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Order in the
domain structure
in soft-magnetic
thin-film
elements:

A review

by Hugo A. M. van den Berg

The domain structure and its development in
thin plane-parallel soft-magnetic elements have
been investigated from both the experimental
and the theoretical point of view. The
experimental observations for verifying the
predictions have been realized by means of the
Bitter, Kerr, and Lorentz techniques.

In the first part, a self-consistent domain
theory, based on micromagnetic principles, is
unfolded for two-dimensional solenoidal
magnetization distributions present in ideally
soft-magnetic thin-film objects that are
rectangular cylinders. The solenoidality implies
that both the external field and the conduction
currents are taken as zero. Two types of domain
structures are distinguished: the basic
structures in simply connected regions and the
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parallel configurations in special types of
multiply connected regions—the parallel
regions. A decomposition of the area of the
object into disjunct subregions, either simply
connected or of the parallel type, whose union
completely covers the object, is put forward. A
procedure for constructing all feasible parallel
regions is presented. In each region, the
appropriate solenoidal magnetization distribution
is specified with which the magnetization M is
taken parallel to the boundaries of the
subregion. Thus, all the domain structures
possible in the thin-film objects with arbitrary
lateral shapes can be constructed. A number of
experimental examples are provided.

In the second part, the M distribution is
studied on a local scale, at which the
requirement of solenoidality is dropped; i.e.,
external fields and conduction currents are
allowed. The concept of the domain-wall cluster
is introduced in order to obtain the maximum
information about the M configuration in the
entire object. Here, we employ the fact that
domain walls are the preeminently visible
features and that most information is available
at those locations where a number of these
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walls meet. A domain-wall cluster is the
collection of all domain walls that have one
region—the so-called cluster knot—in common.
Three different categories of clusters
characterized by the positions of their cluster
knots with respect to the edges of the thin-film
object are distinguished. Wall clusters with
cluster knots at two, one, and no edges are
defined as the corner, edge, and free clusters,
respectively. General features of the
magnetization distribution near the cluster knots
are discussed for each of the above classes.
The reversible transformations of the clusters
are reviewed. Two different types of these
conversions are recognized, to wit the cluster
creation (fading) and the cluster furcation
(fusion). Experimental evidence of these
relationships is provided.

In the third part, the domain structures are
considered as a concatenation of domain-wall
clusters. During the domain-structure
transformations, clusters are added to and
removed from the domain-wall network. The
conversions are reversible along specific
branches of the hysteresis curves at which the
changes can be comprehended in terms of the
above reversible cluster conversions.
Notwithstanding the reversible character at
these branches, the domain configuration often
develops itself into a subminimum of the energy,
from which sudden irreversible transformations
take place toward other branches with lower
energy. In many cases, the latter alterations are
attended by jumpwise adaptations in the overall
object magnetization component along the field,
and reveal themselves in the hysteresis curve.
The part of the internal domain-wall structure in
the hysteresis is elucidated, and its dependence
on the film thickness is emphasized. Many
examples are given for the purpose of
demonstrating the strongly interwoven character
of the domain network, the prehistory in the
magnetic sense, the internal structure of the
domain walls, and the macroscopic object
hysteresis.

1. Introduction

Since their origin, applications of ferromagnetic media
have been hindered by the phenomena of magnetic
domain structures which are inevitably associated with
ferromagnetic materials. Nowadays, the situation is even
more pressing, since devices with magnetic elements with
dimensions in the (sub)micrometer range have become of
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great interest—particularly soft-magnetic elements such
as thin-film heads [1, 2], magnetoresistive detectors [3, 4],
cross-tie memories [5], and field-access bubble
propagation circuits [6]—and such applications are
greatly hampered by unpredictability in the magnetic
domain configurations.

Various techniques have been used to circumvent the
formation of domains, by almost complete suppression
by an adequate lamination [7] of the soft-magnetic
films and/or by biasing the M distribution (M =
magnetization) with an appropriate effective field, so that
a well-defined continuous M-state occurs in the film
region that is critical to the device operation. This
effective field may be induced by an electric current
through a conducting shunt layer [8, 9], or by a
permanent magnetic [10] or an antiferromagnetic shunt
layer [11]. Although a significant improvement has been
realized by film lamination, the domain effects still
surface [12], partly because of the mismatch in the
thickness between the various layers [13] and partly
because of the magnetic history of the sample. Therefore,
questions concerning the origin of the domain structure,
its uniqueness, and its entanglement with the
phenomenon of hysteresis have not lost any topicality,
and such questions constitute the subjects of this paper.

We initially consider the issues of the inevitability of
and the uniqueness in the domain structure in the ideally
soft-magnetic plane-parallel thin-film elements. Until
recently, the domain theory was still in the stage so aptly
summarized by Brown [14]: “a patchwork of plausible
assumptions, inspired by experimental observation,
whose starting points are sometimes mutually
inconsistent and cyclical.” Pioneers in the domain theory,
to wit Landau and Lifshitz [15] and Kittel [16],
developed the following line of thought. The existence of
domains, i.e., regions where the configurations bear a
continuous character, and of domain walls, which are
surfaces of jumpwise-rotating M, was accepted as
experimental fact. The disintegration into domains was
explained in terms of a trade-off of magnetic anisotropy
and domain-wall and magnetostatic energy. In the bulk
of the object, M was assumed to be parallel to one of the
easy-anisotropy axes; however, continuation of this
parallelism toward the bounding surface of the object led
to magnetic surface charge, and hence to a high level of
magnetostatic energy. To stave off the generation of
magnetic charge, the domain walls were introduced, so
that M was guided parallel to the boundary of the
object, and a divergence-free coupling with M in the
bulk, still supposed to be parallel to the easy axes, was
achieved. Subsequently, the general features of the
domain geometry were posited by taking a preliminary
look at experimental data while a few geometrical
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minimize the total energy. The lowest-energy
configuration among a number of known domain
geometries in a specific object was thus determined
[17-19].

It is tempting to try to play the same tune: However,
one must bear in mind that there is no self-consistent
framework by which the above questions of domain
inevitability and uniqueness can be treated. Moreover,
the assumption of uniformity of M in the domains is
premature in the soft-magnetic media with small intrinsic
anisotropy. The micromagnetic theory [20] should
constitute the basis for a self-consistent domain theory.
Brown [14] claimed that a rigorous micromagnetic
treatment should lead to domain-like and domain-wall-
like regions. However, straightforward calculations lead
to a system of nonlinear partial differential equations for
the equilibrium distributions, and the demonstration of
their stability has so far proved insuperable for arbitrary
specimens. The present author does not attempt to cope
with this general problem. Instead, he confines himself to
a specific class of ideally soft-magnetic materials, to
plane-parallel thin-film objects with cylindrical edges
perpendicular to the film plane, and to objects that are
not subjected to external field sources. It should be
emphasized that in this section this implies that the
intrinsic anisotropy of the medium is 0. Subsequently we
discuss the impact of the intrinsic anisotropy; however,
we will always confine ourselves to media with low
010=2K/(uM f)], where K is the anisotropy energy
density and M the saturation magnetization. Within
these constraints, a self-consistent theory is elaborated by
which definite answers to the above questions concerning
the inevitability and uniqueness of magnetic domains are
given.

Of course, the situation in which external fields are
applied has great practical significance. It should be
incorporated into a theoretical framework in order to
cover the development of the M distribution as a
function of the external field. For this purpose, a less
ambiguous local approach is adopted in which the
relationship between the mutual domain-wall positions
that have one region in common—the cluster knot—and
the M distribution outside the wall regions in the
immediate vicinity of the cluster knot is determined. The
collection of all domain walls that have one specific
cluster knot in common is referred to as a domain-wall
cluster. With the cluster concept, a better interpretation
of the domain-structure observations by means of the
Bitter, SEM, and Kerr techniques is possible. It also
improves the understanding of Lorentz images in the
ripple-free films, where no direct information is gained
about the M distribution within the domains. In terms of
the domain-wall clusters, each domain structure can be
considered as a concatenation of interconnected wall
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clusters, in which each cluster provides local information
about the M distribution that can be mutually correlated
in order to reconstruct the M distribution in the entire
object. When an external field induces changes in the M
distribution, wall clusters are added to the already
existing domain structure in some phases of the domain-
structure progression, while they disappear during other
periods. How these alterations in the number of wall
clusters can take place in a reversible fashion is briefly
reviewed.

As emphasized previously, the multitudinous domain
structures are often reflected at the macroscopic level as
hysteresis. Which of the possible domain structures
develops itself depends on the prehistory in the magnetic
sense. Employing the above principle, general
characteristics in the domain-structure development are
indicated, and the implications of these characteristics for
the irreversible part of the transformations are discussed.
These principles are elucidated by considering, in detail,
the domain conversions in rectangular thin-film
specimens.

2. Divergence-free two-dimensional domain
structures in plane-parallel thin-film objects

In this section, the two-dimensional domain structures in
ideally soft-magnetic plane-parallel thin-film objects with
cylindrical edges perpendicular to the film plane are the
subject of study. Here we consider only magnetization
configurations which are not exposed to an externally
applied magnetic field. As will be seen, two-dimensional
M distributions in which M does not change in the
direction perpendicular to the film plane (z-axis) are only
possible when the external field is zero and when the
object does not carry conduction currents. Moreover, it is
assumed that the object’s dimensions are large in
comparison with the object’s single magnetic domain
dimensions. Under these circumstances, the author
reconsidered the micromagnetic equilibrium equations
and stability conditions for the class of ideally soft-
ferromagnetic specimens. In this kind of medium the
intrinsic anisotropy is set at zero, because the magnetic
energy density u, Mi is much larger than its anisotropic
counterpart. In the domains, the spatial variation term in
the exchange-energy density can be safely neglected.
Hubert [21, 22] and LaBonte [23] demonstrated that this
exchange term constitutes a second-order effect even in
the domain-wall regions of soft-magnetic media.
Therefore, in first-order approximation, both coupled
partial differential equations defining the equilibria
reduce [24] to

H = C(x, y, M, (1a)
M.M=M, (1b)

while their stability is guaranteed when
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Clx, y,2) = 0; (1o

H is the total Maxwell field and M and M, are the
magnetization vector and its magnitude, respectively. As
emphasized above, we shall confine ourselves to the
situations where both the external field and the
conduction currents in the object are zero. In the same
order of approximation as (1), the total energy G is given
([25], p. 154) by

1 1
G=—§u0fHd~MdV=§p.0f

all space

H, - H, 4V,

where the integration is over all space, and which is
minimal when the demagnetizing field H,, is zero, so that

M,
S+ — = (2a)

within the object volume ¥V, and
M.n=0 (2b)

on S; V defines the space occupied by the object, and S
and n respectively denote its bounding surface and the
outwardly pointing unit vector normal to S. M, and M,
are the lateral M components with respect to a Cartesian
coordinate system. Relations (1) and (2) are the key
equations of the present theory.

o Ambiguities in M

Since we confine ourselves to the two-dimensional M
distributions in which M is constrained to lie in the film
plane, we need only consider the projection of M onto
the x—y plane. One of the dependent variables in (2a) can
be removed by virtue of constraint (1b), substituting

M =M, cos ¢ (3a)
and
M, = M;,sin ¢, (3b)

where ¢ is the angle of the magnetization direction with
respect to the positive x-axis in the x—y plane. Then
Equation (2a) transforms into

RSO SN
ax sin ¢ + P cos¢ =0, (3¢)

which can also be written as
—psin¢ + qcos ¢ = 0, 3d)

being a quasilinear first-order partial differential equation
of the general form

Gx, y, ¢, 0, q) = 0. (3e)

The so-called characteristics of Equation (3d) are
defined by the following set of ordinary differential
equations (see [26], pp. 61-66):
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dx 4G

5= 5 = —sin ¢, (4a)
% = %g = COS ¢, (4b)
%=—%—p%=p2cos¢+pqsin¢, (4d)
@_:_&_qE:pqcosqﬁ-i‘quind), (4e)

dt oy ¢

where ¢ is a position parameter along the characteristics.
Equations (4a)-(4¢) define a family of curves in the

(x, ¥, p, q, t) space which are given by the intersection of
the following set of hypersurfaces (see [26], pp. 10-15):

U, =xcos¢ + ysing = C,, (5a)
u,=¢=C, (5b)
P
u3=;1=C3, (5¢)
u,=tsing + x = C,, (5d)
+
u=y-x+2-9L ¢, (5¢)
p tgq

Equations (5a) and (5b) show that each characteristic
base curve, being the projection of the characteristic onto
the (x-y) plane, is a straight line with the magnetization
perpendicular to it. The boundary condition, given by
(2b), prescribes an alignment of the dipoles parallel to the
edge to prevent surface charge from occurring. Hence,
the characteristic base curves are straight lines
perpendicular to the edge. The latter can be made
plausible in the following way. The characteristic base
curves are the lines in the x—y plane along which a given
M direction at point P governs M on its surrounding AS.

Let ¢(x’, p’) define a stable differentiable M
distribution on AS, and let the y’ axis of the coordinate
system with origin at P be parallel to M at this point. Let
A¢(x’, y’) be a differentiable perturbation of ¢ satisfying
A¢(0, 0) = 0. The magnetic charge density p caused by
this perturbation follows from the left member of
Equation (3c) by replacing ¢ with ¢ + A¢. The charge
density at P is given by

_[(20 ,one\ . (20, dne _ 3¢
p_[<6x’+ax’>sm¢ <6y’+ ax,>cos¢]Ms—— o

This shows that the variation of M only in the direction
normal to M is effective in inducing charge, charge that
tends to recover the original stable situation. This
direction is in compliance with the normal orientation of
M with respect to the base curve; however, it does not
prove the straightness of the latter curve.
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¢ (a) The intersection P of two base curves through the edge points S,
ﬁ and S,. (b) All characteristic base curves that intersect at £ to F, in an
g ellipse. The initiating edge points are S, to Sg.

(a) (b)

(a) Interpretation of the basic structure in terms of the locus of center
of circles. (b) The position of domain-wall point P with respect to the
edge points §, and §,.
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Figure 1(a) shows two base curves corresponding to
two edge points S, and S, that intersect in the point P
within the object. M is perpendicular to these curves, so
it is obvious that the edge segments at S| and S, prescribe
two incompatible M directions at P. Let us examine
more closely the consequences of this straightness and of
the orientation of M. The boundary condition M . n= 0
shows that the base curves are straight lines perpendicular
to the edge. In Figure 1(b) a number of these base curves
corresponding to the edge points with parametric
position coordinates .S, to S, are depicted in an elliptical
object. Observe that the base curves through S, and S,
intersect at P, and prescribe two different directions of M
at the same point. It is shown elsewhere [27] that similar
conflicting requirements arise in the whole ellipse, where
a maximum of four intersecting base curves at one point
can be found in some regions. Thus, we are faced with an
ambiguity in M, which is a result of the incompatibility
of the continuous M distributions that are imposed by
and extend themselves from the various edge segments.
This nonphysical multiplicity in M can be dealt with
only by allowing discontinuities in M along lines [27, 28],
i.e., by allowing domain walls such that the M
distributions imposed by the various edge segments can
be separated and matched. The simplest domain
structures—the so-called basic structures—that can
accomplish this task are treated in the next section.

o The basic domain structures

As stated previously, domain walls appear in the two-
dimensional images as curves across which M and the
attendant base curves perform a discontinuous jump in
their direction. To preserve the solenoidality of M, the
component of M normal to the wall surface has to be
continuous across this surface; i.e., the bisector relation
applies ([25], Ch. 5). As a result, the tangent to the
domain wall at any point P not at the extremity of the
wall is parallel to the bisector of the base-curve segments
with extremities at P and the edge points at which they
originate.

