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The  domain  structure  and its development in 
thin  plane-parallel  soft-magnetic  elements  have 
been  investigated  from  both  the  experimental 
and  the  theoretical  point of  view.  The 
experimental  observations  for  verifying  the 
predictions  have  been  realized  by  means of the 
Bitter,  Kerr,  and  Lorentz  techniques. 

In  the first part,  a  self-consistent  domain 
theory,  based on micromagnetic  principles, is 
unfolded  for  two-dimensional  solenoidal 
magnetization  distributions  present in ideally 
soft-magnetic thin-film objects  that  are 
rectangular  cylinders. The solenoidality  implies 
that  both  the  external field and  the  conduction 
currents  are  taken  as  zero.  Two  types  of  domain 
structures  are  distinguished:  the  basic 
structures in simply  connected  regions  and  the 
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parallel  configurations in special  types of 
multiply  connected  regions-the  parallel 
regions. A decomposition of the  area of the 
object  into  disjunct  subregions,  either  simply 
connected  or of the  parallel  type,  whose  union 
completely  covers  the  object, is put forward. A 
procedure  for  constructing all feasible  parallel 
regions is presented. In each  region,  the 
appropriate  solenoidal  magnetization  distribution 
is specified with  which  the  magnetization M is 
taken  parallel  to  the  boundaries of the 
subregion.  Thus, all the  domain  structures 
possible in the  thin-film  objects  with  arbitrary 
lateral  shapes  can be constructed. A number  of 
experimental  examples  are  provided. 

In the  second  part,  the M distribution is 
studied  on  a local scale,  at  which  the 
requirement  of  solenoidality is dropped; i.e., 
external fields and  conduction  currents  are 
allowed.  The  concept of the  domain-wall  cluster 
is introduced in order to obtain  the  maximum 
information  about  the M configuration in the 
entire  object. Here,  we  employ the  fact  that 
domain  walls  are  the  preeminently visible 
features  and  that  most  information is available 
at  those  locations  where  a  number  of  these 
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walls  meet. A domain-wall  cluster is the 
collection of all domain  walls  that  have  one 
region-the  so-called  cluster  knot-in common. 
Three  different  categories  of  clusters 
characterized  by  the  positions  of  their  cluster 
knots  with  respect  to  the  edges of the  thin-film 
object are  distinguished.  Wall  clusters  with 
cluster  knots  at two,  one,  and  no  edges  are 
defined as  the  corner,  edge,  and free clusters, 
respectively.  General  features of the 
magnetization  distribution  near  the  cluster knots 
are  discussed  for each  of  the  above  classes. 
The reversible  transformations of the  clusters 
are  reviewed.  Two  different  types of these 
conversions  are  recognized, to wit  the  cluster 
creation  (fading)  and  the  cluster  furcation 
(fusion).  Experimental  evidence of these 
relationships is provided. 

In the third part,  the  domain  structures  are 
considered  as  a  concatenation of domain-wall 
clusters.  During  the  domain-structure 
transformations,  clusters  are  added to and 
removed  from  the  domain-wall  network. The 
conversions  are  reversible  along  specific 
branches of the  hysteresis  curves  at  which  the 
changes  can be comprehended in terms  of  the 
above  reversible  cluster  conversions. 
Notwithstanding  the  reversible  character  at 
these  branches,  the  domain  configuration  often 
develops itself into a subminimum  of  the  energy, 
from  which  sudden  irreversible  transformations 
take  place  toward  other  branches  with  lower 
energy.  In  many  cases,  the latter alterations  are 
attended  by  jumpwise  adaptations in the  overall 
object  magnetization  component  along  the  field, 
and  reveal  themselves in the  hysteresis curve. 
The part of the  internal  domain-wall  structure in 
the  hysteresis is elucidated,  and its dependence 
on the  film  thickness is emphasized.  Many 
examples  are  given  for  the  purpose  of 
demonstrating  the  strongly  interwoven  character 
of the  domain  network,  the  prehistory in the 
magnetic  sense,  the  internal  structure  of  the 
domain  walls,  and  the  macroscopic  object 
hysteresis. 

1. Introduction 
Since their origin, applications of ferromagnetic  media 
have  been  hindered by the phenomena of magnetic 
domain structures which are inevitably  associated  with 
ferromagnetic  materials.  Nowadays, the situation is  even 
more  pressing,  since  devices  with  magnetic elements with 
dimensions in the (sub)micrometer range  have  become  of 
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great  interest-particularly  soft-magnetic elements such 
as thin-film  heads [ 1,2], magnetoresistive detectors [3,4], 
cross-tie  memories [5], and field-access  bubble 
propagation circuits [6]-and such applications are 
greatly  hampered by unpredictability in the magnetic 
domain configurations. 

Various techniques have  been  used to circumvent the 
formation of domains, by almost  complete  suppression 
by an adequate lamination [7] of the soft-magnetic 
films and/or by  biasing the M distribution (M = 
magnetization) with an appropriate effective  field, so that 
a well-defined continuous “state  occurs in the film 
region that is  critical to the device operation. This 
effective  field may  be induced by an electric current 
through a conducting shunt layer [8,9],  or by a 
permanent magnetic [ 101 or an antiferromagnetic shunt 
layer [ 1 I]. Although a significant improvement has  been 
realized by  film lamination, the domain effects  still 
surface [ 121, partly  because of the mismatch in the 
thickness  between the various  layers [ 131 and partly 
because  of the magnetic  history of the sample.  Therefore, 
questions concerning the origin of the domain structure, 
its uniqueness, and its entanglement with the 
phenomenon of hysteresis  have not lost  any  topicality, 
and such questions constitute the subjects of this paper. 

We initially  consider the issues of the inevitability of 
and the uniqueness in the domain structure in the ideally 
soft-magnetic  plane-parallel  thin-film elements. Until 
recently, the domain theory was  still in the stage so aptly 
summarized by  Brown [ 141: “a patchwork of plausible 
assumptions, inspired by experimental observation, 
whose starting points are sometimes mutually 
inconsistent and cyclical.”  Pioneers in the domain theory, 
to wit Landau and Lifshitz [ 151 and Kittel [ 161, 
developed the following  line  of thought. The existence of 
domains, i.e.,  regions  where the configurations  bear a 
continuous character, and of domain walls,  which are 
surfaces  of jumpwise-rotating M, was accepted  as 
experimental  fact. The disintegration into domains was 
explained in terms of a trade-off of magnetic anisotropy 
and domain-wall and magnetostatic  energy.  In the bulk 
of the object, M was assumed to be parallel to one of the 
easy-anisotropy  axes;  however, continuation of this 
parallelism  toward the bounding surface of the object led 
to magnetic  surface  charge, and hence to a high  level  of 
magnetostatic  energy. To stave off the generation of 
magnetic  charge, the domain walls  were introduced, so 
that M was  guided  parallel to the boundary of the 
object, and a divergence-free  coupling  with M in the 
bulk,  still  supposed to be  parallel to the easy axes, was 
achieved.  Subsequently, the general  features of the 
domain geometry  were  posited  by  taking a preliminary 
look at experimental data while a few geometrical 
parameters were  left undetermined, in order to be  able to 
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minimize the total energy. The lowest-energy 
configuration among a number of known domain 
geometries in a specific  object  was thus determined 
[ 17-19]. 

It is tempting to try to play the same tune: However, 
one must  bear in mind that there is no self-consistent 
framework by which the above questions of domain 
inevitability and uniqueness can be  treated.  Moreover, 
the assumption of uniformity of M in the domains is 
premature in the soft-magnetic  media  with  small intrinsic 
anisotropy. The micromagnetic  theory  [20] should 
constitute the basis  for a self-consistent domain theory. 
Brown [ 141 claimed that a rigorous  micromagnetic 
treatment should  lead to domain-like and domain-wall- 
like  regions.  However, straightfoward calculations lead 
to a system  of nonlinear partial differential equations for 
the equilibrium distributions, and the demonstration of 
their stability  has so far  proved  insuperable  for arbitrary 
specimens. The present author does not attempt to cope 
with this general  problem.  Instead, he confines  himself to 
a specific  class  of  ideally  soft-magnetic  materials, to 
plane-parallel  thin-film  objects  with  cylindrical edges 
perpendicular to the film plane, and to objects that are 
not subjected to external field  sources.  It  should  be 
emphasized that in this section this implies that the 
intrinsic anisotropy of the medium is 0. Subsequently we 
discuss the impact of the intrinsic anisotropy;  however, 
we  will  always confine  ourselves to media  with low 
Q [Q = 2K/(poMf)], where K is the anisotropy energy 
density and M, the saturation magnetization. Within 
these constraints, a self-consistent  theory  is  elaborated by 
which  definite  answers to the above questions concerning 
the inevitability and uniqueness of magnetic domains are 
given. 

Of course, the situation in which  external fields are 
applied  has  great  practical  significance. It should be 
incorporated into a theoretical  framework in order to 
cover the development of the M distribution as a 
function of the external  field. For this  purpose, a less 
ambiguous  local approach is adopted in which the 
relationship  between the mutual domain-wall  positions 
that have one region in common-the  cluster knot-and 
the M distribution outside the wall  regions in the 
immediate vicinity of the cluster knot is determined. The 
collection of  all domain walls that have one specific 
cluster knot in common is  referred to as a domain-wall 
cluster.  With the cluster  concept, a better interpretation 
of the domain-structure observations by means of the 
Bitter,  SEM, and Kerr techniques is  possible. It also 
improves the understanding of Lorentz  images in the 
ripple-free  films,  where no direct information is  gained 
about the M distribution within the domains. In terms of 
the domain-wall  clusters,  each domain structure can  be 
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clusters, in which  each  cluster  provides  local information 
about the M distribution that can be mutually correlated 
in order to reconstruct the M distribution in the entire 
object.  When an external field induces changes in the M 
distribution, wall clusters are added to the already 
existing domain structure in some  phases of the domain- 
structure progression,  while  they disappear during other 
periods.  How  these alterations in the number of  wall 
clusters can take place in a reversible  fashion  is  briefly 
reviewed. 

As emphasized  previously, the multitudinous domain 
structures are often  reflected at the macroscopic level  as 
hysteresis.  Which of the possible domain structures 
develops  itself depends on the prehistory in the magnetic 
sense.  Employing the above  principle,  general 
characteristics in the domain-structure development are 
indicated, and the implications of these  characteristics for 
the irreversible part of the transformations are discussed. 
These  principles are elucidated by considering, in detail, 
the domain conversions in rectangular  thin-film 
specimens. 

2. Divergence-free two-dimensional  domain 
structures  in plane-parallel thin-film  objects 
In this section, the two-dimensional domain structures in 
ideally  soft-magnetic  plane-parallel  thin-film  objects  with 
cylindrical edges perpendicular to the film plane are the 
subject of study.  Here we consider  only magnetization 
configurations  which are not exposed to  an externally 
applied  magnetic  field. As will  be seen,  two-dimensional 
M distributions in which M does not change in the 
direction perpendicular to the film plane (z-axis) are only 
possible  when the external field  is  zero and when the 
object does not carry conduction currents. Moreover, it is 
assumed that the object’s dimensions are large in 
comparison  with the object’s  single  magnetic domain 
dimensions. Under these  circumstances, the author 
reconsidered the micromagnetic equilibrium equations 
and stability conditions for the class  of  ideally  soft- 
ferromagnetic  specimens.  In this kind of medium the 
intrinsic anisotropy is  set at zero,  because the magnetic 
energy  density po A4: is much larger than its anisotropic 
counterpart. In the domains, the spatial variation term in 
the exchange-energy  density can be  safely  neglected. 
Hubert [2 1,221 and LaBonte  [23] demonstrated that this 
exchange term constitutes a second-order effect even in 
the domain-wall  regions of soft-magnetic media. 
Therefore, in first-order approximation, both coupled 
partial  differential equations defining the equilibria 
reduce  [24] to 

H = C(X, Y ,  z)M, ( 1 4  

M . M = M f ,  (1b) 

while their stability  is guaranteed when 
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magnetization  vector and its  magnitude,  respectively. As 
emphasized  above, we shall  confine  ourselves to the 
situations where both the external field and the 
conduction currents in the object are zero. In the same 
order of approximation as (l), the total energy G is  given 
([25l, P. 154)  by 

where the integration  is  over  all  space, and which  is 
minimal when the demagnetizing field H ,  is  zero, so that 

within the object  volume V, and 

M .  n = O  (2b) 

on S;  V defines the space  occupied by the object, and S 
and n respectively denote its bounding surface and the 
outwardly pointing unit vector normal to S. M, and My 
are the lateral M components with  respect to a Cartesian 
coordinate system.  Relations (1) and (2) are the key 
equations of the present  theory. 

Ambiguities in M 
Since we confine  ourselves to the two-dimensional M 
distributions in which M is constrained to lie in the film 
plane, we need  only  consider the projection of M onto 
the x-y plane. One of the dependent variables in (2a)  can 
be  removed by virtue of constraint (1 b), substituting 

M, = MS COS 4 (34  

and 

My = M, sin 4, (3b) 

where $J is the angle  of the magnetization direction with 
respect to the positive  x-axis in the x-y plane. Then 
Equation (2a) transforms into 

which can also  be  written as 

-p sin 4 + q cos 4 = 0, ( 3 4  

being a quasilinear  first-order  partial  differential equation 
of the general  form 

G(x, y ,  4, P, 4 )  = 0. (3e) 

The so-called  characteristics of Equation (3d) are 
defined by the following  set of ordinary differential 
equations (see [26], pp.  61-66): 

d4 dG  dG - =  
dt ap ag 

p-+-"0 ,  

!e="- dG dG 2 

dt ax a4 
p - = p  cos4+pqsin$,  

where t is a position parameter along the characteristics. 
Equations (4a)-(4e)  define a family of curves in the 
(x, y, p, q, I )  space  which are given by the intersection of 
the following  set of hypersurfaces  (see  [26],  pp. 10-15): 

u, = X C O S ~  + ysin4 = C , ,  

us = 4 = c,, 

u s = y - x + , , = c s .  P + 4  
P + 4  

Equations (sa) and (5b) show that each characteristic 
base  curve,  being the projection of the characteristic onto 
the (x-y) plane,  is a straight line with the magnetization 
perpendicular to it. The boundary codt ion,  given by 
(2b), prescribes an alignment of the dipoles  parallel to the 
edge to prevent  surface  charge  from  occurring.  Hence, 
the characteristic  base  curves are straight  lines 
perpendicular to the edge. The latter can be  made 
plausible in the following  way. The characteristic base 
curves are the lines in the x-y plane  along  which a given 
M direction at point P governs M on its surrounding AS. 

distribution on AS, and let the y' axis of the coordinate 
system  with  origin at P be  parallel to M at this point. Let 
A$(x', y ' )  be a differentiable perturbation of 4 satisfying 
A4(0,0) = 0. The magnetic  charge  density p caused by 
this perturbation follows  from the left member of 
Equation (3c) by replacing 4 with 4 + A+. The charge 
density at P is  given by 

Let 4(x', y ' )  define a stable  differentiable M 

This shows that the variation of M only  in the direction 
normal to M is  effective in inducing charge,  charge that 
tends to recover the original  stable situation. This 
direction is in compliance with the normal orientation of 
M with  respect to the base  curve;  however, it does not 
prove the straightness of the latter curve. 543 
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The intersection P of two  base  curves  through  the  edge  points SI 
and S,. (b) All characteristic base curves that intersect at 4 to 4 in an 
elllpse.  The initiating edge points are SI to S,. 

