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We  discuss  the  relation  between  some  early 
techniques  for  constrained  channel  coding  and 
more  recent  ones  adapted  from  the 
mathematical  area of  symbolic  dynamics. A 
primary  difference  between  the  two  is  that  the 
latter  focus  on  issues of code  existence, 
whereas  the  former  were  primarily  concerned 
with  code  construction  and  optimality. 

1. Introduction 
One of the more notable  developments in information 
theory  within the last few years  has  been the discovery [ I ]  
of the relationship  between the recent  work in the 
mathematical area of symbolic dynamics and what is 
often  termed channel coding.  Aside  from the work [ 11 by 
Adler,  Coppersmith, and Hassner  (referred to here  as 
ACH), this has  led to such  significant  results as those of 
Marcus [ 2 ] ,  and in general this development has 
substantially  improved the mathematical underpinnings 
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of this coding area. Constrained channel codes are used 
in a wide  variety  of  applications.  These include digital 
transmission on electrical or fiber-optic  media, as well as 
digital  recording.  Each  such  system  involves  different 
tradeoffs  which affect the form of suitable  signal 
sequences and hence the design or choice of the channel 
codes. A consequence  is that new codes continue to be 
developed, and construction techniques remain of 
practical interest. 

In their paper, ACH  give a constructive proof  for the 
existence  of minimum block  length  sliding  block  codes 
for channels with finite memory and provide a related 
method for  generating  codes.  They note the existence of 
other noiseless  coding  methods, including what we term 
bounded delay  codes [3-51, and mention that  it would  be 
worthwhile to clarify the relation  between  these  two 
approaches. This is the topic of this paper. The two 
techniques yield codes of somewhat  different  form  (ACH 
employ no lookahead).  However, we  will show that for 
any  code that can be constructed via the ACH technique, 
there  is a corresponding one obtainable via the bounded 
delay  (referred to here as BD)  method. The BD technique 
provides  algorithms  for constructing codes  which  for 
example minimize a parameter related to 
implementational complexity and error propagation. 

We proceed in  our comparison of the two  code 
generation methods by considering  each step in the 
procedures  (with  references to the original  papers  for 
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many details), and illustrate the discussion, as do ACH, 
via the example  of (2, 7) run length  coding at rate 1/2. 
The terms used  here  will  generally  be standard ones from 
coding  practice, although the ACH terminology  is  used 
occasionally.  Except  for a brief  discussion of construction 
differences  for the infinite memory case, we generally 
assume,  as do ACH, that the channels are of  finite 
memory. 

2. State transition  matrices  and  approximating 
eigenvectors 
ACH begin, as does the BD technique, with a finite state 
machine description of the channel constraints. Figure 1 
illustrates the state transition diagram for the (2, 7) 
constraints. ACH pick a coding rate C’ 5 C, the channel 
capacity, and a block or word  size W. Next  is a search  for 
an approximating eigenvector  for a channel matrix T of a 
channel where  each transition corresponds to W 
transitions in the original representation of the 
constraints. These  steps  follow  what  has  been more or 
less common coding  practice (although early  results  such 
as [6-81  were restricted to special  classes  of  eigenvectors). 
ACH note that  the integer programming algorithm they 
use for obtaining an eigenvector  was  described earlier in 
[4], and in fact this is a generalized  version  of one 
obtained in [6]. This algorithm provides a method for 
obtaining an approximating eigenvector  with an 
eigenvalue corresponding to a lower bound for a 
parameter related to complexity,  as  is  discussed below. 
The algorithm finds (if one exists) a vector corresponding 
to a chosen  value of a lookahead parameter M (defined 
in  Section  4). The approach is to apply the algorithm for 
M = 1, 2, . . . . Failure to obtain a vector  for a suitably 
low value of M, usually a small integer, means that no 
practical  code  exists  which corresponds to the chosen 
parameters. ACH note that the existence  of an 
eigenvector  for some value of M is a consequence of the 
classical  Perron-Frobenius theory [9]. 

In their illustration of the procedure via the (2, 7) 
coding  example, ACH pick a rate of 1/2 and a block or 
word  length  of 2. That is, the encoding is  for one bit at a 
time which  will  be mapped onto code  words  each 
comprising  two state transitions in the original 
constraints. Available  code  words correspond to the 
following transitions between channel states ui: 

go - u2 2 

“‘1 uou3, 
‘2 ‘OUl ‘4 9 

6 3  - uou, 6 5  , 
u4 A uO‘l ‘6 9 

u5 uon, u7 9 - 3 

u7 - u1 . 
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Illustration of (2, 7) run-length-limited  constraints. 