The domain-wall pattern and the dipole distribution of
the basic structure in objects with an arbitrary lateral
shape can be rigorously derived by using differential
geometry [28]. Here we confine ourselves to stating
without proof the ultimate conclusion and to discussing
this result. It was proved [28] that the domain walls of a
basic structure constitute the locus of all the centers of
circles that, first, touch the object edge at at least two
points and that, second, are completely situated within
the object.

We illustrate this law with the well-known Landau-
Lifshitz structure in a rectangular platelet [see Figure
2(a)]. The circles marked 1, 2, and 3 touch at minimally
two points at the edge and lie completely within the
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platelet, so that their centers, 17, 2/, and 3’, respectively,
are located at the domain walls. Note that circle 2 is
touching the edge at three points, implying that its center
2’ coincides with a free domain-wall cluster knot (see
[23], Ch. 4). Circle 6 is also completely situated within
the platelet; however, it touches the edge at one point
only, so that its center 6’ does not belong to the locus.

Opposite to this, circles 4 and 5 are touching at
sufficient edge points; however, they are lying only partly
within the object, so that centers 4’ and 5’ are not at
domain walls. Having thus elucidated the law, let us turn
our attention to an attempt to comprehend certain of its
aspects. Figure 2(b) shows point P at a domain wall,
together with both base lines that interconnect P with the
edge points S, and S,. We apply the Gaussian law to Part
1 of the object, which is bounded by the edge and base
lines PS, and PS,. Bear in mind that M is parallel to the
bounding surface of the object, so that

[ff v sa=e

Part1

and therefore,

ffM-ndS+ff M.ndS=0.
PS) PS>

From this it follows that PS, and PS, are of equal length,
because the objects are plane parallel and thus have a
constant thickness, and because M is normal to the
characteristic base curves. The circle with radius PS, and
center P touches the edge at S, and S, because the
tangents to the edge at S, and S, are perpendicular to PS,
and PS,, respectively. Note that this does not imply that
the circle is completely situated within the object.

Let us focus on a second consequence of the law and
take a look at the extremities of the domain walls. Figure
3(a) shows one single domain wall along the symmetry
axis of an ellipse which clearly constitutes the basic
structure of Figure 1(b). The edge points S, and S, of
Figure 1(b), which correspond via the base curves to the
wall extremities O, and Q,, demarcate two edge
segments, imposing two (in principle) incompatible M
distributions, which are matched at the domain wall.
Obviously, the wall at Q, separates the base curves
corresponding to the edge points at infinitesimal
distances from S, and on both sides of S,. The base
curves mentioned above intersect at Q,, so that Q, is the
center of curvature of the edge at S,. It can easily be
understood that the radii of curvature are locally minimal
at S, and S,. In general [28], each extremity of a domain
wall in a basic structure that does not coincide with
extremities of other walls is located at the center of the
radius of curvature of a convex edge segment with a
locally minimal radius. In the case of edges with vertices,
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Ferrofluid patterns of basic structures in Permalloy thin-film
elements with various lateral shapes. Dimensions of the specimens,
50 to 100 wm; thickness, 2500 A.

as in the rectangular platelet, these centers of curvature
coincide with the vertices. The requirement of convexity
to the edge segment follows from the fact that the base
curves of concave edge segments have no points of
intersection in the region adjacent to this segment where
M is governed by this segment. An example is provided
by Figure 3(b), where no domain wall adjacent to the
sole concave vertex betrays itself, while, opposite to this,
each convex vertex has its wall. Figure 3(c) shows the
positions of the wall extremities in the case of two convex
edge segments.

The degenerated domain structure in the circular
object of Figure 3(d) deserves special attention. In this
case, the family of circles mentioned above reduces to
one single circle, namely the circular contour of the
object, so that the wall configuration simplifies to one
single point in the object center. One single domain wall
matches the M distributions imposed by both circular
segments in Figure 3(e). It has been proved elsewhere

[29] that this wall possesses an elliptical shape. Finally, 545
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Kerr observations of basic domain structures in rectangular
Permalloy thin-film specimens. Dimensions: (a) 20 X 50 um,
(b) 50 X 50 pm; thickness of both specimens ~ 350 A. (Courtesy of
B. Argyle and coworkers, IBM T. J. Watson Research Center,
Yorktown Heights, NY.)

i
:
Jq,
2
’

the symmetrical configuration in a regular hexagon is
shown in Figure 3(f). Figures 4(a) and 4(b) show the
basic structures in rectangular Permalloy samples, as
observed by Argyle and coworkers by means of their
Lamon-Kerr system, in which the M distributions within
the domains can also be discerned. The agreement with
the predicted M distributions is completely satisfactory.
Additional examples of basic structures can be found in
[30-34].

Until now, only simply connected objects have been
discussed. Figure 5(a) provides an example of a simple
domain structure in a multiply connected object (an
object with one or more holes) which is not a basic
structure. The corresponding basic structure is shown in
Figure 5(b). Note that it is characterized by a greater wall
length in comparison with Figure 5(a), and that the
actual M distribution exhibits a smaller energy, and, in
good approximation, is also solenoidal (divergence-free).
The observed structure is an example of the
so-called composite structures coming up for discussion
in the next sections. How this minimal wall-length
configuration can be systematically constructed is
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(a) A multiply connected Permalloy specimen with an outer diameter

of 50 wm and film thickness of 2500 A. (b) The corresponding basic
i configuration. (c) Construction of the actual domain structure with
i shorter wall length.

described in [28] [see also Figure 5(c)]. A more dramatic
reduction in the wall length in comparison to the basic
structure is observed in the ring-shaped object of Figure
6. The inner edge of this object runs perpendicular to the
characteristics stretching out from the outermost edge, so
that no conflicting dipole distributions are imposed by
the inner and outer edges. Moreover, note that the
characteristic base curves intersect in the center of the
ring, where no magnetic material is present. Therefore,
the origin of the conflicting requirements to M, by which
the domain walls become inevitable, is removed. This
ring constitutes an important case, for it is a preeminent
example of the so-called parallel regions discussed in the
next section.

o The composite domain structures

In the foregoing sections, we have been faced with the
inevitability of domain walls as a consequence of the
nonlinearity of Equation (3) due to the constraint

M - M = M. In this section, this nonlinearity also
emerges as the origin of multiplicity in the domain
structure. To demonstrate this nonuniqueness, we
decompose the area of the object by defining auxiliary
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(a) Ring without domain structure. (b) Basic structure in a Permalloy
ring with an outer diameter of 50 sm and film thickness of 2500 A.

edges into a number of disjunct subregions whose union
completely covers the object. In each subregion, we
define a solenoidal M distribution with M parallel to the
boundaries of the subregion. Of course, these solenoidal
distributions do not mutually interfere via magnetic
fields, so that such a decomposition is always allowed,
and the aggregation of the subdomain structures is a
feasible configuration in the object. In order to cover all
domain structures possible, we shall again examine the
general characteristics of the M distributions in the
domains.

We elaborate a general procedure in the following
subsection by which a unique decomposition of the
object into disjunct subregions that completely cover the ®)
specimen is accomplished. This decomposition into
subregions is completely defined by the M distribution.
A procedure is subsequently outlined from which all
feasible subregions can be derived that cover any
arbitrary thin-film object, and that defines domain
structures satisfying our requirement of solenoidality.

(a) Decomposition of domain ABCDE into regions bounded by the
parallels through the cluster knots A, C, D, and E. (b) Further
decomposition of region 3 by cluster knot H.

Decomposition into subregions
In Figure 7(a), we have depicted domain ABCDE, which
exhibits no interior domain-wall configuration, so that

the characteristic base lines (denoted by the thin lines) the geodesic distance between the parallels measured
defining M in this domain have no points of intersection  along the base curves.
here. Moreover, we have plotted all orthogonal Let us trace the production of the parallel superregion

trajectories (the dashed curves) of this family of base lines 3 across wall CD. It was emphasized previously that the
that pass through the cluster knots A, B, C, D, and E (see  bisector relation applies to the M jump across the wall, so

Section 1 for the definition of a cluster knot) and all that the base curves of domain ABCDE intersecting wall

trajectories that touch at domain walls. Note that these CD transpose uniquely into base curves in domain

trajectories coincide with field lines of the M vector field CDFGH. The parallels bounding region 3 are produced

and are parallels in the geodesic sense, and that the in domain CDFGH without changing the width of region
decomposition of the domain area is uniquely defined. 3 [see Figure 7(b)]. Note that region 3 contains cluster

Each pair of adjacent parallels bounds a region, a so- knot H, where the flux of this region bifurcates.

called parallel superregion, with a specific width, whichis  Therefore, 3 is further decomposed into 3’ and 3”. This 547
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(a) Separating domain wall between two adjacent segments (i) and
(i +1). (b) The coupling of three successive segments. (¢) The
coupling of four parallel segments whose points of intersection
at the p-edges coincide. (d) A complete parallel subregion and its
domain walls.

decomposition also extends itself into the original
domain ABCDE, so that the widths of the subregions 3’
and 3” are preserved through all domains, provided no
further bifurcation at cluster knots or at domain walls in
other domains takes place. When 3’ contains a cluster
knot in some domain, a further decomposition is carried
out. In this way, a unique decomposition into subregions
bounded by parallels can be specified for any solenoidal
two-dimensional M distribution. (Situations not covered
above are treated elsewhere [35].)

Let us examine more closely one such subregion, e.g.,
3” in Figure 7(b). Assume that this region is not further
subdivided by a cluster knot; if this is not the case, we
consider region 3" that satisfies this condition. In Figure
7(b), we consider the segment abed of 37, At the
characteristic through a and b, M is assumed as indicated
by the arrow, so that M at line cd can only have the
marked direction normal to cd. Evidently, line cd cannot
coincide with the object edge, so there must exist another
segment cdef of 3” that meets segment abcd at line cd.
Thus, line cd is replaced by ef. However, the same
argument for the extension of abed applies also to abef.
Therefore, an impeding expansion of the number of
segments of 3”, and, along with this, an urnbridled growth
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of the 3” area, can only be warded off by allowing line gh
to coincide with ab.

In other words, 3” and thus all subregions are bounded
by two (or in special cases by one) closed curves, which
are orthogonal trajectories of the characteristic base lines.
In principle, the M distribution in these multiply
connected regions bounded by two of these curves—the
so-called parallel (sub)region—is not yet known, while
the simply connected ones bounded only by one closed
curve contain the well-known basic structures. Hence we
are able to construct all solenoidal M distributions
possible when a general procedure for the derivation of
the parallel regions and their M distributions is at our
disposal. This is the main theme of the following section.

Parallel subregions

As discussed, a parallel subregion is a multiply connected
ringlike area bounded at both sides by parallels, which
are orthogonal trajectories of the base curves. A specific
width can be attributed to each parallel subregion. We
compose each parallel subregion by combining basic
units—the so-called parallel segments—where the width
of the parallel segments is equal to the width of the
parallel subregion under consideration. The
magnetization in a parallel subregion has a specific
rotation sense, and the segments of the subregion are
consecutively numbered in compliance with this sense.
How the adjacent segments in such a ring are linked and
what restrictions apply are outlined only roughly here; for
further details the reader is referred to [35]. We now
define a parallel segment.

A parallel segment is a region with a continuous M
distribution that is enclosed by two parallels of a family
of straight characteristic base lines and two of these base
curves at both ends [see Figure 8(a)]. The parallels of
segment (7} are denoted by (i), or (/), depending on
whether they are on the right-hand or left-hand side,
respectively, of the arrow indicating the circulation sense.
Clearly, both corresponding edges of two successive
segments have to intersect; however, they may also touch
each other pairwise. In the latter case, the base curve that
passes through both points of contact of both
corresponding edges constitutes the intermediate
boundary between the effective parts of segments (i) and
(i + 1). Note that the union of these parts is again a
parallel segment, so that the definition in this case (i + 1)
does not make much sense. Figure 8(a) presents the
opposite situation with two points of intersection S, ,, |
and P, . Here, the M distributions of segments (/) and
(i + 1) are matched by the domain wall running between
S+ and P, . It is shown elsewhere [35] that this wall
is the locus of centers of circles that touch both at
segment S;,,,S;and at S, , | S,,, or, alternatively, that

i+l Li+1Mi+1
touch both at segment P,,,, P, and at P, , P.. Herein,

Li+17 ] ii+]
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each pair of points (S, .,
(P4, and P) and (P,
characteristic base line.

Consider the three successive segments (1), (2), and (3)
[see Figure 8(b)]. Of course, we can express the
separating wall between each pair of adjacent segments in
terms of a locus of centers of circles. However, both
domain walls are not mutually independent. They should
arise in the right sequence and should not have points of
intersection. This requirement is satisfied when the points
of intersection of the corresponding edges have the
correct sequence, and, in addition, when the edge
segment S, ,.5, does not intersect its pendant S, ,S,. The
necessity of the latter requirement is proved in Appendix
A; however, that such a relationship exists can be
intuitively seen by bearing in mind the following. The
edge segments S, ; S, and S| ,, together with edge (2),
determine the course of the walls between parallel
segments (3) and (2) and of the one between segments (2)
and (1), respectively. Of course, for reasons of symmetry,
a similar restriction applies to edges (1), and (3),.

The region of segment (2) between the above walls is
denoted as «,. The chain of segments in the parallel
subregion can be extended at will on the condition that
m, Nw,N--- N, =0, where n is the total number of
segments of the subregion.