1 of circles. (b) The  position of domain-wall  point P with respect  to the 

? 2 edge points SI and S,. 
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Figure l(a) shows  two  base  curves corresponding to 
two  edge points S, and S, that intersect in the point P 
within the object. M is perpendicular to these  curves, so 
it is obvious that  the edge segments at S,  and S, prescribe 
two incompatible M directions at P. Let  us examine 
more closely the consequences of this straightness and of 
the orientation of M. The boundary condition M n = 0 
shows that the base  curves are straight lines perpendicular 
to the edge. In Figure l(b) a number of these  base  curves 
corresponding to the edge points with parametric 
position coordinates S, to S8 are depicted in an elliptical 
object.  Observe that the base  curves through S, and S8 
intersect at P, and prescribe  two  different directions of M 
at the same point. It is  shown  elsewhere [27] that similar 
conflicting requirements arise in the whole  ellipse,  where 
a maximum of four intersecting  base  curves at one point 
can be found in some  regions. Thus, we are faced  with an 
ambiguity in M, which  is a result of the incompatibility 
of the continuous M distributions that are imposed by 
and extend  themselves from the various edge  segments. 
This  nonphysical  multiplicity in M can be dealt  with 
only by allowing discontinuities in M along  lines [27,28], 
i.e.,  by  allowing domain walls such that the M 
distributions imposed by the various edge segments can 
be  separated and matched. The simplest domain 
structures-the  so-called  basic  structures-that can 
accomplish this task are treated in the next  section. 

The basic domain structures 
As stated  previously, domain walls appear in the two- 
dimensional  images  as  curves  across  which M and the 
attendant base  curves  perform a discontinuous jump in 
their direction. To preserve the solenoidality of M, the 
component of M normal to the wall surface  has to be 
continuous across this surface;  i.e., the bisector relation 
applies ([25], Ch. 5). As a result, the tangent to the 
domain wall at any point P not at the extremity of the 
wall  is  parallel to the bisector of the base-curve  segments 
with extremities at P and the edge points at which they 
originate. 

the basic structure in objects  with an arbitrary lateral 
shape can be  rigorously  derived by using  differential 
geometry [28]. Here we confine  ourselves to stating 
without proof the ultimate conclusion and to discussing 
this result. It was proved [28] that the domain walls  of a 
basic structure constitute the locus of all the centers of 
circles that, first, touch the object edge at  at least  two 
points and that, second, are completely situated within 
the object. 

We illustrate this law  with the well-known Landau- 
Lifshitz structure in a rectangular  platelet  [see Figure 
2(a)]. The circles marked 1, 2, and 3 touch at minimally 
two points at the edge and lie  completely  within the 

The domain-wall pattern and the dipole distribution of 
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platelet, so that their centers, 1 ’, 2’, and 3’, respectively, 
are located at  the domain walls. Note that circle 2 is 
touching the edge at three points, implying that its center 
2’ coincides with a free  domain-wall cluster knot (see 
[23], Ch. 4). Circle 6 is  also  completely situated within 
the platelet;  however, it touches the edge at one point 
only, so that its center 6‘ does not belong to the locus. 

Opposite to this, circles 4 and 5 are touching at 
sufficient  edge points; however,  they are lying only partly 
within the object, so that centers 4‘ and 5’ are not at 
domain walls. Having thus elucidated the law,  let us turn 
our attention to an attempt to comprehend certain of its 
aspects. Figure 2(b) shows point P at a domain wall, 
together  with both base  lines that interconnect P with the 
edge points S, and S,. We apply the Gaussian law to Part 
1 of the object,  which is bounded by the edge and base 
lines PSI and PS,. Bear  in mind  that M is  parallel to the 
bounding surface  of the object, so that 

and therefore, 

From this it follows that PSI and PS, are of equal length, 
because the objects are plane parallel and  thus have a 
constant thickness, and because M is normal to the 
characteristic base  curves. The circle  with radius PSI and 
center P touches the edge at S, and S, because the 
tangents to the edge at S, and S, are perpendicular to PSI 
and PS,, respectively.  Note that this does not imply that 
the circle is completely situated within the object. 

Let us focus on a second consequence of the law and 
take a look at  the extremities of the domain walls. Figure 
3(a) shows one single domain wall along the symmetry 
axis of an ellipse  which  clearly constitutes the basic 
structure of Figure 1 (b). The edge points SI and S, of 
Figure 1 (b), which correspond via the base curves to the 
wall extremities Q, and Q,, demarcate two  edge 
segments,  imposing  two (in principle) incompatible M 
distributions, which are matched at  the domain wall. 
Obviously, the wall at Q, separates the base  curves 
corresponding to the edge points at infinitesimal 
distances from SI and on both sides  of S, . The base 
curves mentioned above intersect at Q, , so that Q, is the 
center of curvature of the edge at SI. It can easily  be 
understood that the radii of curvature are locally  minimal 
at SI and S,. In general [28], each extremity of a domain 
wall in a basic structure that does not coincide with 
extremities of other walls  is  located at  the center of the 
radius of curvature of a convex edge segment  with a 
locally minimal radius. In the case  of  edges  with  vertices, 
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as in the rectangular platelet,  these centers of curvature 
coincide with the vertices. The requirement of  convexity 
to  the edge  segment  follows from the fact that the base 
curves of concave edge  segments  have no points of 
intersection in  the region adjacent to this segment  where 
M is  governed by this segment.  An example is  provided 
by Figure 3(b), where no domain wall adjacent to the 
sole  concave  vertex  betrays  itself,  while, opposite to this, 
each  convex  vertex  has its wall. Figure 3(c) shows the 
positions of the wall extremities in the case  of  two  convex 
edge segments. 

The degenerated domain structure in the circular 
object  of Figure 3(d) deserves  special attention. In this 
case, the family  of  circles mentioned above  reduces to 
one single  circle,  namely the circular contour of the 
object, so that  the wall configuration simplifies to one 
single point in the object center. One single domain wall 
matches the M distributions imposed by both circular 
segments in Figure 3(e). It has  been  proved  elsewhere 
[29] that this wall  possesses an elliptical shape. Finally, 
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Kerr  observations of  basic  domain  structures in rectangular f Permalloy  thin-film  specimens.  Dimensions:  (a) 20 X SO pm,  
1 (b) SO X SO pm; thickness of both specimens Î 350 A. (Courtesy of 

the symmetrical configuration in a regular  hexagon is 
shown in Figure 3(f). Figures 4(a) and 4(b) show the 
basic structures in rectangular Permalloy samples,  as 
observed by  Argyle and coworkers by means of their 
Lamon-Kerr system, in which the M distributions within 
the domains can also  be discerned. The agreement with 
the predicted M distributions is  completely  satisfactory. 
Additional examples of basic structures can be found in 

Until now, only simply connected objects have  been 
discussed. Figure 5(a) provides an example of a simple 
domain structure in a multiply connected object (an 
object  with one or more holes)  which is not a basic 
structure. The corresponding basic structure is  shown in 
Figure 5(b). Note that it is characterized by a greater  wall 
length in comparison with  Figure 5(a), and that the 
actual M distribution exhibits a smaller energy, and, in 
good approximation, is  also solenoidal (divergence-free). 
The observed structure is an example of the 
so-called composite structures coming up for  discussion 
in the next  sections. How this minimal wall-length 

[30-341. 

546 configuration can be  systematically constructed is 

: of 50 pm and film thickness of 2500 A. (b) The corresponding basic 
configuration. (c) Construction of the actual domain structure with 

5 shorter wall length. 

described in [28] [see  also Figure 5(c)]. A more dramatic 
reduction in the wall length in comparison to the basic 
structure is  observed in the ring-shaped  object  of Figure 
6. The inner edge  of this object runs perpendicular to the 
characteristics stretching out from the outermost edge, so 
that no conflicting dipole distributions are imposed by 
the inner and outer edges.  Moreover, note that the 
characteristic base  curves intersect in the center of the 
ring,  where no magnetic material is present. Therefore, 
the origin of the conflicting requirements to M, by which 
the domain walls become inevitable, is removed. This 
ring constitutes an  important case,  for it is a preeminent 
example of the so-called  parallel  regions  discussed in the 
next section. 

The composite  domain structures 
In the foregoing  sections, we have  been  faced  with the 
inevitability  of domain walls as a consequence of the 
nonlinearity of Equation (3) due to the constraint 
M M = Mt . In this section, this nonlinearity also 
emerges as the origin  of multiplicity in the domain 
structure. To demonstrate this nonuniqueness, we 
decompose the area of the object by defining auxiliary 
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edges into a number of disjunct subregions  whose union 
completely  covers the object. In each  subregion, we 
define a solenoidal M distribution with M parallel to  the 
boundaries of the subregion. Of course, these solenoidal 
distributions do not mutually interfere via magnetic 
fields, so that such a decomposition is  always  allowed, 
and the aggregation  of the subdomain structures is a 
feasible  configuration in the object. In order to cover  all 
domain structures possible, we shall  again examine the 
general characteristics of the M distributions in  the 
domains. 

We elaborate a general procedure in  the following 
subsection by which a unique decomposition of the 
object into disjunct subregions that completely  cover the 
specimen is accomplished. This decomposition into 
subregions is completely  defined by the M distribution. 
A procedure is  subsequently outlined from which  all 
feasible  subregions can be derived that cover any 
arbitrary thin-film  object, and that defines domain 
structures satisfying our requirement of  solenoidality. 

Decomposition into subregions 
In Figure 7(a), we have  depicted domain ABCDE, which 
exhibits no interior domain-wall configuration, so that 
the characteristic base  lines (denoted by the thin lines) 
defining M in this domain have no points of intersection 
here.  Moreover, we have plotted all orthogonal 
trajectories (the dashed curves)  of this family  of  base lines 
that pass through the cluster knots A,  B,  C, D, and E (see 
Section 1 for the definition of a cluster knot)  and all 
trajectories that touch at domain walls. Note that these 
trajectories coincide with  field lines of the M vector field 
and are parallels in the geodesic  sense, and  that the 
decomposition of the domain area is uniquely defined. 
Each pair of adjacent parallels bounds a region, a so- 
called  parallel superregion, with a specific  width,  which  is 

i (a) Decomposition of domain  ABCDE  into  regions  bounded  by  the 
parallels through  the  cluster  knots  A,  C,  D,  and E. (b)  Further 

the geodesic distance between the parallels measured 
along the base  curves. 

Let us trace the production of the parallel superregion 
3 across  wall CD. It was emphasized  previously that  the 
bisector relation applies to the M jump across the wall, so 
that the base curves of domain ABCDE intersecting wall 
CD transpose uniquely into base  curves in domain 
CDFGH. The parallels bounding region 3 are produced 
in domain CDFGH without changing the width  of  region 
3 [see Figure 7(b)]. Note that region 3 contains cluster 
knot H, where the flux  of this region  bifurcates. 
Therefore, 3 is further decomposed into 3’ and 3”. This 547 
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(a) Separating domain wall between two adjacent segments (i) and 
( i  + I ) .  (b) The  coupling of three  successive  segments. (c) The 
coupling of four parallel  segments  whose  points of intersection 
at the p-edges  coincide. (d) A complete parallel subregion and its 
domain walls. 

decomposition  also  extends  itself into the original 
domain ABCDE, so that the widths of the subregions 3' 
and 3" are preserved  through  all domains, provided no 
further bifurcation at cluster knots or at domain walls in 
other domains takes  place.  When 3' contains a cluster 
knot in  some domain, a further decomposition  is camed 
out. In this way, a unique decomposition into subregions 
bounded by parallels  can be  specified for  any  solenoidal 
two-dimensional M distribution. (Situations not covered 
above are treated elsewhere [35].) 

Let us examine more closely one such  subregion, e.g., 
3" in Figure 7(b). Assume that this region  is not further 
subdivided by a cluster knot; if this is not the case, we 
consider  region 3"' that satisfies this condition. In  Figure 
7(b), we consider the segment  abcd of 3". At the 
characteristic  through a and b, M is assumed as indicated 
by the arrow, so that M at line  cd can only  have the 
marked direction normal to cd.  Evidently,  line  cd cannot 
coincide  with the object edge, so there must  exist another 
segment  cdef  of 3" that meets  segment  abcd at line  cd. 
Thus, line cd  is  replaced  by  ef.  However, the same 
argument for the extension of abcd  applies  also to abef. 
Therefore, an impeding  expansion of the number of 

548 segments of 3", and, along  with  this, an unbridled  growth 
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of the 3" area, can  only be  warded  off  by  allowing  line  gh 
to coincide  with  ab. 

In other words, 3" and thus all  subregions are bounded 
by two (or in special  cases by one) closed  curves,  which 
are orthogonal trajectories of the characteristic base  lines. 
In principle, the M distribution in these  multiply 
connected  regions bounded by two  of  these  curves-the 
so-called  parallel  (sub)region-is not yet  known,  while 
the simply  connected ones bounded only by one closed 
curve contain the well-known  basic structures. Hence we 
are able to construct all  solenoidal M distributions 
possible  when a general procedure for the derivation of 
the parallel  regions and their M distributions is at our 
disposal. This is the main theme of the following  section. 

Parallel subregions 
As discussed, a parallel  subregion  is a multiply connected 
ringlike area bounded at both  sides by parallels,  which 
are orthogonal trajectories of the base  curves. A specific 
width can be attributed to each  parallel  subregion. We 
compose  each  parallel  subregion by combining basic 
units-the  so-called  parallel  segments-where the width 
of the parallel  segments is equal to the width of the 
parallel  subregion under consideration. The 
magnetization in a parallel  subregion  has a specific 
rotation sense, and the segments of the subregion are 
consecutively numbered in compliance with this sense. 
How the adjacent segments in such a ring are linked and 
what  restrictions  apply are outlined only  roughly  here; for 
further details the reader  is  referred to [35]. We now 
define a parallel  segment. 

A parallel  segment  is a region  with a continuous M 
distribution that is enclosed by two  parallels of a family 
of straight  characteristic  base  lines and two of these  base 
curves at both ends [see Figure 8(a)]. The parallels of 
segment (i) are denoted by (i), or (i), depending on 
whether  they are on the right-hand or left-hand  side, 
respectively, of the arrow  indicating the circulation  sense. 
Clearly,  both  corresponding  edges  of  two  successive 
segments  have to intersect;  however,  they  may  also touch 
each other painvise.  In the latter case, the base curve that 
passes through both points of contact of both 
corresponding edges constitutes the intermediate 
boundary between the effective parts of segments (i) and 
(i + 1). Note that the union of these parts is  again a 
parallel  segment, so that the definition in this case (i + 1) 
does not make much sense.  Figure 8(a) presents the 
opposite situation with  two points of intersection Si,,+ I  

and Pi,,+ I .  Here, the M distributions of segments (i) and 
( i  + 1) are matched by the domain wall running between 
Si,,+, and It  is  shown  elsewhere [35] that this wall 
is the locus of centers of  circles that touch both at 
segment Si,,+, Si and at Si,i+ I  Si+ I  or, alternatively, that 
touch both at segment P,,,+, Pi+ I  and at Pi,,+ I  Pi. Herein, 
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each pair of points (SI,,+, and Si), (Si,i+ I and Si+ I ), 
(P,,, , ,  and P,)  and  and P i + , )  is located on  the same 
characteristic base line. 

Consider the three successive segments (I), (2 ) ,  and (3) 
[see Figure 8(b)]. Of course, we can express the 
separating wall between each pair of adjacent segments in 
terms of a locus of centers of circles.  However, both 
domain walls are not mutually independent. They should 
arise in the right sequence and should not have points of 
intersection. This requirement is  satisfied  when the points 
of intersection of the corresponding edges have the 
correct sequence, and, in addition, when the edge 
segment S2,,S3 does not intersect its pendant Sl, ,Sl  . The 
necessity of the latter requirement is proved in Appendix 
A; however, that such a relationship exists can be 
intuitively seen by bearing in  mind the following. The 
edge segments S2,,S, and S,,,S, together with  edge (2),y 
determine the course of the walls  between parallel 
segments (3) and ( 2 )  and of the  one between segments ( 2 )  
and ( I ) ,  respectively. Of course, for reasons of symmetry, 
a similar restriction applies to edges ( l)p  and (3&. 

The region of segment (2) between the above walls  is 
denoted as x 2 .  The chain of segments in  the parallel 
subregion can be extended at will on  the condition that 
x l  n x2 n . . . n xn = 0,  where n is the total number of 
segments of the subregion. 