Table 1 Encoding state  transition  table (from [I] ,  adapted  with 
permission; 0 1983 IEEE). 

X” = 0 X” = 1 

22 
2l 
O2 
3’ 
32 
l 2  
4’ 
42 
5I 
5* 
6’ 

24 
2’ 
O1 
3’ 
34 
1) 
l 1  
4’ 
1’ 
5’ 
1’ 

5’ + 7’ l 1  

For example, state u5 admits three possible code words 
(0 1,  10, 00) that take the channel to go, uI , and u7, 
respectively. 

The approximating eigenvector  used by ACH in their 
example is  given  by V =  (v,) = (2, 3, 4, 4, 3, 3, 1,  l), 
where vi is termed the weight of ui. We note that v, 5 22, 
so that in our terminology the lookahead or delay-bound 
for M is no less than 3, a fact we  use below.  Loosely 
speaking, the weight vi corresponds to  the  amount of 
information that can be transmitted from ui. 

3. State splits  or tree  partitions 
The next step in the ACH procedure is state splitting (of 
a form introduced in [lo]), a technique which splits each 
ui into no more than v, substates pi  so that each p:. has 
successors of appropriate total weight (in this case 2). 
Unnecessary transitions (those not required to obtain 
sufficient  weight) are eliminated. Transitions between the 
p: are then assigned information symbols. This yields 
Table VI1 in ACH, used to obtain Table 1, where p; are 
represented  simply by i’. Note that a necessary (but  not 
sufficient) condition for p{ to have a transition to p r  is 
that u, have one to uk. Decoding  is done by determining 
which p r  are traversed. 
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ACH  observe that there are a variety of possible 
splitting  outcomes,  depending on choices taken in their 
algorithm, but in  practice transitions between the states ul 
permit the determination of the path taken between the 
substates p: in  encoding (in the ACH terminology the 
mapping  is  said to have  resolving  blocks), so that it  is 
possible to decode.  They  also show that if appropriate 
restrictions are imposed in the splitting and construction 
procedure,  resolving  blocks are guaranteed to exist.  ACH 
thus obtain the important new result that if the channel 
is of finite  memory, then for  any (a/N) 5 C there exist 
rate (a/N) sliding  block  codes  with  block  size  N. 

involves a sequence of steps at each  of  which there may 
be  several  choices. Thus, design  of a code  typically entails 
the examination of a (possibly  large) number of splits  (as 
well  as  block  sizes,  as the minimum block  size  is  not 
necessarily optimal), in an attempt to minimize  code 
complexity and error propagation. The procedure  is 
based on conditions ACH  show  are  sufficient  (for 
obtaining  resolving  blocks), but which are not shown to 
be  necessary. It is not immediately  obvious (and ACH do 
not mention) whether  all  splits (and in particular the 
optimal ones)  for which  resolving  blocks  exist can be 
obtained by appropriate choices in their algorithm. 
Another  issue of some  interest  is when to stop the search 
for the best available  split.  These  are  issues which the BD 
method attempts to address. 

The BD method is  based on constructs termed 
independent paths (IPS), introduced in [3], which we 
define  here in a manner which  serves to link the two 
methods. For sake of definition, we first  assume that 
some  arbitrary state splitting  procedure  has  been  carried 
out to the point where  all  substates p: are of  weight one. 

Definition An  ZP(i, j ,  D )  is the successor tree to depth D 
from a substate p:. If D = ( M  - l), this is  simply  referred 
to as  ZP(i, j ) .  

Let L,(D) denote the leaves { u i ]  of the state successor 
tree T(i, D).  Both T ( i ,   D )  and ZP(i,j, D )  are constructed 
so that each  leaf  represents a distinct sequence of D 
transmitted symbols starting from ui. Thus, Li(D) may 
contain several  replications of some  states, but these are 
considered distinct. Note that if  ZP(i, j ,  D ) ,  ZP(i, k, D )  
share no members of L,(D), then any  encoded  sequence 
of length D can be  used to differentiate  between the two. 
Conversely, if these  two IPS share a member of Li(D),  
then there  exists a sequence of length D which does not 
permit  such  differentiation. IPS rooted at a state ui are 
said to be distinguishable at depth D if they  share no 
members of Li(D).  