We examine briefly one important particular situation.
Observe that three walls meet at cluster knot C in Figure
7(b). Thus, three segments of region 3” have one point in
common at the segment edges at this vertex of 3”. Such a
configuration can be considered as a degeneration of the
situation of Figure 8(b), when P, ; and P, , coincide in
the limit. Note that P, , and P, , still arise in just the
correct order. Of course, the restrictions to the shapes of
the segment edges, as discussed above, apply again. In
general, we are not restricted to a number of three
parallel segments with one common edge point. Figure
8(c) shows a combination of four segments. However, it
can be shown by the cluster relations [35] (see also the
subsection on corner clusters) that this number of
segments must be even when the vertex anglc; inside the
parallel subregion is smaller than =. \

A degeneration of the above situation presents itself
when we take the vertex angle equal to «; i.e., the vertex
is replaced by a continuous edge. From the edge-cluster
relations [35] (see also the subsection on edge clusters), it
can be seen that the number of parallel segments is even
and larger than two. An example of a complete parallel
subregion in which these types of segment combinations
can be observed is given in Figure 8(d).

and §)), (S;,,, and S, ),
and P,

.,,) 1s located on the same

Construction of the composite structures
We now recapitulate the principal findings of the
previous sections. The decomposition of the area of the
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(a) Decomposition of the object into subregions. Auxiliary edges are
indicated by the dashed lines. (b, ¢) Two of the domain structures
corresponding to decomposition (a)

object into a number of disjunct subregions that
completely cover the object has been introduced. Two
different kinds of subregions have been distinguished:
first, simply connected subregions in which the basic
domain structures are present, and second, multiply
connected parallel regions with their associated dipole
distributions. It has been shown that any solenoidal two-
dimensional M distribution possible in thin-film objects
can be described in terms of united subregions with either
basic or parallel configurations. Therefore, a general
procedure by which any parallel subregions can be
constructed suffices to cover all possible dipole
configurations.

The starting point in this construction is the parallel
segment. A parallel segment is bounded by two field lines
of the M vector field, the parallels, and, at each end, by
one characteristic base line. The parallels have
continuous directional derivatives, and, measured along
the characteristic base curves, the edges have constant
distance, namely the segment width. A parallel subregion
is a combination of overlapping parallel segments with
equal width that constitute a ring-shaped closed
configuration. Either two adjacent segments are coupled
by one domain wall that interconnects the points of
intersection of corresponding parallels, or a continuous
transition exists in the case where the parallels of both
segments touch pairwise. The various segments
separating domain walls cannot intersect each other and
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A number of composite structures in which the object decomposes
into a number of simply connected subregions. The dashed lines
indicate the auxiliary boundaries of the subregions: (a) Permalloy
(60 X 20 um, thickness 2500 A); (b, ¢) Permalloy (60 um, thickness
2500 A).

can only have their extremities in common. In the latter
case, regions arise that, at first glance, can hardly be
recognized as parallel regions [see Figure 8(d)].

During the construction of the parallel configurations,
we have assumed a specific circulation sense of M. It is
obvious that the ultimate shape of the parallel subregion
and its domain-wall configuration are equally valid when
the circulation sense is the opposite. Similarly, the basic
wall configuration in simply connected subregions does
not depend on the circulation sense. On the other hand,
a 180° wall must arise at the intermediate boundary
between adjacent subregions with opposite M on both
sides of the intermediate boundary, so that the domain-
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wall configuration is positively affected by the circulation
senses in the various subregions. Given only the shapes of
the » subregions in which the object is decomposed, 2"~
different wall configurations are possible. A few examples
are provided by Figures 9(a)-9(c), where two of the
sixteen possible configurations are shown. In this, the
auxiliary edges are indicated by dashed lines. In Figure
10, three examples of Bitter patterns are given in which
the composite structures are simply the composite of a
number of basic structures in a simply connected
subregion whose auxiliary boundaries are, again,
indicated by the dashed lines. Of course, each of these
basic structures is again the locus of centers of circles that
touch minimally at two points of the corresponding
subregion’s boundaries and are completely situated
within that particular subregion. A Kerr image of the
same type of composite structure is provided in Figure
11(a), while Figure 11(b) shows a composite structure in
the P1 layer of a thin-film head as observed by A. Hubert
and coworkers (Siemens A. G., Erlangen, FRG, private
communication).

Composite structures with greater complexity in which
parallel subregions also show up are presented in Figure
12. The domain structure of Figure 12(a) in a thin
Permalloy layer exhibits two cross-tie types of
substructures. The area of the object is decomposed into
three simply connected subregions along the sample’s
central axis and two parallel subregions. In particular, the
outermost parallel subregion is composed of a large
number of parallel segments, which are coupled in a
rather complex fashion. Figure 12(b) shows an
interpretation of DeBlois’s observation of a composite
structure (see Figure 11 of [36]). This structure catches
the eye because two “floating” domain walls are present
with unconnected extremities in the middle of the
specimen. The fundamental possibility of such situations
is elucidated by the simply connected subregion of the
dumbbell type, which contains two concave segments.
Figure 12(c) shows another example of a complex
composite structure borrowed from DeBlois (see Figure
32 of [37]), which demonstrates the validity of the
procedure presented above for specimens in which the
impact of the anisotropy is distinctly visible. References
[2, 33, 36-42] represent an arbitrary selection from the
literature with photographs of composite structures in
thin-film elements, and [43-48] of this kind of domain
configurations in soft-magnetic whiskers.

o Discussion of the solenoidal domain structures

From the above examples, it can be concluded that we
are faced with an overwhelming variety in structures and
also in actual objects. All of these structures in a specific
object have the same energy when the anisotropy and
wall energy are neglected. Transformations between these

IBM J. RES. DEVELOP. VOL. 33 NO. 5 SEPTEMBER 1989




Kerr image of composite structures: (a) An array composed of basic
substructures (courtesy of B. Argyle and coworkers, IBM T. J.
Watson Research Center, Yorktown Heights, NY). (b) The P1 layer
of a thin-film head, length 100 m, thickness 5000 A (courtesy of
A. Hubert and coworkers, Siemens A.G.. Erlangen, FRG).

solenoidal configurations can be realized by gradually
varying the shapes and distribution of the subregions, on
the condition that the geometrical rules for the parallel
regions remain obeyed. No energy barricade is erected
against these conversions, which, therefore, are reversible.
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Composite domain structures with parallel subregions: (a) Permalloy
specimen (60 X 30 um, thickness 2500 A). (b Interpretation of
domain structure of Figure 11 from [36]. (c) Interpretation of domain
structure of Figure 32 from [37].
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The latter need not necessarily be true when an external
field is present, because the M distributions are no longer
solenoidal. There are strong experimental indications [49]
that there exists a close correlation between the domain
structure and the distribution of the Maxwell field, and
that the latter penetrates the domains. As a consequence,
the system’s energy for a given external field will likely
depend on the domain structure. A similar dependence
on the domain geometry was observed in garnet layers,
where it leads to topological hysteresis [50], in which,
however, the domain-wall energy also plays an essential
part. Even so, the wall-stray fields in soft-magnetic
elements may result in a net hysteresis [51] (see also
Section 4).

In the ideally soft-magnetic objects, these wall-stray
fields originate in the domain-wall cores, where the
torques due to the first-order variation in the exchange
energy, which is not covered by constraint (1b), are
counterbalanced by magnetic fields. However, there is a
much more obvious reason that accounts for differences
in the energy among the various domain structures.

Until now, no attention has been paid to the impact of
the anisotropy energy upon domain structures. This
energy will certainly be different for the various domain
structures in a given sample. In elements with small
lateral dimensions, there is a tendency toward domain
structures with a minimal wall length, i.e., toward basic
structures in simply connected objects. This can be
explained as follows. Given a certain lateral shape, the
wall and anisotropy energy are a linear and a quadratic
function of the linear scaling factor of the lateral
dimensions, respectively. Therefore, the anisotropy
energy dominates in objects with large lateral dimensions
and thus tends to enforce complex structures~—the
composite structure—in order to reduce the area of
domains with an unsuitable M distribution.
Experimental support of this statement is abundantly
provided by, e.g., the previously cited works of DeBlois
136-37].

A brief discussion of DeBlois’s [37] broad view of the
order in the domain structure is called for. He defined
topological diagrams involving a number of closed loops
in the domain structure along which there is flux closure.
It is self-evident that these closed loops resemble the
parallel subregions. On the other hand, in general, each
DeBlois loop contains a number of parallel and simply
connected subregions. However, DeBlois’s approach is
meant as a schematic analytic tool and is not an attempt
to predict the possible domain-wall configurations in his
rectangular thin-film objects.

A discussion of the work of Williams [52], who
confined himself to domain structures in ideally soft-
ferromagnetic thin-film elements with polygonal lateral
geometry, is also timely here. His domain configurations
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exhibit a very close resemblance to the basic domain
structures presented in this paper; however, differences
reveal themselves in the case of objects with concave edge
segments. In the polygonal simply connected segments to
which Williams confines himself, this situation presents
itself as soon as vertices are present that cover an arc
larger than 180° inside the specimen. In this situation, the
basic structures have shorter wall lengths and thus lower
wall energy and are therefore more likely. It is self-
evident that, because of these deviations, the Williams
structures do not fit into our unifying description of the
basic structure in terms of loci of centers of circles.
Moreover, the present approach not only covers a wider
range of object geometries but also the large variety of the
composite structures. Finally, this work offers a
methodology by which all possible configurations can be
generated in a systematic fashion.

Let us reconsider our solenoidal domain structures
from the viewpoint of topological defects [53]. In our
two-dimensional projection of M, the domain walls
constitute one-dimensional defects, i.e., lines of
discontinuity in M. Toulouse and Kléman [54] proved
that only point defects are topologically stable in a two-
dimensional vector of fixed magnitude. In their view, any
basic structure in simply connected objects should always
contain only one point defect, having winding number
one, while more point defects may arise in composite
structures. The inconsistency in the conclustons of the
present and the topological approach can be explained as
follows. The topological theory is based on the
continuous extension of M into the interior of a closed
curve, at which a continuous M is defined, while, in the
present theory, we impose the extra requirement of
solenoidality on M. This implies that the above extension
of M is subjected to an extra requirement of the
solenoidality on M, implying that the above extension of
M is subjected to extra restrictions. It is still an unsolved
problem whether these requirements of solenoidality also
require line and surface defects to occur in the three-
dimensional vector fields. In the near future, an answer
to this question will likely be found by means of the
three-dimensional theory presented recently [55].

3. Domain-wall clusters and their conversions
In Section 2, we have focused on the two-dimensional
divergence-free M distributions in the plane-parallel thin-
film objects. Unfortunately, we cannot rely, in the ideally
soft-magnetic objects, on the assumption of solenoidality
when an external magnetic field is applied. Up to now,
no theory that provides explicit solutions for the M
distribution has been developed. This even applies to the
category of the ideally soft-magnetic media, although
these are governed by the relatively simple constitutive
equation (1) and the Maxwell equations for the quasi-
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static case. The reason for this is the nonlinearity
introduced by the constraint M - M = M-, We therefore
return to a less ambiguous local approach.

We focus our attention at those locations where the
most information can be derived from observations
about the M distribution and where extra constraints are
imposed on M. Domain walls are the best visible
magnetic features, and as a consequence those positions
where a number of these domain walls meet are
preeminently suitable as the object of study. Therefore,
the domain-wall cluster is defined as the collection of all
domain walls that have one region—the so-called cluster
knot—in common. In this paragraph, we present a
number of relations that correlate the mutual domain-
wall positions and the dipole distribution in the domains
in the immediate vicinity of the cluster knot. The mean
lateral M component (M), averaged over the film
thickness, will herewith be the central parameter. The
extent of the region in the lateral direction in which
sufficient correlation exists is sufficiently large in
comparison to the domain-wall core widths that a two-
dimensional projection of the M distribution on the film
plane suffices. Thus, the domain walls show up as simple
lines.

We do not derive the formulae used, since a derivation
can be found in [25]. Instead, special attention is devoted
to relatively simple clusters, which are frequently
encountered in practice. In this way, we hope to
empbhasize the usefulness of the cluster concept as an
analytic tool from which much additional information
can be derived. Moreover, it reveals much about the
general order in the domain-structure transformations in
the soft-magnetic thin-film objects.

o Domain-wall clusters: Static properties

We formulate a few starting points, assuming that no
singularities in the magnetic space-charge density can
occur within the ideally soft-magnetic objects except for
their bounding surfaces, at which surface charge can be
present. This implies that no net surface charge can be
present at the domain-wall surfaces; i.e., the component
of M normal to the wall surface is continuous across this
surface. This introduces a relationship between the wall
surface and the M directions at both sides, a correlation
often referred to as the bisector rule.

The validity of this assumption is carefully considered
elsewhere [25]; however, its ultimate origin can easily be
understood. Equation (1) prescribes that outside the wall
cores, the total Maxwell field H should be parallel to the
magnetic dipoles at both sides of the wall surface. The
dipole rotation across the wall surface has a
discontinuous character, at which the M component
tangent to this surface exhibits a jump. The Maxwell field
H is continuous in a region where the magnetic space-
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charge density remains finite, so H must be zero at the
wall in these circumstances. Of course, surface charge can
be assumed at the wall surface; however, such a charge
pattern gives rise to a discontinuity in the field
component normal to the wall surface instead of parallel
to the surface. It has been shown [25] that in the presence
of this surface charge, it is impossible by the addition of a
continuous field to obtain a situation where the total
Maxwell field is simultaneously aligned along the dipoles
at both sides of the wall. Therefore, the total Maxwell
field is zero at the wall, and the bisector relation applies
in the present idealized situation of perfectly soft-
magnetic media. Of course, differences will occur due to
the finite width of the actual wall cores and due to the
unavoidable residual traces of intrinsic anisotropy. A
rough estimation teaches us that the impact of these
perturbations is the largest for domain walls with about
zero wall angle. The deviation from the bisector rule in
this worst case is about a few degrees from realistic layers
and media.

Above, we have discussed the impossibility of surface
charge at surfaces within the object. Next, we shall pay
attention to line-charge singularities, and, in particular, to
those that might coincide with the cluster knot. Here, a
careful analysis is omitted (see [25]); rather, a display of
the essential ideas is pursued. Let us focus on the dipole
distribution of Figure 13(a), which shows the top view of
one of the simplest dipole configurations that gives rise to
a space-charge singularity. This circular M pattern with
constant radial M component (M, ) produces a charge
density p = (M,)/r within the cylinder about the cluster
knot with height 4, equal to the film thickness. Here, r is
the distance with respect to the cylinder axis of P, the
point where p is determined. By applying the Gaussian
law and the relation V . M = —-V . H, it can easily be
seen that a discontinuity arises in the radial component
H, of the field H when passing through the cluster knot
[see the diametric points P, and P, in Figure 13(a)]. Since
both points P, and P, can be chosen at a very short
mutual distance, the contribution H, to the Maxwell field
H of the other field sources located outside the cylinder is
in good approximation equal in P, and P,. Since H, is
opposite to (M, ) at both P, and P,, it is impossible to
select H, such that Equation (1) is simultaneously
satisfied in both P, and P,. As a result, this space-charge
line singularity represents no feasible dipole constellation
in ideally thin-film objects. It is shown elsewhere that the
same conclusion applies to the general line singularity.

