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Coding

for constrained
channels:

A comparison
of two
approaches

by Peter A. Franaszek

We discuss the relation between some early
techniques for constrained channel coding and
more recent ones adapted from the
mathematical area of symbolic dynamics. A
primary difference between the two is that the
latter focus on issues of code existence,
whereas the former were primarily concerned
with code construction and optimality.

1. Introduction

One of the more notable developments in information
theory within the last few years has been the discovery [1]
of the relationship between the recent work in the
mathematical area of symbolic dynamics and what is
often termed channel coding. Aside from the work [1] by
Adler, Coppersmith, and Hassner (referred to here as
ACH), this has led to such significant results as those of
Marcus {2], and in general this development has
substantially improved the mathematical underpinnings
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of this coding area. Constrained channel codes are used

in a wide variety of applications. These include digital
transmission on electrical or fiber-optic media, as well as .
digital recording. Each such system involves different
tradeofls which affect the form of suitable signal

sequences and hence the design or choice of the channel
codes. A consequence is that new codes continue to be
developed, and construction techniques remain of
practical interest.

In their paper, ACH give a constructive proof for the
existence of minimum block length sliding block codes
for channels with finite memory and provide a related
method for generating codes. They note the existence of
other noiseless coding methods, including what we term
bounded delay codes [3-5], and mention that it would be
worthwhile to clarify the relation between these two
approaches. This is the topic of this paper. The two
techniques yield codes of somewhat different form (ACH
employ no lookahead). However, we will show that for
any code that can be constructed via the ACH technique,
there is a corresponding one obtainable via the bounded
delay (referred to here as BD) method. The BD technique
provides algorithms for constructing codes which for
example minimize a parameter related to
implementational complexity and error propagation.

We proceed in our comparison of the two code
generation methods by considering each step in the
procedures (with references to the original papers for
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many details), and illustrate the discussion, as do ACH,
via the example of (2, 7) run length coding at rate 1/2.
The terms used here will generally be standard ones from
coding practice, although the ACH terminology is used
occasionally. Except for a brief discussion of construction
differences for the infinite memory case, we generally
assume, as do ACH, that the channels are of finite
memory.

2. State transition matrices and approximating
eigenvectors

ACH begin, as does the BD technique, with a finite state
machine description of the channel constraints. Figure 1
illustrates the state transition diagram for the (2, 7)
constraints. ACH pick a coding rate C’ < C, the channel
capacity, and a block or word size W. Next is a search for
an approximating eigenvector for a channel matrix T of a
channel where each transition corresponds to W
transitions in the original representation of the
constraints. These steps follow what has been more or
less common coding practice (although early results such
as [6-8] were restricted to special classes of eigenvectors).
ACH note that the integer programming algorithm they
use for obtaining an eigenvector was described earlier in
[4], and in fact this is a generalized version of one
obtained in [6]. This algorithm provides a method for
obtaining an approximating eigenvector with an
eigenvalue corresponding to a lower bound for a
parameter related to complexity, as is discussed below.
The algorithm finds (if one exists) a vector corresponding
to a chosen value of a lookahead parameter M (defined
in Section 4). The approach is to apply the algorithm for
M=1,2,....Failure to obtain a vector for a suitably
low value of M, usually a small integer, means that no
practical code exists which corresponds to the chosen
parameters. ACH note that the existence of an
eigenvector for some value of M is a consequence of the
classical Perron-Frobenius theory [9].

In their illustration of the procedure via the (2, 7)
coding example, ACH pick a rate of 1/2 and a block or
word length of 2. That is, the encoding is for one bit at a
time which will be mapped onto code words each
comprising two state transitions in the original
constraints. Available code words correspond to the
following transitions between channel states o;:
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Illustration of (2, 7) run-length-limited constraints.

Table 1 Encoding state transition table (from [1], adapted with
permission; © 1983 IEEE).
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For example, state o, admits three possible code words
(01, 10, 00) that take the channel to g, o,, and ¢,
respectively.

The approximating eigenvector used by ACH in their
example is given by V'={v,} =(2,3,4,4,3,3, 1, 1),
where v, is termed the weight of o,. We note that v, < 2°,
so that in our terminology the lookahead or delay-bound
for M is no less than 3, a fact we use below. Loosely
speaking, the weight », corresponds to the amount of
information that can be transmitted from o,.

