 ( T R U E )  , E L S E  0 ( F A L S E )  
C 1 6 3  A I F  SETUP-TIME < ( 4  x PROCESS-TIME)  
C 1 7 1  A THEN  GENERATE A 1 ,  E L S E  0 
C 1 8 1  A A S S I G N   T H I S   P A I R  OF RESULTS   TO COND 
C 1 9 1   + ( h / C O N D S )   / L O 1 0  
C 2 0 1  A I F  BOTH CONDITIONS  ARE  TRUE BRANCH  TO  LO10 
c 2 1 1  +o 
c 2 2 3   L O 1 0 :  
C 2 3 3   S E T U P   C O N D c c ’ S H O R T ‘  
c 2 4 1  A SETUP-COND I S  A S S I G N E D  T H E  V A L U E  S H O R T  
C 2 5 1  +-0 

V 

- 

C l O I  A PROCESS-TIME 

- - 

Table 1 (Tl) is the mapping of the  input variables 
CHIPTYPE and STAGE into  the  output variable 
SETUP. Table 2 (T2) is the mapping of the  input 
variable SETUP into  the  output variable  SETUP-TIME. 
Table 3 (T3) is the mapping of the  input variables 
CHIPTYPE and SETUP into  the  output variable 
PROCESS-TIME. Procedure Module 1 (PM1) is the 
mapping of the  input variables  SETUP-TIME and 
PROCESS-TIME into the output variable 
SETUP-COND. 

functional notation: 

SETUP = Tl(CHIPTYPE,STAGE); 

SETUP-TIME = T2(SETUP); 

PROCESS-TIME = T3(CHIPTYPE,SETUP); 

These relationships can be written in the following 

SETUP-COND = PM 1 (SETUP-TIME, 
PROCESS-TIME). 

The concept of a composite function exists within our 
table-and-procedure-module method of  describing 
functions. 

For example, the functional relationship between the 
input variables CHIPTYPE and STAGE and  the  output 
variable  SETUP-TIME can be found by using  Tables 1 
and 2 and viewing the variable SETUP as an 
intermediate output variable: 

SETUP-TIME = TCl(CHIPTYPE,STAGE) = T 1 0 T2. 

The concept of  “algebraic simplification” can sometimes 
be applied by generating a new table. For example, the 
composite function TC 1 would  result in the following 
table: 629 
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can be one of  two  values:  tiger or lion. The variable 
PRIORITY can be one of three values: hot, warm, or 
cold. Then, each combination of values  represents one TABLE  COMPOSITE 1 (TC1) 

CHIPTYPE STAGE -> SETUP-TIME point in the domain or state space [38]. In this case, there 

tiger 1 20 
are 6 (2 X 3) possible unique combinations: 

tiger 
lion tiger hot, 
lion tiger warm, 

tiger  cold, 

In APL2 [8,30], tables map directly into two- 
lion hot, 
lion warm, 

dimensional general  arrays.  Table 1 can be  generated  lion cold. 
with the statement 

T 1 is a matrix with a shape ( p ) of four rows and three 
columns. The matrix is  filled in row  by  row  (row major), 
as  follows: 

COL 1 COL 3 COL2 

ROW 1 3 1 tiger c I 

I I I I 

ROW 3 4 1 lion 

ROW 4 4 2 lion 

APL2  provides  indexing into any portion of the 
matrix, and a variety of comparison operations. The 
following statements will  access column 1 and check 
whether  any element in column 1 is equal to lion: 

C O L l + T l C ; l I  

M A T C H I +  (C’l ion’)  = “ C O L I  

In the first statement, the variable COLl is  assigned (+) 
the values in column 1 ( C ; 1 1) of TI. COLl is a vector 
with four elements. The second statement matches (E) 
the character string or value  lion  against  each (”) element 
in the variable COLl. MATCH1 is a vector  with four 
elements (00 1 I), one for  each member of COLl . An 
element of MATCH I is a 1 if the corresponding element 
of COLI has the value lion; else a 0. 

Tables  can  also  easily  be  represented and searched  with 
simple character arrays (one character per element in an 
array) in  APL2;  Appendix 2 provides an example. 

In APL2 a procedure module can  be  executed at any 
time with the execute primitive ( a ) .  The system 
functions U E A  and U E C  provide  for the “protected” 
execution  of a PM. 

4. Generating  the  finite  domain of a  function 
Assume that there are two input values to the function: 

630 CHIPTYPE and PRIORITY. The variable CHIPTYPE 

The set  of  APL2 functions in Appendix 3 generates  all 
elements in the domain without using recursion. The key 
APL2 primitive is encode ( T). 

Using a related  process, we can  identify duplicate 
entries in a table  using the APL2 function shown in 
Appendix 4. The key  APL2 primitives are decode ( T ) 
and n-wise reduction ( 2  = /). 

5. Generating  the  network  of  functions 
Using the following  two  Boolean arrays and some 
Boolean array operations in  APL2, we can determine 
automatically how the different functions relate to one 
another [33-351 and automatically generate the 
dependency  network. 

The first item generated  is a Boolean matrix called 
INMATIP (IP stands for INPUT). This matrix records 
which  variables are input variables  for  which functions. 
INMATIP has one row  for  each  variable and one column 
for  each function (table or procedure module). A cell  is 
assigned a 1 if the variable  is in the  “input portion” of a 
function; else a 0. For this example INMATIP would be 

TI T2 T3 P1 

CHIPTYPE 1 0 1 0  
STAGE 1 0 0 0  
SETUP 0 1 1 0  
SETUP-TIME 0 0 0 1  
PROCESS-TIME 0 0 0 1 
SETUP-COND 0 0 0 0  

The second item generated  is a Boolean matrix called 
INMATOP (OP stands for OUTPUT). This matrix 
records  which  variables are output variables  for  which 
functions. INMATOP has one row  for each variable and 
one column for  each function (table or procedure 
module). A cell  is  assigned a 1 if the variable  is in the 
“output portion” of a function; else a 0. For this 
example, INMATOP would  be 
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T1 T2 T3 P1 

CHIPTYPE 0 0 0 0  
STAGE 0 0 0 0  
SETUP 1 0 0 0  
SETUP-TIME 0 1 0 0  
PROCESS-TIME 0 0 1 0 
SETUP-COND 0 0 0 1  

(These  two  arrays can easily be generated automatically 
by writing  a  small  APL2  program to parse the description 
of the functions.)  With the two arrays we can determine 
the variable SETUP-TIME as a function of the variables 
CHIPTYPE and STAGE through the intermediate 
variable SETUP and other second-order  dependencies. 
The following  APL2  expression  gives this information: 

INMATVAR 4 INMATOP v . A 4 I N M A T I P  

LEVEL-1-LINKS f INMATVAR 

LEVEL-2-LINKS 
4 LEVEL-1-LINKS v .  A INMATVAR 

INMATVAR  is  then 

INPUT VARIABLES 

CHIP SETUP PROCESS SETUP 
TYPE STAGE SETUP -TIME  -TIME  -CON0 

U A STAGE 
0 V  CHIFTYPE 0 0 0 0  

0 0 0 0  
0 0  
0 0  

T R SETUP 1 1 0 0  
P I SETUP-TIME 0 0 1 0 

0 0  

U A  PROCESS-TIME 1 0 1 0 
0 0  

T B SETUP-COND 0 0 0 1 
0 0  
1 0  

INMATVAR contains one row and one column for  each 
variable in the system. Rows reference output conditions; 
columns reference input conditions. INMATVAR  shows 
“ first-order’’  dependencies  between  variables. If a  variable 
is  a  direct input variable (the columns) to  an output 
variable (the rows), then that cell  has the value 1. If not, 
the value  is 0. For example, CHIPTYPE and STAGE are 
direct input variables to the variable SETUP through T 1. 
Therefore, the cells  (SETUP,  CHIPTYPE - row  3, 
column 1) and (SETUP,  STAGE - row  3, column 2) 
have the value  1. 