We examine briefly one important particular situation. 
Observe that three walls meet at cluster knot C in Figure 
7(b). Thus, three segments  of  region 3” have one point in 
common at the segment edges at this vertex of 3“. Such a 
configuration can be considered as a degeneration of the 
situation of Figure 8(b), when P2,, and coincide in 
the limit. Note that P2,3 and still  arise in  just the 
correct order. Of course, the restrictions to  the shapes of 
the segment edges, as discussed above, apply again. In 
general, we are not restricted to a number of three 
parallel  segments  with one common edge point. Figure 
8(c) shows a combination of four segments.  However, it 
can be shown by the cluster relations [35] (see also the 
subsection on corner clusters) that this number of 
segments must be even  when the vertex  angly inside the 
parallel  subregion  is smaller than x .  

A degeneration of the above situation presents itself 
when we take the vertex  angle equal to x ;  i.e., the vertex 
is  replaced by a continuous edge. From the edge-cluster 
relations [35] (see also the subsection on edge clusters), it 
can be  seen that the number of  parallel segments is even 
and larger than two. An example of a complete parallel 
subregion in which  these types of segment combinations 
can be observed  is  given  in Figure 8(d). 

Construction of the composite structures 
We  now recapitulate the principal findings of the 
previous sections. The decomposition of the area of the 
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(a)  Decomposition of the  object  into  subregions.  Auxiliary  edges  are 
indicated by the  dashed  line\.  (b,  c) Two of the  domain  structures 
corresponding  to  decomposition (a). 

object into a number of disjunct subregions that 
completely cover the object has been introduced. Two 
different kinds of subregions have been distinguished: 
first, simply connected subregions in which the basic 
domain structures are present, and second, multiply 
connected parallel regions with their associated dipole 
distributions. It has been shown that any solenoidal two- 
dimensional M distribution possible in thin-film objects 
can be described in  terms of united subregions with either 
basic or parallel configurations. Therefore, a general 
procedure by which any parallel subregions can be 
constructed suffices to cover all  possible dipole 
configurations. 

The starting point in this construction is the parallel 
segment. A parallel segment is bounded by two field lines 
of the M vector field, the parallels, and, at each end, by 
one characteristic base line. The parallels  have 
continuous directional derivatives, and, measured along 
the characteristic base curves, the edges  have constant 
distance, namely the segment width. A parallel subregion 
is a combination of overlapping parallel segments with 
equal width that constitute a ring-shaped  closed 
configuration. Either two adjacent segments are coupled 
by one  domain wall that interconnects the points of 
intersection of corresponding parallels, or a continuous 
transition exists in  the case  where the parallels of both 
segments touch pairwise. The various segments 
separating domain walls cannot intersect each other and 
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! A number of  composite  structures in which the object  decomposes 
f into  a  number of  simply  connected  subregions.  The  dashed  lines 1 indicate the auxiliary  boundaries of the subregions:  (a)  Permalloy 

(60 X 20 p m ,  thickness 2500 A); (b,  c)  Permalloy (60 pm, thickness 1 2500A). 

can only  have their extremities in common. In the latter 
case,  regions  arise that, at first  glance, can hardly be 
recognized as parallel  regions  [see  Figure 8(d)]. 

During the construction of the parallel  configurations, 
we have  assumed a specific circulation sense of M. It  is 
obvious that the ultimate shape of the parallel  subregion 
and its  domain-wall  configuration are equally  valid  when 
the circulation  sense  is the opposite.  Similarly, the basic 
wall configuration in simply  connected  subregions  does 
not depend on the circulation  sense. On the other hand, 
a 180"  wall must  arise at the intermediate boundary 
between adjacent subregions  with  opposite M on both 

550 sides of the intermediate boundary, so that the domain- 
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wall configuration  is  positively affected  by the circulation 
senses in the various  subregions.  Given  only the shapes of 
the n subregions  in  which the object  is  decomposed, 2'"' 
different  wall  configurations are possible. A few examples 
are  provided by Figures 9(a)-9(c), where  two  of the 
sixteen  possible  configurations are shown.  In  this, the 
auxiliary edges are indicated by dashed  lines.  In Figure 
10, three examples of Bitter patterns are given in which 
the composite structures are simply the composite of a 
number of basic structures in a simply connected 
subregion  whose  auxiliary boundaries are, again, 
indicated by the dashed  lines.  Of  course,  each of these 
basic structures is  again the locus of centers of circles that 
touch minimally at two points of the corresponding 
subregion's boundaries and are completely situated 
within that particular subregion. A Kerr image of the 
same  type  of  composite structure is  provided in Figure 
ll(a), while Figure l l (b)  shows a composite structure in 
the P1 layer of a thin-film  head as observed by  A. Hubert 
and coworkers  (Siemens A. G., Erlangen, FRG, private 
communication). 

parallel  subregions  also  show up are presented in Figure 
12. The domain structure of  Figure  12(a) in a thin 
Permalloy  layer  exhibits  two  cross-tie  types of 
substructures. The area of the object  is  decomposed into 
three  simply connected subregions  along the sample's 
central  axis and two  parallel  subregions. In particular, the 
outermost parallel  subregion  is  composed of a large 
number of parallel  segments,  which are coupled in a 
rather complex  fashion.  Figure  12(b)  shows an 
interpretation of  DeBlois's observation of a composite 
structure (see  Figure 11 of [36]). This structure catches 
the eye  because  two  "floating" domain walls are present 
with unconnected extremities in  the middle of the 
specimen. The fundamental possibility of such situations 
is elucidated by the simply  connected  subregion of the 
dumbbell  type,  which contains two  concave  segments. 
Figure  12(c)  shows another example of a complex 
composite structure borrowed  from  DeBlois  (see  Figure 
32  of [37]),  which demonstrates the validity of the 
procedure  presented  above  for  specimens in which the 
impact of the anisotropy is  distinctly  visible.  References 
[2,33, 36-42] represent an arbitrary selection  from the 
literature with  photographs of composite structures in 
thin-film  elements, and [43-481  of this kind of domain 
configurations in soft-magnetic  whiskers. 

Composite structures with  greater  complexity in which 

Discussion of the solenoidal domain structures 
From the above  examples, it can be concluded that we 
are faced  with an overwhelming  variety in structures and 
also in actual objects. All  of these structures in a specific 
object  have the same energy  when the anisotropy and 
wall  energy are neglected. Transformations between  these 
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(b) 

f Kerr  image  of  composite  structures: (a) An array composed of basic 
! substructures  (courtesy of B.  Argyle  and  coworkers, IBM T. J .  

Watson  Research  Center, Yorktown Heights, NY). (b)  The P1 layer 
of a thin-film  head, length 100 p m ,  thickness 5000 A (courtesy of 1 A. Hubert andcoworkers,  Siemens A.G.,  Erlangen, FRG). 

solenoidal configurations can  be realized by gradually 
varying the shapes and distribution of the subregions, on 
the condition that  the geometrical rules for the parallel 
regions remain obeyed. No energy bamcade is erected 
against these conversions, which, therefore, are reversible. 

I - - - - - - - - -  

# I  
J I  I t  

I '  ' ! z z - " -  1 1  I 
I 1  I 

"""""" _"""" 

Composite  domain  structures with parallel subregions: (a) Permalloy 
specimen (60 X 30 pm, thickness 2500 A). (b)  Interpretation of 
domain  structure of Figure I 1  from [36]. (c)  Interpretation of domain 
structure of Figure 32 from  [37]. 
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The latter need not necessarily be true when an external 
field  is present, because the M distributions are no longer 
solenoidal. There are strong experimental indications [49] 
that there exists a close correlation between the domain 
structure and the distribution of the Maxwell  field, and 
that the latter penetrates the domains. As a consequence, 
the system's  energy for a given external field  will  likely 
depend on the domain structure. A similar dependence 
on the domain geometry was observed in garnet layers, 
where  it  leads to topological  hysteresis  [50], in which, 
however, the domain-wall energy  also  plays an essential 
part. Even so, the wall-stray  fields in soft-magnetic 
elements may result in a net hysteresis [5 11 (see  also 
Section 4). 

In the ideally soft-magnetic objects, these wall-stray 
fields originate in the domain-wall cores,  where the 
torques due to the first-order variation in  the exchange 
energy,  which is not covered by constraint (1 b), are 
counterbalanced by magnetic  fields.  However, there is a 
much more obvious reason that accounts for  differences 
in the energy among the various domain structures. 

the anisotropy energy upon domain structures. This 
energy will certainly be different for the various domain 
structures in a given sample. In elements with small 
lateral dimensions, there is a tendency toward domain 
structures with a minimal wall length, i.e., toward basic 
structures in simply connected objects. This can be 
explained as follows. Given a certain lateral shape, the 
wall and anisotropy energy are a linear and a quadratic 
function of the linear scaling factor of the lateral 
dimensions, respectively. Therefore, the anisotropy 
energy dominates in objects with  large lateral dimensions 
and thus tends to enforce complex structures-the 
composite structure-in order to reduce the area of 
domains with an unsuitable M distribution. 
Experimental support of this statement is abundantly 
provided  by,  e.g., the previously  cited  works  of  DeBlois 
i36-371. 

A brief  discussion of  DeBlois's [37] broad view of the 
order in the domain structure is  called for. He defined 
topological diagrams involving a number of closed loops 
in  the  domain structure along which there is  flux closure. 
It  is self-evident that these  closed loops resemble the 
parallel subregions. On the other hand,  in general, each 
DeBlois loop contains a number of  parallel and simply 
connected subregions.  However,  DeBlois's approach is 
meant as a schematic analytic tool and is not an attempt 
to predict the possible domain-wall configurations in  his 
rectangular thin-film objects. 

A discussion of the work  of Williams [ 5 2 ] ,  who 
confined  himself to domain structures in ideally  soft- 
ferromagnetic thin-film elements with polygonal lateral 

Until now, no  attention has been paid to  the impact of 

552 geometry, is  also timely here. His domain configurations 
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exhibit a very  close resemblance to  the basic domain 
structures presented in this paper; however,  differences 
reveal themselves in the case  of objects with concave edge 
segments. In the polygonal simply connected segments to 
which Williams confines himself, this situation presents 
itself as soon as vertices are present that cover an arc 
larger than 180" inside the specimen. In this situation, the 
basic structures have shorter wall lengths and thus lower 
wall  energy and are therefore more likely. It is  self- 
evident that, because  of these deviations, the Williams 
structures do not fit into our unifying description of the 
basic structure in terms of loci  of centers of  circles. 
Moreover, the present approach not only covers a wider 
range of object geometries but also the large  variety of the 
composite structures. Finally, this work  offers a 
methodology by which all possible configurations can be 
generated in a systematic fashion. 

Let  us reconsider our solenoidal domain structures 
from the viewpoint  of  topological defects [53]. In our 
two-dimensional projection of M, the  domain walls 
constitute one-dimensional defects,  i.e., lines of 
discontinuity in M. Toulouse and Klitman [54] proved 
that only point defects are topologically stable in a two- 
dimensional vector of  fixed magnitude. In their view, any 
basic structure in simply connected objects should always 
contain only one point defect, having winding number 
one, while more point defects  may arise in composite 
structures. The inconsistency in  the conclusions of the 
present and the topological approach can be explained as 
follows. The topological theory is  based on the 
continuous extension of M into the interior of a closed 
curve, at which a continuous M is defined, while, in  the 
present theory, we impose the extra requirement of 
solenoidality on M. This implies that  the above extension 
of M is subjected to  an extra requirement of the 
solenoidality on M, implying that the above extension of 
M is subjected to extra restrictions. It is  still an unsolved 
problem whether these requirements of solenoidality also 
require line and surface  defects to occur in the three- 
dimensional vector fields. In the near future, an answer 
to this question will likely be found by means of the 
three-dimensional theory presented recently [55] .  

3. Domain-wall  clusters  and  their  conversions 
In  Section 2, we have  focused on the two-dimensional 
divergence-free M distributions in the plane-parallel thin- 
film  objects. Unfortunately, we cannot rely, in  the ideally 
soft-magnetic objects, on the assumption of solenoidality 
when an external magnetic field is applied. Up to now, 
no theory that provides explicit solutions for the M 
distribution has been developed. This even applies to the 
category  of the ideally soft-magnetic media, although 
these are governed by the relatively simple constitutive 
equation ( 1 )  and  the Maxwell equations for the quasi- 
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static case. The reason  for this is the nonlinearity 
introduced by the constraint M . M = Mz. We therefore 
return to a less ambiguous  local  approach. 

We focus our attention at those  locations  where the 
most information can be  derived  from  observations 
about the M distribution and where extra constraints are 
imposed  on M. Domain walls are the best  visible 
magnetic  features, and as a  consequence  those  positions 
where a number of these domain walls  meet are 
preeminently  suitable as the object  of  study.  Therefore, 
the domain-wall  cluster is defined as the  collection of  all 
domain walls that have one region-the  so-called  cluster 
knot-in common. In this  paragraph, we present  a 
number of relations that correlate the mutual domain- 
wall positions and the dipole  distribution in the domains 
in the immediate  vicinity of the cluster  knot. The mean 
lateral M component ( M ), averaged  over the film 
thickness,  will  herewith be the central parameter. The 
extent  of the region  in  the  lateral  direction in which 
sufficient  correlation exists is  sufficiently  large  in 
comparison to the domain-wall  core  widths that a two- 
dimensional  projection of the M distribution on the film 
plane suffices. Thus, the domain walls  show up as simple 
lines. 

We do not  derive the formulae  used,  since  a  derivation 
can be found in [25]. Instead,  special attention is  devoted 
to relatively  simple  clusters,  which are frequently 
encountered  in  practice.  In  this way,  we hope to 
emphasize the usefulness  of the cluster  concept as an 
analytic  tool  from which much additional information 
can be  derived.  Moreover, it reveals  much about the 
general  order  in the domain-structure transformations in 
the  soft-magnetic  thin-film  objects. 

Domain-wall clusters: Static properties 
We formulate  a few starting  points,  assuming that no 
singularities  in the magnetic  space-charge  density  can 
occur  within the ideally  soft-magnetic  objects  except  for 
their  bounding  surfaces, at which  surface  charge  can  be 
present.  This  implies that no net  surface  charge  can  be 
present at the  domain-wall  surfaces;  i.e., the component 
of M normal to the wall  surface  is continuous across  this 
surface.  This  introduces  a  relationship  between the wall 
surface  and  the M directions at both sides,  a  correlation 
often  referred to as the bisector  rule. 

The validity  of this assumption is  carefully  considered 
elsewhere [25]; however, its ultimate origin  can  easily  be 
understood.  Equation (1) prescribes that outside the wall 
cores, the total Maxwell  field H should be  parallel to the 
magnetic  dipoles at both sides  of the wall  surface. The 
dipole  rotation  across the wall  surface  has  a 
discontinuous  character, at which the M component 
tangent to this  surface  exhibits  a jump. The Maxwell  field 
H is continuous in  a region  where the magnetic  space- 

charge  density  remains  finite, so H must be zero at the 
wall in  these  circumstances. Of course,  surface  charge  can 
be assumed at the wall  surface;  however,  such  a  charge 
pattern gives  rise to a  discontinuity  in the field 
component normal to the wall  surface  instead  of  parallel 
to the surface. It has  been  shown [25] that in the presence 
of this  surface  charge, it is  impossible by the addition of a 
continuous field to obtain  a situation where the total 
Maxwell  field is  simultaneously  aligned  along the dipoles 
at both sides  of the wall. Therefore, the total Maxwell 
field  is  zero at the wall, and the bisector  relation  applies 
in the present  idealized situation of  perfectly soft- 
magnetic  media. Of course,  differences  will  occur due to 
the finite  width  of the actual wall cores and  due  to the 
unavoidable  residual  traces of intrinsic anisotropy. A 
rough  estimation  teaches  us that the impact of  these 
perturbations is the largest  for domain walls  with about 
zero  wall  angle. The deviation  from the bisector  rule in 
this worst  case is about a few degrees  from  realistic  layers 
and media. 