In the BD method, the encoder  is viewed  as  following 
an ZP for one word  (hence the term path), then switching 

The construction procedure  described by  ACH 
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regarding this is that the encoder  touches a sequence of 
ZP tree  roots (or equivalently p:). Decoding is done by 
determining which IPS were traversed. The channel’s 
finite memory  ensures that a sliding  block  decoder can 
recover the sequence of traversed channel states.  It 
follows that a necessary and sufficient condition for  being 
able to recover ZP sequences  with  such a decoder  is that 
all IPS from  each  state  be  distinguishable at some  finite 
D. Note that the sequence of traversed IPS can be 
determined if and only  if it is  possible to recover the 
sequence of ZP roots or substates p:. That is, this  is 
equivalent to the mapping  having  resolving  blocks in the 
ACH terminology. 

The following  is a brief summary of the ZP 
construction procedure [3-51. After choosing a code  rate, 
block  size, and approximating eigenvector  with 
components vi,  successor  trees T(i, j ,  D )  are formed  from 
each u,. Members of this tree  set are interrelated by 
stationarity conditions or constraints which  impose 
orderings on successors  of the p;. Each state ui is  viewed 
as  being  comprised  of vi subunits p:. A partitioning of the 
leaf  sets L,(D) into disjoint subsets of appropriate weight 
assigns to each p: E ui successors of suitable weight from 
states uk, which are  successors of u,. As noted  above, the 
existence  of  such a partition is a necessary and sufficient 
condition for  recovering the sequence of traversed p{ with 
a sliding-block  decoder  which  has  available to it the 
(D  + 1) most  recently  occupied  states. 

The parameter D is  related to both  complexity and 
error propagation, so that it is  usually  desirable to obtain 
a partition for minimum D. If none exists  for a suitably 
small  value  (usually a small  integer) of this parameter, 
this  leads to a resort to such  measures  as  changing the 
block  size, the channel constraints, or the code rate. The 
result  obtained by  ACH guarantees the existence of a 
partition for  finite D, in particular for D no larger than 
Zvi.  A lower bound for D follows from that on M and is 
related to Max vi,  as discussed  below. 

In other words,  ACH  employ a systematic procedure 
for state splitting which  if appropriately constrained 
terminates successfully,  yielding a finite  value  for D. In 
contrast, the BD technique attempts partitions for fixed 
values of D. Each  such attempt is a straightforward but 
tedious  problem (the unconstrained partitioning of a set 
of leaves  is  NP-complete), and inability to obtain a 
satisfactory  value  for D means that no practical  code of 
this  type  exists  for  these  parameters. This divide and 
conquer approach is  essentially patterned after that used 
to obtain the variable-length  codes in [7]. 

4. Code  formats  and  message  assignments 
Code  mappings of various  forms are described in [4,5]. 
Of these, the one we discuss  here  is obtained by assigning 
message characters to the first transitions of IPS starting 
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at leaf state of successor trees of depth ( M  - 1). The 
method includes an algorithm, based on  a lexicographical 
ordering of  message  vectors,  which  is shown to yield 
assignments such that, using lookahead of M characters, 
the appropriate sequence of IPS is taken when a given 
character string is to be encoded. The assignment can be 
vaned by changing the successor ordering within IPS. 
More formally, the encoding is  given by 

[_V(O), W ) l  + C,(l) > (1) 

. . .  , (T,(~)] most  recently occupied by the channel, and 
where y(0) is the sequence of M states [u,(f-M+l), ui(t-M+2), 

- B(0) are the M information characters to be encoded 
next. A4 is chosen so that ( M  - 1) is not less than D. This 
ensures that y(0) is  sufficient to determine which IP was 
followed from ui(f-M+I). Each pTo) is  associated  with a 
unique sequence of ( M  - 1) characters to be transmitted. 
Knowledge of the next M characters is then sufficient to 
determine the transition pTo) + P,”(~), and  thus the next 
code  word. One property of the above form is that it is 
unnecessary to keep track of substates p:. Note also that 
(D + 1) state transitions are required for  decoding. 