The APL function 4 generates the transpose of a 
matrix. 4 INMATIP is 

1 1 0 0 0 0  
0 0 1 0 0 0  
1 0 1 0 0 0  
0 0 0 1 1 0  

how the value in the first  row and first column of 
INMATVAR is calculated. 

of 4 INMATIP  is 1 0 1 0. We then “and” ( A )  the 
corresponding  elements,  giving 0 0 0 0, and “or” across 
( v  / 0 0 0 0) this result,  giving 0. 

could use the APL function ODA  (Appendix 5). 

provides the information about level 1 links or first-order 
dependencies  between  variables. 

The first  row  of  INMATOP is 0 0 0 0. The first column 

As an alternative to using the APL expression v . A ,  we 

LEVELLLINKS is identical to INMATVAR. It 

L E V E U L I N K S  is 

INPUT VARIABLES 

CHIP SETUP 
TYPE STAGE SETUP -TIME 

0 V CHIPTYPE 0 0 0 0  
U A STAGE 0 0 0 0  
T R SETUP 0 0 0 0  
P I  SETUP-TIME 1 1 0 0 
U A  PROCESS-TIME 1 1 0 0 
T B SETUP-CORD 1 0 1 0 

PROCESS SETUP 
-TIME -COND 

0 0  
0 0  
0 0  
0 0  
0 0  
0 0  

LEVEL2LINKS contains one row and one column 
for  each  variable in the system.  Rows  reference an output 
condition; columns reference an  input condition. 
LEVELLLINKS shows  second-order  dependencies 
between  variables. If a  variable  is  a  second-order input 
variable to  an output variable, then that cell  has the value 
1. If not, the value is 0. For example, CHIPTYPE and 
STAGE are second-order input variables to  the variable 
SETUP-TIME.  SETUP-TIME depends directly on 
SETUP (T2). SETUP depends directly on CHIPTYPE 
and STAGE (Tl). Therefore, SETUP-TIME has  a 
second-order  dependency on CHIPTYPE and STAGE 
(T2 to Tl), where the linking variable  is  SETUP, and the 
cells  (SETUP-TIME, CHIPTYPE - row 4, column 1) 
and (SETUP-TIME,  STAGE - row 4, column 2)  have 
the value  1. 

The linking  variables can be found using the following 
expression (the function LINKVAR  is  shown in 
Appendix 6): 

LEVEL-1-LINK-VAR 4 INMATVAR 

LEVEL-2-LINK-VAR 
f LEVEL-1-LINK-VAR  LINKVAR  INMATVAR 

For first-order  dependencies, the linking  variable  is the 
linked  variable.  Therefore, LEVELLLINLVAR is 
the same as INMATVAR. 

LEVELLLINLVAR is 

INPUT VARIABLES 

CHIP S E W  PROCESS SETUP 
TYPE STAGE SETUP TIME TIME COND 

0 V CHIPTYPE 0 0 0 0   0 0  
0 0 0 0  0 0  
0 0 0 0   0 0  

0 0  

The APL2 operator dot ( . ) carries out the inner product 
operation, and the APL  expression v . A is the primitive ~ ~ ~ ~ $ &  i : : 0 0  

for Boolean matrix multiplication. Let us  look in detail at T B SETUP-COND 5 o 4 s o 0 0  631 
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LEVEL-2-LINLVAR  contains  one row and  one 
column for each variable in  the system. Rows reference 
an  output  condition;  columns reference an  input 
condition. LEVEL-2LINLVAR shows the linking 
variable for the second-order  dependencies between 
variables. The  number 1 refers to  CHIPTYPE,  the 
number 2 refers to STAGE,  etc. For example,  this  table 
shows us that  the linking variable for the second-order 
dependency between the variable CHIPTYPE  and  the 
variable SETUP-TIME is the variable SETUP  (number 
3). 

Third-order  dependencies are  found as follows: 

LEVEL-3-LINKS 
f LEVEL-2-LINKS v .  A INMATVAR 

LEVEL-3-LINKS is 

0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
1 1 0 0 0 0  

Third-order  linking variables are  found by 

LEVEL-3-LINK-VAR 
+ LEVEL-2-LINK-VAR  LINKVAR  INMATVAR 

LEVEL-3-LINLVAR is 

0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
3 3 0 0 0 0  

The following APL2 statement finds fourth-order 
dependencies. (Notice that this  matrix contains only Os, 
which means  that there are  no  more dependencies to 
find.) 

LEVEL-4-LINKS 
f LEVEL-3-LINKS v .  A INMATVAR 

LEVEL-4-LINKS is 

0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  

Using the  information  in these relationship matrices, we 
can, for example, determine  the  component variables 

632 that influence the value of the variable SETUP-TIME: 

SETUP-TIME has  a  direct  dependency on  the variable 
SETUP via function T2  and a  second-order  dependency 
on  the variables CHIPTYPE  and STAGE  through the 
connecting variable SETUP via function  T 1. 

The approach described above provides for  simple, 
rapid, automatic generation of the dependency network 
(including  “simultaneous”  conditions; see Appendix 7 )  
from just the knowledge of first-order dependencies. 

Using a  similar  approach, we can build the following 
network for the functions of this example: 

Using the  same Boolean arrays and a slightly more 
complicated set of Boolean operations, we can 
automatically and quickly generate an ordering of the 
functions based on “relative independence” and  thus 
“focus  a knowledge network.” 

example. Given the  equations 
To explain “relative independence,” let us look at  an 

VOLUME = AREA X HEIGHT, (a) 

PERIMETER = (2 X LENGTH) + (2 X WIDTH),  (b) 

AREA = LENGTH X WIDTH, (c) 

and 

HEATING COST = 4 X VOLUME, (dl 

we would need to execute Equation  (a) before Equation 
(d),  and  Equation  (c) before Equation (a).  We  could view 
Equations (b)  and  (c) as  making up  the most independent 
group or class of rules, since their input variables 
(LENGTH  and  WIDTH)  are not calculated by any  other 
equation. Equation (a) would be in  the second group  or 
class, since its input variables are either not calculated by 
another  equation  (HEIGHT)  or calculated by an 
equation already  ordered (AREA). Equation  (d) would 
make up  the  third group. 

For  our example the functions are ordered  as follows: 

CLASS 1: T1 
CLASS 2: T2  T3 
CLASS 3: PMl 

To explain  “focusing,” we return to Equations (a)-(d). If 
we have specified values for LENGTH,  WIDTH,  and 
HEIGHT,  then  the example equation set or network will 
calculate values for AREA, PERIMETER, VOLUME, 
and  HEATING COST. If  we tell the  equation network to 
focus on  the variable HEATING COST, it will drop 
Equation (b) and  not calculate PERIMETER, since 
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PERIMETER  has no link to  HEATING COST. An 
automatic “focuser” is shown in  Appendix 8. 

of functions and network focusing is  very useful in 
debugging knowledge sets, organizing them  into logical 
groups, and identifying parallel content  in inferencing. 

The information provided from the  automatic ordering 

6. lnferencing by forward  chaining 
In knowledge-based expert systems (KBES), an inference 
engine is  used to  determine which pieces of knowledge to 
use in what order to solve a  problem or answer a 
question. Fordyce, Norden,  and Sullivan [41] provide  a 
detailed description of inference engines. 