Above,  we have  discussed the impossibility  of  surface 
charge at surfaces  within the object.  Next, we shall  pay 
attention to line-charge  singularities, and, in particular, to 
those that might  coincide  with the cluster knot. Here,  a 
careful  analysis  is omitted (see [25]); rather, a  display  of 
the essential  ideas  is  pursued.  Let  us  focus on the dipole 
distribution of Figure 13(a), which  shows the top view  of 
one of the simplest  dipole  configurations that gives  rise to 
a  space-charge  singularity. This circular M pattern with 
constant  radial M component (MI) produces  a  charge 
density p = ( M , ) / r  within the cylinder about the cluster 
knot with  height h, equal to the film thickness.  Here, r is 
the distance  with  respect to the cylinder  axis of P, the 
point  where p is  determined. By applying the Gaussian 
law and the relation V M = -V . H, it can easily  be 
seen that a  discontinuity  arises in the radial component 
HI of the field H when  passing  through the cluster knot 
[see the diametric points P I  and P2 in Figure  13(a)].  Since 
both points P I  and P2 can be chosen at a very short 
mutual distance, the contribution He to the Maxwell  field 
H of the other field sources  located  outside the cylinder is 
in good approximation equal in PI and P2. Since HI is 
opposite to (MI) at both PI and P2, it is  impossible to 
select He such that Equation (1) is  simultaneously 
satisfied in both P I  and P2. As a  result, this space-charge 
line  singularity  represents no feasible  dipole  constellation 
in ideally  thin-film  objects. It is  shown  elsewhere that the 
same  conclusion  applies to the general line singularity. 

An important implication of the absence  of  these  kinds 
of singularities  reflects  itself at the cluster  knot.  Actually, 
the above  paragraph  leads to the conclusion that (MI) 
has to be  zero;  i.e., no net (M) flux is allowed into the 
cluster knot in any sector.  Let  us have a  look at the M 
distribution  near the cluster knot 0 between the domain 553 
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(a) A circular dipole distribution with a radial M component <M,> 
near the cluster knot. (b) The continuous magnetization modes with 1 res ect to the cluster knot 0. 

walls (1) and (2) [see Figure 13(b)]. A jump in the M 
direction takes place at a domain wall (1). As a result, a 
radial M component is always  present at both sides of 
this domain wall,  which  is  ostensibly inconsistent with 
the above  conclusion  concerning ( Mr). However, note 
that any  first-order perturbation of a uniform distribution 
also  does not focus the M flux in a p-divergent  fashion. 
Therefore,  two sectors-the  so-called uniform sectors- 
extend  themselves at both sides  of  wall (1).  Each of them 
covers an arc I 4; - (a, + 7r/2)1,  where 4; and aI are 
respectively the (M) direction at infinitesimal distance 

554 from wall (1) within the domain in question and the 
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direction of the tangent to wall (1) at 0. Since the space- 
charge  density  is  finite  within  such a uniform sector, the 
rotation of M across this sector  declines to zero at a very 
short  distance  from cluster knot 0. Of  course, a similar 
uniform  sector bounded by  wall (2) and the dashed curve 
at the left in Figure  13(b)  is  present adjacent to wall (2). 
Between the dashed  curves, a sector-a  so-called rotation 
segment-remains in which M rotates in a circular 
fashion about the cluster knot. Here, (M,)  reduces to 
zero at  an infinitesimal distance from the knot (an 
analytic derivation is  given in  [25,26]). 

modes  have  been traced for  tracking the course of M 
about the cluster knot: to wit, the uniform sectors 
adjacent to the domain walls and the rotation segment in 
the middle of the domain sector  between  two uniform 
sectors,  being bounded by two  segment edges [the dashed 
curves in Figure  13(b)]. A domain that merely contains 
one single uniform sector  with  respect to a specific cluster 
knot 0 will  be called a uniform domain of that cluster 
[see Figure 14(b)]. On the other hand, a domain that 
contains two uniform sectors and one intermediate 
rotation segment will be referred to as a rotating domain 
of the specific cluster [see Figures 14(a) and 14(c)]. It 
should  be  noted that the sector  angle p of the rotation 
segment  may  be  zero in a degenerated rotating domain 
[see Figure  14(a)], so that the M rotation across the 
domain sector  reduces to zero near the knot; however, it 
is  still a rotating domain, containing segment walls. 

the clusters  which  is  based on the position of the cluster 
knot  with  respect to the object edge. This distinction is 
inspired by the difference in the boundary conditions that 
apply for clusters (see Figure 15) with knots located at 

In  conclusion,  two  different continuous magnetization 

Finally, we shall put forward a classification  scheme  for 

1. No edge-the  free clusters. 
2. One edge-the  edge clusters. 
3. Two  edges-the comer clusters. 

The free  clusters are considered  first.  These are 
characterized by a great  flexibility in the mutual domain- 
wall positions and in the M distribution that corresponds 
to a specific  domain-wall pattern. 

The free wall clusters 
The course of the lateral ( M )  vector through a domain 
near the cluster knot is determined by the mutual 
positions of the rotation-segment  walls and the domain 
walls. A free  cluster  is a cyclical  system in that the (M) 
direction must return to the direction of departure after 
tracing ( M )  at  an infinitesimal  circle around the knot 
over 360". This constraint imposes limitations on the 
possible combinations of rotation segments and uniform 
sectors.  Here, a number of these  relations are merely 
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posed,  whereas the formal  proofs can be found in 
[25,56, 571. 

Rotation segments  have  been traced as one of both 
magnetization  modes that can exist in the domains. The 
course of M through such a segment  is determined on 
the one hand by the sector  angle pi [see Figure  13(b)], 
and on the other hand by its circulation sense,  which 
may  be either clockwise  or  counterclockwise.  It was 
proved that the circulation  senses of the rotation 
segments in a specific  free  cluster are identical. 

domain walls arise as well-delineated  features in most 
images,  whereas rotation segments are often  hardly 
visible. This fact hampers the analysis of the free  clusters. 
Therefore, it is  interesting to know  whether the uniform 
domains, which are lacking  these rotation segments, can 
occur. A uniform  subcluster  is  defined  as the unbroken 
collection of all uniform domains in which  each  member 
has at least one domain of the collection  next to it.  It was 
proved that each  uniform  subcluster  consists of an even 
number of uniform domains. Even  so, a rotating 
subcluster  has  been  defined as the unbroken collection of 
all rotating domains in which  each member has at least 
one rotating domain of the collection  next to it. Such a 
subcluster contains an arbitrary number of domains. Of 
course, the question arises  whether there exist  free 
clusters  consisting  merely of uniform domains-the so- 
called  completely  uniform  clusters.  It  has  been  proved 
[25, 571 that completely  uniform  free  clusters can exist, 
and that these  comprise an even number of domains 
larger than three. 

In summary, it can be concluded that three different 
situations can present  themselves: to wit, the free  cluster 
may  be a completely  uniform  cluster, it may contain an 
equal number of uniform and rotating subclusters, or, 
finally, it may  be a completely rotating cluster. 

Across a domain wall, M changes  jumpwise, and a 
specific  clock-sense can be attributed to this jump,  at 
which a specific observation direction, say from  above,  is 
presupposed  [see Figure 16(a)]. This clock  sense  becomes 
distinctly apparent when the domain structure is 
visualized by Lorentz microscopy. In Figure 16(b), the 
deflection pattern of the electron  beam near both 
domains of Figure  16(a)  is  depicted.  Observed  from the 
condenser  side of the microscope, the clockwise and 
counterclockwise domain walls appear respectively  as 
dark and bright bands in the image. It should  be 
emphasized that the clock  sense of the walls  is  always 
discerned in the Lorentz  image,  while the M distribution 
in the domains is  only  accessible  when the object  exhibits 
ripple due to stochastic  spatial  variation in the physical 
parameters. Let  us return to the clusters and have a look 
at Figure 14 again.  Figure  14(b)  shows a uniform 
domain, and it can be  seen that the clock  senses  of  both 

In the Introduction, it was emphasized that only the 
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domain walls bounding that domain are opposite. It can 
be  formally  proved  [25] that this inversion in clock  sense 
is characteristic for uniform domains. As a consequence, 
a uniform (sub)cluster  consists of a pattern of domain 
walls  with alternating clockwise and counterclockwise 
rotation senses. In a Lorentz  image,  such a completely 
uniform  cluster appears as a line pattern in which  each 
dark line  is  enclosed by two  bright  lines, and vice  versa. 
Returning again to Figure  14, we  see that parts (a) and (c) 
show rotating domains in which the clock  sense  of both 
enclosing domain walls is identical. It can easily be seen 
that this relationship always  applies for the rotating 
domains.  Therefore, it can be concluded that each 
rotating  (sub)cluster  merely contains domain walls with 
one  specific  clock  sense. 
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TOO view 

Cross section 
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1 Definition  of  the  positions  of  the  domain  walls a, and  the M 
directions +z and 6; in the uniform sectors of domain (i). 

where n 2 i 2 0 and k is an integer. In Equation (7a), 
j 

7;  = (-l)"-h'a, 
h = i  

(a) The  clock  sense of rotation of M across  a  domain wall when 
viewed from the condenser lens side of the electron  microscope. 

f (b) The deflection of a parallel electron beam and the image of a 
domain in the object plane of the magnifying lens of the electron 

f microscope. 

Let  us  explicitly  define the mutual positions of the 
domain and segment  walls  in  a  free  cluster. The direction 
angles of the consecutive domain walls  satisfy the 
inequality  (see Figure 17): 

I 

0 < ( Y ~  < . < < < * < (Y, < 2 ~ .  (6) 

The domain (i) may contain a  rotation  segment, so that 
the directions 4i and 41! of the in-plane (M) components 
in the uniform  sectors  adjacent to domain walls (i - 1) 
and (i), respectively,  are  related by 

41: = 4j + P i ,  

where Pi denotes the sector  angle of the rotation segment. 
By exploiting the bisector  rule,  a  straightforward 
procedure [25] yields 

and 

if j r  i r  1, but  for j < i ,  

p; = 0. 

Note that 4, = 

our previously  posited  general  rules to the simplest 
possible  free  clusters. 

only is the simplest  cluster  possible  [see Figure 18(a)] 
which  is  always a  completely  rotating  cluster. The 
rotation segment  angle  may vary  between 360" and zero. 
In  the latter degenerate  case  with j3, = 0, the domain wall 
disappears, and a  locally  uniform M state is present.  Two 
examples  of  these  free  singlets  can  be  seen in Figure 3; in 
general,  however,  they do not tend to show up very 
frequently (for other examples,  see [36, 371). 

The  cluster  next  in complexity-the  free  doublet- 
contains two domain walls.  It contains rotating domains 
only. It can be  seen from  Equation (7) that the rotation 

Let  us  apply the above rather complex  formula and 

The  free  singlet that contains one single domain wall 
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segment  angles 8, and P2 are correlated  with the mutual 
domain-wall  positions aI  and a2 by 

where k is an integer. It follows  immediately  from (8) 
that PI = P2 when both domain walls are in line. Figure 
18(b) provides an example. On the other hand, both 
domain walls are at  an angle  when PI = 0 and Pz # 0 [see 
Figure 18(c)]. Figure 18(d) shows the tip of  a zigzag 
domain which frequently  represents this condition 
[58,59]. It is obvious that such  a  free doublet with one 
uniform domain has no reason for existence in soft 
magnetic  media from the present point of  view. When 
carefully  observed, the image  presented by  Wade [60], 
duplicated in Figure 19, is presumably  a more accurate 
representation of the  tip of the zigzag  wall. 

Let  us  shift our attention to the free triplets marked by 
B in Figure 19. Judging  from the alternation in  the clock 
sense  of the domain walls in that Lorentz  image,  a 
uniform  subcluster is present in each of these  clusters. 
Note that these uniform subclusters do indeed  consist of 
two  domains. A detailed  analysis of this situation [25] 
indicates that such  a  uniform  subcluster can only  exist 
when all three domain walls are located  within  a  sector 
smaller than 180'.  However, it can easily  be  seen  by 
comparing Figures 18(e) and 18(f) that this is a 
necessary condition, though not a  sufficient  one. The 
triplet of Figure 18(g), which is a reconstruction of the 
Bitter pattern of Figure 20, has to be the completely 
rotating type, judging from the arc over  which the 
domain walls are distributed.  Observe that the rotation 
segments  betray their presence by a  rippled circular 
distribution of ferrofluid  whose centers of symmetry 
coincide  with the cluster knot. A Lorentz photograph 
(Figure 21) provides  several  examples of completely  free 
triplets, which do not satisfy the uniformity condition. In 
each  of  these  clusters, the domain walls  show up as a 
pattern of either solely dark or solely  bright  lines.  It 
should  be  emphasized that all  Lorentz  observations of 
this kind of free triplets presented in the literature [60- 
641 confirm our predictions of their rotating nature. Let 
us determine when all domains of the triplet are 
uniformly  magnetized. From Equation (7), it follows by 
putting q54 = that 

which  simplifies to 

for the situation with  only  uniformly  magnetized 
domains. We take 9, = 0, so that y: is either 7r/2 or 

" 

/ 

the domain walls at the cluster knot. (d) The  tip of a zigzag wall. (e) A I uniform subcluster in a free triplet. (f) A domain-wall configuration 
3 of Figure (18e) with only rotating domains. (g) Reconstruction of the ' free cluster of Figure 20. 

3~12. In principle, both cases are equivalent and are 
represented by Figure  18(e)  when the only rotating 
domain remaining is also  uniformly  magnetized. 
Subsequently,  for q 5 1  = ~ / 2 ,  the only situation of interest 
is  defined by y: = P which, in principle, corresponds to 
the completely rotating free  cluster of Figure  18(g),  when 
all domains are uniformly  magnetized. 
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Lorentz image of free subclusters with uniform subclusters
indicated by B and two pairs of nonlinked domain walls which
potentially constitute the zigzag tips (courtesy of R .H . Wade [60]) .

.1 is :rofluid pattern of a completely rotating free triplet with traces
that show the presence of the rotation segments (Permalloy thickness
^5 nn A),

The number of domain walls in the free clusters
considered up to now has been too small to yield
completely uniform free clusters, which according to our
view should contain at least four domain walls . Figure
22(a) (due to Herd et al. [40]) shows four completely
uniform free quartets . According to Equation (7),

yI = (a4 - a3)+ (a2 - a1)

is equal to a for such a cluster . This type of pattern is
558

	

frequently met in thin Permalloy films and is well known
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Lorentz image of several edge clusters of completely rotation-free
triplets and of two completely rotating free quartets (courtesy
of S . R . Herd, IBM T. J . Watson Research Center, Yorktown
Heights, NY) .

as cross-tie wall. The Lorentz image due to Feldtkeller
and Fuchs [65] [see Figure 22(b)] demonstrates the large
number of domain walls that can reveal themselves in
one single (in this case free) cluster .

Let us recapitulate the most important properties of
the free cluster as discussed above .

1 . The sector angle of a specific domain of a cluster can
generally be decomposed into two uniform sectors
adjacent to the domain walls and a rotation segment
in the middle-a rotating domain, or ttis angle
contains one single uniform sector-a uniform
domain .

2. The rotation sense of the rotation segments is the
same in a specific free cluster .

3. The uniform subclusters consist of an even number
larger than one of uniform domains, while no such
restriction applies to the rotating subclusters .

4. A completely uniform cluster consists of an even
number of domains and walls larger than three, while
an odd cluster contains at least one rotating domain .

5 . The clock sense of the domain walls alternates in a
uniform (sub)cluster, while it is the same for all walls
of a rotating (sub)cluster .

The edge clusters
The edge cluster is characterized by the location of its
cluster knot at one of the edges of the object. In contrast
to the free clusters, any closed path around the edge-
cluster knot contains a finite arc outside the magnetic
medium, in which the previously signified rotation
sectors and uniform sectors have no meaning . Therefore,
it should be expected that the general order in the edge
clusters deviates from that in their pendant-the free
clusters.