An important implication of the absence of these kinds
of singularities reflects itself at the cluster knot. Actually,
the above paragraph leads to the conclusion that (M)
has to be zero; i.e., no net (M) flux is allowed into the
cluster knot in any sector. Let us have a look at the M

distribution near the cluster knot 0 between the domain 553
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()

() A circular dipole distribution with a radial M component <M >
near the cluster knot. (b) The continuous magnetization modes with
respect to the cluster knot 0.

walls (1) and (2) [see Figure 13(b)]. A jump in the M
direction takes place at a domain wall (1). As a result, a
radial M component is always present at both sides of
this domain wall, which is ostensibly inconsistent with
the above conclusion concerning (M, ). However, note
that any first-order perturbation of a uniform distribution
also does not focus the M flux in a p-divergent fashion.
Therefore, two sectors—the so-called uniform sectors—
extend themselves at both sides of wall (1). Each of them
covers an arc | ¢, — (a, + n/2)|, where ¢, and «, are
respectively the (M) direction at infinitesimal distance
from wall (1) within the domain in question and the
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direction of the tangent to wall (1) at 0. Since the space-
charge density is finite within such a uniform sector, the
rotation of M across this sector declines to zero at a very
short distance from cluster knot 0. Of course, a similar
uniform sector bounded by wall (2) and the dashed curve
at the left in Figure 13(b) is present adjacent to wall (2).
Between the dashed curves, a sector—a so-called rotation
segment—remains in which M rotates in a circular
fashion about the cluster knot. Here, (M) reduces to
zero at an infinitesimal distance from the knot (an
analytic derivation is given in [25, 26]).

In conclusion, two different continuous magnetization
modes have been traced for tracking the course of M
about the cluster knot: to wit, the uniform sectors
adjacent to the domain walls and the rotation segment in
the middle of the domain sector between two uniform
sectors, being bounded by two segment edges [the dashed
curves in Figure 13(b)]. A domain that merely contains
one single uniform sector with respect to a specific cluster
knot 0 will be called a uniform domain of that cluster
[see Figure 14(b)]. On the other hand, a domain that
contains two uniform sectors and one intermediate
rotation segment will be referred to as a rotating domain
of the specific cluster [see Figures 14(a) and 14(c)]. It
should be noted that the sector angle 8 of the rotation
segment may be zero in a degenerated rotating domain
[see Figure 14(a)], so that the M rotation across the
domain sector reduces to zero near the knot; however, it
is still a rotating domain, containing segment walls.

Finally, we shall put forward a classification scheme for
the clusters which is based on the position of the cluster
knot with respect to the object edge. This distinction is
inspired by the difference in the boundary conditions that
apply for clusters (see Figure 15) with knots located at

1. No edge—the free clusters.
2. One edge—the edge clusters.
3. Two edges—the corner clusters.

The free clusters are considered first. These are
characterized by a great flexibility in the mutual domain-
wall positions and in the M distribution that corresponds
to a specific domain-wall pattern.

The free wall clusters

The course of the lateral (M) vector through a domain
near the cluster knot is determined by the mutual
positions of the rotation-segment walls and the domain
walls. A free cluster is a cyclical system in that the (M)
direction must return to the direction of departure after
tracing (M) at an infinitesimal circle around the knot
over 360°. This constraint imposes limitations on the
possible combinations of rotation segments and uniform
sectors. Here, a number of these relations are merely
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posed, whereas the formal proofs can be found in
[25, 56, 57].

Rotation segments have been traced as one of both
magnetization modes that can exist in the domains. The
course of M through such a segment is determined on
the one hand by the sector angle 8, [see Figure 13(b)],
and on the other hand by its circulation sense, which
may be either clockwise or counterclockwise. It was
proved that the circulation senses of the rotation
segments in a specific free cluster are identical.

In the Introduction, it was emphasized that only the
domain walls arise as well-delineated features in most
images, whereas rotation segments are often hardly
visible. This fact hampers the analysis of the free clusters.
Therefore, it is interesting to know whether the uniform
domains, which are lacking these rotation segments, can
occur. A uniform subcluster is defined as the unbroken
collection of all uniform domains in which each member
has at least one domain of the collection next to it. It was
proved that each uniform subcluster consists of an even
number of uniform domains. Even so, a rotating
subcluster has been defined as the unbroken collection of
all rotating domains in which each member has at least
one rotating domain of the collection next to it. Such a
subcluster contains an arbitrary number of domains. Of
course, the question arises whether there exist free
clusters consisting merely of uniform domains—the so-
called completely uniform clusters. It has been proved
[25, 57] that completely uniform free clusters can exist,
and that these comprise an even number of domains
larger than three.

In summary, it can be concluded that three different
situations can present themselves: to wit, the free cluster
may be a completely uniform cluster, it may contain an
equal number of uniform and rotating subclusters, or,
finally, it may be a completely rotating cluster.

Across a domain wall, M changes jumpwise, and a
specific clock-sense can be attributed to this jump, at
which a specific observation direction, say from above, is
presupposed [see Figure 16(a)]. This clock sense becomes
distinctly apparent when the domain structure is
visualized by Lorentz microscopy. In Figure 16(b), the
deflection pattern of the electron beam near both
domains of Figure 16(a) is depicted. Observed from the
condenser side of the microscope, the clockwise and
counterclockwise domain walls appear respectively as
dark and bright bands in the image. It should be
emphasized that the clock sense of the walls is always
discerned in the Lorentz image, while the M distribution
in the domains is only accessible when the object exhibits
ripple due to stochastic spatial variation in the physical
parameters. Let us return to the clusters and have a look
at Figure 14 again. Figure 14(b) shows a uniform
domain, and it can be seen that the clock senses of both
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(a) Domain with uniform magnetization. (b) A uniform domain.
(c) Determining M near the cluster knot of a rotating domain requires
knowledge of two domain-wall and segment-wall positions.

The classes of wall clusters: (1) Free wall clusters, (2) Edge wall
clusters, (3) Comer clusters.

domain walls bounding that domain are opposite. It can
be formally proved [25] that this inversion in clock sense
is characteristic for uniform domains. As a consequence,
a uniform (sub)cluster consists of a pattern of domain
walls with alternating clockwise and counterclockwise
rotation senses. In a Lorentz image, such a completely
uniform cluster appears as a line pattern in which each
dark line is enclosed by two bright lines, and vice versa.
Returning again to Figure 14, we see that parts (a) and (c)
show rotating domains in which the clock sense of both
enclosing domain walls is identical. It can easily be seen
that this relationship always applies for the rotating
domains. Therefore, it can be concluded that each
rotating (sub)cluster merely contains domain walls with
one specific clock sense.
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Top view

Cross section

\

Object plane

)

(a) The clock sense of rotation of M across a domain wall when
viewed from the condenser lens side of the electron microscope.
(b) The deflection of a parallel electron beam and the image of a
domain in the object plane of the magnifying lens of the electron
microscope.

P ——

Let us explicitly define the mutual positions of the
domain and segment walls in a free cluster. The direction
angles of the consecutive domain walls satisfy the
inequality (see Figure 17):

O<o <oy <o, <o <ay, - <a,<2m ®)

The domain (§) may contain a rotation segment, so that
the directions ¢, and ¢; of the in-plane (M) components
in the uniform sectors adjacent to domain walls ( — 1)
and (7), respectively, are related by

¢," = ¢i + ﬁ[ s

where 8, denotes the sector angle of the rotation segment.
By exploiting the bisector rule, a straightforward
procedure [25] yields

b, = % - (1)"(’—2' - 4,1) + 2y, — B, + 2=k, (7a)
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(4]

Definition of the positions of the domain walls «; and the M
directions ¢, and ¢, in the uniform sectors of domain ().

:
g
H

where n = i = 0 and k is an integer. In Equation (7a),
v/ =3 )", (7b)
h=i

ifj=i=1,forj<i;yi=0,

and
J

gl =3 (-1 ", (70)
h=

if j=i=1, butfor j<i,
8! =0.
Note that ¢, = ¢,.

Let us apply the above rather complex formula and
our previously posited general rules to the simplest
possible free clusters.

The free singlet that contains one single domain wall
only is the simplest cluster possible [see Figure 18(a)]
which is always a completely rotating cluster. The
rotation segment angle may vary between 360° and zero.
In the latter degenerate case with 8, = 0, the domain wall
disappears, and a locally uniform M state is present. Two
examples of these free singlets can be seen in Figure 3; in
general, however, they do not tend to show up very
frequently (for other examples, see [36, 37]).

The cluster next in complexity—the free doublet—
contains two domain walls. It contains rotating domains
only. It can be seen from Equation (7) that the rotation
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segment angles 8, and §, are correlated with the mutual
domain-wall positions «, and «, by

az—al=(ﬁ—l—ﬁ—2)+k7r, 8)
2

where k is an integer. It follows immediately from (8)
that 8, = 8, when both domain walls are in line. Figure
18(b) provides an example. On the other hand, both
domain walls are at an angle when 8, = 0 and 8, # 0 [see
Figure 18(c)]. Figure 18(d) shows the tip of a zigzag
domain which frequently represents this condition
[58, 59]. It is obvious that such a free doublet with one
uniform domain has no reason for existence in soft
magnetic media from the present point of view. When
carefully observed, the image presented by Wade [60],
duplicated in Figure 19, is presumably a more accurate
representation of the tip of the zigzag wall.

Let us shift our attention to the free triplets marked by
B in Figure 19. Judging from the alternation in the clock
sense of the domain walls in that Lorentz image, a
uniform subcluster is present in each of these clusters.
Note that these uniform subclusters do indeed consist of
two domains. A detailed analysis of this situation [25]
indicates that such a uniform subcluster can only exist
when all three domain walls are located within a sector
smaller than 180°. However, it can easily be seen by
comparing Figures 18(e) and 18(f) that this is a
necessary condition, though not a sufficient one. The
triplet of Figure 18(g), which is a reconstruction of the
Bitter pattern of Figure 20, has to be the completely
rotating type, judging from the arc over which the
domain walls are distributed. Observe that the rotation
segments betray their presence by a rippled circular
distribution of ferrofluid whose centers of symmetry
coincide with the cluster knot. A Lorentz photograph
(Figure 21) provides several examples of completely free
triplets, which do not satisfy the uniformity condition. In
each of these clusters, the domain walls show up as a
pattern of either solely dark or solely bright lines. It
should be emphasized that all Lorentz observations of
this kind of free triplets presented in the literature [60—
64] confirm our predictions of their rotating nature. Let
us determine when all domains of the triplet are
uniformly magnetized. From Equation (7), it follows by
putting ¢, = ¢, that

B«

$r=71 =% +5+km ©
which simplifies to
6, =7 + g + kr

for the situation with only uniformly magnetized
domains. We take ¢, = 0, so that 'y? is either 7/2 or
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(a) The simplest free cluster. (b) A free doublet with two domain
walls that are in line (¢, = @, — 7). (¢) A free doublet with a kink in
the domain walls at the cluster knot. (d) The tip of a zigzag wall. (e) A
uniform subcluster in a free triplet. (f) A domain-wall configuration
of Figure (18e) with only rotating domains. (g) Reconstruction of the
free cluster of Figure 20. '

3x/2. In principle, both cases are equivalent and are
represented by Figure 18(e) when the only rotating
domain remaining is also uniformly magnetized.
Subsequently, for ¢, = «/2, the only situation of interest
is defined by 'yf = 7 which, in principle, corresponds to
the completely rotating free cluster of Figure 18(g), when
all domains are uniformly magnetized.
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e
Lorentz image of free subclusters with uniform subclusters
indicated by B and two pairs of nonlinked domain waulls which
potentially constitute the zigzag tips (courtesy of R.H. Wade [60]).

-
E
i

A ferrofluid pattern of a completely rotating free triplet with traces
that show the presence of the rotation segments (Permalloy thickness

2500 A),

The number of domain walls in the free clusters
considered up to now has been too small to yield
completely uniform free clusters, which according to our
view should contain at least four domain walls. Figure
22(a) (due to Herd et al. [40]) shows four completely
uniform free quartets. According to Equation (7),

Y=oy = ay) + (@, — )

is equal to = for such a cluster. This type of pattern is
frequently met in thin Permalloy films and is well known
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i Lorentz image of several edge clusters of completely rotation-free
triplets and of two completely rotating free quartets (courtesy
of S, R. Herd. IBM T. J. Watson Research Center, Yorktown
i Heights, NY),

as cross-tie wall. The Lorentz image due to Feldtkeller
and Fuchs [65] [see Figure 22(b)] demonstrates the large
number of domain walls that can reveal themselves in
one single (in this case free) cluster.

Let us recapitulate the most important properties of
the free cluster as discussed above.

1. The sector angle of a specific domain of a cluster can
generally be decomposed into two uniform sectors
adjacent to the domain walls and a rotation segment
in the middle—a rotating domain, or this angle
contains one single uniform sector—a uniform
domain,

2. The rotation sense of the rotation segments is the
same in a specific free cluster.

3. The uniform subclusters consist of an even number
larger than one of uniform domains, while no such
restriction applies to the rotating subclusters.

4. A completely uniform cluster consists of an even
number of domains and walls larger than three, while
an odd cluster contains at least one rotating domain.

5. The clock sense of the domain walls alternates in a
uniform (sub)cluster, while it is the same for all walls
of a rotating (sub)cluster.  «

The edge clusters
The edge cluster is characterized by the location of its
cluster knot at one of the edges of the object. In contrast
to the free clusters, any closed path around the edge-
cluster knot contains a finite arc outside the magnetic
medium, in which the previously signified rotation
sectors and uniform sectors have no meaning. Therefore,
it should be expected that the general order in the edge
clusters deviates from that in their pendant—the free
clusters.

The location of the edge-cluster knot at the edge of the
object has important implications for the correlation
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between the M distributions in both outermost domains
of the edge cluster. The M component normal to the
edge must be continuous at the edge and thus across the
cluster knot, in order to prevent discontinuities in the
surface-charge density from occurring. Such a
discontinuity should lead to a singularity in the tangential
component of the total Maxwell field, which should
cancel out the discontinuity, as can be seen from
Equation (1). Because of the continuity in the normal
component in M, a rather strong correlation exists
between the magnetization directions in both outermost
uniform sectors of the edge cluster. Two situations can be
distinguished: first, the M components tangential to the
edge in both outermost uniform sectors are paraliel—the
so-called odd edge clusters—or they are opposite,
resulting in even edge clusters. It has been proved
elsewhere [25, 66] that an odd edge cluster consists of an
odd number of domain walls larger than two [10], while
an even cluster with the opposite tangent M components
at the edge contains an even number of domain walls
larger than one. Moreover, it has been revealed [25] that
the edge clusters merely contain uniform domains. This
fact indicates that a close relationship exists between the
mutual positions of the domain walls and the M
distribution near the cluster knot. This inter-“waveness”
is reflected by the following relation [25] for an edge
cluster with # walls (see Figure 23):

_ (_l)i"‘",y'l' + 27'1 — (—l)ikﬂ' + k‘-27l', (10)

if j = i = 1. If this condition is not satisfied, 7{ =0.