3. State splits or tree partitions

The next step in the ACH procedure is state splitting (of
a form introduced in [10]), a technique which splits each
o, into no more than v, substates o/ so that each o’ has
successors of appropriate total weight (in this case 2).
Unnecessary transitions (those not required to obtain
sufficient weight) are eliminated. Transitions between the
o, are then assigned information symbols. This yields
Table VII in ACH, used to obtain Table 1, where pj,: are
represented simply by i’. Note that a necessary (but not
sufficient) condition for pf to have a transition to pkm is
that o, have one to o,. Decoding is done by determining

which p;' are traversed. 603
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ACH observe that there are a variety of possible
splitting outcomes, depending on choices taken in their
algorithm, but in practice transitions between the states o,
permit the determination of the path taken between the
substates pf in encoding (in the ACH terminology the
mapping is said to have resolving blocks), so that it is
possible to decode. They also show that if appropriate
restrictions are imposed in the splitting and construction
procedure, resolving blocks are guaranteed to exist. ACH
thus obtain the important new result that if the channel
is of finite memory, then for any (a/N) < C there exist
rate (o/N) sliding block codes with block size N.

The construction procedure described by ACH
involves a sequence of steps at each of which there may
be several choices. Thus, design of a code typically entails
the examination of a (possibly large) number of splits (as
well as block sizes, as the minimum block size is not
necessarily optimal), in an attempt to minimize code
complexity and error propagation. The procedure is
based on conditions ACH show are sufficient (for
obtaining resolving blocks), but which are not shown to
be necessary. It is not immediately obvious (and ACH do
not mention) whether all splits (and in particular the
optimal ones) for which resolving blocks exist can be
obtained by appropriate choices in their algorithm.
Another issue of some interest is when to stop the search
for the best available split. These are issues which the BD
method attempts to address.

The BD method is based on constructs termed
independent paths (IPs), introduced in [3], which we
define here in a manner which serves to link the two
methods. For sake of definition, we first assume that
some arbitrary state splitting procedure has been carried
out to the point where all substates pf. are of weight one.

Definition An IP(i, j, D) is the successor tree to depth D
from a substate p’. If D = (M — 1), this is simply referred
to as IP(i, j).

Let L(D) denote the leaves {0} of the state successor
tree T(i, D). Both T(i, D) and IP(i, j, D) are constructed
so that each leaf represents a distinct sequence of D
transmitted symbols starting from ¢,. Thus, L,(D) may
contain several replications of some states, but these are
considered distinct. Note that if IP(i, j, D), IP(i, k, D)
share no members of L,(D), then any encoded sequence
of length D can be used to differentiate between the two.
Conversely, if these two IPs share a member of L(D),
then there exists a sequence of length D which does not
permit such differentiation. IPs rooted at a state o, are
said to be distinguishable at depth D if they share no
members of L,(D).

In the BD method, the encoder is viewed as following
an /P for one word (hence the term path), then switching
to an IP from the destination state. Another way of
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regarding this is that the encoder touches a sequence of
IP tree roots (or equivalently pf). Decoding is done by
determining which /Ps were traversed. The channel’s
finite memory ensures that a sliding block decoder can
recover the sequence of traversed channel states. It
follows that a necessary and sufficient condition for being
able to recover IP sequences with such a decoder is that
all IPs from each state be distinguishable at some finite
D. Note that the sequence of traversed IPs can be
determined if and only if it is possible to recover the
sequence of /P roots or substates pf . That is, this is
equivalent to the mapping having resolving blocks in the
ACH terminology.

The following is a brief summary of the /P
construction procedure [3-5]. After choosing a code rate,
block size, and approximating eigenvector with
components »,, successor trees T(i, j, D) are formed from
each o,. Members of this tree set are interrelated by
stationarity conditions or constraints which impose
orderings on successors of the p’. Each state o, is viewed
as being comprised of », subunits p’,:. A partitioning of the
leaf sets L,(D) into disjoint subsets of appropriate weight
assigns to each p’, € ¢, successors of suitable weight from
states o,, which are successors of ¢,. As noted above, the
existence of such a partition is a necessary and sufficient
condition for recovering the sequence of traversed pf with
a sliding-block decoder which has available to it the
(D + 1) most recently occupied states.

The parameter D is related to both complexity and
error propagation, so that it is usually desirable to obtain
a partition for minimum D. If none exists for a suitably
small value (usually a small integer) of this parameter,
this leads to a resort to such measures as changing the
block size, the channel constraints, or the code rate. The
result obtained by ACH guarantees the existence of a
partition for finite D, in particular for D no larger than
2v,. A lower bound for D follows from that on M and is
related to Max v,, as discussed below.

In other words, ACH employ a systematic procedure
for state splitting which if appropriately constrained
terminates successfully, yielding a finite value for D. In
contrast, the BD technique attempts partitions for fixed
values of D. Each such attempt is a straightforward but
tedious problem (the unconstrained partitioning of a set
of leaves is NP-complete), and inability to obtain a
satisfactory value for D means that no practical code of
this type exists for these parameters. This divide and
conquer approach is essentially patterned after that used
to obtain the variable-length codes in [7].