The above  discussion framed the problem in terms of 
the parameter D, then introduced the lookahead 
parameter M. This facilitates comparison with the 
approach of ACH. The constructions in [3-51 are 
described in  terms of  fixed but arbitrary M, with 
D 5 (A4 - 1) required in order for IPS to be 
distinguishable. A lower bound for M is obtained, 
(M* - 1) 2 r, where r is the least integer such that 
ar  z v,, Vi ,  and which  still permits an appropriate 
eigenvector. The parameter 01 denotes the number of bits 
per  word. Another way to obtain the lower bound is to 
note that if IPS are distinguishable, there exists one or 
more which has a leaf at depth D of  weight 
corresponding to r. Otherwise a lower  value of r 
could have  been chosen in the algorithm for generating 
the eigenvector. 

Each  code of the ACH form corresponds to  one of 
bounded delay type which can be obtained as follows: (1) 
Use the state split to form IPS. (2) Consider the encoded 
character corresponding to each word transition 
p ,  + p ,  . Assign this character to all transitions from the 
substate leaves  of IP(i, j )  which are descendants of p: via 
the transition to p y . 

Going from the root of IP(i, j )  to  a leaf requires 
( M  - 1) transitions. Applying the second step in  the 
above procedure ( M  - 1)  times results in the assignment 
of a character sequence of length ( M  - 1) to each leaf 
pTo) in the mapping. Note that  in each  case the same 
information can be  viewed as being carried by the same 
transition p: + p y .  In the bounded delay form, the 
transition is taken because of knowledge from lookahead 
that the same information character is to be encoded 

~m 
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IPS from  state 4. Here 4 refers to of weightj 

“later.” It can be  shown that any bounded delay code 
corresponds to one with no lookahead which can be 
obtained by reversing the above transformation. 

7) coding example. The chosen eigenvector is ( 2 ,  3, 4, 4, 
3,  3, l ) ,  vi 5 2’, so that D 2 2. Figure 2 shows T(2, 2) ,  
the state successor tree of depth 2 from u2. The leaves 
L2(2) partition into sets  of  weight no less than 4 (that 
required for IPS with M = 3) .  The IPS in Figure 2 
correspond to the split of u2 in  the ACH coding example. 
There are four IPS rooted at u2. Note that two transitions 
are sufficient to determine which one is  being  followed. 
For example, the sequence u2 + uI + uo means that ZP3 
is  being  followed. Other states, however, require D = 3 ,  
so that M = 4. Figure 3 shows the substate successor tree 
from p t, which for depth 2 corresponds to ZP, in Figure 
2.  This was obtained from Table 1. Each transition in 
Figure 3 is marked by an information symbol. Thus, for 
example, p i  + p: (represented as 2’ + 1 in the figure) 
corresponds to the encoded character 0. 

If the bounded delay form is to be employed, 
occupation of p: after, say, the transition sequence 
p: + p:  + p:  + p: indicates that the information 
sequence (100) “is to be encoded.” Note that the 
transitions u2 + uI + u3 + uI are sufficient to show that 

We  now illustrate some of the above notions via the (2 ,  
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n 

Successor  tree from p i  in the ACH example. 
. . ..",.I. 

p i  was occupied in u2 (i.e., that IP3 is  being  followed). 
The fact that the sequence (100) is to be encoded then 
determines the identity of the occupied substate in ul, 
namely p : .  An additional information symbol,  for a 
lookahead of M = 4, then determines the next transition 
to be taken. A sequence of transmitted information 
symbols leads to a traversal of the same substates as in 
the ACH example. 

The above  discussion  is  posed in terms of state 
transitions. However, a sliding-block decoder operates by 
examining a sequence of,  say, R code words (each 
corresponding to a state transition), and emitting a 
symbol P representing CY bits. This is done once for each 
received code word: 

[ w i - R + I ,  Wi_R+S, . , w,I + P, . (2) 

A given sequence [w,-,+, , . . . , wi], however  it  arises (in 
terms of state transitions), must map onto the same value 
P, a property termed state-independent decodability 
[2,6]. The parameter R is an upper bound for the 
number of information symbols that are decoded 
erroneously as the result  of a single channel error. For the 
class of codes considered here, R is also sufficient for IPS 

606 to be distinguishable, so that R 2 (D + 1) .  
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If the channel is  of finite memory L, then L code 
words w,, w,+ I ,  . . . , w,+~. -  I are sufficient to identify the 
state entered at (i + L - 1). A decodable sliding-block 
code  may be obtained by forming IPS of depth D, then 
using a decoder which examines word sequences of 
length R = ( L  + D + 1). Since IPS of depth ( L  + D) are 
also distinguishable, the code may  be  viewed as a 
mapping of the form given by Equation (l), with M = 
( L  + D + l), in which assignments are state- 
independently decodable. 