The location of the edge-cluster knot at the edge of the
object has important implications for the correlation
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between the M distributions in both outermost domains 
of the edge cluster. The M component normal to the 
edge must  be continuous at the edge and thus across the 
cluster knot, in order to prevent discontinuities in the 
surface-charge  density  from  occurring.  Such  a 
discontinuity should lead to a  singularity in the tangential 
component of the total Maxwell  field,  which should 
cancel out the discontinuity, as can be  seen  from 
Equation (1). Because  of the continuity in the normal 
component in M, a rather strong correlation exists 
between the magnetization directions in both outermost 
uniform sectors of the edge cluster.  Two situations can be 
distinguished first, the M components tangential to the 
edge in both outermost uniform sectors are parallel-the 
so-called odd edge  clusters-or they are opposite, 
resulting in even edge  clusters. It has  been  proved 
elsewhere [25,66]  that an odd edge cluster  consists of an 
odd number of domain walls larger than two [lo], while 
an even  cluster  with the opposite tangent M components 
at the edge contains an even number of domain walls 
larger than one. Moreover, it has  been  revealed  [25] that 
the edge clusters  merely contain uniform domains. This 
fact indicates that a  close relationship exists  between the 
mutual positions of the domain walls and the M 
distribution near the cluster knot. This inter-"waveness" 
is  reflected by the following  relation  [25]  for an edge 
cluster  with n walls  (see Figure 23): 

n- 
+ i + l  = - - (-1f+n7y + 27; - (-1fkn- + ki2n-, (10) 

2 

where  ki = 0, f l ,  k2,e. + ,  with 
j 

7; = (-l)'-hah, 
h=i 

i f j  2 i 2 1. If this condition is not satisfied, 7; = 0. 
The parameter k is either zero or one, and is  fixed  for  a 

specific  edge cluster. It is  obvious  from Equation (10) that 
the M distribution, apart from  a  freedom of 180" 
represented by k,  is  uniquely  specified by the mutual 
domain-wall  positions.  It is often convenient to have an 
explicit  expression  for the domain-wall  angle I ICi I of  wall 
(i) at our dsposal, which  follows  immediately  from 
Equations (7b) and (10): 

I ICi I = I +;+I - +i I 
i+n n 

= 21(-1) + 7;" + *li I (1 1) 

where l i  is  chosen  such that 0 5 1 I 5 n-. 
Since the above  formulas, though general, are a  little 

obscure,  they are made  explicit in Table 1 for  a number 
of simple  clusters  which are frequently met in practice. 

Within the present  framework, the edge singlet,  i.e.,  a 
single domain wall  with an extremity at a smooth edge,  is 
only  possible  when the domain wall touches at the edge. 
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Table 1 The magnetization directions 4; and  the wall  angles 1 I/J, I for singlet, doublet, triplet, and quartet edge  clusters. 

Cluster type M directions, 4 
(For M' = -M; Q + u = 6') 

Wall angle, #i 
0 5  I I / J i l  <7r 

Singlet 
n =  1 

Possible only when wall touches edge 

Doublet 
n = 2  

Triplet 
n = 3  

Quartet 
n = 4  

1, = -1; (a, - a2) > - 
7r 

2 

1, = -1; (a3 - a,) > - U 
2 

The reason  for this can easily  be  understood. A domain lateral component ( M )  parallel to the film  plane-across 
560 wall  is characterized by a finite jump in "the average the wall surface.  It can easily  be  seen (Figure 24) that  the 
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M directions at opposite  sides of the wall are related by 

The M component normal to the edge must be 
continuous across the knot; i.e.,  cos 4, = cos 4z in order 
to prevent  a  surface-charge discontinuity. From Equation 
( 1 3 ,  it follows that this condition is  satisfied  only  when 

= a ,  f 4 2 ,  i.e.,  when the wall  angle  reduces to zero at 
the edge, or when the wall touches at the edge. Thus, an 
isolated  distinctive domain wall  with  extremities at the 
edges points to  an acute edge deformation or to a  lack in 
the resolution  power, so that satellite  walls remain 
undetected, or to a  relatively  large  domain-wall  core 
width, so that the discontinuous character vanishes, and, 
finally, to a  three-dimensional domain configuration. 

In  practice, edge doublets such as those  shown in 
Figure 25(a) are frequently encountered. Note that the 
clock  senses  of the walls are opposite in the Lorentz 
image. This should be  expected,  since the edge clusters 
consist  merely of uniform domains. At  low external 
fields, the magnetization tends to be parallel to the edge 
4, = 0 or T ,  so that the angle  between the walls should be 
about ~ / 2  [see Equation (12a)], which  is in compliance 
with the images  discussed  above.  Observe that, apart 
from the uncertainty of T,  only the angle (al - az )  
determines the M directions in the outermost domains of 
the edge doublet [see Figures 25(b) and 25(c)].  Consider 
a  degenerated doublet of  which one wall,  e.g.,  wall ( 1 ), 
touches the edge at 0. From Equation (12e), it is  seen 
that the wall  angle  reduces to zero;  i.e., the doublet has 
been  converted into the only  possible  singlet. This 
degenerated doublet state is of great  significance  for the 
doublet creation, as we shall see. 

The edge triplets in the Lorentz image  of  Figure  2 1 
also  exhibit the alternating pattern of  black and white 
domain walls. Note that the middlemost domain walls 
are most visible; this has  also  been  observed in numerous 
images of the edge triplet by means of the ferrofluid 
technique. Equation (1 3)  provides an explanation. In the 
next  section, we demonstrate that all  of the walls  of the 
edge triplets tend to develop  themselves  along the same 
line-the  so-called  creation  line-and the angle (a ,  - az )  
is  relatively  small, so that 1 , , 1 2, and 1 are zero in 
Equations (1 3e-g). It is obvious that the wall  angle I Gz I, 
being 2(az - a l ) ,  is equal to the sum of I GI I and I G3 I. 
Therefore, under the assumption that all walls  possess the 
same  type of structure, the visibility of this middlemost 
wall  is the best.  Again,  from Equations (1  3e-g), it is 
readily  understood that deviations from this trend are 
expected when the domain-wall  angles  become  large. 
Consider the degenerated triplet in which  two,  e.g.,  walls 
(1) and (2), of the three walls coincide. From Equation 
(1 3g), it follows that the angle of  wall (3) is zero and that 
the M distribution resembles  a continuous configuration 
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when the infinitesimally  small  sector  between walls (1) 
and (2) is  ignored.  Consider the triplet of  which  all the 
walls coincide. All  wall  angles reduce to zero [see 
Equations (1 3e-g)], and a continuous M state results. 
This extreme situation will turn out to be  of  great 
significance to the creation of the edge triplets. 

condensed into the following  statements: 
The main characteristics of the edge clusters can be 

I .  The edge clusters are completely uniform clusters, in 
which the clock  senses of the walls alternate 
consecutively  when  tracing the cluster in a clockwise 
or counterclockwise direction. 

directions, a one-to-one  correspondence  exists 
between the mutual wall positions and the M 
distribution of the cluster. 

3. The M components tangential to the edge in the 
outermost domains are parallel in an odd edge cluster 
and are opposite in an even  edge  cluster. 

2. Apart  from an uncertainty of 180” in the M 

The corner clusters 
In corner clusters, the cluster knot is situated at an object 
corner, at which, in principle, the normal to the edge 

562 performs a discontinuous direction change. The acuity of 
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the actual comer is  of  decisive  significance to the 
properties of the M distribution. When the corners are 
rounded off, the “corner” cluster  behaves as a hybrid of a 
corner, edge, and/or free  clusters  [25]. For that reason, 
the general  relations  for the corner clusters  have a smaller 
practical  scope than that of the previously  discussed 
cluster  relations. 

One of the peculiarities in the M distribution near the 
comers is the occurrence of persistent  magnetized  states. 
Because this subject was  discussed  extensively in [25], we 
confine  ourselves to a brief outline only.  Let  us  consider 
an acute corner, say with comer angle 11 = 90” [see Figure 
26(a)]. An external field H, is  applied,  which  forces M to 
have a component normal to edge (1) near the corner. 
However, at the comer, the surface-charge  density due  to 
this normal M component diminishes and a singularity 
in the field component parallel to the edge under 
discussion  arises.  At  first  glance, the enormous strength of 
this field should  force M to orient itself  parallel to edge 
(1); however, a normal M component at the other corner 
edge (2) will develop  itself in  that case. Note that the 
signs  of the charges at both edges that tend to arise are 
equal, so that the total field is oriented as indicated in 
Figure  26(a). In the stable  configuration, the 
magnetization near the far corner is directed parallel to 
the bisector of both edges (1) and (2). Note that the role 
of the demagnetizing  fields  has  been converted from a 
force that tends to a situation with  zero  mean  object 
magnetization into a force that, at least  locally,  creates a 
magnetized state which appears to be rather persistent. 
These  “locked”  regions, in which the demagnetizing  fields 
are magnetizing,  have a significant impact on the 
hysteresis  of the soft-magnetic  objects. In such a region, 
only the domain walls that coincide  with one  or both 
edges can occur in the ideally  soft-magnetic  media  [24]. 

The situation in  an obtuse corner is  slightly  different 
[see Figure 26(b)].  Again, the external field H, forces M 
to create a positive  charge at edge (1).  However, this 
time, the charge at edge (2) has the opposite  sign, and the 
ultimate M direction near the far corner is perpendicular 
to the bisector of both edges. In light of the above 
discussion, the significance  of the acuity of the comer is 
obvious and needs no further comment. It should be 
discerned that the charge  collected at the top and bottom 
surfaces  of the film near the corners may  have a 
significant contribution to the field distribution in the 
corner region  when the rounding radius is too large 
compared to the film thickness. In this situation 
deviations,  particularly in the acute corner, occur with 
respect to the M directions predicted  above. 

The foregoing arguments tend to lead to the conclusion 
that the corner clusters in perfect  objects should only  be 
present when the external field  is  zero. This is not always 
true, as can be deduced from Figure 26(c), in which the 
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external field H, is rotated over 45" with  respect to Figure 
26(a). In this case, a vanishingly small magnetic surface- 
charge density suffices in the corner to compensate Ho. 
Away from the vertex, a finite surface charge takes care 
of this compensation. As a consequence, domain walls, 
i.e., corner clusters, can be located in such a corner 
region. 

The above discussion indicates that the magnetization 
in the outermost uniform sectors of a corner cluster is 
parallel to  the  comer edges. It has been proved elsewhere 
[25] that the clusters in the acute corners (i.e., with 
comer angle q < X )  are always completely uniform and 
satisfy 

L 

where n is the  number of domain walls and 7:  is  given 
by Equation (7b). In an obtuse corner with 17 > T ,  

rotation segments may occur in the corner sector that is 
90" apart from both edges. The completely uniform 
clusters in these obtuse corners satisfy Equation (16). 
Moreover, it can be shown that any completely uniform 
comer cluster in which the M vectors in  the exterior 
domains are either both pointing toward the cluster knot 
or both away from the knot contains an even number of 
domain walls. A completely uniform corner cluster with 
an odd number of domain walls has an M vector 
pointing toward 0 and one pointing away from 0 in both 
exterior domains. A number of examples of completely 
uniform corner clusters in Permalloy elements are 
presented in Figure 27. A reasonable agreement with 
Equation (1 6) is found. Figure 28 shows Lorentz images 
due  to  Gondo et al. [67], where the  comers are 
magnetically saturated. 

Domain-wall clusters: Reversible transformations 
In the previous section, we have covered the correlation 
between the mutual positions of the  domain walls in  the 
clusters and the M distribution near the cluster knot  in 
the domains. Two M modes, namely the uniform sector 
and  the rotation segment, can be distinguished. The 
location of the cluster knot with  respect to the edges  of a 
thin-film element determines the combination of uniform 
sectors and rotation segments that can occur in a specific 
cluster. This connection emerges  very distinctly in the 
edge  clusters,  which  lack the rotation segments. 

of domain-wall clusters. Clusters are added to and/or 
removed from the domain structure during its 
development phase.  How the various clusters can 
transform and join an already  existing domain 
configuration is  discussed in this section. 

bear a reversible character within finite  ranges of the 

Domain structures can be considered as concatenations 

The conversions in the M distribution are known to 
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external field as long as its  time rate of change is 
sufficiently small. This only applies when the impact of 
structural defects,  which may particularly hinder the 
motion of the domain walls and the cluster knots, is 
negligible. The subordinate role  of the imperfections is 
one of the prerequisites that must be met by the soft- 
magnetic media which are the subject of this paper. At 
the boundaries of the above reversible  ranges, an 
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The locally uniform  state  with  two  creation  lines  at  either side ofthe 
cluster knot. 

instability in the magnetization structure heralds a short 
period of agitated  spin motion, during which  energy is 
dissipated.  In contradiction to this, the conversions in the 
reversible  ranges take place  via a continuous sequence of 
equilibrium  states, in which the dipoles in the entire 
object are in stable equilibrium in each intermediate 
stage.  In  this  section, we confine  ourselves to such 
reversible transformations. 

In  general, the magnetization  conversions take place by 
a coherent movement of domain walls and by a 
simultaneous rotation of the dipoles in the domains. The 
domain structure develops by concatenating domain-wall 
clusters. One possible  reversible manner of adding 
clusters can be  summarized  as  follows.  Those  clusters 
that do not have  all  of their domain walls connected to 
other clusters  may initiate the creation of  new clusters 
which are then annexed to the domain structure. The 
addition of a novel  cluster  requires the formation of  new 
domain walls  of finite  length. The dipoles  within and 
adjacent to this domain wall must  suddenly rotate over a 
finite  angle,  when the wall  angle  of  such a novel domain 
wall  is finite in the earliest  phase of its  existence. This 
process  must  be attended by energy  losses in order for the 

564 precession of the dipoles to die out. Therefore, the wall 
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angle(s) of a domain wall@)  with a finite  length($ should 
be  zero during the incipient phase  of a reversible  process. 
Of course,  its  pendant-the  vanishing of a domain 
wall-should take place by a gradual decline to zero of 
the domain-wall  angle. We refer to the former reversible 
process, in which domain walls are added, as (sub)cluster 
creation, and  to the latter as cluster fading. Their 
irreversible counterparts are called (sub)cluster nucleation 
and annihilation, respectively. 

Apart  from  (sub)cluster creation, one other reversible 
process-so-called cluster furcation-exists by which the 
number of clusters can be  increased. In principle, the wall 
angle(s)  of the newly created domain wall(s) are finite 
from the very beginning,  while the wall length(s) grow(s) 
from  zero in the incipient phase to a finite  value, so that 
a jumpwise alteration in the M distribution only takes 
place in  an infinitesimally  small  volume. As a 
consequence, no energy bamcade is  raised  against this 
process. Upon cluster furcation, the cluster knot of an 
already  existing  cluster  is  split up  into two or more knots. 
These knots are generally interconnected by one  or more 
intermediate domain walls. The length(s) of these newly 
formed intermediate domain wall(s) increase(s) from zero 
in the beginning to a finite value. The above  cluster 
furcation has its pendant in the cluster fusion, at which 
two or more cluster knots amalgamate in a reversible 
fashion. 

Both  categories of reversible  cluster  processes are 
closely examined in the two  following  sections.  An 
exhaustive treatment is not pursued; rather, the various 
possibilities are elucidated by means of a restricted 
number of frequently occumng conversions. 

(Sub)cluster creation and fading 
As discussed, the wall angle(s) of the newly added 
domain walls are zero during the incipient phase of 
(sub)cluster creation. The gradual growth  of  these wall 
angles during their development from  zero  implies that 
each domain wall should initially  coincide  with an 
orthogonal  trajectory of the original continuous M vector 
field through the (prospective) cluster knot. A strong 
coherence  between the domain walls has to be  expected 
when the domain walls  of the new (sub)cluster  coincide 
with the same trajectory,  which we call the creation line 
of the (sub)cluster.  It  is  obvious that  the wall angle  of 
each domain wall along this creation is zero at the 
beginning. Further discussion is focused  completely on 
the creation process,  because the cluster fading  is a 
duplicate of the cluster creation which  progresses in  just 
the opposite  direction. 

prospective  cluster knot 0 in a region  of continuous local 
uniform  magnetization (see Figure 29). Two creation 
lines at either side of 0, indicated by K~ and K ~ ,  offer the 

Consider the creation of a free cluster with a 
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possibility  of  subcluster creation. First, we assume that 
the creation process  confines  itself to one side,  say  along 
K I  . Note that 9, and +;+, remain parallel, so that the 
subcluster  along K I  bears  close  resemblance to the odd 
edge cluster;  i.e., it merely  consists of uniform domains 
between an odd number of domain walls. It can be 
shown  [25] that  at least  one  of the two  subclusters  is of 
the uniform  type, containing an odd number of domain 
walls,  while a rotation segment  may  be  present in its 
counterpart. A rotation segment contains an infinite 
number of potential creation  lines  along  which new 
subclusters can develop  themselves. No such  creation 
lines are found in the uniform domains and, as a 
consequence, a completely  uniform  cluster  should  be 
transformed into a cluster  with a rotating subcluster 
before the number of  walls can be  changed.  Let us 
proceed to the edge  clusters. 