The task of a forward-chaining inference engine in a 
KBES is to  monitor facts in a  database,  transaction 
stream, or interactive session with  a user, and  then 
determine which pieces of knowledge should be invoked 
in what order  in response to a stimulus from the 
environment.  Invoking or executing  a piece of knowledge 
is calledfiring. In our example, the inference  engine 
would monitor changes in values for variables 
CHIPTYPE, STAGE, etc., and  then  determine which 
functions to execute in what order. 

The task of a backward-chaining or goal-driven 
inference engine is to  monitor inquiries from a user as to 
whether a specified outcome, goal, or fact is true  or false. 
In this case, the inference engine searches through the 
database and  the knowledge base to verify or  determine 
whether there is sufficient evidence to conclude that  the 
specified goal is true. In our example, the user might ask 
“Does the variable PROCESS-TIME have a value of 
short?” or  the  more general question, “What is the value 
for PROCESS-TIME?” The inference engine would then 
search the existing functions and values for variables to 
determine  the value for PROCESS-TIME. 

In this section we describe how the network 
information described in the preceding section can be 
used efficiently to  do inferencing by forward chaining. 
We will  see that forward chaining is accomplished 
essentially by following the function network built from 
the Boolean arrays INMATIP  and INMATOP. The 
backward-chaining procedure is shown in Appendix 9. 

For this  example we make use of the four-function 
knowledge base described in Section 3 and  the Boolean 
arrays presented in Section 5. Assume that we initially 
know the following information: 

VARIABLE VALUE 

CHIPTYPE tiger 
STAGE 2 
SETUP unknown 
SETUP-TIME unknown 
PROCESS-TIME unknown 
SETUP-COND unknown 

” 
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From this  information we generate the Boolean vector 
KUVEC (known-unknown vector). This tells us whether 
or not  a variable has  a value. There is one cell for each 
variable. A cell  is assigned a 1 if the variable has  a value; 
else a 0. For this  example KUVEC is 1 1 0 0 0 0. 

Cycle I :  Deciding which functions to  fire 
First, the inference engine (IE) must decide which 
functions  are  candidates  for executing or firing. A 
function is a  candidate if all input variables for the 
function have values. POTEN is the variable that holds 
the llst of legitimate candidates  for firing. For this cycle 
POTEN is TI.  The APL expression which generates 
POTEN is 

POTEN f A /  C 11 KUVEC 2 C 11 I N M A T I P  

where INMATIP is the matrix described in Section 2. 

functions which have previously fired, and which it has 
no reason to fire again. (This is the first cycle, so this  step 
can be skipped for  this cycle.)  If POTEN is empty  at  the 
end of this step, the inferencing process is finished. 

Third, the IE decides which of the functions in 
POTEN should be fired in this cycle. This decision is 
often called conflict resolution. Our  method is to identify 
the  “most independent”  function class represented in 
POTEN,  and  then keep in  POTEN only the functions in 
that class. In this cycle there is only one function class 
represented in POTEN, so POTEN is now T 1. 

Fourth,  the IE executes the functions that have been 
selected. The variable SETUP now  has the value 2. 

In this case, executing the function means searching 
Table 1 to  determine whether  there is a row which has 
the value tiger in  the first column  and  the value 2  in the 
second column. If a  match is found, the value in  column 
3 of the  “matched” row is assigned to  the variable 
SETUP. “Searching” through the tables to find a match is 
easy in APL2, as shown below. 

columns: 

tiger 1 3 
tiger 2 2 
lion 1 4 
lion 2 4 

We can access columns 1 and 2  as follows: 

T A B L E 1  C ; 1 2 3  

tiger 1 
tiger 2 
lion 1 
lion 2 

The variable X can be assigned the known values for 

Second, the IE eliminates  from POTEN those 

Table 1 (TI) is a  matrix with four rows and three 
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CHIP-TYPE and STAGE, The APL2  expression  which  generates  VCVEC  is 

X+ tiger I 2 . v /  c 2 3 INMATOPC ; POTENI 

By the expression or 

The value  for SETUP is then found to be  2. 
If no match is found in Table 1, we still consider the 

function to have  been  executed, but we assign to the 
variable SETUP the value “no-value-found.” (There are 
alternatives to this approach, but we do  not discuss them 
in this paper.) 

0 Cycle I :  Updating summary information 
Since the values  of some of the variables  have  been 
altered by the function firings, the summary information 
is no longer current, and the IE must update each of 
these data structures. 

First, it updates an item called FIRELOG. FIRELOG 
keeps track of which functions were candidates for  firing 
and which functions were in fact  fired at each cycle. 
FIRELOG is  now 

CYCLE FUNCTION STATUS 

1 TI 1 

The first column shows the cycle, the second the 
function, and  the third whether the function was  fired (1) 
or not (0). 

(variable  change  vector). There is one position  for  each 
variable, in the same order as the rows for  INMATIP.  A 
cell  is  assigned  a  1  if the variable was  affected  by the 
function firings;  else  a 0. A  variable  is  affected  if it is in 
the  output portion of  a function that has fired. The IE 
can get this information by  using POTEN and 
INMATOP. From POTEN we know  which functions 
were  fired, and from INMATOP we know  which 
variables are in the “then,” or  output, portion of  each 
function. For this cycle  VCVEC  is 0 0 1 0 0 0: 

Second, the IE  generates  a  vector  called  VCVEC 

VARIABLE CHANGE STATUS 

CHIPTYPE 0 
STAGE 0 
SETUP 1 
SETUP-TIME 0 
PROCESS-TIME 0 

634 SETUP-COND 0 
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Third, the IE updates KUVEC,  which  is  now 
1 1  1 0 0 0 .  

Fourth (and last), the IE  keeps  a  history  log  of  variables 
that have  been  affected. The change status for  a  variable 
at a  given  cycle  is  assigned  a  value  of 1 if the variable  was 
affected in the corresponding cycle;  else  a 0. The IE  uses 
this information to determine whether a function that 
has  been  fired should be  fired  again. The information is 
stored in the matrix VCMAT (variable change matrix), 
which has one column for  each  cycle. 

VCMAT  is  now 

VARIABLE  CYCLE  1 
CHIPTYPE 0 
STAGE 0 
SETUP 1 
SETUP-TIME 0 
PROCESS-TIME 0 
SETUP-COND 0 

The IE has now  finished updating its summary 
information and is  ready to proceed to the next inference 
cycle. 

0 Cycle 2: Deciding which functions  to  fire 
First, the IE determines candidates for  firing. POTEN is 
initially TI,  T2, and T3. 

Second, the IE eliminates from POTEN those 
functions which  have  previously  fired, and which it has 
no reason to fire  again. POTEN is  now T2 and T3. 

Third, the IE  decides  which  of the functions in 
POTEN should be  fired in this cycle.  Both T2 and T3 are 
in the same function order class, so POTEN is  still T2 
and T3. 

Fourth, the IE  executes the functions that have  been 
selected. The variable  SETUP-TIME  now  has the value 
20. The variable PROCESS-TIME now has the value 60. 

0 Cycle 2: Updating summary information 
First, the IE updates FIRELOG, which  becomes 
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CYCLE FUNCTION STATUS 

1 TI 1 
2 T2 1 
2 T3 1 

Second, the IE  generates  VCVEC,  which  becomes,  for 
this cycle, 0 0 0 1 1 0: 

VARIABLE CHANGE STATUS 

CHIPTYPE 0 
STAGE 0 
SETUP 0 
SETUP-TIME 1 
PROCESS-TIME 1 
SETUP-COND 0 

Third, the IE updates KUVEC, which becomes 

Fourth, the IE updates the history log of  variables that 
1 1  1 1  10. 

have  been affected. VCMAT  is  now 

VARIABLE  CYCLE 1 CYCLE 2 

CHIPTYPE 0 0 
STAGE 0 0 
SETUP 1 0 
SETUP-TIME 0 1 
PROCESS-TIME 0 1 
SETUP-COND 0 0 

The IE has  now completed the second inference cycle 
and is  ready to proceed to the third. 