The parameter k is either zero or one, and is fixed for a
specific edge cluster. It is obvious from Equation (10) that
the M distribution, apart from a freedom of 180°
represented by k, is uniquely specified by the mutual
domain-wall positions. It is often convenient to have an
explicit expression for the domain-wall angle | ¢, | of wall
(i) at our disposal, which follows immediately from
Equations (7b) and (10):

I\b,l = |¢i+l - ¢,|
21(=1)""y0 + v+ 7l (11)

where 1, is chosen such that 0 < | ¢, | < =.

Since the above formulas, though general, are a little
obscure, they are made explicit in Table 1 for a number
of simple clusters which are frequently met in practice.

Within the present framework, the edge singlet, i.e., a
single domain wall with an extremity at a smooth edge, is
only possible when the domain wall touches at the edge.
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(a) Four completely uniform quartets in a 560-A-thick Permalloy
layer [40]. (b} A free sextet in a 300-A-thick Permalloy layer [65].

The mutual positions of the domain walls in an (odd) edge cluster and

the M directions in the domains.
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Table 1 The magnetization directions ¢, and the wall angles | ¢, | for singlet, doublet, triplet, and quartet edge clusters.

Cluster type M directions, ¢ Wall angle, y,
(ForM'=-M; ¢+ 71=¢"') O=s|yl<n

Singlet Possible only when wall touches edge
n=1

Doublet g =21 —a,l
n=2
ll

1l

[, =2 |y, = L]

uartet T ¥, | =2 |a,—a,+a,+ 17|
nQ=4 ¢1='2'_("‘4_‘13)—(“2_“1) ' o
[l =2y —a;+a + 17|

¢z='12£+(a4—a3)+(a2+a,) 31 =2ay—a,+ o + x|
Yol =21y~ oy + )y + L7

¢3=§_(a4_“3+(“2_0‘1)
T
¢4=5+(a4+a3)—(a2—a,)

¢5=§+(a4—a3)+(a2—a,)

The reason for this can easily be understood. A domain lateral component (M) parallel to the film plane—across
wall is characterized by a finite jump in M—the average the wall surface. It can easily be seen (Figure 24) that the
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M directions at opposite sides of the wall are related by
oy =7 — ¢ + 20, + knr. (15)

The M component normal to the edge must be
continuous across the knot; i.e., cos ¢, = cos ¢, in order
to prevent a surface-charge discontinuity. From Equation
(15), it follows that this condition is satisfied only when
¢, = a, £ x/2, i.e., when the wall angle reduces to zero at
the edge, or when the wall touches at the edge. Thus, an
isolated distinctive domain wall with extremities at the
edges points to an acute edge deformation or to a lack in
the resolution power, so that satellite walls remain
undetected, or to a relatively large domain-wall core
width, so that the discontinuous character vanishes, and,
finally, to a three-dimensional domain configuration.

In practice, edge doublets such as those shown in
Figure 25(a) are frequently encountered. Note that the
clock senses of the walls are opposite in the Lorentz
image. This should be expected, since the edge clusters
consist merely of uniform domains. At low external
fields, the magnetization tends to be parallel to the edge
¢, = 0 or m, so that the angle between the walls should be
about 7/2 [see Equation (12a)], which is in compliance
with the images discussed above. Observe that, apart
from the uncertainty of =, only the angle (a, — «,)
determines the M directions in the outermost domains of
the edge doublet [see Figures 25(b) and 25(c)]. Consider
a degenerated doublet of which one wall, e.g., wall (1),
touches the edge at 0. From Equation (12¢), it is seen
that the wall angle reduces to zero; i.e., the doublet has
been converted into the only possible singlet. This
degenerated doublet state is of great significance for the
doublet creation, as we shall see.

The edge triplets in the Lorentz image of Figure 21
also exhibit the alternating pattern of black and white
domain walls. Note that the middlemost domain walls
are most visible; this has also been observed in numerous
images of the edge triplet by means of the ferrofluid
technique. Equation (13) provides an explanation. In the
next section, we demonstrate that all of the walls of the
edge triplets tend to develop themselves along the same
line—the so-called creation line—and the angle (o, — o)
is relatively small, so that 1,, 1,, and 1, are zero in
Equations (13e-g). It is obvious that the wall angle | ¢, |,
being 2(a, — «,), is equal to the sum of | ¢, | and | ¥, |.
Therefore, under the assumption that all walls possess the
same type of structure, the visibility of this middlemost
wall is the best. Again, from Equations (13e-g), it is
readily understood that deviations from this trend are
expected when the domain-wall angles become large.
Consider the degenerated triplet in which two, e.g., walls
(1) and (2), of the three walls coincide. From Equation
(13g), it follows that the angle of wall (3) is zero and that
the M distribution resembles a continuous configuration
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An edge singlet.

(b)

i o

(a) Several edge doublets in a 600-A-thick Permalloy layer {62].
(b.c) The angle ar; — o, between the doublet wall as a function of the
field H,, perpendicular to the long edge. i.e.. as a function of ®b,.
Permalloy (60 x 20 wm. thickness 2500 A).
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(c)

The M distributions near corners: (a) An acute corner; 1 90°.
(b) An obtuse corner; = 270°. (¢) The acute corner of (a) with H,
rotated 45°.

when the infinitesimally small sector between walls (1)
and (2) is ignored. Consider the triplet of which all the
walls coincide. All wall angles reduce to zero [see
Equations (13e-g)], and a continuous M state results.
This extreme situation will turn out to be of great
significance to the creation of the edge triplets.

The main characteristics of the edge clusters can be
condensed into the following statements:

1. The edge clusters are completely uniform clusters, in
which the clock senses of the walls alternate
consecutively when tracing the cluster in a clockwise
or counterclockwise direction.

2. Apart from an uncertainty of 180° in the M
directions, a one-to-one correspondence exists
between the mutual wall positions and the M
distribution of the cluster.

3. The M components tangential to the edge in the
outermost domains are parallel in an odd edge cluster
and are opposite in an even edge cluster.

The corner clusters

In corner clusters, the cluster knot is situated at an object
corner, at which, in principle, the normal to the edge
performs a discontinuous direction change. The acuity of
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the actual corner is of decisive significance to the
properties of the M distribution. When the corners are
rounded off, the “corner” cluster behaves as a hybrid of a
corner, edge, and/or free clusters [25]. For that reason,
the general relations for the corner clusters have a smaller
practical scope than that of the previously discussed
cluster relations.

One of the peculiarities in the M distribution near the
corners is the occurrence of persistent magnetized states.
Because this subject was discussed extensively in [25], we
confine ourselves to a brief outline only. Let us consider
an acute corner, say with corner angle n = 90° [see Figure
26(a)]. An external field H,, is applied, which forces M to
have a component normal to edge (1) near the corner.
However, at the corner, the surface-charge density due to
this normal M component diminishes and a singularity
in the field component parallel to the edge under
discussion arises. At first glance, the enormous strength of
this field should force M to orient itself parallel to edge
(1); however, a normal M component at the other corner
edge (2) will develop itself in that case. Note that the
signs of the charges at both edges that tend to arise are
equal, so that the total field is oriented as indicated in
Figure 26(a). In the stable configuration, the
magnetization near the far corner is directed parallel to
the bisector of both edges (1) and (2). Note that the role
of the demagnetizing fields has been converted from a
force that tends to a situation with zero mean object
magnetization into a force that, at least locally, creates a
magnetized state which appears to be rather persistent.
These “locked” regions, in which the demagnetizing fields
are magnetizing, have a significant impact on the
hysteresis of the soft-magnetic objects. In such a region,
only the domain walls that coincide with one or both
edges can occur in the ideally soft-magnetic media [24].

The situation in an obtuse corner is slightly different
[see Figure 26(b)]. Again, the external field H, forces M
to create a positive charge at edge (1). However, this
time, the charge at edge (2) has the opposite sign, and the
ultimate M direction near the far corner is perpendicular
to the bisector of both edges. In light of the above
discussion, the significance of the acuity of the corner is
obvious and needs no further comment. It should be
discerned that the charge collected at the top and bottom
surfaces of the film near the corners may have a
significant contribution to the field distribution in the
corner region when the rounding radius is too large
compared to the film thickness. In this situation
deviations, particularly in the acute corner, occur with
respect to the M directions predicted above.

The foregoing arguments tend to lead to the conclusion
that the corner clusters in perfect objects should only be
present when the external field is zero. This is not always
true, as can be deduced from Figure 26(c), in which the
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external field H,, is rotated over 45° with respect to Figure
26(a). In this case, a vanishingly small magnetic surface-
charge density suffices in the corner to compensate H,,.
Away from the vertex, a finite surface charge takes care
of this compensation. As a consequence, domain walls,
1.e., corner clusters, can be located in such a corner
region.

The above discussion indicates that the magnetization
in the outermost uniform sectors of a corner cluster is
parallel to the corner edges. It has been proved elsewhere
[25] that the clusters in the acute corners (i.e., with
corner angle n < 7) are always completely uniform and
satisfy

=3 (16)

where # is the number of domain walls and 7/ is given
by Equation (7b). In an obtuse corner with n > =,
rotation segments may occur in the corner sector that is
90° apart from both edges. The completely uniform
clusters in these obtuse corners satisfy Equation (16).
Moreover, it can be shown that any completely uniform
corner cluster in which the M vectors in the exterior
domains are either both pointing toward the cluster knot
or both away from the knot contains an even number of
domain walls. A completely uniform corner cluster with
an odd number of domain walls has an M vector
pointing toward 0 and one pointing away from 0 in both
exterior domains. A number of examples of completely
uniform corner clusters in Permalloy elements are
presented in Figure 27. A reasonable agreement with
Equation (16) is found. Figure 28 shows Lorentz images
due to Gondo et al. [67], where the corners are
magnetically saturated.

e Domain-wall clusters: Reversible transformations

In the previous section, we have covered the correlation
between the mutual positions of the domain walls in the
clusters and the M distribution near the cluster knot in
the domains. Two M modes, namely the uniform sector
and the rotation segment, can be distinguished. The
location of the cluster knot with respect to the edges of a
thin-film element determines the combination of uniform
sectors and rotation segments that can occur in a specific
cluster. This connection emerges very distinctly in the
edge clusters, which lack the rotation segments.

Domain structures can be considered as concatenations
of domain-wall clusters. Clusters are added to and/or
removed from the domain structure during its
development phase. How the various clusters can
transform and join an already existing domain
configuration is discussed in this section.

The conversions in the M distribution are known to
bear a reversible character within finite ranges of the

IBM J. RES, DEVELOP. VOL. 33 NO. 5 SEPTEMBER 198%

= 260 A/m (= 3.3 Oe).
7 = 124° y] = o, — a; = 67°. (b) A completely uniform doublet at
P H, = 1280 A/m (= 16 Oe). nequals 270% Y=o - a =

139° (L)Agompletdy uniform doubletat P: H, = 2400 Alm (= 30

(a) A completely uniform doublet; H

Oe). 7 = 270°% v = 130°. (d) A completely uniform triplet; Hy =
2500 A/m (= 31 Qe). Py, m = 266% y; = 137° Py = 266°, v =
132°.

Lorentz micrographs of a Permalloy thin film (92 X 92 um, 500 A
thick) [67]. External field: (a) 400 A/m (= 5 Oe); (b) 1200 A/m
(= 150e).

external field as long as its time rate of change is
sufficiently small. This only applies when the impact of
structural defects, which may particularly hinder the
motion of the domain walls and the cluster knots, is
negligible. The subordinate role of the imperfections is
one of the prerequisites that must be met by the soft-
magnetic media which are the subject of this paper. At
the boundaries of the above reversible ranges, an
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The locally uniform state with two creation lines at either side of the
cluster knot.

instability in the magnetization structure heralds a short
period of agitated spin motion, during which energy is
dissipated. In contradiction to this, the conversions in the
reversible ranges take place via a continuous sequence of
equilibrium states, in which the dipoles in the entire
object are in stable equilibrium in each intermediate
stage. In this section, we confine ourselves to such
reversible transformations.

In general, the magnetization conversions take place by
a coherent movement of domain walls and by a
simultaneous rotation of the dipoles in the domains. The
domain structure develops by concatenating domain-wall
clusters. One possible reversible manner of adding
clusters can be summarized as follows. Those clusters
that do not have all of their domain walls connected to
other clusters may initiate the creation of new clusters
which are then annexed to the domain structure. The
addition of a novel cluster requires the formation of new
domain walls of finite length. The dipoles within and
adjacent to this domain wall must suddenly rotate over a
finite angle, when the wall angle of such a novel domain
wall is finite in the earliest phase of its existence. This
process must be attended by energy losses in order for the
precession of the dipoles to die out. Therefore, the wall
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angle(s) of a domain wall(s) with a finite length(s) should
be zero during the incipient phase of a reversible process.
Of course, its pendant—the vanishing of a domain
wall—should take place by a gradual decline to zero of
the domain-wall angle. We refer to the former reversible
process, in which domain walls are added, as (sub)cluster
creation, and to the latter as cluster fading. Their
irreversible counterparts are called (sub)cluster nucleation
and annihilation, respectively.

Apart from (sub)cluster creation, one other reversible
process—so-called cluster furcation—exists by which the
number of clusters can be increased. In principle, the wall
angle(s) of the newly created domain wali(s) are finite
from the very beginning, while the wall length(s) grow(s)
from zero in the incipient phase to a finite value, so that
a jumpwise alteration in the M distribution only takes
place in an infinitesimally small volume. As a
consequence, no energy barricade is raised against this
process. Upon cluster furcation, the cluster knot of an
already existing cluster is split up into two or more knots.
These knots are generally interconnected by one or more
intermediate domain walls. The length(s) of these newly
formed intermediate domain wall(s) increase(s) from zero
in the beginning to a finite value. The above cluster
furcation has its pendant in the cluster fusion, at which
two or more cluster knots amalgamate in a reversible
fashion.

Both categories of reversible cluster processes are
closely examined in the two following sections. An
exhaustive treatment is not pursued; rather, the various
possibilities are elucidated by means of a restricted
number of frequently occurring conversions.

(Sub)cluster creation and fading

As discussed, the wall angle(s) of the newly added
domain walls are zero during the incipient phase of
(sub)cluster creation. The gradual growth of these wall
angles during their development from zero implies that
each domain wall should initially coincide with an
orthogonal trajectory of the original continuous M vector
field through the (prospective) cluster knot. A strong
coherence between the domain walls has to be expected
when the domain walls of the new (sub)cluster coincide
with the same trajectory, which we call the creation line
of the (sub)cluster. It is obvious that the wall angle of
each domain wall along this creation is zero at the
beginning. Further discussion is focused completely on
the creation process, because the cluster fading is a
duplicate of the cluster creation which progresses in just
the opposite direction.