4. Code formats and message assignments
Code mappings of various forms are described in [4, 5].
Of these, the one we discuss here is obtained by assigning
message characters to the first transitions of IPs starting
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at leaf state of successor trees of depth (M — 1). The
method includes an algorithm, based on a lexicographical
ordering of message vectors, which is shown to yield
assignments such that, using lookahead of M characters,
the appropriate sequence of IPs is taken when a given
character string is to be encoded. The assignment can be
varied by changing the successor ordering within /Ps.
More formally, the encoding is given by

[Y(0), B(0)} — Gi1y» 0y

where V(0) is the sequence of M states [o,,_,.1y» Tiuonrezys

-, 0,,] Most recently occupied by the channel, and
B(0) are the M information characters to be encoded
next. M is chosen so that (M — 1) is not less than D. This
ensures that 7(0) is sufficient to determine which IP was
followed from o;,_,,, ,,. Each p, is associated with a
unique sequence of (M — 1) characters to be transmitted.
Knowledge of the next M characters is then sufficient to
determine the transition p;,, — p,,, and thus the next
code word. One property of the above form is that it is
unnecessary to keep track of substates p’,:. Note also that
(D + 1) state transitions are required for decoding.

The above discussion framed the problem in terms of
the parameter D, then introduced the lookahead
parameter M. This facilitates comparison with the
approach of ACH. The constructions in [3-5] are
described in terms of fixed but arbitrary M, with
D = (M — 1) required in order for IPs to be
distinguishable. A lower bound for M is obtained,

(M* — 1) = r, where r is the least integer such that

«" = v, Vi, and which still permits an appropriate
eigenvector. The parameter « denotes the number of bits
per word. Another way to obtain the lower bound is to
note that if IPs are distinguishable, there exists one or
more which has a leaf at depth D of weight
corresponding to r. Otherwise a lower value of r

could have been chosen in the algorithm for generating
the eigenvector.

Each code of the ACH form corresponds to one of
bounded delay type which can be obtained as follows: (1)
Use the state split to form IPs. (2) Consider the encoded
character corresponding to each word transition
p{ — p:". Assign this character to all transitions from the
substate leaves of IP(i, j) which are descendants of p’, via
the transition to p.

Going from the root of IP(i, j) to a leaf requires
(M - 1) transitions. Applying the second step in the
above procedure (M — 1) times results in the assignment
of a character sequence of length (M — 1) to each leaf
p;:'m in the mapping. Note that in each case the same
information can be viewed as being carried by the same
transition p’ — p”". In the bounded delay form, the
transition is taken because of knowledge from lookahead
that the same information character is to be encoded
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IPs from state o,. Here [ refers to g; of weight j.

“later.” It can be shown that any bounded delay code
corresponds to one with no lookahead which can be
obtained by reversing the above transformation.

We now illustrate some of the above notions via the (2,
7) coding example. The chosen eigenvector is (2, 3, 4, 4,
3,3, 1), »,< 27 so that D = 2. Figure 2 shows T(2, 2),
the state successor tree of depth 2 from o,. The leaves
L,(2) partition into sets of weight no less than 4 (that
required for IPs with M = 3). The IPs in Figure 2
correspond to the split of s, in the ACH coding example.
There are four IPs rooted at ¢,. Note that two transitions
are sufficient to determine which one is being followed.
For example, the sequence ¢, — o, — o, means that /P,
is being followed. Other states, however, require D = 3,
so that M = 4. Figure 3 shows the substate successor tree
from p;, which for depth 2 corresponds to /P, in Figure
2. This was obtained from Table 1. Each transition in
Figure 3 is marked by an information symbol. Thus, for
example, p; — p_ (represented as 2° — 17 in the figure)
corresponds to the encoded character 0.

If the bounded delay form is to be employed,
occupation of pf after, say, the transition sequence
ps—p, — p; — p, indicates that the information
sequence (100) “is to be encoded.” Note that the
transitions ¢, — ¢, — ¢, — ¢, are sufficient to show that
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Information
bit

Successor tree from p? in the ACH example.

pz was occupied in o, (i.e., that IP; is being followed).
The fact that the sequence (100) is to be encoded then
determines the identity of the occupied substate in o,
namely pf. An additional information symbol, for a
lookahead of M = 4, then determines the next transition
to be taken. A sequence of transmitted information
symbols leads to a traversal of the same substates as in
the ACH example.