It  has  been  discussed  in the subsection on edge clusters 
that the edge clusters  merely  consist of uniform domains, 
and as a consequence no subcluster can be  added or 
removed  in a reversible  fashion.  With  this, the subject of 
the modification of the edge cluster  seems to be 
terminated. However, do not forget the creation of a 
complete edge cluster.  In Figure 30(a), the creation line 
with prospective cluster knot 0 is  depicted in a region 
adjacent to the edge  with continuous magnetization.  In 
principle, an edge cluster can be created.  Note that the M 
in both prospective  exterior domains has to be  parallel. 
According to the subsection on edge clusters, an edge 
cluster  can  only  have an odd number of domain walls. 
An  edge  singlet is impossible  because the creation line  is 
not parallel to the edge in Figures  30(a) and 30(b). 
Consider the creation of an edge triplet in detail. A slight 
change in the external field  forces the triplet to unfold, at 
which the domain walls start to rotate about the cluster 
knot 0. Simultaneously, the wall  angles  gradually  increase 
from  zero to a finite  value.  According to Equations 
(1 3e-g), the wall  angle of the middlemost wall  is  always 
the largest in this phase, and, in general, its visibility  is 
the best.  Depending on the observation technique, it 
might  occur that only the middlemost wall can be 
resolved  in the incipient phase of the creation, so that the 
impression of an edge  singlet  might  develop.  How about 
the even  edge  clusters? 

Because  of the uniformity of the domains in the odd 
edge cluster, the even  edge clusters cannot develop 
themselves  from the normal odd edge clusters by a 
subcluster creation process. The degenerated 
configuration  with one single domain wall that touches 
the edge at the prospective doublet knot 0 constitutes the 
only alternative [see the subsection on edge clusters and 
Figures 30(c) and 30(d)]. Note that a creation line  is 
present  along  which  uniform  subclusters  can  develop.  In 
view  of the original continuity of the M distribution near 
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the creation line, the number of donlain walls in the 
subcluster  is odd [compare Equations (1 3d) and (1 4e) or 
(12c)l. In other words, an even edge cluster can be 
created. This time, the uniform subcluster may consist of 
one  single domain wall. In order to enforce this wall, the 
touching domain wall must rotate around knot 0, and 
the wall  angle  of  wall (1) increases in compliance with 
Equation (12d) [see Figure  30(d)]. 

Both  of the edge cluster creation processes  discussed 
above are very frequently  observed, and a number of 
examples are reviewed in the course of this paper. 

Cluster furcation and fusion 
In the previous  section, it was emphasized that the 
creation of (sub)clusters  is  often  impossible  because of 
the absence of adequate creation lines,  as  for  example in 
the edge and the comer clusters. The cluster furcation 
constitutes an alternative by which the required domain- 
structure transformations can yet take place. 

During cluster furcation, a cluster knot is split into two 
or more  knots,  which are connected by (an) intermediate 
domain wall($  which  have  zero  length during the 
incipient phase. The directions of these  early  walls are 
determined by the M distribution near the original knot 
just prior to its furcation. Of course, the actual cluster 
knot possesses finite dimensions, so that a finite field 
change  is  required to separate the knots and to let the 
intermediate domain walls  arise.  As a result, the course of 
these walls  will deviate  slightly  from that derived  from 
the somewhat  simplified view  of the M distribution in 
this study. 
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, (a) A completely rotating free quartet. (h, c) The furcation of the 
., completely rotating quartet into two free triplets. 

Another feature of cluster furcation is  closely 
interwoven  with the internal structure of the cluster 
knots. The dipole configuration in the knot is  closely 
bound up with the number of interconnected domain 
walls and their structures, the M distribution in the 
continuous regions near the knot, the film  thickness, the 
magnetic  history,  etc. Therefore, it may happen that  the 
knot structures have to bear a completely  different 
character before and after the furcation. It is certainly not 
evident that the transformations of the original  cluster 
knots can take place without overcoming energy 
thresholds.  Such transformations, when not blocked, are 
attended by  energy  losses and are irreversible.  Here, we 
ignore  these  aspects of the internal structure 
transformation of knots and focus on  the global 
relationship between the mutual orientation of the walls 
and the M distribution near the knots.  Again, we confine 
ourselves to the presentation of a few illustrative 
examples. Further information can be found in [25]. 

intermediate domain wall  is determined by the M 
As already stated, the orientation of the newly formed 

566 distribution just prior to the furcation. We make this 
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statement explicit by considering the furcation of a 
completely rotating free quartet [see Figure 31(a)] into 
two  free  triplets. One of the two  possible realizations is 
presented in Figure 31(b). The intermediate domain wall 
between 0, and 0, cannot carry a net charge, so it is 
directed along the normal to the bisector  of both 
magnetization directions M, and M,. This wall direction 
is uniquely determined when the domains separated by 
the intermediate wall are uniformly magnetized. (Note 
that a uniform domain is  always uniformly magnetized; 
however, a uniformly magnetized domain might  also  be 
of the rotating type.) A greater  flexibility  exists  for the 
furcation mode of Figure 31(c), because each 
combination of a magnetization direction from the 
rotation segment  in domain 2 with a corresponding one 
from the rotation segment in domain 4 yields a potential 
direction of the intermediate wall. Figure 32 provides an 
example of  such a cluster furcation in a Permalloy 
element. 

"r 

I 
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(a) A completely uniform quartet. (b) A possible furcation of the 
9 quartet of (a). 

Let us focus on a completely uniform free quartet. A 
possible furcation is  presented in Figures 33(a) and 33(b). 
More frequently, the transition of the quartet knot into 
four knots is  observed.  Such a transformation in a 
Permalloy element is  presented in Figure 34. The 
complexity  of this furcation likely originates in a 
conversion in  the internal wall structure when the wall 
angles  of  two  of the quartet walls  grow beyond a certain 
critical  angle at which a Bloch-type structure has a lower 
energy than the original Nlel wall. 

illustrated in Figure 35, which  shows a rare example of a 
sequence of Lorentz images  of a cluster conversion. This 
cross-tie wall can be  regarded as a periodic pattern of the 
combination of a completely uniform free quartet and of 
a free doublet with  two rotation segments [69]. As far as 
we can see, the direction of the intermediate domain wall 
is  defined by the zero wall charge principle. The “wings” 
of the quartet gradually  decrease in length upon the 
approach of the knots. Note that  the wings become 
bowed  when the symmetry of the locations of the doublet 
knots with  respect to the quartet  knot is removed. These 
curved wings separate the rotation segments from the 
uniform environments, so that  the area occupied by the 
rotation segments  gradually  reduces to zero. Ultimately, 
the free quartet and doublet transform into a degenerated 
free doublet with  two  degenerated rotation segments, i.e., 
a continuous Nlel wall. The inverse advance is 
demonstrated in Figure 36. A 180’ Nlel wall in a 
Permalloy element is  moved through a defect,  which 
reveals  itself  by a little ferrofluid cloud [see  arrow in 
Figure  36(a)]. Upon passing, a pair of clusters is 
generated. The one at the left must be the completely 

Another frequently observed cluster conversion is 
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i The furcation of aquartet into two quartets and two triplets: (a, c) the 
.” quartet and its M distribution near the knot; (b, d) the situation after 

the furcation. 

uniform quartet, while its counterpart is a free doublet, 
i.e., a Bloch line. Note that  the quartet’s domain wall at 
the object-edge  side  betrays  itself by a broadened cloud of 
ferrofluid,  which  is apparently a consequence of the 
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mismatch of a stepwise-changing M pattern near a wall 
and the requirement of the continuity of the surface 
charge at the edge. 

The above  examples of  free quartet conversions 
provide an impression of the enormous variety in the 
furcations. Let us treat one final  example of a frequently 
occumng process,  namely an edge-triplet furcation into 
two  edge doublets (see Figure 37). The change in the 
orientations of the old domain walls  of Figure  37(a)  is 
negligible during the furcation, so that the angles a,, a2, 
and a3 in Figures  37(a) and 37(b) may  be  considered 
equal.  From Equations (12a) and (1 3a), it follows that a4 

568 = aj - a2 + 2a,. Even so, the doublet-wall orientation a5 

w3 <c4 

f The generation of a completely uniform quartet and free doublet pair 
by passing through a  defect; Permalloy (60 X 30 ym,  thickness 

4 700 A). 

I *. * il 

$ 

in Figure  37(b)  is equal to 2a, - a2 + a ,  - ?r by virtue 
of Equations (1 2c) and (1 3d). In other words, this 
furcation process can be  completely  described in terms of 
the cluster  relations. An example of this edge-triplet 
splitting  is  presented in Figures  37(c) and 37(d). Note 
that the exterior  walls of the triplet are difficult to see in 
the ferrofluid  image, a fact that has  been  previously 
noted. 

4. Reversible  and  irreversible  domain 
transformations viewed from  the  perspective of 
wall  clusters 
In Section 3, we  were occupied  with the local coherence 
between the mutual domain-wall positions and its 
repercussions on the M distribution near the cluster 
knots. We have  unveiled a high  degree  of order in these 
clusters and have  shown that the number of domains in 
such  clusters can be adapted by only two kinds of 
reversible  processes, to wit  (sub)cluster creation (fading) 
and cluster furcation (fusion). During this discussion we 
have  dealt  only  with the geometrical  aspects of the wall 
clusters and their transformations. No attention was paid 
to the question of  how or why a particular cluster  comes 
into being. This omission  is  considered in this section. 

It has  already  been  emphasized  several times that any 
domain structure can be  conceived as a concatenation of 
domain-wall  clusters. During the development of a 
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i The furcation of an edge triplet into two  edge  doublets and a  free 1 uniform in-plane external field H,, parallel to the longitudinal (long) a triplet: (a,  bjedge-triplet splitting; (c) H, = 640 A/m (=  8.0Oe); (d) 1 \ample  axi\ which increases froill zero i n  (a) to H;y in  (d). Permalloy 
1 H, = 460 A h  ( =  5.8 Oe). (60 X 2 0  pm. thickness 2500 A). 
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domain structure, domain-wall  clusters are added to and 
removed  from the domain structure. These alterations 
may take place in either a reversible or irreversible 
fashion, so that wall clusters,  being a static concept,  seem 
only to be relevant to part of the domain conversions, 
i.e., to the reversible  ones.  However, this will appear not 
to be the case.  Indeed, the meaning of the wall-cluster 
concept is most apparent when the conversions at the 
reversible  branches  of the hysteresis loop are investigated. 
A high  degree of order appears to characterize the 
domain-structure progression at the reversible  branches, 

which can easily  be comprehended in terms of cluster- 
creation processes. On the other hand, this concept  also 
provides a tool for the analysis of the M distribution just 
before and just after an irreversible transformation, and 
allows us to trace the wall constellations that initiate such 
a conversion. 

When an external field  is  applied  along the 
longitudinal  axis (Figure 38), the 180" wall  moves  toward 
the edge  of the sample,  while  small jumpwise 
displacements due to the interference of defects  can be 
detected.  However, notwithstanding these  defects, this 
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The position B of the  center of the 180" domain wall with respect to 
the  central  longitudinal  symmetry  axis of the sample  as  a  function of 
H,); H,, is parallel to this symmetry  axis. B = 0 corresponds  to  the 
position of the longitudinal symmetry  axis at H,, = 0, i.e., at the 
midpoint of the  sample width: B = 1 indicates that the wall is at the 
long edge  of  the  specimen.  Sputtered  samples  (sp)  2500 A thick: lift- 
off  samples (lo) 700 8, thick.  Lateral  dimensions: (1) 60 X 10 pm, 
(11) 60 X 20 pm,  and (111) 60 X 30 pm.  

Table 2 The field  strengths H i 1  and H:* as a function of the 
lateral dimensions and the thickness of the Permalloy specimens. 

Sputtered synples 
(2500 A) 

Lift-off sayples 
(700 A) 

Size Hg' H? Size Hi1 
( ~ m )  (A/m) (A/m) (rm) (A/m) 

60 x 30  3050  2590 6 0 X  30 835 
60 X 20 2360 1675 6 0 x 2 0  685 
60 X 10 1370 380 6 0 X  10 535 

movement  is  basically  reversible, as can be  concluded 
from Figure 39, where the relative  position B of the 180" 
domain wall's midpoint with  respect to the longitudinal 
sample  axis  is  displayed as a function of H, for  Permalloy 
samples (83 Ni  17 Fe)  with  various lateral dimensions 
and thicknesses and manufactured by both sputter 
etching and the lift-off technique. For both categories, the 
wall displacement can be understood in terms of 
magnetostatic fields,  which dominate the torque 
equilibrium of the dipoles. 

We descend a little  deeper into the magnetostatic 
aspects  of the above  domain-wall  displacement  which 
terminates at the field Hi' when the center of the wall 
touches the edge. First of all, we want to explain the 
dependence of the H:' on the sample's  width and 
thickness. In order to satisfy Equation (I), charge is 

570 required in each  half of the sample  for the compensation 
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of the external field in the regions  where the dipole 
direction  strongly  deviates  from H,. The total amount of 
charge in each  half can be  derived  from the 
magnetization at the cross  section in the middle of the 
sample by employing  Gauss's theorem. The position of 
the center of the Bloch  wall can be used as a measure  for 
the charge  stored in each  half,  which  is predominantly 
located at the object's boundaries. Since a sample  having 
a smaller  width  needs, at the same H,, a greater amount 
of the charge  per unit of the width  of the cross  section in 
each  half to cancel the same H,, it follows that the wall 
reaches the edge at a lower  field Hi' in the samples of 
smaller  width. 

This is  confirmed by the experiments (see Table 2). 
Since in all  cases the film thickness is very small in 
comparison to its width and length and H, is a uniform 
field, the surface-charge pattern required is, in a first- 
order approximation, independent of the thickness of the 
sample. As a consequence, the H:' of thicker samples  is 
larger than the field required for thinner samples  (see 
Table 2). It can be  seen in Table 2 that Hi' for the 
700-.&-thick  lift-off  layers  divided  by Hgl for the 
sputtered layers  with equal dimensions is 0.274,0.290, 
and 0.390 for the samples  with  widths of 30,20, and 10 
pm, respectively. The thickness ratio of the lift-off to 
sputtered samples  is  0.28, so there is  good quantitative 
agreement, in particular for the samples  with  widths of 
30 and 20 pm. 

Furthermore, note that the curves of the Bloch  wall 
position in Figure 39  belonging to increasing and 
decreasing  fields  of the sputtered sample  almost  coincide, 
which  shows that the wall friction  inside the specimens  is 
rather small. This might  be anticipated because  of the 
low value  of the wall-friction field H, in comparison with e. In addition, note that most of the change in M 
consists of a rotation of about 180"  of the dipoles in the 
region  covered by the movement of the Bloch  wall. As a 
consequence, the anisotropy energy  of the samples  is 
hardly  affected. 

field Hi'. A further slight increment in H, lets this wall 
be torn apart into two  pieces. The subsequent sudden 
shrinkage in its  length  causes a large portion of the 180" 
wall to collapse; no doubt an irreversible transition is 
involved.  Judging  from the area of the triangular tip 
domains just before and after the transition, this 
irreversible event is accompanied by a rotation of M in 
the direction of H,. 