Cycle 3: Deciding which functions toJire 
First, the IE determines candidates for firing. POTEN is 
initially TI,  T2, T3, and PM1. 

functions which  have  previously  fired, and which it has 
no reason to fire again. POTEN is  now PMI. 

Third, the IE decides  which  of the functions in 
POTEN should be fired  in this cycle. POTEN is  still 
PM1. 

Fourth, the IE executes the functions that have  been 
selected. The variable  SETUP-COND  now has the value 
short. In this case the APL2 function PMI is run. 

Second, the IE eliminates from POTEN those 

Cycle 3: Updating summary information 
First, the IE updates FIRELOG, which  is  now 

IBM 1. RES. DEVELOP. VOL. 33 NO. 6 NOVEMBER 1989 

CYCLE FUNCTION STATUS 

1 TI 1 
2 T2 1 
2 T3 1 
3 PM 1 1 

Second, the IE generates VCVEC; for this cycle 
VCVECis00000 1: 

VARIABLE CHANGE STATUS 

CHIPTYPE 0 
STAGE 0 
SETUP 0 
SETUP-TIME 0 
PROCESS-TIME 0 
SETUP-COND 1 

- 

Third, the IE updates KUVEC, which  becomes 

Fourth, the IE updates VCMAT,  which becomes 
1 1 1 1 1 1 .  

VARIABLE  CYCLE 1 CYCLE 2 CYCLE 3 

CHIPTYPE 0 0 0 
STAGE 0 0 0 
SETUP 1 0 0 
SETUP-TIME 0 1 0 
PROCESS-TIME 0 1 0 
SETUP-COND 0 0 1 

The IE has now completed the third inference cycle, and 
is  ready to proceed to  the next. 

0 All done 
The IE now determines that there is no reason to fire any 
more functions and ends processing. Given the new set of 
values for CHIP-TYPE and STAGE, the appropriate 
values for SETUP, SETUP-TIME,  PROCESS-TIME, 
and SETUP-COND  have all been determined by 
processing the knowledge in  our four functions. 

7. Integrating FABA and transactions 
In the following example we illustrate how  FABA  is 
integrated with a manufacturing-lot transaction stream 
and tracking database. (Appendix 1 describes the 
manufacturing dispatch system.) 

The manufacturing facility comprises lots to be 
processed, operations to be performed on  the lots, and 
machines which carry out the operations. For each lot 
that is put  into the manufacturing stream, the following 
information is  recorded: 
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LOT TRACKING DATA RASE 

. . .  LOT TRACKING DATA BASE 1 L101TL211 1 SETUP I SETUP-TIME I EST-LV 1 TIME 1 DELTA-SCIID 1 
11130 

11132 

When a lot  is put into production, the first  two 
variables  (LOT-ID and LOTJAMILY) in the record 
are given  values.  In this example there are three lots in 
the tracking database. (The field  LOT-ID  is listed  twice 
for the convenience of the reader.) 

The value  for PRIORITY is a transaction received 
from production control (PC). An initial value  between 1 
and 100  is  placed in PRIORITY when the lot is 
launched; this value can change once a day. We  will  give 
the name PRIORITYJC to the variable  holding the 
initial priority  value transmitted from production 
control. The program module PM 1 1 translates this value 
into one of four  values, HOT, WARM,  COLD, or ICE: 

PM11 

output variable: PRIORITY 

input  variable: PRIORITY-PC 

translate  
PRIORITY-PC 
(a  value between 1 and 100) t o  
PRIORITY 
(one of the  following  values: 
HOT, WARM, COLD, or ICE) 

c 

The value  for DUE-DATE  is a transaction received 
636 from the order book (OB). An initial value  is  placed in 
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I 
DUE-DATE  when the lot is launched; this value can 
change at any time. The value  for DUE-DATE takes the 
form  YY/DAY  (last  two  digits of the year and Julian 
day;  for  example, 89/ 134). We call the variable  holding 
the initial date transmitted from the order book 
DUE-DATE-OB. PM12 translates this value into the 
form MM/DD/YY (for example, 05/14/89): 

PM12 

output variable: DUE-DATE 

input  variable: DUE-DATE-OB 

translate  
DUE-DATE-OB 
( in   the  form YY/DAY) t o  
DUE-DATE 
( i n   t h e  form MM/DD/YY) 

The value for the variable O P U A M I L Y  (operation 
family)  is  changed in the record  each time the lot enters a 
new manufacturing operation. This transaction is  sent 
from the floor  tracking  system (ITS). The value for 
MACH-FAMILY (machine family) is based on 
OPRFAMILY. Table 11 (T1 1) provides this value: 
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TABLE 11 (T11) 

OPR-FAMILY -> MACH-FAMILY 
bend 
bake 
test 

xxx 
YYY 
227, 

The value  for the variable SETUP (required 
configuration  for the machine to run this  lot at this 
operation) is  based on LOT-FAMILY and 
OPRFAMILY. Table 12 (T 12)  provides this value: 

TABLE 12 (T12) 

LOT-FAMILY  OPR-FAMILY -> SETUP 

tiger bend brown 
1 ion  bend blue  

t i g e r  bake ye1 low 
1 ion  bake red 

tiger test  green 
1 ion  t e s t  green 

The value  for the variable  SETUP-TIME (time to 
reconfigure this machine to the setup needed  for this lot) 
is  based on MACHJAMILY. Table 13 (T 13)  provides 
this  value: 

~- 

TABLE 13 (T13) 

MACH-FAMILY -> SETUP-TIME 

xxx 
YYY 
zzz 

20 
15 
40 

EST-LV is the estimated time until the lot  leaves the 
operation where it is currently located. This value  is 
obtained from  PM 13.  PM 13  makes use  of information 
from manufacturing process  specification  variables  such 
as raw  process time and machine availability, the lot 
tracking  database, and some  decision  rules to estimate 
when the lot will  leave this operation. ESTLV is a run- 
time variable, and is recalculated  whenever a query is 
made  against this field. (Note that PM  13 combines data 

and procedures on data  into one natural unit. This is a 
common practice in APL2 and a key principle of object- 
oriented programming.) 

1 

PM13 

output variable: EST-LV 

input variable:  LOT-ID 
LOTJAMILY 
OPRFAMILY 
RUNTIME 

function: determine an estimated leave time 

outside data used:  raw  process time 
for this lot from this operation. 

machine availability 

DELTLSCHD is an estimate of the number of days 
the lot is behind (minus to schedule) or ahead (plus to 
schedule) of schedule. This value is calculated by  PM  14 
and is a time-dependent variable.  It  is  recalculated on 
request  from the user, or when either DUEDATE or 
PRIORITY changes  value, and otherwise  every  four 
hours. TIME  stores the last time at which an update has 
been  made to the DELTLSCHED variable. 