Consider the creation of a free cluster with a
prospective cluster knot 0 in a region of continuous local
uniform magnetization (see Figure 29). Two creation
lines at either side of 0, indicated by «, and «,, offer the
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possihility of subcluster creation. First, we assume that
the creation process confines itself to one side, say along
«,. Note that ¢, and ¢,,, | remain parallel, so that the
subcluster along «, bears close resemblance to the odd
edge cluster; i.e., it merely consists of uniform domains
between an odd number of domain walls. It can be
shown [25] that at least one of the two subclusters is of
the uniform type, containing an odd number of domain
walls, while a rotation segment may be present in its
counterpart. A rotation segment contains an infinite
number of potential creation lines along which new
subclusters can develop themselves. No such creation
lines are found in the uniform domains and, as a
consequence, a completely uniform cluster should be
transformed into a cluster with a rotating subcluster
before the number of walls can be changed. Let us
proceed to the edge clusters,

It has been discussed in the subsection on edge clusters
that the edge clusters merely consist of uniform domains,
and as a consequence no subcluster can be added or
removed in a reversible fashion. With this, the subject of
the modification of the edge cluster seems to be
terminated. However, do not forget the creation of a
complete edge cluster. In Figure 30(a), the creation line
with prospective cluster knot 0 is depicted in a region
adjacent to the edge with continuous magnetization. In
principle, an edge cluster can be created. Note that the M
in both prospective exterior domains has to be parallel.
According to the subsection on edge clusters, an edge
cluster can only have an odd number of domain walls.
An edge singlet is impossible because the creation line is
not parallel to the edge in Figures 30(a) and 30(b).
Consider the creation of an edge triplet in detail. A slight
change in the external field forces the triplet to unfold, at
which the domain walls start to rotate about the cluster
knot 0. Simultaneously, the wall angles gradually increase
from zero to a finite value. According to Equations
(13e-g), the wall angle of the middlemost wall is always
the largest in this phase, and, in general, its visibility is
the best. Depending on the observation technique, it
might occur that only the middlemost wall can be
resolved in the incipient phase of the creation, so that the
impression of an edge singlet might develop. How about
the even edge clusters?

Because of the uniformity of the domains in the odd
edge cluster, the even edge clusters cannot develop
themselves from the normal odd edge clusters by a
subcluster creation process. The degenerated
configuration with one single domain wall that touches
the edge at the prospective doublet knot O constitutes the
only alternative [see the subsection on edge clusters and
Figures 30(c) and 30(d)]. Note that a creation line is
present along which uniform subclusters can develop. In
view of the original continuity of the M distribution near
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The creation of (a, b) an odd edge cluster; (c, d) an even edge cluster.

the creation line, the number of domain walls in the
subcluster is odd [compare Equations (13d) and (14¢) or
(12¢)]. In other words, an even edge cluster can be
created. This time, the uniform subcluster may consist of
one single domain wall. In order to enforce this wall, the
touching domain wall must rotate around knot 0, and
the wall angle of wall (1) increases in compliance with
Equation (12d) [see Figure 30(d)].

Both of the edge cluster creation processes discussed
above are very frequently observed, and a number of
examples are reviewed in the course of this paper.

Cluster furcation and fusion

In the previous section, it was emphasized that the
creation of (sub)clusters is often impossible because of
the absence of adequate creation lines, as for example in
the edge and the corner clusters. The cluster furcation
constitutes an alternative by which the required domain-
structure transformations can yet take place.

During cluster furcation, a cluster knot is split into two
or more knots, which are connected by (an) intermediate
domain wall(s) which have zero length during the
incipient phase. The directions of these early walls are
determined by the M distribution near the original knot
just prior to its furcation. Of course, the actual cluster
knot possesses finite dimensions, so that a finite field
change is required to separate the knots and to let the
intermediate domain walls arise. As a result, the course of
these walls will deviate slightly from that derived from
the somewhat simplified view of the M distribution in
this study.
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statement explicit by considering the furcation of a
completely rotating free quartet [see Figure 31(a)] into
two free triplets. One of the two possible realizations is
presented in Figure 31(b). The intermediate domain wall
between 0, and 0, cannot carry a net charge, so it is
directed along the normal to the bisector of both
magnetization directions M, and M,. This wall direction
is uniquely determined when the domains separated by
the intermediate wall are uniformly magnetized. (Note
that a uniform domain is always uniformly magnetized;
however, a uniformly magnetized domain might also be
of the rotating type.) A greater flexibility exists for the
furcation mode of Figure 31(c), because each
combination of a magnetization direction from the
rotation segment in domain 2 with a corresponding one
from the rotation segment in domain 4 yields a potential
direction of the intermediate wall. Figure 32 provides an
example of such a cluster furcation in a Permalloy
element.

(a) A completely rotating free quartet. (b, ¢) The furcation of the
completely rotating quartet into two free triplets.

Another feature of cluster furcation is closely
interwoven with the internal structure of the cluster
knots. The dipole configuration in the knot is closely
bound up with the number of interconnected domain
walls and their structures, the M distribution in the
continuous regions near the knot, the film thickness, the
magnetic history, etc. Therefore, it may happen that the
knot structures have to bear a completely different
character before and after the furcation. It is certainly not
evident that the transformations of the original cluster
knots can take place without overcoming energy
thresholds. Such transformations, when not blocked, are
attended by energy losses and are irreversible. Here, we
ignore these aspects of the internal structure
transformation of knots and focus on the global
relationship between the mutual orientation of the walls
and the M distribution near the knots. Again, we confine
ourselves to the presentation of a few illustrative
examples. Further information can be found in [25].

As already stated, the orientation of the newly formed ; A cluster furceltiox{ corrlex‘pomiin;_‘v to ‘Figm“c 31(by in a Permalloy
intermediate domain wall is determined by the M element (a) before furcation: (b) after furcation.
distribution just prior to the furcation. We make this
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(a) A completely uniform quartet. (b) A possible furcation of the
quartet of (a).

Let us focus on a completely uniform free quartet. A
possible furcation is presented in Figures 33(a) and 33(b).
More frequently, the transition of the quartet knot into
four knots is observed. Such a transformation in a
Permalloy element is presented in Figure 34. The
complexity of this furcation likely originates in a
conversion in the internal wall structure when the wall
angles of two of the quartet walls grow beyond a certain
critical angle at which a Bloch-type structure has a lower
energy than the original Néel wall.

Another frequently observed cluster conversion is
illustrated in Figure 35, which shows a rare example of a
sequence of Lorentz images of a cluster conversion. This
cross-tie wall can be regarded as a periodic pattern of the
combination of a completely uniform free quartet and of
a free doublet with two rotation segments [69]. As far as
we can see, the direction of the intermediate domain wall
is defined by the zero wall charge principle. The “wings”
of the quartet gradually decrease in length upon the
approach of the knots. Note that the wings become
bowed when the symmetry of the locations of the doublet
knots with respect to the quartet knot is removed. These
curved wings separate the rotation segments from the
uniform environments, so that the area occupied by the
rotation segments gradually reduces to zero. Ultimately,
the free quartet and doublet transform into a degenerated
free doublet with two degenerated rotation segments, i.e.,
a continuous Néel wall. The inverse advance is
demonstrated in Figure 36. A 180° Néel wall in a
Permalloy element is moved through a defect, which
reveals itself by a little ferrofluid cloud [see arrow in
Figure 36(a)]. Upon passing, a pair of clusters is
generated. The one at the left must be the completely
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The furcation of a quartet into two quartets and two triplets: (a, c) the
quartet and its M distribution near the knot; (b, d) the situation after
the furcation.

uniform quartet, while its counterpart is a free doublet,
i.e., a Bloch line. Note that the quartet’s domain wall at
the object-edge side betrays itself by a broadened cloud of
ferrofluid, which is apparently a consequence of the
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Lorentz pictures of the fusion of a free doublet and a completely
uniform free quartet into a degenerate doublet, i.e., a Néel wall
(courtesy of S. Middelhoek [68]).

mismatch of a stepwise-changing M pattern near a wall
and the requirement of the continuity of the surface
charge at the edge.

The above examples of free quartet conversions
provide an impression of the enormous variety in the
furcations. Let us treat one final example of a frequently
occurring process, namely an edge-triplet furcation into
two edge doublets (see Figure 37). The change in the
orientations of the old domain walls of Figure 37(a) is
negligible during the furcation, so that the angles «,, «,,
and «, in Figures 37(a) and 37(b) may be considered
equal. From Equations (12a) and (13a), it follows that «,
= a; — «, + 2a,. Even s0, the doublet-wall orientation o
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The generation of a completely uniform quartet and free doublet pair
by passing through a defect; Permalloy (60 X 30 um, thickness
700 A).

R—

in Figure 37(b) is equal to 2a;, — a, + a, — = by virtue
of Equations (12c) and (13d). In other words, this
furcation process can be completely described in terms of
the cluster relations. An example of this edge-triplet
splitting is presented in Figures 37(c) and 37(d). Note
that the exterior walls of the triplet are difficult to see in
the ferrofluid image, a fact that has been previously
noted.

4. Reversible and irreversible domain
transformations viewed from the perspective of
wall clusters
In Section 3, we were occupied with the local coherence
between the mutual domain-wall positions and its
repercussions on the M distribution near the cluster
knots. We have unveiled a high degree of order in these
clusters and have shown that the number of domains in
such clusters can be adapted by only two kinds of
reversible processes, to wit (sub)cluster creation (fading)
and cluster furcation (fusion). During this discussion we
have dealt only with the geometrical aspects of the wall
clusters and their transformations. No attention was paid
to the question of how or why a particular cluster comes
into being. This omission is considered in this section.

It has already been emphasized several times that any
domain structure can be conceived as a concatenation of
domain-wall clusters. During the development of a
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The furcation of an edge triplet into two edge doublets and a free
triplet: (a, b) edge-triplet splitting; (¢) H, = 640 A/m (= 8.0 Oe); (d)
H, = 460 A/m (= 5.8 Oe).

domain structure, domain-wall clusters are added to and
removed from the domain structure. These alterations
may take place in either a reversible or irreversible
fashion, so that wall clusters, being a static concept, seem
only to be relevant to part of the domain conversions,
i.e., to the reversible ones. However, this will appear not
to be the case. Indeed, the meaning of the wall-cluster
concept is most apparent when the conversions at the
reversible branches of the hysteresis loop are investigated.
A high degree of order appears to characterize the
domain-structure progression at the reversible branches,
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Domuain conversions in a rectangular Permalloy specimen due to a

uniform in-plane external field H, parallel to the longitudinal (long)
. i . ~ . max .

sample axis which increases troLn zeroin(a)toH, " in(d). Permalloy

(60 X 20 um, thickness 2500 A).

which can easily be comprehended in terms of cluster-
creation processes. On the other hand, this concept also
provides a tool for the analysis of the M distribution just
before and just after an irreversible transformation, and
allows us to trace the wall constellations that initiate such
a conversion.

When an external field is applied along the
longitudinal axis (Figure 38), the 180° wall moves toward
the edge of the sample, while small jumpwise
displacements due to the interference of defects can be
detected. However, notwithstanding these defects, this
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H, (x 10° A/m)

The position B of the center of the 180° domain wall with respect to
the central longitudinal symmetry axis of the sample as a function of
H,; H, is parallel to this symmetry axis. B = 0 corresponds to the
position of the longitudinal symmetry axis at H, = 0, i.e., at the
midpoint of the sample width; B = 1 indicates that the wall is at the
long edge of the specimen. Sputtered samples (sp) 2500 A thick: lift-
off samples (lo) 700 A thick. Lateral dimensions: (1) 60 X 10 um,
(1) 60 x 20 wm, and (I1T) 60 X 30 wm.

Table 2 The field strengths H)' and H)” as a function of the
lateral dimensions and the thickness of the Permalloy specimens.

Sputtered samples
(2500 A)

Lift-off samples
(700 4)

Hirl

Hi/z ;
(A/m)

Hirl .
(A/m)

o Size
(A/m)

(pm)

3050 2590
2360 1675
1370 380

60 x 30 835
60 x 20 685
60x 10 535

movement is basically reversible, as can be concluded
from Figure 39, where the relative position B of the 180°
domain wall’s midpoint with respect to the longitudinal
sample axis is displayed as a function of H, for Permalloy
samples (83 Ni 17 Fe) with various lateral dimensions
and thicknesses and manufactured by both sputter
etching and the lift-off technique. For both categories, the
wall displacement can be understood in terms of
magnetostatic fields, which dominate the torque
equilibrium of the dipoles.

We descend a little deeper into the magnetostatic
aspects of the above domain-wall displacement which
terminates at the field Hg ' when the center of the wall
touches the edge. First of all, we want to explain the
dependence of the Hf)' ' on the sample’s width and
thickness. In order to satisfy Equation (1), charge is
required in each half of the sample for the compensation
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of the external field in the regions where the dipole
direction strongly deviates from H,. The total amount of
charge in each half can be derived from the
magnetization at the cross section in the middle of the
sample by employing Gauss’s theorem. The position of
the center of the Bloch wall can be used as a measure for
the charge stored in each half, which is predominantly
located at the object’s boundaries. Since a sample having
a smaller width needs, at the same H,, a greater amount
of the charge per unit of the width of the cross section in
each half to cancel the same H,, it follows that the wall
reaches the edge at a lower field Hy ' in the samples of
smaller width.

This is confirmed by the experiments (see Table 2).
Since in all cases the film thickness is very small in
comparison to its width and length and H,, is a uniform
field, the surface-charge pattern required is, in a first-
order approximation, independent of the thickness of the
sample. As a consequence, the H:,” of thicker samples is
larger than the field required for thinner samples (see
Table 2). It can be seen in Table 2 that H;' for the
700-A-thick lift-off layers divided by H; ' for the
sputtered layers with equal dimensions is 0.274, 0.290,
and 0.390 for the samples with widths of 30, 20, and 10
um, respectively. The thickness ratio of the lift-off to
sputtered samples is 0.28, so there is good quantitative
agreement, in particular for the samples with widths of
30 and 20 um.

Furthermore, note that the curves of the Bloch wall
position in Figure 39 belonging to increasing and
decreasing fields of the sputtered sample almost coincide,
which shows that the wall friction inside the specimens is
rather small. This might be anticipated because of the
low value of the wall-friction field H, in comparison with
H;'. In addition, note that most of the change in M
consists of a rotation of about 180° of the dipoles in the
region covered by the movement of the Bloch wall. As a
consequence, the anisotropy energy of the samples is
hardly affected.

As stated, the Bloch wall midpoint touches the edge at
field H,'. A further slight increment in H, lets this wall
be torn apart into two pieces. The subsequent sudden
shrinkage in its length causes a large portion of the 180°
wall to collapse; no doubt an irreversible transition is
involved. Judging from the area of the triangular tip
domains just before and after the transition, this
irreversible event is accompanied by a rotation of M in
the direction of H,,.