As soon as H, has  exceeded this critical value, we can 
be  assured that the field penetrates into the sample, 
because no extra  charge is available for compensating 
H, - Hg'. It is  often  observed that the ferrofluid  is 
asymmetrically distributed with  respect to the 
longitudinal  axis of the sample. More ferrofluid  is found 

As stated, the Bloch  wall midpoint touches the edge at 
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at the sides  of the triangular domains that contain the 
edge doublets.  Consequently, the field penetrates at these 
values of H, into the opposite  side in the middle portion 
of the sample. This indicates that  an asymmetric 
distribution may  already  be  present when H, < g', 
implying that the field penetration has  already taken 
place in an earlier  stage. 

A surviving part of the Bloch  wall  reveals  itself near 
each  sample tip [see  Figure 38(d)]. Note that this wall 
does not touch the edge any  longer and is at  an angle.  In 
the subsections on edge clusters and (sub)cluster creation 
and fading, we concluded that a second wall, i.e., an edge 
doublet, must  reveal  itself. This second wall is very 
visible near one of the doublet knots in Figure  38(d).  It 
must  have  developed  along a creation line and, 
subsequently, must have  increased  its  angle, so that it 
possibly  has a NCel structure. This opinion is supported 
by an estimation of the wall  angles  based on Equations 
( 12d) and ( 12e),  with aI = 20" and a2 = 106". We 
estimate that I $ I = 40" for the new  wall and 144"  for the 
Bloch  wall. The better visibility  of the small-angle wall 
can only be traced back to a difference in the internal 
structure. Note that M near the doublet knot is still at a 
small  angle  [4";  see Equation (12a)l to the edge. 

Upon a further increment in H,, these doublet knots 
are pushed  along the edge toward the sample  ends. 
During this movement the knots sometimes temporarily 
hold at some points and subsequently catch up by fast 
displacements.  When H, reaches the maximum, H Y ,  
both doublet knots are at the shortest distance from the 
tip. When H, is  increased to higher  values, a second 
irreversible jump takes place at which the triangular 
domain with the doublet knot as a vertex  collapses. In 
this case, the continuous M distribution arises  with the 
dipoles pointing toward the object comer [discussed 
extensively in the subsection on corner clusters; see also 
Figures  26(a) and 281. For this experiment, the external 
field  is  kept  below the critical  value at which this second 
irreversible transformation takes  place. 

Transformations on the descendingflank of the B-H 
loop 
As  yet  we have  reported no significant impact of the 
influence of the manufacturing technique and the 
magnetic anisotropy on domain behavior in thin films. 
These effects are revealed, and are much more 
pronounced, on the descending  flank of the B-H loop. 
Our discussion  is  based  mainly on the very  soft 
Permalloy (83 Ni 17 Fe) composition, in which the role 
of  defects dominates, while the influence of the 
anisotropy  is mentioned briefly. A remarkable 
incongruence  between the domain-structure development 
of the sputtered and lift-off  samples  comes to light. The 
simpler of the two, the sputtered sample, is discussed  first. 
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(a) (b) (c) (d) (e) (t) (8) (h) (i)  

1 Domain  conversions in a  sputtered  sample  measuring 60 X 10 p m  
j and 2500 A thick,  as  a  function of H,, which  increases  from 0 in part 

(a) to 2740 A/m (=  34.4 Oe) in (d) and as H, decreases uniformly 1 starting in (e) and reaching 0 in (i). 

Sputtered sample 
Figure 40 shows a long  rectangular  specimen (60 x 10 x 
0.25 pm) in which the uniform external field parallel to 
the longitudinal axis  increases  from  zero in Figure 40(a), 
via H:' in 40(c), to the maximum H Y  = 2740  A/m in 
40(d). Upon a subsequent reduction in H,, both doublet 
knots can  be  seen to have  been  shoved  toward the 
middle.  Note that these knots in Figure  40(g), a 
photograph taken just before the second  irreversible jump 
at H r ,  are much closer to the center of the sample than 
at H,"=; the knot displacements are mainly reversible, 
although, as on the ascending  flank, some interference of 
defects can be  observed. At H r ,  a jumpwise 
transformation takes place  from the configuration of 
Figure  40(g)  toward the one in 40(h). A rough estimation 
of the object's  mean (M) component along H, in Figures 
40(g) and 40(h) reveals a significant alteration (A (M) = 
0.4Ms), so that, just as at Hg', the irreversible jump  at 

is accompanied by magnetic  hysteresis. A further 
reduction in H, causes the 180"  wall to return to the 
specimen's central (long) axis at H, = 0 [Figure 4O(i)], so 
that the object's  hysteresis curve exhibits the course of 
Figure 41. Note that defects are not essential in this 
hysteresis  effect.  Moreover, it should be mentioned that 
the above evolution is advanced by a longitudinal 
uniaxial anisotropy, as is  elucidated in the next  section. 

Lift-off sample 
As in the sputtered sample, both edge doublets in the lift- 
off sample  initially tend to move  toward the longitudinal 
center upon a reduction of the longitudinal field H,,. 
However, this time the doublet knot is held up during the 
reduction phase of H,,. 

At the ends of the sample, the M direction deviates 
strongly  from the direction of H,, while it is  parallel to 
& in the central portion of the sample.  Obviously, the 
total charge  available for each  half  of the sample is 
collected in the ends, where it tends to cancel H,,. In the 
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A typical hysteresis curve of a sputtered film sample where <M> is 
f the object's mean M component in the direction of H,. 

i (a) Knot 1 just before fixation. (b) Rotation of the doublet walls and g the M rotation caused by acharge spreading upon further reduction in 
5 H, after the fixation of knot 1. (c) The edge-triplet creation with a 
i knot at the opposite edge. 

hypothetical case in which this charge pattern does not 
vary after the doublet's stagnation, the resulting 
micromagnetic h = H, + Ha + H, (in which Ha is caused 
by the intrinsic anisotropy) arises in these end domains as 
H, is further reduced. The net field h cannot be  parallel 
to M here, so that the charge near each end, whose 
amount is  fixed as long as M is parallel to H, in the 
midplane perpendicular to the sample longitudinal axis, 
has to be distributed over  a  large area near the end. 

This enlargement  is  accomplished by rotating the 
doublet walls about its knot and by increasing the length 

572 of  wall (1) in Figure 42. The angle  enclosed by both 

HUGO A.  M.  VAN  DEN BERG 

doublet walls remains about 90" during the rotation, 
since M remains almost parallel to  the edge on both sides 
of the doublet knot. Therefore,  given the fixed doublet 
knot, the rotation of the doublet walls is closely  related to 
the displacement of free-triplet knot 2  relative to doublet 
knot 1. This rotation causes M between the doublet walls 
to rotate in the direction perpendicular to  the 
longitudinal sample  axis. This tendency is enhanced 
when the easy uniaxial anisotropy axis is normal to the 
sample  length; the doublet knot is inclined to proceed 
along the edge  when the anisotropy axis is in the 
direction of the sample  length. 

In the case that the doublet knot keeps  its  position, the 
decreasing external field causes domain wall (1) to 
increase in length in order to spread the tip charge  over  a 
large area. As a  consequence, the extremity of  wall (1) 
threatens to coincide  with the opposite  sample  edge. 

As discussed in the subsection on (sub)cluster creation 
and fading, an edge cluster comes into being  with  a knot 
at the left  edge and at the extremity of the orthogonal 
trajectory that extends domain wall (1) in  the originally 
continuous M region  between the tip of wall (1) and the 
left  edge.  Wall (1) serves as the seed  wall  of the edge 
triplet. Of course, this cluster will  be an odd edge cluster, 
since the M directions in the outermost domains are 
parallel.  Usually, the simplest  configuration possible-the 
edge  triplet-will  develop.  Observe the rotation sense  of 
the M jump across wall (1) near knot (1). It  is obvious 
that only the chirality of the middlemost wall  of the 
newly formed edge cluster fits that of  seed  wall (1). 
Initially, all triplet domain walls coincide  with the 
creation  line,  while  all three wall angles are then zero. A 
subsequent  decline in H, causes the triplet to unfold  by 
both outermost walls rotating around their knot [see 
Figure  42(c)] in the opposite direction with  respect to  the 
middlemost  one,  i.e.,  seed wall (1). Simultaneously, the 
wall angles of all three walls must grow from zero to 
some  finite  value. 

of the growth  of the wall  angles  of all three walls from 
zero [70]. This wall structure is preserved during their 
further development. To balance the exchange torques in 
the cores of these walls, a  charge distribution with dipole 
character-called the wall  dipole-is induced in each 
core, in which the dipole  vector is perpendicular to  the 
wall surface. The ultimate direction of this wall dipole is 
parallel to the M direction in the middle of the Niel wall, 
as we shall  see. As stated above, the field  of the wall 
dipole  balances the exchange torques Le, in the wall  core; 
the directions of Le, depend on the chirality of the wall 
[see Figure 43(a)]. In general,  these  exchange torques 
tend to rotate the dipoles in the core  parallel to the dipole 
direction in the middle of the core. In Figure  43, in 
which the triplet walls are schematically  depicted as being 

These walls are all of the symmetric Niel type  because 
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E (a, b) The torque equilibrium in the domain-wall cores of a triplet. Hw 6 
is the wall-dipole field and Lex is the exchange torque. 

parallel,  these  exchange torques are indicated. Note that 
the wall-dipole  field H,, which  balances Le,, always  has a 
component opposite to the core magnetization, and that 
all  wall dipoles point approximately  in the direction of M 
at the creation just prior to the creation of the triplet, and 
are thus about parallel to the external H, at that instant. 
The fringing  fields of the wall dipoles  inside the domains 
H, are parallel to one another and  to q,"" [see Figure 
43(b)].  In other words, H, forces the magnetic  dipoles in 
the domains to rotate in the direction of H,"", and this is 
the origin of the wall  hysteresis. A quantitative estimation 
of its impact is  given  later in this section. 

As an intermezzo, focus  again on the anisotropy. It is 
obvious that a strong longitudinal easy-anisotropy  axis 
tends to prevent the unfolding of the triplet in order to 
avoid large domains on both sides  of the middlemost wall 
of the triplet, where M deviates  strongly  from the easy 
direction. The opposite  occurs when a strong easy axis  is 
perpendicular to the longitudinal axis of the specimen. 
Triplet wall (3) [see  Figure  42(c)] rotates strongly and 
increases  simultaneously in length in order to optimize 
the region  where M turns toward the easy  axis;  however, 
this is  all  subjected to the requirement of the stability of 
M, in which the magnetostatic torques still  play the 
dominant role. 

the opposite  specimen edge, so that the game of  edge- 
A further reduction in H, causes wall (3) to approach 

1 from (a) to (e). Permallo (60 X 20 pm, thickness 2500 A). 
i The development of the concertina structure (CS) as H,, decreases 

triplet creation has to be  repeated. This time, wall (3) in 
Figure  42(c) constitutes the innermost wall  of the new 
edge triplet with a knot at the right  edge. This coherence 
can be comprehended by comparing the chiralities of the 
newly created  edge-triplet  walls  with one of the seed  wall 
(3). Again, the wall dipoles of these newly added walls are 
parallel to H T  and thus increase the magnetic  hysteresis. 
This triplet creation process  repeats  itself upon further 
reduction in H, (see Figure 44).  These triplets can be 
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removed  again in a continuous fashion by an 
intermediate period of increasing H,, which indicates that 
the edge-cluster additions are reversible, notwithstanding 
their contribution to the hysteresis. 

It  often  occurs that the doublet knot performs a 
jumpwise  displacement to a subsequent stagnation point. 
This unstable character of the doublet-knot position 
shows that pinning must  be  involved.  Along  with the 
doublet-knot displacement, a fraction or all of the already 
created edge triplets disappear, so that  the wall  hysteresis 
is  reduced. It should be  emphasized that the edge-triplet 
knots jump less  frequently,  while, in addition, such a 
jump has  less impact on the rest  of the domain structure. 
This distinction can be understood because M near and 
in the doublet knot deviates  strongly  from the continuous 
nearly  uniform M distribution in the domains, while, 
contrary to this, an edge-triplet knot resembles  very 
closely a uniform M state, in particular when the 
unfolding of the edge triplets is impeded by a strong 

574 longitudinal easy-anisotropy  axis.  Therefore, the edge- 
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doublet knots get pinned more easily and strongly. 
Judging  from the difference in behavior  between the 
sputtered and the lift-off  samples, it is likely that the 
latter possess stronger pinning points at their edges. 

Ultimately, the middle portion of the sample  is  filled 
with  edge triplets that constitute a bellows-like 
configuration, the so-called concertina structure (CS). At 
a given H,, the number of  walls in and the space 
occupied by the bellows  generally  increase proportionally 
with  increasing %,""; as a consequence, the wall 
hysteresis  is a semipositive  definite function of Hornax. To 
estimate the wall  hysteresis, it is necessary to know the 
dipole distribution in  the wall core  which in thin layers 
can be derived  from the one-dimensional micromagnetic 
calculations of Riedel et al. [71]. Figure 45(a) gives a 
quantitative image  of the mean (HJ across the sample 
thickness  for the domain structure of Figure  44(e),  where 
x is along the sample  length and x = 25 pm in the middle 
of the sample. (HJ, which  exhibits strong peaks much 
larger than H, near the wall  cores,  must  be almost 
completely  canceled by the stray-field H, in this soft- 
magnetic element. For this compensation, there must  be 
a net  magnetic  charge in each  sample  half,  which  is 
supplied through a net M component normal to the 
sample's midplane that is perpendicular to the sample 
length. The wall  hysteresis [Figure 45(b)] for this 
particular situation was  previously estimated [49,5 11 and 
the mean M component of the object  along the x- 
direction amounted theoretically to 0.25MS, while the 
experimental  hysteresis was almost  twice as large. This 
difference  may  be due  to other hysteretic  effects and/or  to 
the simplifications in the theoretical  model.  However, the 
significance  of  wall  hysteresis in these thin elements is 
beyond dispute. A similar result for simpler but similar 
domain configurations was reported by N. Smith [72]. 

Demolishment of the concertina structure 
It is  obvious that the concertina structure (CS) constitutes 
a metastable  high-energy state and that energy  may  be 
gained by removing  periods of the bellows-like structure. 

Figure 46 provides an example of a very simple CS, in 
which the central walls  of three adjacent edge triplets in 
the sample are replaced by the central wall  of one edge 
triplet. Note that the wall  angles  of the three central walls 
in Figure 46(a) deviate significantly from 180" (= 160" 
according to the cluster relation), so that the mean 
magnetization  along the longitudinal sample  axis in the 
middle of the sample is still  of  significance. 

The period reduction can be  briefly summarized as 
follows.  An  edge quintet is formed after the fusions of the 
two triplet knots at the bottom edge. This conversion  is 
followed  by a furcation of the quintet into  an edge-triplet 
knot and a free-triplet knot. The latter moves  upward 
along the central wall  of the quintet and thus removes the 
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1 The sequential frames of a video display of a period reduction in a 
simple CS. Permalloy (60 X 30 pm, 700 A). 

two outermost central walls  of the original three edge 
clusters. The details of this fusion and subsequent 
furcation can be better discerned in Figure 41, which 
shows the sequential frames of a video  display. 

After the reduction, the mean H, of the sample has 
reduced and a charge redistribution takes place. This 
charge displacement can also be deduced from the wall 
angle  of the remaining central triplet wall in Figure 46, 
which  increases to about 180". A similar increase in the 
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The inversion of the  polarity of the NCel walls in a 1 4 0 - p - t h i c k  
Permalloy layer (60 X 20 pm). 

wall  angle can also be noted in Figure  47.  Both 
observations  confirm our previous  conclusion that the 
impact of the wall-hysteresis  mechanism is significant. 