PM14 

output variable: DELTLSCHD 

input variable: LOT-ID 
LOTJAMILY 
PRIORITY 
DUEDATE 
TIME 

function: determine an estimated number of 
days the lot  is  behind or ahead of 
schedule. 

machine availability 
outside data used:  process  flow data 

These  relationships can be written in the following 
functional notation: 
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LOT-ID = input field  when  lot  is launched. 1 1 129  is  assigned the value bake. The variable 

LOTJAMILY = input field  when lot is launched. 
DUE-DATE-OP for lot 1 1 129  is  assigned the value 
89/ 145. This triggers the following inference cycle: 

PRIORITY = PM 1 1 (PRIORITY-PC). 

DUE-DATE = PM 12  (DUE-DATE-OP). PM12  is fired, generating the value 05/25/89 for the 

OPRJAMILY = input field  when lot changes variable DUE-DATE. T11 is fired, generating the 
value yyy for MACHJAMILY. T 12 is  fired, 
generating the value yellow for SETUP. 

operation. 

MACHJAMILY = T11 (OPRJAMILY). T 13  is fired, generating the value  15 for SETUP- 

SETUP = T 12 (LOTJAMILY, 
OPRFAMILY). 

TIME. PM  13 is fired, generating a value for EST-LV. 
PM 14 is  fired, generating a value for DELTLSCHD. 

SETUP-TIME = T 13 (MACHJAMILY) 8. Summary 
= T13 0 T1 (OPRFAMILY). In this paper we have  described a knowledge 

EST-LV 
representation and manipulation (KRM) scheme called 

multiple-goal-advocate approach to dispatch decision 
= PM1 FABA. This KRM scheme serves as the base for a 

OPRJAMILY, RUNTIME). 

TIME = records last time an update is making [2, 3, 61. 
made to DELTASCHED. FABA  uses tables and procedure modules to store 

knowledge. We have found that these two methods of 
= PM1 storing knowledge  have some significant advantages over 

PR10R1TY7 DUE-DATE,  rules [36,42]. For example, each of these items can be 

INMATIP is 

PMii  PM12  Tli T12 T13  PM13  PM14 
LOT-ID 
LOT-FAM I LY 
PRIORITY-PC 

DUE-DATE-OB 
PRIORITY 

DUE-DATE 
OPR-FAMILY 
MACH-FAMILY 
SETUP 
RUNTIME 
SETUP-TIME 
EST-LV 
TIME 
DELTA-SCHD 

INMATOP is 

LOT-ID 
LOT-FAMILY 
PRIORITY-PC 

- 

PRIORITY 
DUE-DATE-OB 
DUE-DATE 

MACH-FAMILY 
OPR-FAMILY 

SETUP 
SETUP-TIME 
RUNTIME 
EST-LV 
TIME 
DELTA-SCHD 

0 0 0 0 0 1 1  
0 0 0 1 0 1 1  
1 0 0 0 0 0 0  
0 0 0 0 0 0 1  
0 1 0 0 0 0 0  
0 0 0 0 0 0 1  
0 0 1 1 0 1 0  
0 0 0 0 1 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 1 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 1  
o o o n o o o  

PMll PM12 Tll  T12  T13 PM13 PM14 
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
1 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 1 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 1 0 0 0 0  
0 0 0 1 0 0 0  
0 0 0 0 1 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 1 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 1  

Let  us  look at an example. Assume that lot 11 129 
enters the operation “bake” and that a new due date or 

638 delivery date is  set. The variable OPRFAMILY for lot 

viewed as a function. First-order dependencies or links 
between functions are represented with two simple 
Boolean arrays. The information in these arrays can be 
obtained easily and automatically by writing a small 
APL2 program to parse the description of the functions. 
Working  with  these two arrays, some simple APL2 
Boolean operations can quickly generate the entire 
function network. Deciding  which functions to execute 
and when to execute them requires only some simple 
manipulations of the two Boolean arrays and a means for 
keeping track of  when transactions occur. We have found 
this approach particularly effective in real-time, 
transaction-based, knowledge-based  systems. 

The FABA KRM scheme is  clearly a product of the 
rich data structures provided by APL2.  APL2 array data 
structures and associated operations permit the easy 
storage and manipulation of tables, and APL2 functions 
do the same for procedure modules. APL2  is  clearly a 
notation for thought [7,43] that facilitates a new  view  of 
problems and their solution in KRM [20]. 

Appendix 1: Overview of LMS 
The Logistics Management System (LMS) is a real-time, 
imbedded-transaction-based, integrated-decision and 
knowledge-based expert support system  which  serves as a 
dispatcher, monitoring and controlling the 
manufacturing flow  of the IBM semiconductor facility 
near Burlington, Vermont. This facility  develops and 
manufactures semiconductor memory and logic 
subsystems for current and future IBM products. 
Burlington produces some of the world‘s most complex 
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computer components, which are used throughout the 
IBM product  line. 

and controlling of the actual manufacturing flow, or 
logistics.  Decisions are made  concerning  trade-offs 
between running test  lots  for  changes in an existing 
product or a new product, and running regular 
manufacturing lots,  prioritizing late lots, and positioning 
preventive maintenance downtime, production of similar 
product to reduce setup time, assigning  personnel to 
machines,  covering  for  absences, and reestablishing 
steady production flow after a machine has  been  down. 

transactions, and maintains and provides  access to 
knowledge  bases and models.  It permits the user and 
analyst to easily update knowledge  bases and models  as 
needed. LMS provides the dispatch decision  makers  with 
easy and flexible  access to 

Dispatch  scheduling  decisions  concerning monitoring 

LMS captures and stores in real time all manufacturing 

3. 

4. 

Relational  databases that contain the latest 
manufacturing transactions, such  as the status of a 
machine, the location of a lot, the due date of a lot, or 
the availability of an operator. 
Knowledge  bases that contain such information as 
how to characterize a transaction (Is it a lot 
movement, a change in the status of a machine, or a 
change in an order?), how to characterize the lot  type 
(Is it a test  lot  from the lab, a test  lot  from 
manufacturing  engineering, an express  lot  for an 
important order,  etc.?), the setup required  for a lot, 
setup time, rework  requirements,  test  requirements, 
alert  conditions,  product  routing, throughput rates, 
preferred  tools, operator training, operator schedules, 
average  downtime  for a machine, and how to 
calculate  elapsed  time.  (Elapsed time would be defined 
as the calculation  present time minus adjusted  elapsed 
time; adjustments can  be  made  for machine 
availability,  second-shift  work, a holiday,  etc.). 
Models that estimate how  far ahead or behind 
schedule a lot  is and the relative  priority status of a 
lot,  identify lots with the same setup requirements, 
establish  global  flow control levels  (protective  work in 
progress, recommended output from a work  cell  for 
the day,  etc.) to guide production and avoid  local 
optimization to the detriment of the global  system, 
and assess the impact of machine dedication. 
Heuristics to integrate the data, knowledge, and 
models to identify opportunities. 

LMS provides  dispatch  decision  makers  with  fast, 

passively  waits  for the user to make a request  for 
information. In the intervention mode, LMS monitors 
the transaction stream and actively  uses  its  knowledge 
bases and models to issue alerts and recommend what 
actions to take next. 

Example 1 
Assume that tester 1 is running lot  type A and has a lot 
type B in its queue, and that tester 2 is running lot  type B 
and has a lot  type A in  its  queue. The testers are 
identical. There is an opportunity to eliminate two 
machine  setups by exchanging the waiting  lots, but an 
information system  is  needed to identify this opportunity 
because (1) the lot  type  is  unknown until the box it is 
stored in is opened and the associated  “paperwork”  read, 
and ( 2 )  the two  testers are not located  close to each other. 