As soon as H,, has exceeded this critical value, we can
be assured that the field penetrates into the sample,
because no extra charge is available for compensating
H, - H;". It is often observed that the ferrofluid is
asymmetrically distributed with respect to the
longitudinal axis of the sample. More ferrofluid is found
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at the sides of the triangular domains that contain the
edge doublets. Consequently, the ficld penetrates at these
values of H, into the opposite side in the middle portion
of the sample. This indicates that an asymmetric
distribution may already be present when H, < H;,
implying that the field penetration has already taken
place in an earlier stage.

A surviving part of the Bloch wall reveals itself near
each sample tip [see Figure 38(d)]. Note that this wall
does not touch the edge any longer and is at an angle. In
the subsections on edge clusters and (sub)cluster creation
and fading, we concluded that a second wall, i.e., an edge
doublet, must reveal itself. This second wall is very
visible near one of the doublet knots in Figure 38(d). It
must have developed along a creation line and,
subsequently, must have increased its angle, so that it
possibly has a Néel structure. This opinion is supported
by an estimation of the wall angles based on Equations
(12d) and (12e), with &, = 20° and «, = 106°. We
estimate that |y | = 40° for the new wall and 144° for the
Bloch wall. The better visibility of the small-angle wall
can only be traced back to a difference in the internal
structure. Note that M near the doublet knot is still at a
small angle [4°; see Equation (12a)] to the edge.

Upon a further increment in H,, these doublet knots
are pushed along the edge toward the sample ends.
During this movement the knots sometimes temporarily
hold at some points and subsequently catch up by fast
displacements. When H, reaches the maximum, Hy ",
both doublet knots are at the shortest distance from the
tip. When Hj is increased to higher values, a second
irreversible jump takes place at which the triangular
domain with the doublet knot as a vertex collapses. In
this case, the continuous M distribution arises with the
dipoles pointing toward the object corner [discussed
extensively in the subsection on corner clusters; see also
Figures 26(a) and 28]. For this experiment, the external
field is kept below the critical value at which this second
irreversible transformation takes place.

o Transformations on the descending flank of the B-H
loop

As yet we have reported no significant impact of the
influence of the manufacturing technique and the
magnetic anisotropy on domain behavior in thin films.
These effects are revealed, and are much more
pronounced, on the descending flank of the B-H loop.
Our discussion is based mainly on the very soft
Permalloy (83 Ni 17 Fe) composition, in which the role
of defects dominates, while the influence of the
anisotropy is mentioned briefly. A remarkable
incongruence between the domain-structure development
of the sputtered and lift-off samples comes to light. The

simpler of the two, the sputtered sample, is discussed first.
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Domain conversions in a sputtered sample measuring 60 X 10 um
and 2500 A thick, as a function of H,,, which increases from O in part
(a) to 2740 A/m (= 34.4 Oe) in (d) and as H, decreases uniformly
starting in (e) and reaching 0 in (i).

’
£
i
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Sputtered sample

Figure 40 shows a long rectangular specimen (60 X 10 X
0.25 um) in which the uniform external field parallel to
the longitudinal axis increases from zero in Figure 40(a),
via Hy' in 40(c), to the maximum Hy™ = 2740 A/m in
40(d). Upon a subsequent reduction in H, both doublet
knots can be seen to have been shoved toward the
middle. Note that these knots in Figure 40(g), a
photograph taken just before the second irreversible jump
at H,’, are much closer to the center of the sample than
at H:,“ “*- the knot displacements are mainly reversible,
although, as on the ascending flank, some interference of
defects can be observed. At Hf)’ 2, a jumpwise
transformation takes place from the configuration of
Figure 40(g) toward the one in 40(h). A rough estimation
of the object’s mean (M) component along H, in Figures
40(g) and 40(h) reveals a significant alteration (A (M) =
0.4M.), so that, just as at Hf,", the irreversible jump at
ng is accompanied by magnetic hysteresis. A further
reduction in H,, causes the 180° wall to return to the
specimen’s central (long) axis at H, = 0 [Figure 40(i)], so
that the object’s hysteresis curve exhibits the course of
Figure 41. Note that defects are not essential in this
hysteresis effect. Moreover, it should be mentioned that
the above evolution is advanced by a longitudinal
uniaxial anisotropy, as is elucidated in the next section.

Lifi-off sample

As in the sputtered sample, both edge doublets in the lift-
off sample initially tend to move toward the longitudinal
center upon a reduction of the longitudinal field H,,.
However, this time the doublet knot is held up during the
reduction phase of H,,

At the ends of the sample, the M direction deviates
strongly from the direction of H,, while it is parallel to
H, in the central portion of the sample. Obviously, the
total charge available for each half of the sample is
collected in the ends, where it tends to cancel H,,. In the
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A typical hysteresis curve of a sputtered film sample where <M> is
the object’s mean M component in the direction of H,,

max
H,

(@ ) (©)

(a) Knot 1 just before fixation. (b) Rotation of the doublet walls and
the M rotation caused by a charge spreading upon further reduction in
H,, after the fixation of knot 1. (c) The edge-triplet creation with a
knot at the opposite edge.

hypothetical case in which this charge pattern does not
vary after the doublet’s stagnation, the resulting
micromagnetic h = H, + H, + H, (in which H, is caused
by the intrinsic anisotropy) arises in these end domains as
H, is further reduced. The net field h cannot be parallel
to M here, so that the charge near each end, whose
amount is fixed as long as M is parallel to H,, in the
midplane perpendicular to the sample longitudinal axis,
has to be distributed over a large area near the end.

This enlargement is accomplished by rotating the
doublet walls about its knot and by increasing the length
of wall (1) in Figure 42. The angle enclosed by both
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doublet walls remains about 90° during the rotation,
since M remains almost parallel to the edge on both sides
of the doublet knot. Therefore, given the fixed doublet
knot, the rotation of the doublet walls is closely related to
the displacement of free-triplet knot 2 relative to doublet
knot 1. This rotation causes M between the doublet walls
to rotate in the direction perpendicular to the
longitudinal sample axis. This tendency is enhanced
when the easy uniaxial anisotropy axis is normal to the
sample length; the doublet knot is inclined to proceed
along the edge when the anisotropy axis is in the
direction of the sample length.

In the case that the doublet knot keeps its position, the
decreasing external field causes domain wall (1) to
increase in length in order to spread the tip charge over a
large area. As a consequence, the extremity of wall (1)
threatens to coincide with the opposite sample edge.

As discussed in the subsection on (sub)cluster creation
and fading, an edge cluster comes into being with a knot
at the left edge and at the extremity of the orthogonal
trajectory that extends domain wall (1) in the originally
continuous M region between the tip of wall (1) and the
left edge. Wall (1) serves as the seed wall of the edge
triplet. Of course, this cluster will be an odd edge cluster,
since the M directions in the outermost domains are
parallel. Usually, the simplest configuration possible—the
edge triplet—will develop. Observe the rotation sense of
the M jump across wall (1) near knot (1). It is obvious
that only the chirality of the middiemost wall of the
newly formed edge cluster fits that of seed wall (1).
Initially, all triplet domain walls coincide with the
creation line, while all three wall angles are then zero. A
subsequent decline in H causes the triplet to unfold by
both outermost walls rotating around their knot [see
Figure 42(c)] in the opposite direction with respect to the
middlemost one, i.e., seed wall (1). Simultaneously, the
wall angles of all three walls must grow from zero to
some finite value.

These walls are all of the symmetric Néel type because
of the growth of the wall angles of all three walls from
zero [70]. This wall structure is preserved during their
further development. To balance the exchange torques in
the cores of these walls, a charge distribution with dipole
character—called the wall dipole—is induced in each
core, in which the dipole vector is perpendicular to the
wall surface. The ultimate direction of this wall dipole is
parallel to the M direction in the middle of the Néel wall,
as we shall see. As stated above, the field of the wall
dipole balances the exchange torques L., in the wall core;
the directions of L,, depend on the chirality of the wall
[see Figure 43(a)]. In general, these exchange torques
tend to rotate the dipoles in the core parallel to the dipole
direction in the middle of the core. In Figure 43, in
which the triplet walls are schematically depicted as being
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(a, b) The torque equilibrium in the domain-wall cores of a triplet. H,,
is the wall-dipole field and L, is the exchange torque.

e

parallel, these exchange torques are indicated. Note that

the wall-dipole field H,, which balances L.,, always has a
component opposite to the core magnetization, and that
all wall dipoles point approximately in the direction of M
at the creation just prior to the creation of the triplet, and
are thus about parallel to the external H, at that instant.
The fringing fields of the wall dipoles inside the domains
H,, are parallel to one another and to Hy~ [see Figure
43(b)]. In other words, H,, forces the magnetic dipoles in
the domains to rotate in the direction of Hy™, and this is
the origin of the wall hysteresis. A quantitative estimation
of its impact is given later in this section.

As an intermezzo, focus again on the anisotropy. It is
obvious that a strong longitudinal easy-anisotropy axis
tends to prevent the unfolding of the triplet in order to
avoid large domains on both sides of the middlemost wall
of the triplet, where M deviates strongly from the easy
direction. The opposite occurs when a strong easy axis is
perpendicular to the longitudinal axis of the specimen.
Triplet wall (3) [see Figure 42(c)] rotates strongly and
increases simultaneously in length in order to optimize
the region where M turns toward the easy axis; however,
this is all subjected to the requirement of the stability of
M, in which the magnetostatic torques still play the
dominant role.

A further reduction in H, causes wall (3) to approach
the opposite specimen edge, so that the game of edge-
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The development of the concertina structure (CS) as H;; decreases
from (a) to (¢). Permalloy (60 X 20 um, thickness 2500 A),

triplet creation has to be repeated. This time, wall (3) in
Figure 42(c) constitutes the innermost wall of the new
edge triplet with a knot at the right edge. This coherence
can be comprehended by comparing the chiralities of the
newly created edge-triplet walls with one of the seed wall
(3). Again, the wall dipoles of these newly added walls are

max

parallel to H;™" and thus increase the magnetic hysteresis.
This triplet creation process repeats itself upon further
reduction in H,, (see Figure 44). These triplets can be
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(a) The wall-stray field H, inside the domains. (b) The hysteresis
curve of an element that contains a CS.

removed again in a continuous fashion by an
intermediate period of increasing H,, which indicates that
the edge-cluster additions are reversible, notwithstanding
their contribution to the hysteresis.

It often occurs that the doublet knot performs a
jumpwise displacement to a subsequent stagnation point.
This unstable character of the doublet-knot position
shows that pinning must be involved. Along with the
doublet-knot displacement, a fraction or all of the already
created edge triplets disappear, so that the wall hysteresis
is reduced. It should be emphasized that the edge-triplet
knots jump less frequently, while, in addition, such a
jump has less impact on the rest of the domain structure.
This distinction can be understood because M near and
in the doublet knot deviates strongly from the continuous
nearly uniform M distribution in the domains, while,
contrary to this, an edge-triplet knot resembles very
closely a uniform M state, in particular when the
unfolding of the edge triplets is impeded by a strong
longitudinal easy-anisotropy axis. Therefore, the edge-
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doublet knots get pinned more easily and strongly.
Judging from the difference in behavior between the
sputtered and the lift-off samples, it is likely that the
latter possess stronger pinning points at their edges.
Ultimately, the middle portion of the sample is filled
with edge triplets that constitute a bellows-like
configuration, the so-called concertina structure (CS). At
a given H;,, the number of walls in and the space
occupied by the bellows generally increase proportionally
with increasing Hy**; as a consequence, the wall
hysteresis is a semipositive definite function of Hj ™. To
estimate the wall hysteresis, it is necessary to know the
dipole distribution in the wall core which in thin layers
can be derived from the one-dimensional micromagnetic
calculations of Riedel et al. [71]. Figure 45(a) gives a
quantitative image of the mean (H_) across the sample
thickness for the domain structure of Figure 44(¢), where
x is along the sample length and x = 25 um in the middle
of the sample. (H, ), which exhibits strong peaks much
larger than H, near the wall cores, must be almost
completely canceled by the stray-field H_ in this soft-
magnetic element. For this compensation, there must be
a net magnetic charge in each sample half, which is
supplied through a net M component normal to the
sample’s midplane that is perpendicular to the sample
length. The wall hysteresis [Figure 45(b)] for this
particular situation was previously estimated [49, 51] and
the mean M component of the object along the x-
direction amounted theoretically to 0.25M, while the
experimental hysteresis was almost twice as large. This
difference may be due to other hysteretic effects and/or to
the simplifications in the theoretical model. However, the
significance of wall hysteresis in these thin elements is
beyond dispute. A similar result for simpler but similar
domain configurations was reported by N. Smith [72].

Demolishment of the concertina structure

It is obvious that the concertina structure (CS) constitutes
a metastable high-energy state and that energy may be
gained by removing periods of the bellows-like structure.

Figure 46 provides an example of a very simple CS, in
which the central walls of three adjacent edge triplets in
the sample are replaced by the central wall of one edge
triplet. Note that the wall angles of the three central walls
in Figure 46(a) deviate significantly from 180° (=160°
according to the cluster relation), so that the mean
magnetization along the longitudinal sample axis in the
middle of the sample is still of significance.

The period reduction can be briefly summarized as
follows. An edge quintet is formed after the fusions of the
two triplet knots at the bottom edge. This conversion is
followed by a furcation of the quintet into an edge-triplet
knot and a free-triplet knot. The latter moves upward
along the central wall of the quintet and thus removes the
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The sequential frames of a video display of a period reduction in a
simple CS. Permalloy (60 x 30 um, 700 A).

v

Period reduction in a CS. The central walls of three adjacent edge
triplets in (a) are replaced by one central wall in (). All images are at
approximately the same H,). Permalloy (60 X 30 um, 700 A).
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two outermost central walls of the original three edge
clusters. The details of this fusion and subsequent
furcation can be better discerned in Figure 47, which
shows the sequential frames of a video display.