The above discussion is posed in terms of state
transitions. However, a sliding-block decoder operates by
examining a sequence of, say, R code words (each
corresponding to a state transition), and emitting a
symbol 8 representing « bits. This is done once for each
received code word:

[w

ire1s Wicrazs * 0> W1 = B, @)

A given sequence [W,_g,,, - -+ , w,], however it arises (in
terms of state transitions), must map onto the same value
8, a property termed state-independent decodability

[2, 6]. The parameter R is an upper bound for the
number of information symbols that are decoded
erroneously as the result of a single channel error. For the
class of codes considered here, R is also sufficient for IPs
to be distinguishable, so that R = (D + 1).
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If the channel is of finite memory L, then L code
words w;, w,, |, --- , w,,,_, are sufficient to identify the
state entered at (i + L — 1). A decodable sliding-block
code may be obtained by forming IPs of depth D, then
using a decoder which examines word sequences of
length R = (L + D + 1). Since IPs of depth (L + D) are
also distinguishable, the code may be viewed as a
mapping of the form given by Equation (1), with M =
(L + D + 1), in which assignments are state-
independently decodable.

More generally, for channels of either finite or infinite
memory, IPs of depth (M — 1) = D are formed, with M a
parameter, and an attempt is made to obtain a mapping
for which decoding is state-independent. Increasing M
increases the freedom in forming IPs. It also tends to
decrease the number of like word sequences (aliases)
produced by different state transitions. If the channel is
of finite memory, then M < (L + D + 1) is sufficient, and
usually M < (L + D + 1). For channels with infinite
memory, increasing M may not necessarily yield a state-
independently decodable code.

5. Discussion and conclusion

A question of some interest is the degree of improvement
provided by the BD or ACH methods over older
techniques such as those described in [6-8]. The latter
methods are similar in approach (i.e., choice of a fixed
rate, an integer programming algorithm for obtaining an
approximating eigenvector), but were eventually shown
[3] to be limited to restricted classes of eigenvectors. For
these codes, a subset of the channel states is designated as
a principal set, from which words start and at which they
end. Each state in the principal set is required to have
sufficient words (of varying length) to satisfy the Kraft
inequality. The codes are optimized (by minimizing the
maximum word length) via a dynamic programming
version of the algorithm described in Section 2. The
variable-length method often yields striking
improvements over block codes, as can be seen from the
tables included in [8]. For example, consider the (2, K),
K = 7, constraints at rate 1/2. A variable-length (2, 7)
code [11] is obtained with a totality of six channel words.
In contrast, a fixed-length code for the easier (2, 8)
constraints requires 11 information bits per word and
thus at least 2'' words. Advantages of the BD or ACH
methods over the variable-length approach are less clear,
because the latter yields optimal or close to optimal codes
for many examples. ACH note that the (2, 7) code they
derive is somewhat more complex than that used, for
example, in the IBM 3380 disk drive [11-13], obtained
via the variable-length method. Horiguchi and Morita
[14] improved the variable-length technique by
modifying the decoding rule of [8]. As a result, they
obtained improved codes for some parameters, including
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a (1, 7) rate 2/3 code comparable (error propagation is
one bit greater) to that obtained via the BD or ACH
methods [15, 16]. It is not clear whether the newer
approaches yield major improvement for cases of
practical interest. However, as shown in [3], there exist
channels for which the variable-length codes cannot
reach full capacity with a finite maximal word length. See
[17] for a recent discussion of some properties of such
codes and their corresponding constrained sequences.

Most of the above-mentioned codes are for channels
with finite memory. Also common in practice are
constraints which yield channels of infinite memory,
typically the imposition of spectral nulls, most often at
zero frequency. See [6, 18, 19] for examples of such codes
which have been applied respectively in electrical and
fiber-optic data transmission systems, and digital
magnetic recording on tapes. Reference [6] introduced
the notion of forcing a null at zero frequency by
bounding the running digital sum (RDS), and includes
results on code assignments to obtain state-independent
decoding in state-dependent block codes. Reference [19]
derives the class of zero-modulation (ZM) codes, as well
as various properties of constrained codes and sequences,
including observations based (as are some of ACH’s), on
the Perron-Frobenius theory.

This paper discusses the relation between constrained
coding techniques adapted by ACH from the
mathematical area of symbolic dynamics and some
previous work in coding theory. The former include their
recent constructive proofs [10] for the existence of
homeomorphisms of a type suitable for coding between
equientropic sequences. These were adapted by ACH to
prove the existence of minimum block length sliding
block codes for finite-memory constrained channels, and
to obtain a construction technique based on state-
splitting. The resulting codes are of somewhat different
form from those available via the earlier bounded delay
(BD) methods, but each such code corresponds to one
that can be obtained by the BD approach. The latter
method includes procedures which yield codes
corresponding to a minimum value for a parameter
related to complexity and error propagation.

Applications continue to arise for which the design of
suitable codes still requires much computation and
examination of alternatives. This suggests that algorithms
for constrained code design will continue to be a fruitful
area of investigation.
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