Example 2 
Assume that the stepper machine is  almost  finished 
processing a lot of type A. It has two lots of type C 
waiting to be  processed.  Both lots are ahead of schedule, 
but if they are not processed  shortly,  they  will  require 
recoating (a 15-minute process). The coating machine is 
almost  finished  with  processing a lot of type A, and has 
five other A’s waiting. All  of the A’s are behind schedule. 
The opportunity is to send the C‘s back to be  recoated 
and keep the stepper  set up to handle the A’s. 

Example 3 
Assume that the tester is set up to process lot type B and 
has  five more  lots of that type  waiting.  But it also  has an 
express  lot of type C waiting. The laboratory is waiting 
for this lot for a critical development project.  None of the 
type B lots are behind  schedule. The retooling time is 20 
minutes. The opportunity is to retool and test  lot  type C. 

Example 4 
Assume that the following  sequence  occurs  for a 
photolithography  machine: 

1. Load a specific  mask (contains the image  of the circuit 
pattern required) on the machine. 

2.  Make a test run for  low-tolerance  lots. 
3. Send the test run to be  inspected,  leaving the machine 

4. Wait  for the inspection  results. 
5. Complete the low-tolerance  lots. 
6 .  Complete the high-tolerance  lots that require the same 

idle. 

mask, but require only a visual  inspection at the 
machine location. 

flexible, and integrated access to this information. The production rate  would improve if high-tolerance  lots 
Support takes  two  forms: passive or decision-support, and could be  processed  while the low-tolerance lots were 
intervention. In the decision-support  mode, LMS being  inspected, but to  do this, it must be known which 639 
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lots in the  queue have the same  setup  requirement, what 
tests are required for each lot, what the raw process time 
for each lot will be on  this machine, and what the relative 
priorities are among all waiting lots. 

LMS has helped IBM Burlington improve its 
throughput and ability to meet delivery schedules 
(serviceability). It is a critical component  in  running 
major areas of the  manufacturing facility. The process 
operator on the  manufacturing floor receives advice on 
scheduling. The manager is alerted to opportunities that 
have appeared or are about to emerge. The maintenance 
technician is given information on the  impact of 
machines that are out of service, and is alerted to their 
conditions. 

Appendix 2: Handling  tables  with  simple  arrays 
Following is an example of setting up  and searching a 
table with simple character arrays: 

T l f 4 l O p  ' t i g e r 1 3 t i g e r 2 2 l i o n 1 4 l i o n 2 4 '  

T1 is 

tiger 1 3 
tiger 2  2 
lion 1 4 
lion 2 4 

T1 is a matrix with four rows and ten columns; each 
element T1 is a single EBCDIC character. The first  five 
columns of T1  contain the values for CHIPTYPE. 
Columns 6 and 7 contain  the values for STAGE, and 
Columns  8 and 9 contain  the values for SETUP. 
Therefore, COL 1 is obtained  as follows: 

C O L l  + T l [ ;  1 5 1  

The APL function  iota ( I ) generates the values 1 2 3 4 5. 
COLl is 

tiger 
tiger 
lion 
lion 

The variable MATCH 1 can be generated as follows: 

MATCHl f C O L l h  .= ' l ion'  

MATCH1 i s 0 0  1 1 .  
Alternatively, MATCH I can be calculated as 

MATCHl + A /  C21 ' l ion'  = [ 2 l  C O L l  

Appendix 3: APL  functions  for  finding state 
space 
Assume three input variables, VI, V2, and V3. The 
variable VI can be one of three values:  BILL,  BOB, or 
JOE. The variable V2 can be one of two values: NYC  or 
BOSTON. The variable V3 can be one of three values: 
USA, EUROPE,  or ASIA. In this case, there are 18 
(3 x 2 X 3) possible combinations. These variable values 
are stored in  the variable VARLIST as  a single character 
vector. The slash (/) is used as a  delimiter between 
variables: 

V A R L I S T f '   B I L L  BOB J O E  / NYC  BOSTON 
/ U S A  EUROPE A S I A /  ' 

The APL2 function SPACE generates the state space 
from the information provided in VARLIST: 

SPACE VARLIST 

BILL NYC USA 
BILL NYC EUROPE 
BILL NYC ASIA 
BILL BOSTON USA 
BILL BOSTON EUROPE 
BILL BOSTON ASIA 
BOB NYC USA 
BOB NYC EUROPE 
BOB NYC ASIA 
BOB BOSTON USA 
BOB BOSTON EUROPE 
BOB BOSTON ASIA 
JOE NYC USA 
JOE NYC EUROPE 
JOE NYC ASIA 
JOE BOSTON USA 
JOE BOSTON EUROPE 
JOE BOSTON ASIA 

E 0 1  Z t S P A C E  X ; D I V I D E R ; L I S T ; I N D X ; J K ; J K l ; J K J 3  
c11 A 

C 2 1  A T H I S  F N   D E T E R M I N E S   A L L   P O S S I B L E   C O M B I N A T I O N S   F O R  
C 3 3  A S E T  O F   V A L U E S   F O R   D I F F E R E N T   V A R I A B L E S .  
C 4 1  A 
C 5 1  A X IS T H E   S E T  O F  V A L U E S   F O R   E A C H   V A R I A B L E .  
C 6 1  A A N   E X A M P L E  O F  X I S :  

640 C 7 1  A B I L L  J I M  B O B  / N Y C   B O S T O N  / 
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C 8 1  A V A R I A B L E  1 I S  N A M E S   A N D   T H E   P O S S I B L E   V A L U E S   A R E :  
C 9 1  A B I L L  J I M  BOB 

C111 A N Y C   B O S T O N  
C 1 2 1  A T H E   D I V I D E R   B E T W E E N   E A C H   V A R I A B L E  IN T H I S  C A S E  I S  / 
C 1 3 1  A IN G E N E R A L  I T  I S  T H E   L A S T   N O N - B L A N K   C H A R A C T E R  IN X 
C 1 4 1  A 

C l 6 l  A B I L L   N Y C  
1 1 7 1  A B I L L   B O S T O N  
C 1 8 1  A J I M  N Y C  
C 1 9 1  A J I M  B O S T O N  
C 2 0 1  A B O B   N Y C  
c 2 1 1  A B O B   B O S T O N  
C 2 2 1  A 
C 2 3 1  A J. + I N I T I A L I Z A T I O N  
C 2 4 1   X + D B L  X 
C 2 5 1  X + , ( '  ' t X ) c X  
C 2 6 l   D I V I D E R +  l + X  
C 2 7 1   L I S T + l p X  
C 2 8 1  R 

C 2 9  3 JK+ ( D I V I D E R  = " X )  / L I S T  

1 3 1 3  R J K 1  I S  T H E   N U M B E R   O F   P O S S I B L E   V A L U E S   F O R   E A C H   V A R I A B L E  
C 3 2 1  A F O L L O W I N G   O U R   E X A M P L E   P R O B L E M   J K 1  I S  3 2 
C 3 3 1   I N D X t C O M B I N A T I O N S  J K 1  
C 3 4 1   T H I S   F I N D S   A L L   U N I Q U E   C O M B I N A T I O N S  IN N U M E R I C  FORM 
C 3 5  I A F O R   O U R   E X A M P L E  I N D X  I S :  
C 3 6 1  A 1 1  
C 3 7 1  A 1 2  
L 3 8 1  A 2 1  
C 3 9 1  R 2 2  
C 4 0 1  A 3 1  
r 4 1 1  A 3 2  
[ 4 2 ]  JK2++\01  1 C J K 1  
C 4 3  3 R T H I S   C A L C U L A T E S   R E L A T I V E   D I S P L A C E M E N T   F O R   E A C H   V A L U E  
[ 4 4 1  R F O R   O U R   E X A M P L E   J K 2  I S  0 3 
C 4 5 1   I N D X + J K 2 + [ 2 1 I N D X  
C 4 6 1  R T H I S   A D D S   J K 2 C 1 1  TO C O L l  OF I N D X  E T C .  
C 4 7 1  A IN OUR E X A M P L E  I N D X  I S  N O W  
C 4 8 1  A 1 4  
C 4 9 1  A 1 5  
1 5 0 1  A 2 4  
C 5 1 1  A 2 5  
C 5 2 1  A 3 4  
C 5 3 1  R 3 5  
C 5 4 1   J K 3 t L I S T - J K  
C 5 5 1   X + X C J K 3 1  
C 5 6 1  A X I S  T H E   D I F F E R E N T   V A L U E S   F O R   T H E   V A R I A B L E S l   W I T H O U T   D I V I D E R S  
C 5 7 1  Z + ( p I N D X ) p X C , I N D X l  
C 5 8 1  A Z I S  T H E   A N S W E R  