More generally, for channels of either finite or infinite 
memory, IPS of depth (M - 1) 2 D are formed, with M a 
parameter, and  an attempt is made to obtain a mapping 
for  which decoding is state-independent. Increasing M 
increases the freedom in forming IPS. It also tends to 
decrease the number of like  word sequences (aliases) 
produced by different state transitions. If the channel is 
of  finite memory, then M I ( L  + D + 1) is  sufficient, and 
usually M <  ( L  + D + 1). For channels with infinite 
memory, increasing A4 may not necessarily  yield a state- 
independently decodable code. 

5. Discussion  and  conclusion 
A question of some interest is the degree of improvement 
provided by the BD or ACH methods over older 
techniques such as those described in [6-81. The latter 
methods are similar in approach (i.e., choice of a fixed 
rate, an integer programming algorithm for obtaining an 
approximating eigenvector), but were eventually shown 
[3] to be limited to restricted classes  of  eigenvectors. For 
these  codes, a subset  of the channel states is designated as 
a principal set, from which  words start and at which they 
end. Each state in  the principal set  is required to have 
sufficient  words  (of  varying length) to satisfy the Kraft 
inequality. The codes are optimized (by minimizing the 
maximum word length) via a dynamic programming 
version of the algorithm described in Section 2. The 
variable-length method often yields striking 
improvements over  block  codes, as can be seen from the 
tables included in [8]. For example, consider the (2, K ) ,  
K 2 7, constraints at rate 1/2. A Variable-length (2, 7) 
code [ 1 1 3  is obtained with a totality of  six channel words. 
In contrast, a fixed-length code for the easier (2, 8) 
constraints requires 1 1  information bits per word and 
thus  at least 2" words.  Advantages  of the BD or ACH 
methods over the variable-length approach are less clear, 
because the latter yields optimal or close to optimal codes 
for many examples. ACH note that  the (2, 7) code they 
derive  is somewhat more complex than  that used, for 
example, in the IBM 3380 disk drive [ 1 1 - 1  31, obtained 
via the variable-length method. Horiguchi and Morita 
[ 141 improved the variable-length technique by 
modifying the decoding rule of [8]. As a result, they 
obtained improved codes for some parameters, including 
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a (1, 7) rate 2/3 code comparable (error propagation is 
one bit greater) to  that obtained via the BD or ACH 
methods [ 15, 161. It is not clear whether the newer 
approaches yield major improvement for  cases of 
practical interest. However, as shown in [3], there exist 
channels for  which the variable-length codes cannot 
reach  full capacity with a finite maximal word length. See 
[ 171 for a recent discussion  of some properties of such 
codes and their corresponding constrained sequences. 

Most of the above-mentioned codes are for channels 
with  finite memory. Also common in practice are 
constraints which  yield channels of infinite memory, 
typically the imposition of spectral nulls, most often at 
zero frequency. See [6, 18, 191 for examples of such codes 
which  have  been applied respectively in electrical and 
fiber-optic data transmission systems, and digital 
magnetic recording on tapes.  Reference  [6] introduced 
the notion of forcing a null at zero frequency by 
bounding the running digital sum (RDS), and includes 
results on code assignments to obtain state-independent 
decoding in state-dependent block  codes.  Reference [ 191 
derives the class  of zero-modulation (ZM) codes, as well 
as various properties of constrained codes and sequences, 
including observations based (as are some of ACH’s), on 
the Perron-Frobenius theory. 

This paper discusses the relation between constrained 
coding techniques adapted by ACH from the 
mathematical area of symbolic dynamics and some 
previous work  in coding theory. The former include their 
recent constructive proofs [ 101 for the existence of 
homeomorphisms of a type suitable for coding between 
equientropic sequences. These were adapted by  ACH to 
prove the existence of minimum block length sliding 
block  codes  for finite-memory constrained channels, and 
to obtain a construction technique based on state- 
splitting. The resulting codes are of somewhat different 
form from those available  via the earlier bounded delay 
(BD) methods, but each such code corresponds to one 
that can be obtained by the BD approach. The latter 
method includes procedures which  yield codes 
corresponding to a minimum value  for a parameter 
related to complexity and error propagation. 

Applications continue to arise for  which the design  of 
suitable codes  still requires much computation and 
examination of alternatives. This suggests that algorithms 
for constrained code design  will continue to be a fruitful 
area of investigation. 
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