After the reduction, the mean H_, of the sample has
reduced and a charge redistribution takes place. This
charge displacement can also be deduced from the wall
angle of the remaining central triplet wall in Figure 46,
which increases to about 180°. A similar increase in the

The period reduction by a coherent movement of a uniform quartet
and a free cluster at the adjacent central walls of two edge triplets.
Permalloy (60 X 30 wm, 700 A).
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The inversion of the polarity of the Néel walls in a 140-um-thick
Permalloy layer (60 x 20 um).

wall angle can also be noted in Figure 47. Both
observations confirm our previous conclusion that the
impact of the wall-hysteresis mechanism is significant.
The details of the same type of period reduction are
strongly dependent on film thickness. In very thin layers
(25 nm), the Néel walls are very persistent and the CS is
also sustained when H, is inverted. Domain walls with
angles up to 360° are developed before they are
demolished. In 70-nm-thick layers, the period reductions
are often attended by the propagation of free uniform
quartets (crosses) and free doublets with two rotation
segments (Bloch lines), demarcating Néel-wall segments
with opposite chiralities. Thus the wall field (H,,) of the
original Néel walls is reduced. Figure 48 demonstrates
this principle in a very simple CS. In the middle of the
sample, two central walls of edge triplets with an angle of
about 160° reveal themselves. This time, the conversions
cannot be heralded by the fusion of two edge-triplet
knots. Instead, a uniform free quartet arises at the tip of
the left central edge-triplet wall, while, simultaneousty, a
uniform free quartet and free doublet develop at the right
central wall. The latter doublet, together with the free
quartet at the left wall, moves downward, while the
polarity of the Néel wall segments above this pair is
inverted. In a second phase, the moving quartet knot and
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doublet knot, at which the latter presumably has been
converted into a free-triplet knot by incorporating one of
the walls of the quartet, come together and fuse.
Subsequently, the Néel wall segments at both sides of this
fused-knot pair shrink and disappear.

A final example of a transformation in a 140-um-thick
Permalloy layer is shown in Figure 49. Again, the
conversions start at the domain walls with the largest wall
angle, i.e., the central triplet wall at the right (] | =
150°). Again, a uniform quartet develops itself at the free
triplet bounding the central wall in question [Figure
49(a)]. Simultaneously, a furcation takes place and the
quartet moves upward. This time, the quartet does not
separate into two Néel wall segments with opposite
polarity; instead, it transforms the original Néel wall into
a Bloch wall [Figure 49(b)]. Upon a further reduction in
H,, a new uniform quartet develops itself at the same free
triplet and moves upward. The sector angle of the
rotation segments of the free triplet in question increases
and causes the outermost wall of the edge triplet to
become curved parabolically [Figure 49(c)]. Both knots of
the above quartets and the knots of two extra free-triplet
knots, which arise at the intersection of the “wings” of
both quartets, fuse and a uniform quartet results. Thus,
the polarity of the Néel wall has been inverted between
the knots of the free triplet and the uniform [Figures
49(d-f)] quartet. Note that the same process takes place
almost simultaneously at the other central walls of the
edge triplets, so that nearly the entire domain structure is
converted in one coherent transformation.

1t is self-evident that the above period reductions and
coherent conversions cause the stepwise course of the
object’s M — H,, hysteresis loop, as is schematically
presented by Figure 45(b). The CS endures much longer
in the case of a strong easy axis perpendicular to the
sample length. In this case, the reversal of the polarity of
the wall dipoles is accomplished by free-quartet and free-
doublet generations and displacements, so that the CS
can survive when H, is reversed.

o Discussion

The central themes of Section 4 are the conditions and
the modes for reversible and irreversible changes in the
domain structure in soft-magnetic thin-film elements. We
have confined ourselves to the rectangular sample;
however, it should be emphasized that the above order
presents itself in thin-film elements with arbitrary
geometry. Whether or not a CS develops depends on the
orientation and strength of the uniaxial anisotropy and
on the presence and nature of defects. In particular, the
lift-off sample tends to possess edge defects to which
doublet knots, in particular, adhere, thus giving rise to CS
development in very soft media. On the other hand, the
CS creation is also facilitated when the relatively strong
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easy axis is perpendicular to both H, and the object
length, while an only slightly hindered movement of both
doublets toward the middle takes place when the easy
axis is parallel to H,,.

Much emphasis has been put on the orientation of the
walls with respect to Hy, their internal structures, their
stray fields H,, and on the resulting wall hysteresis of the
CS. Note that, in principle, there is no correlation
between the energy stored in the domain walls and their
contribution to hysteresis. This is convincingly
demonstrated by the single and double Landau-Lifshitz
structures illustrated in Figure 50, where the 180° walls
are assumed to be of the Bloch type which induce no net
H,, [70]. It is obvious from the symmetry of the dipole
charge distributions in the various wall cores in Figure
50(a) that the net effect is zero, so that the wall hysteresis
is zero. The same argument applies to the double
Landau-Lifshitz structures of Figure 50(b); we have two
configurations with different wall energies and the same
zero hysteresis.

The CS is reminiscent of the ripple structure in thin
films, which encourages us to draw a parallel. It is well
known that the ripple structure originates in the
dispersion of the anisotropy, which causes M to split up
into a great number of domains separated by parallel
walls normal to the mean M. This wall splitting becomes
particularly manifest when H,, is perpendicular to the
easy axis [73-76]).

In the previous section, we stated that the development
of the CS in thin-film objects with small lateral
dimensions originates in the spreading of the magnetic
charge in the sample tips upon decreasing H,, which
requires discontinuities in M, e.g., wall surfaces, between
the longitudinal edges. As in the solenoidal situation, the
domain-wall pattern is predominantly governed by
magnetostatic laws; however, these allow a great variety
of solutions at each H,, value. The ultimate selection
from the possible domain-structure developments is
controlled by a large number of second-order parameters
such as defects and the magnitude, symmetry, and
direction of the anisotropy and also, no doubt, by
stochastic variations in the latter parameters. Though the
stochastic variations may play a role, they are not a
prerequisite for CS development, as evidenced by the
occurrence of CSs in perfect crystallites [36].

We can make the argument concerning the dominance
of magnetostatics a little more explicit. During the
discussion of Figure 42, we emphasized that doublet wall
(1) must grow in order to distribute the positive charge in
that sample end over a larger area during the reduction
phase of H,. Note that M values near the opposite edges
at the height of the doublet knot are about parallel and
are inclined to bend outward a little bit in the particular
end. Charge of the wrong sign threatens to arise. In order
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(a) Landau-Lifshitz structure in a rectangular sample in which the
only 90° walls are Néel walls. (The field H, and magnetic charges of
these walls are indicated. ) (b) The double Landau—Lifshitz structure.

to get the desired positive charge density, a domain wall
must be present between the above edges, so that an
additional jumpwise M direction change, which is
accompanied by a net charge generation, is introduced.

Consider another striking manifestation of
magnetostatics; in the CS, the edge-cluster walls
constitute a periodic pattern of clearly visible walls
normal to the longitudinal sample edge, where both
patterns with knots on the opposite edge have a phase
shift of 180°. This order is certainly not characteristic of
ripple. Note that M rotates over a finite angle between
two adjacent clearly visible walls at the same longitudinal
sample edge. As a consequence, one extra wall must arise
from each of these edge-cluster knots between the
corresponding clearly visible walls. We have already
concluded that both edge clusters have to be triplets,
although their exterior walls are often hardly visible.
Thus, along a specific edge, we see alternately an M-
direction jump at a clearly visible wall and about the
same rotation in M divided over the walls. This order
cannot be explained in terms of ripple theory and reflects
the magnetostatic coupling of two adjacent clearly visible
walls.

We return to the sample with a longitudinal weak easy
axis, in which H_ is smaller than H,. The CS is frequently
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The recovery of the CS periods by increasing H toward H, . (b, ©)
Transformations when H; is decreased from H(']“‘lX in (a). (d, e)
Recovery of the periods upon an increment in H, in its original
direction. H is parallel to the long axis of the specimen in each case.

— P — o ’ -

observed in such samples, notwithstanding the
noninverted character of the medium [73]. When

HUGO A. M. VAN DEN BERG

discussing the lift-off sample, we emphasized the impact
of the doublet pinning at edge defects. One might state
that this pinning prevents the sample from “switching”
its magnetization pattern by the wall (doublet-knot)
displacement, and that the edge defects play the role of
the “object invertor.” A prolonged reduction in H,, causes
the effective micromagnetic field in the region in front of
doublet wall (1) (see Figure 42) to become zero, so that
the discontinuity in M at wall (1) is allowed to extend
into the interior of the sample; e.g., wall (1) elongates.
This growth in which the newly formed walls are initiated
by and connected to the walls already present in the CS
has often been observed. In this process, stochastic
anisotropy variations affect the path along which wall (1)
grows; however, these possible trajectories are confined to
a small band defined by the local spatial steepness of the
demagnetizing field due to the charge pattern in the
sample tip, while directional variations of the walls which
are too abrupt are staved off by the well-known
transverse magnetostatic coupling [73, 75]. Bear in mind
that, in general, the M environment which suppresses the
inclination of the dipole to follow the local anisotropy
direction is not uniform, and that it is embedded in the
overall M distribution of the sample, to which it is
magnetostatically coupled. Again, the dominance of
magnetostatics is evident.

One final observation concerns the dissolution of a
number of the periods of the CS when the edge-doublet
knot performs a jumpwise movement. In ripple
terminology, one might say that the sample inversion is
abolished, so that switching takes place by wall
movement, and, of course, ripple no longer appears.
However, the above consequence of doublet
displacements applies to samples with both a longitudinal
and a transverse weak easy axis, so the above explanation
is too innocent. In this context, the progress of the
configuration in Figure 51 is of interest. From the
saturated state, the domain structure develops via the
configuration of Figure 51(a) into the CS of Figure 51(b).
Upon a further reduction in H, period reductions take
place, so that we end up with Figure 51(c). Subsequently,
the field is increased again, and the domains with M
direction deviating from H, shrink. Note that the
magnetization in the small domains in the middie of the
sample is at an angle of about 30° to H,,. A small further
increment in H,, causes the reappearance of two of the
periods of CS, when the original edge-triplet knots in the
middle of the sample move apart. Apparently, the
recovery of these periods is required in order to obtain a
stable M distribution in the middle of the sample that
matches the given M configurations in both tips. Again,
these periods of the CS seem to have a deterministic
origin rather than a stochastic one, and the ripple theory
leaves us in the lurch.
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. (a) Three successive parallel segments (1)—(3), and the wall-shape determining edge segments. (b) Construction when edge (3), is on the wrong
. side of edge (1),. (c) Construction when edge (3), is on the right side of edge (1),.

Appendix A

Let us consider three successive parallel segments (1) to
(3) and investigate whether there are restrictions on their
shapes and mutual positions. In the subsection on
parallel subregions, the only requirement from the
mutual positions of two adjacent segments (1) and (2) is
the existence of two intersection points S, , and P, ,. The
course of the separating domain wall between (1) and (2)
is governed by the edge segments S ,S,(s, = u,) and
S,,5,(s, = v,) at edges (1), and (2),, respectively, or
equivalently, by edge segments P, ,P (s, = u,) and

P, ,P,(s, = v,) [see Figure 52(a)]. Even so, the domain
wall between the parallel segments (2) and (3) is governed
by the edge segments S, ,5,(s, = v;) and S, ;Sy(s; = w,).
The position of P, , at edge (2), with respect to P, , must
comply with the course of M along the edge and the
numbering of the segments. The same applies to the
position of S, ;. The fulfillment of these requirements is
considered to be a prerequisite.

However, in addition we require that the domain wall
between P, ; and S, ; not intersect the one between P, ,
and S, ,. We shall prove that this requirement is satisfied
when the domain wall codetermining part of edge (3),,
S, 355(s; = w,), does not intersect the domain wall
codetermining part of edge (1),, S, ,5,(s, = ;).

We first investigate the situation in which (1), and (3),
intersect at the points S,(s, = u,) and S,(s, = ;). By
virtue of the continuity of the tangents to the edges of the
segments, it can be concluded that there exists a point at
(1), say S,(s, = u,), where the characteristic base curves
of the parallel segments (1) and (3) coincide. This base
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line intersects the domain wall between segments (1) and
(2) at Q, where the distance | S(s, = w)Q| =

| Sy(s, = v5)@|. It is obvious that | S(s, = w)Q | <

| S,(s, = u5)Q|. Now look for the position of the points
of the domain wall between segments (2) and (3) at the
base line through S,(s, = v,), and call the points of
intersection of the latter base line with the characteristics
of (3) Q’. We erect a Cartesian coordinate system with its
origin at S,(s, = w,) and a y-axis along the base curve
through S,(s, = us) [see Figure 52(b)], while the positive
X-axis is on the side where the angle ¢ between the
characteristics at Q is smaller than =. At a sufficiently
small x, the edge (3), can be approximated by the
quadratic relation y = ax® with | a| < 1/(2b), where b is
the segment width. In a first-order approximation, the
difference in distance of Q’ from edges (1), and (3), as a
function of x decreases by

(1 — cosy)/sin Y(1 + 2a| Sy(s;, = wy)Q|).

Observe that (1 — cos y)/sin ¢ is larger than zero
because 0 < y = = and that (1 + 2a| Sy(s, = w;)@1) >0,
since | 2a| < 1/b and | Sy(s, = w)Q| < b. As a result, the
absolute value of the mutual difference in the distance of
@’ from edges (1), and (3), decreases for positive x. It is
obvious that Q' moves toward edge (2,). This tendency is
also preserved at large x, because the base lines of parallel
segment (3) do not intersect each other inside (3).
Therefore, the ultimate Q’ at the domain wall between
segments (2) and (3) is on the wrong side of the domain
wall between segments (1) and (2).
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Now we attempt to prove that all points of the wall
between segments (2) and (3) are correctly situated with
respect to the wall between points S, , and P, , when the
edge segments S, ,5,(s; = w)) and S, ,5,(s, = u,) do not
intersect.

In Figure 52(c), the domain-wall point Q at the
characteristic base lines through S(s, = 1) and
S,(s, = v,) is indicated. The circle (A) with radius b,
where b is the segment width, touches at segment edge
(1), at S,(s, = ). Observed from Q, the base curve
corresponding to S,(s, = w;) will consecutively intersect
circle A, edge (1), and finally (3),. Bearing in mind that
the distance | S\(s, = u,)Q@| < b, it follows from simple
geometrical considerations that | QK| = | S\(s, = u)Q1,
so that | Sy(s, = we)Q| > | QK| = | Sy(s, = v)Q| [see
Figure 52(c)].

Having established this fact, we erect a Cartesian
coordinate system with its center at S,(s, = wj), with the
y-axis along the base line through S(s, = w;) and with its
positive x-axis pointing toward the side where the angle
between the characteristics through Sy(s, = w;) and
S,(s, = v,) is smaller than =. From now on, we can repeat
the arguments employed in the previous case. It can be
seen for very small x that the distance | Q'S,(s, = ;)|
becomes closer to the distance between Q' and edge (3),
when moving toward the negative x direction. As a
consequence, Q' moves apart from Sy(s, = v,) when x
becomes more negative. This tendency is continued at
large negative x values because the characteristic base
lines of segment (3) do not intersect inside this segment.
Thus, if present, the point of the domain wall between
the segments (2) and (3) on the base curve through
S3(s, = v) is found and is at the correct side of the wall
inP ,and S ,.

Remark

When edge segment S, (s, = w,) does not intersect edge
segment S, ,5,(s, = u,), their counterparts at edges (3),
and (1), respectively, will likewise not intersect.

Remark

We have assumed that P, , and P, , are different points. It
is obvious that the same conclusions apply when P, , and
P, , coincide.
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