C O I  A+DBL B 
C11 A A I S  T H E   C H A R A C T E R   V E C T O R  B W I T H  
C 2 1  A L E A D I N G / T R A I L I N G   B L A N K S   R E M O V E D  641 

[ l o ]  V A R I A B L E  2 I S  C I T I E S   A N D   T H E   P O S S I B L E   V A L U E S   A R E :  

C 1 5  1 A Z W I L L   H A V E   T H E   S O L U T I O N :  

- 

[ 3 0 ]   J K l +   1 + 1 2 - / 0 1 J K  
- 

- 
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C 3 1  A A N D   I N T E R M E D I A T E   B L A N K   S U B S T R I N G S   R E P L A C E D   B Y   S I N G L E   B L A N K S  
[ 4 1  A + - l + l + ( ”  ’ 5 B ) / B + ’   , B ,  1 1  

C O I  
c 1 1  
c 2 1  
C 3 1  
C 4 1  
[ 5 1  
C 6 l  
1 7 1  
C 8 1  
C 9 l  
ClOl  
c111  
c 1 2 1  
C 1 3 1  
1 1 4 1  
C 1 5 1  
C l 6 1  
C 1 7 1  
C 1 8 1  

Z t C O M B I N A T I O N S   X ; J K  
R T H I S   F I N D   A L L  P O S S I B L E   C O M B I N A T I O N S  
R WHERE X C I I  I S  THE  NUMBER OF MEMBERS OF S E T  1 
A X C 2 1  I S  THE  NUMBER OF MEMBERS  OF S E T  2 

R X C N ]  I S  THE  NUMBER O F  MEMBERS OF S E T  N 

A COL 1 OF Z R E F E R S   T O   T H E   S E T   C O R R E S P O N D I N G  TO X C l l  
A COL 2 OF Z R E F E R S   T O   T H E   S E T   C O R R E S P O N D I N G   T O   X C 2 1  
R E T C .  

A T H E   A P L 2   P R I M I T I V E  T DOES  BASE  NUMBER  SYSTEM WORK 

A .... 
A 

A 

A 

x+,x  
J K + x / X  
JK+O I I ( - 1 + J K )  
Z + X T J K  
Z+Q Z 
Z + Z + l  

Appendix 4: APL function  for  finding  duplicate 
table  entries 
We can  represent a table  with an integer substituted for 
each  variable  value. A is  such a representation of a table: 

A IS 
2 1 3  
1 1 2  
2 1 3  
3 2 3  
2 2 3  
3 2 3  
2 1 3  

B is the number of  different  values  for  each  variable: 

B IS 

3 2 3  

The function DUPLICATE  finds  all duplicate entries. 
Running DUPLICATE  with A and B, we obtain 

B  DUPLICATE A 
2 1 3  
2 1 3  
3 2 3  

I 

In  this  example the table entry 2 1 3 appears twice and 
the table entry 3 2 3 appears  once. The function 
DUPLICATE is listed below: 

VDUPLICATECOIV 
C O I  Z+X DUPLICATE Y;  ID;  INDX; W 
C 11 A THIS  FINDS  DUPLICATES  OF  RULES 
C 2 I WHEN THE  RULES  ARE IN THE  FORM 
C31 A 1  1 2 
C41 A 2 1 3 
C 5 1  R . . . 
[SI A 1 2 1 
C71 R 
C 8 1 A Y IS THE  RULES 
C 9 1 A X IS  THE  NUMBER OF STATES  FOR  EACH 

A VARIABLE 
C 10 1 IDtXL-l+$Y 
C 11 1 INDXthID 
C1 2 1  YtYCINDX;] 
C131  IDtIDCINDXI 
C 14 1 ID+2=/ID 
C 15 1 ID+O I ID 
C l S l  Z+ID/ClIY 

Appendix 5: APL function ODA 
The function ODA  is  written 

L O ]  Z+X ODA Y ; J K ; J K l ; N ; I  
1 1 1  R T H I S   F U N C T I O N  I S  AN A L T E R N A T I V E   T O  X v . A  Y 

642 c 2 1  Z+( ( l + P X ) ,  ( - l + P Y ) )  P O  

K. FORDYCE ET AL. IBM J .  RES, DEVELOP. VOL. 33 NO. 6 NOVEMBER 1989 



C 3 l  A I N I T I A L I Z E   T H E  OUTCOME M A T R I X  
C 4 1  A T H I S  I S  I N I T I A L I Z E D   T O   A L L   Z E R O S  ( 0 ) .  
C 6 1  A I T  HAS  THE  SAME  NUMBER OF ROWS AS X ,  
C 7 1  A AND  THE  SAME  NUMBER O F  COLUMNS A S  Y 
C 8 1   J K 4 1  1 f p X  
C 9 1  A T H I S  I S  A L I S T  O F  THE  COLUMNS IN X 
ClOl  A I F  X HAS S I X  COLUMNS  THEN T H I S   J K  I S  1 2 3 4 5 6 
C111 N - + l f p Z  
C 1 2 1  A NUMBER OF ROWS IN Z 
C 1 3 1  I t 1  
C 1 4 1  A I I S  THE  CYCLE  COUNTER 
C 1 5 1  L 1 0 :  
C l 6 1  A S T A R T  O F  LOOP  WHICH  PRODUCES Z 
C 1 7 1   J K l + X C I ; l / J K  
1 1 8 1   + ( O = l + p J K l ) / L 2 0  
C 1 9 1   J K l + Y C , J K l ; l  
C 2 0 1   J K ~ + - V / [ ~ I J K ~  
C 2 1 1   Z C I ; ] + J K l  
c 2 2 1   L 2 0 :  
C 2 3 1   + - ( N 2 I + I + l ) / L l O  
C 2 4 1  A CHECK I F  COMPLETED  EACH ROW OF X ,  I F  NOT  BRANCH  TO L 1 0  
C 2 5 1  +O 

- 

I 
In this  function the program  loops or cycles through the 
matrix X one row at a time to build the  outcome matrix 
(2). We  can  examine how this works with 

INMATVAR f INMATOP ODA Q I N M A T I P  

INMATVAR is initialized to be all zeros; i.e., we assume 
that a variable does not have a first-order dependency on 
another variable until  it is proven otherwise. 