The details of the same  type of period reduction are 
strongly dependent on film thickness. In very thin layers 
(25 nm), the Nkel  walls are very persistent and the CS is 
also  sustained  when H, is  inverted. Domain walls  with 
angles up to 360" are developed  before  they are 
demolished.  In  70-nm-thick  layers, the period reductions 
are often attended by the propagation of  free uniform 
quartets (crosses) and free  doublets  with  two rotation 
segments  (Bloch  lines), demarcating Nkel-wall segments 
with  opposite  chiralities. Thus the wall  field (H,) of the 
original Nkel  walls  is reduced. Figure 48 demonstrates 
this principle in a very simple CS. In the middle of the 
sample,  two central walls  of  edge triplets with an angle  of 
about 160"  reveal  themselves. This time, the conversions 
cannot be heralded by the fusion of  two  edge-triplet 
knots.  Instead, a uniform  free quartet arises at the tip of 
the left central edge-triplet wall,  while,  simultaneously, a 
uniform  free quartet and free doublet develop at the right 
central wall. The latter doublet, together  with the free 
quartet at the left  wall,  moves  downward,  while the 
polarity of the Nkel  wall segments  above this pair is 
inverted. In a second  phase, the moving quartet knot and 
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doublet knot, at which the latter presumably  has  been 
converted into a free-triplet knot by incorporating one of 
the walls  of the quartet, come together and fuse. 
Subsequently, the Nkel  wall segments at both sides  of this 
fused-knot  pair shrink and disappear. 

A final  example of a transformation in a 140-pm-thick 
Permalloy  layer is shown in Figure 49. Again, the 
conversions start at the domain walls  with the largest  wall 
angle,  i.e., the central triplet wall at the right (I  + I = 
150"). Again, a uniform quartet develops  itself at the free 
triplet bounding the central wall in question [Figure 
49(a)].  Simultaneously, a furcation takes place and the 
quartet moves  upward. This time, the quartet does not 
separate into two N k l  wall segments  with  opposite 
polarity; instead, it transforms the original Nkel  wall into 
a Bloch  wall [Figure  49(b)]. Upon a further reduction in 
H,, a new uniform quartet develops  itself at the same free 
triplet and moves  upward. The sector  angle of the 
rotation segments of the free triplet in question increases 
and causes the outermost wall of the edge triplet to 
become  curved  parabolically  [Figure  49(c)].  Both knots of 
the above quartets and the knots of  two extra free-triplet 
knots,  which arise at the intersection of the "wings"  of 
both quartets, fuse and a uniform quartet results. Thus, 
the polarity of the Nkel  wall has  been  inverted  between 
the knots of the free triplet and the uniform [Figures 
49(d-f)] quartet. Note that the same  process  takes  place 
almost  simultaneously at the other central walls  of the 
edge triplets, so that nearly the entire domain structure is 
converted in one coherent transformation. 

It is  self-evident that the above  period reductions and 
coherent conversions  cause the stepwise  course  of the 
object's M - H, hysteresis  loop, as is  schematically 
presented by Figure 45(b). The CS endures much longer 
in the case  of a strong easy axis perpendicular to the 
sample  length. In this case, the reversal  of the polarity of 
the wall dipoles is accomplished by free-quartet and free- 
doublet generations and displacements, so that the CS 
can survive  when H, is reversed. 

Discussion 
The central themes of Section 4 are the conditions and 
the modes  for  reversible and irreversible  changes in the 
domain structure in soft-magnetic  thin-film  elements. We 
have  confined  ourselves to the rectangular  sample; 
however, it should be  emphasized that  the above order 
presents  itself in thin-film elements with arbitrary 
geometry. Whether or not a CS develops depends on the 
orientation and strength of the uniaxial anisotropy and 
on the presence and nature of  defects. In particular, the 
lift-off sample tends to possess  edge defects to which 
doublet knots, in particular, adhere, thus giving  rise to CS 
development in very  soft  media.  On the other hand, the 
CS creation  is  also  facilitated when the relatively strong 
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easy axis is perpendicular to both H, and the object 
length, while an only  slightly  hindered movement of both 
doublets  toward the middle  takes  place  when the easy 
axis  is  parallel to H,. 

Much  emphasis  has  been put on the orientation of the 
walls  with  respect to H,, their internal structures, their 
stray fields H,, and on the resulting wall  hysteresis  of the 
CS. Note that, in principle, there is no correlation 
between the energy  stored in the domain walls and their 
contribution to hysteresis. This is  convincingly 
demonstrated by the single and double Landau-Lifshitz 
structures illustrated in Figure 50, where the 180"  walls 
are assumed to be  of the Bloch type  which induce no net 
H, [70]. It  is  obvious  from the symmetry of the dipole 
charge distributions in the various wall cores in Figure 
50(a) that the net effect  is  zero, so that the wall  hysteresis 
is  zero. The same argument applies to the double 
Landau-Lifshitz structures of Figure  50(b); we have  two 
configurations  with  different wall  energies and the same 
zero  hysteresis. 

The CS is  reminiscent of the ripple structure in thin 
films,  which  encourages us to draw a parallel.  It  is well 
known that the ripple structure originates in the 
dispersion of the anisotropy,  which  causes M to split up 
into a great number of domains separated by parallel 
walls normal to the mean M. This wall splitting becomes 
particularly  manifest when H, is perpendicular to the 
easy axis [73-761. 

of the CS in thin-film  objects  with  small lateral 
dimensions  originates in the spreading of the magnetic 
charge in the sample tips upon decreasing H,, which 
requires discontinuities in M, e.g.,  wall  surfaces,  between 
the longitudinal edges. As in the solenoidal situation, the 
domain-wall pattern is predominantly governed by 
magnetostatic laws;  however,  these  allow a great  variety 
of solutions at each H, value. The ultimate selection 
from the possible domain-structure developments is 
controlled by a large number of second-order parameters 
such as defects and the magnitude,  symmetry, and 
direction of the anisotropy and also, no doubt, by 
stochastic  variations in the latter parameters. Though the 
stochastic  variations may  play a role,  they are not a 
prerequisite  for CS development,  as  evidenced by the 
occurrence of CSs in perfect  crystallites [36]. 

We can  make the argument concerning the dominance 
of magnetostatics a little more explicit. During the 
discussion of Figure 42, we emphasized that doublet wall 
(1)  must grow in order to distribute the positive  charge in 
that sample end over a larger area during the reduction 
phase  of H,. Note that M values  near the opposite edges 
at the height of the doublet knot are about parallel and 
are  inclined to bend  outward a little  bit in the particular 
end. Charge of the wrong'sign threatens to arise.  In order 

In the previous  section, we stated that the development 

IBM J. RES. DEVELOP. VOL. 33 NO. 5 SEPTEMBER 1989 

(a) Landau-Lifshitz structure in a rectangular sample in which the I only 90" walls are NCel walls. (The  field Hw and magnetic charges of I these walls are indicated.)  @)The  double Landau-Lifshitz structure. 

to get the desired  positive  charge  density, a domain wall 
must  be  present  between the above edges, so that  an 
additional jumpwise M direction change,  which  is 
accompanied by a net  charge generation, is introduced. 

Consider another striking manifestation of 
magnetostatics; in the CS, the edge-cluster  walls 
constitute a periodic pattern of  clearly  visible  walls 
normal to the longitudinal sample edge,  where  both 
patterns with knots on the opposite edge have a phase 
shift of 180". This order is  certainly not characteristic of 
ripple.  Note that M rotates over a finite  angle  between 
two adjacent  clearly  visible  walls at the same longitudinal 
sample  edge. As a consequence, one extra wall must arise 
from  each  of  these  edge-cluster knots between the 
corresponding  clearly  visible walls.  We have  already 
concluded that both edge clusters  have to be  triplets, 
although their exterior walls are often  hardly  visible. 
Thus, along a specific  edge, we  see alternately an M- 
direction jump  at a clearly  visible  wall and about the 
same rotation in M divided  over the walls. This order 
cannot be  explained in terms of ripple  theory and reflects 
the magnetostatic  coupling of  two adjacent clearly  visible 
walls. 

We return to the sample  with a longitudinal weak  easy 
axis, in which H, is  smaller than H,. The CS is  frequently 577 
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observed in such  samples, notwithstanding the 
578 noninverted character of the medium [73]. When 

discussing the lift-off  sample, we emphasized the impact 
of the doublet pinning at edge  defects. One might state 
that this pinning prevents the sample  from  “switching” 
its magnetization pattern by the wall (doublet-knot) 
displacement, and that the edge defects  play the role of 
the “object  invertor.” A prolonged reduction in H, causes 
the effective  micromagnetic field in the region in front of 
doublet wall (1) (see  Figure 42) to become  zero, so that 
the discontinuity in M at wall (1) is  allowed to extend 
into the interior of the sample; e.g.,  wall (1) elongates. 
This  growth in which the newly formed walls are initiated 
by and connected to the walls already  present in the CS 
has  often  been  observed.  In this process,  stochastic 
anisotropy variations affect the path along  which  wall (1) 
grows;  however,  these  possible  trajectories are confined to 
a small band defined by the local spatial steepness of the 
demagnetizing field due  to  the charge pattern in the 
sample tip, while directional variations of the walls  which 
are too abrupt are staved off by the well-known 
transverse magnetostatic coupling [73,75]. Bear in mind 
that, in general, the M environment which  suppresses the 
inclination of the dipole to follow the local anisotropy 
direction is not uniform, and  that  it is  embedded in the 
overall M distribution of the sample, to which it is 
magnetostatically  coupled.  Again, the dominance of 
magnetostatics  is  evident. 

One final  observation concerns the dissolution of a 
number of the periods of the CS when the edge-doublet 
knot performs a jumpwise movement. In ripple 
terminology, one might  say that the sample  inversion is 
abolished, so that switching  takes  place by  wall 
movement, and, of course,  ripple no longer  appears. 
However, the above  consequence of doublet 
displacements  applies to samples  with both a longitudinal 
and a transverse weak  easy  axis, so the above explanation 
is too innocent. In this context, the progress  of the 
configuration in Figure 51 is of interest. From the 
saturated state, the domain structure develops  via the 
configuration of Figure 5 1 (a)  into the CS of Figure 5 1 (b). 
Upon a further reduction in H,, period reductions take 
place, so that we end up with  Figure 5 l(c). Subsequently, 
the field is increased  again, and the domains with M 
direction deviating  from H, shrink. Note that the 
magnetization in the small domains in the middle of the 
sample  is at an angle  of about 30” to H,,. A small further 
increment in H, causes the reappearance of  two of the 
periods of CS, when the original  edge-triplet knots in the 
middle of the sample  move apart. Apparently, the 
recovery  of  these  periods  is  required in order to obtain a 
stable M distribution in the middle  of the sample that 
matches the given M configurations in both tips.  Again, 
these  periods of the CS seem to have a deterministic 
origin rather than a stochastic  one, and the ripple theory 
leaves  us in the lurch. 
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Appendix A 
Let us  consider three successive  parallel  segments (1) to 
(3) and investigate  whether there are restrictions on their 
shapes and mutual positions. In the subsection on 
parallel  subregions, the only requirement from the 
mutual positions of  two adjacent segments  (1) and (2) is 
the existence of  two intersection points and  The 
course of the separating domain wall  between (1) and (2) 
is  governed by the edge segments Sl,2SI(sI = u2) and 
S1,2SI(sI = v2) at edges (l), and (2),, respectively, or 
equivalently, by  edge segments P1,2PI(sI = u, )  and 
P,,,P2(s2 = v , )  [see Figure 52(a)]. Even so, the domain 
wall  between the parallel  segments (2) and (3) is governed 
by the edge segments S2,3S2(s2 = v3)  and S2,,S3(s3 = w,). 
The position of P2,3 at edge (2), with  respect to must 
comply  with the course of M along the edge and the 
numbering of the segments. The same applies to the 
position of S2,3. The fulfillment of these requirements is 
considered to be a prerequisite. 

However, in addition we require that the domain wall 
between P2,3 and S2,3 not intersect the one between 
and SI,*. We shall  prove that this requirement is satisfied 
when the domain wall codetermining part of  edge (3),, 
S2,3S3(s3 = wl), does not intersect the domain wall 
codetermining part of  edge ( l),, SI,2SI(sl = u2). 

We  first investigate the situation in which (l), and (3), 
intersect at the points S,(s, = u,) and S,(s, = u3). By 
virtue of the continuity of the tangents to  the edges  of the 
segments, it can be  concluded that there exists a point at 
( l),,  say S,(s, = us), where the characteristic  base  curves 
of the parallel  segments (1) and (3) coincide. This base 

line intersects the domain wall  between  segments (1) and 
(2) at Q, where the distance I S,(s, = us)Q I = 
I S,(s2 = v5)Q I. It is obvious that I S3(s3 = w,)Q I < 
I S,(s, = us)Q I. Now look  for the position of the points 
of the domain wall  between  segments (2) and (3) at the 
base  line through S2(s2 = us), and call the points of 
intersection  of the latter base line with the characteristics 
of (3) Q . We erect a Cartesian coordinate system  with its 
origin at S3(s3 = w,) and a y-axis  along the base  curve 
through S,(s, = us) [see Figure 52(b)], while the positive 
x-axis  is on the side  where the angle + between the 
characteristics at Q is smaller than s. At a sufficiently 
small x, the edge (3), can be approximated by the 
quadratic relation y = ax‘ with 1 a I < 1/(2b), where b is 
the segment  width. In a first-order approximation, the 
difference in distance of Q’ from edges (I), and (31, as a 
function of x decreases by 

(1 - cos #)/sin +( 1 + 2a I S3(s3 = w,)Q I ). 

Observe that (1 - cos +)/sin + is  larger than zero 
because 0 5 + I T and  that (1 + 2a 1 S3(s3 = w,)Q 1 ) > 0, 
since I 2a I e l /b and I S3(s3 = w5)Q I < b. As a result, the 
absolute  value of the mutual difference in the distance of 
Q’ from edges (l), and (3), decreases  for  positive x. It is 
obvious that Q’ moves  toward edge (2,). This tendency is 
also  preserved at large x, because the base  lines of parallel 
segment (3) do not intersect  each other inside (3). 
Therefore, the ultimate Q’ at  the domain wall  between 
segments (2) and (3) is on the wrong  side  of the domain 
wall  between  segments (1) and (2). 579 
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Now  we attempt to prove that all points of the wall 
between  segments ( 2 )  and (3) are correctly situated with 
respect to  the wall  between points SI,, and PI,, when the 
edge segments S,,,S3(s3 = w,) and S1,2SI(sl = u,) do not 
intersect. 

In Figure 52(c), the domain-wall point Q at the 
characteristic  base  lines through S,(s, = us) and 
S,(s, = v,) is indicated. The circle (A) with radius b, 
where b is the segment  width, touches at segment edge 
(l), at S,(s, = u,). Observed from Q, the base curve 
corresponding to S3(s3 = w,) will consecutively  intersect 
circle A, edge ( l),, and finally (3),. Bearing in mind that 
the distance I S,(s, = u6)Q I < b, it follows from simple 
geometrical considerations that I QK 1 2 1 S,(s,  = u,)Q 1 , 
so that I S3(s3 = w6)Q I > I QK I 2 I S,(s, = v6)Q I [see 
Figure  52(c)]. 

Having  established this fact, we erect  a  Cartesian 
coordinate system  with  its center at S3(s3 = w6), with the 
y-axis  along the base  line  through S3(s3 = w6) and with  its 
positive  x-axis pointing toward the side  where the angle $ 
between the characteristics through S3(s3 = w,) and 
S,(s, = v6) is  smaller than T. From now on, we can repeat 
the arguments employed in the previous  case. It can  be 
seen  for  very  small x that the distance I QfS,(s, = v6) I 
becomes  closer to the distance between Qf and edge (3), 
when  moving  toward the negative x direction. As a 
consequence, Qf moves apart from S,(s, = v6) when x 
becomes more negative. This tendency  is continued at 
large  negative x values  because the characteristic  base 
lines of  segment (3) do not intersect  inside this segment. 
Thus, if present, the point of the domain wall  between 
the segments ( 2 )  and (3) on the base  curve through 
S3(s, = v,) is found and is at the correct  side of the wall 
in PI, ,  and SI,,. 

Remark 
When edge  segment S2,3(s3 = w,) does not intersect edge 
segment S1,2SI(s, = u,), their counterparts at edges (3), 
and (l&, respectively,  will  likewise not intersect. 

Remark 
We have  assumed that P,,, and P2,3 are different  points.  It 
is  obvious that the same  conclusions  apply when PI, ,  and 
P2,3 coincide. 
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