( X  C I ; 3 ). This is the  CHIP row; it has the value 0 0 0 0. 
If a cell has  a 1, the variable CHIP is an  outcome variable 
for the corresponding  function. If not,  the cell has  a value 
0. We thus wish to find the corresponding column 
numbers where that element of X C I ; 3 is not 0. This is 
done by the APL2 expression 

In cycle one ( I  = l), we read the first row of X 

J K l c X C  I ;  3 / J K  A REMEMBER J K   I S  1 2 3 4 
A T H I S E X P R E S S I O N P A S S E S  
A BACK I N T O   J K 1   T H O S E  
A VALUES O F  J K  WHERE  THE 
A CORRESPONDINGELEMENT 
A O F X C I ;  1 I S  1 

In this cycle JK1 is a null vector. This tells us that  the 
variable CHIP is not  an  outcome variable from any  other 
function.  It  therefore  has no first-order dependencies, and 
we can  stop processing this row of X .  The APL2 
expression 

+ ( O = l + p J K l )   / L 2 0  

tells us  that JK1 is a null  vector and branches to L20. At 

L20 we increment the cycle counter, check whether we 
have reached the  end of X and, if not,  start  the process 
over again for the next row in X .  

In cycle 2 ( I  = 2), we examine  the STAGE row of 
INMATOP. This is all zeros, so there are  no first-order 
dependencies. In cycle 3 ( I  = 3), we examine  the  SETUP 
row of INMATOP, which has the value 0 1 0 0. The 
value for JKl (corresponding column  number) is 1. This 
tells us that  the variable STAGE is an  outcome variable 
for the function with an index of 1 (function Tl). If 
function 1 has any  input variables, SETUP  has a first- 
order  dependency on these variables. 

The matrix QINMATIP provides the following 
information: Each row in  QINMATIP corresponds to a 
function. If a variable is an  input variable to  that 
function,  its cell has  a value of 1; if not,  it  has a value 
of 0. 

variable STAGE is an  output variable of the 
corresponding  function. (In this case we are only 
interested in row 1 .) This is done by the APL expression 

ODA  then reads any row of QINMATIP  in which the 

J K l + Y C , J K l ; l  

JKl has the value 1 1 0 0 0 0. This tells us  that  the 
variables CHIPTYPE  and STAGE are  input variables to 
function 1, and  thus  SETUP  has a first-order dependency 
on  them. Therefore, these cells in Z are changed to 1s. 

The APL2 expression 

handles the situation in which a variable being 
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investigated is an  output variable of more than one Appendix 7: Simultaneous  conditions 
function.  It essentially ensures that as long as a variable is An example of  a  simultaneous set of equations would be 
an  input variable to  at least one of these functions, it is 
listed as  a first-order dependency. PROFIT = REVENUE - (EXPENSE + BONUS) 

The APL2 expression BONUS = .05 X PROFIT 

ZC 1 ;  l+JKl In this case REVENUE and EXPENSE are known 

replaces the row  of Z which corresponds to the row  of X variables, and  PROFIT  and BONUS are  unknown. 

being investigated with the new information on first- An example using function  notation might be the 

order dependencies. following: 

Appendix 6: APL  function  LINKVAR 
The function  LINKVAR is written 

C03 Z + X L I N K V A R Y ; J K ; J K l ; J K 2 ; N ; I  As an example of such a  condition in manufacturing, 
C 13 A THIS  FN  FINDS  THE  LINKING assume that the  machine to which a  lot is assigned 

v1 = f(V2, V3) 
v 2  = g(V 1,  V3) 
V3 = h(V1, V2) 

A VARIABLE  FOR  N-ORDER depends on the  current  estimate of how far behind or 
A DEPENDENCIES ahead (delta) of schedule the  lot is. The delta schedule 

c 2 1  Z + (  (l+PX),  (-14PY)  )PClPO estimate depends on the  machine to which the  lot is 
C 3 1  JK+t-l+pX assigned. 
C41 N+l+pZ 
C 5 l  I+l 
C 6 l  L10: 
C 7 1  JKl+XCI;l/JK 
C 8 1  + ( O = l + p J K l )  /L20 

Appendix 8: APL  functions  used  in  focusing 
First, we use the following APL2 function to generate a 
matrix showing all dependencies between functions 
(tables and procedure  modules) in our knowledge base: 

C O l  
c 1 1  
c 2 1  
C 3 1  
C41 
C 5 1  
C S I  
C71 
C 8 1  

VRULEALLCOIV 
RULELINKStINMATIP  RULEALL  INMATOP; J K  

A THIS  FUNCTION  DETERMINES  ALL  THE  RULES 
R THAT  INFLUENCE  ANY  SPECIFIC  RULE 
RULELINKSt  (QINMATIPvINMATOP) v . AINMATOP 

L10: 
JKtRULELINKS 
RULELINKS+RULELINKS~(RULELINKS~.ARULELINKS) 
+(-JK = RULELINKS)  /L10 
+ O  

C 9 1  J K 2 + Y C , J K l;] 
ClOI  JK2tJKlxCllJK2 T1  T2  T3 PI 

I The result is 

C111 JK2ccClIJK2 
C 1 2  1 JK2+ELIMXO"JK2 
C 1 3 1  ZCI;  l+JK2 
C141 L20: 
C 1 5 1  +(NLI+I+l)  /L10 
C l 6 1  +O 
C 0 1 Z+ELIMXO  X;  JK1 
C 11 A T H I S  IS CALLED  BY  LINKVAR 

C 3 1 JKl+X+O 
C41 m(O=v/JK1)/'JK1C11+l' 
C 5 1 Z+JKl  /X 

C 2 1  X+,X 

LINKVAR operates similarly to ODA, except that it 
keeps track of the linking variable and  not the new 

644 dependency. 

T1 1 0 0 0  
T2 1 1 0 0  
T3 1 0 1 0  
P1 1 1 1 1  

In RULELINKS there is one row and  one  column for 
each function in the system. Rows reference an  output 
condition;  columns reference an  input condition. 
RULELINKS shows all dependencies between functions. 
If a  function is an  input function to  an  output function, 
the corresponding cell has the value 1;  if not, its value is 
0. For example, T3 has SETUP as an  input variable. TI  
calculates SETUP; therefore, T 1 is an  input function to 
T3  and the cell (T3, T1) has a 1. 

corresponds to the variable on which we want to focus, 
Next, we select the row  of INMATOP which 
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and store it as  the vector VF. For this  example  assume 
that we wish to focus on  the variable PROCESS-TIME. 
Then  VF is 

VFcINMATOPC 5 ;  I 

or 0 0 1 0. The following APL2 statement generates the 
list  of functions which affect the variable 
PROCESS-TIME: 

( v / [ l I  VF A C13 R U L E L I N K S )  
/IT11 ‘T2’ ‘ T 3 ’  ‘Pl’ 

The result is T 1 and  T3. 

Appendix 9: Outline of backward  chaining 
Backward chaining is easy to  implement. If, for example, 
we needed to  determine a value for PROCESS-TIME, 
we would follow the following steps: 

0 Find a function  for which PROCESS-TIME is an  out- 
put variable. If there is none, end processing. 

In this case the answer is TABLE 3. 
Determine the  input variables for  this  function. 

Determine  whether these variables have values. 
In this case the answer is CHIP-TYPE and  SETUP. 

CHIP-TYPE has a value. 
SETUP does not have a value. 

0 If they do have values, execute the  function. If not, 
repeat the process on  the variables without values. In 
this case, we need to find a value for  SETUP. 

Find a function where SETUP is an  output variable. 

Determine the  input variables for  this  function. 

Determine  whether these variables have values. 

In this case the answer is TABLE I .  

In this case the answer is CHIP-TYPE and STAGE. 

CHIP-TYPE has a value. 
STAGE has a value. 

Execute the function TABLE 1. 
SETUP now has  the value 2. 

Feed this new information to  the calling step. 
0 Now that  SETUP has a value, execute function 

TABLE 3. 
PROCESS-TIME now has the value 60. 
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