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Local area networks have been developed using
both ring and bus topologies. Multi-loop and
multi-connected topologies have been proposed
to improve the throughput and dependability of
single-loop networks. We evaluate the
dependability of a class of multi-connected loop
topologies called forward loop, backward hop
(FLBH) networks and compare them to simple
ring networks.

1. Introduction

Unidirectional loop network architectures [1-3] provide
an attractive alternative to broadcast bus architectures in
the design of local area networks (LANS) because
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interface hardware and control software are less complex.
The addition of links to a simple loop so as to form
multi-connected loops promises improvements in both
performance and dependability. The purpose of this
paper is to carry out reliability and availability analysis of
a multi-connected loop called the forward loop,
backward hop (FLBH) [4] network and to compare it to
simple loop networks.

Raghavendra and Silvester {4] compare the delays,
throughput, and alternate routing capabilities of three
double-loop topologies, the daisy chain [5], the
distributed double loop computer network (DDLCN) [6],
and the forward loop, backward hop network. The FLBH
is actually a class of networks that includes the other two
topologies. Each node has a forward link connected to its
neighbor and a backward link connected to another node
at a (skip) distance 4. For instance, # = | for DDLCN,

h = 2 for daisy chain, and 4 = 4 for the 16-node FLBH
network shown in Figure 1.

A measure of importance in comparing these networks
is the distance in number of links or hops that must be
traversed to communicate between any two farthest
nodes. Let N be the number of nodes in the network.
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Optimal 16-node FLBH network.

The shortest routes between two farthest nodes consist of
(h — 1) forward hops and b backward hops, where b is
given by

N
b= {h—nJ ()

with Lx] denoting the largest integer less than or equal
to x.

The number of distinct routes between two farthest
nodes in FLBH networks is given by

b+hn~-1

where () denotes the number of combinations of 7
distinct objects selected i at a time [7],

()= ms
il i =i

By setting & = /N, we maximize Ny and obtain an
optimal FLBH network. For this case, b = 1 — 1. Hwang
[8] has noted that the selection of 4 = VN does not
guarantee a network of minimum diameter and is not
optimal in that sense. However, we refer to an optimal
FLBH network as one with this value of z, and we
consider only integer values of 4. Raghavendra and
Silvester [4] discuss the terminal reliability of an FLBH
network. The reliability of these networks is enhanced by
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providing multiple routing paths. This assertion is based
on the following intuitive arguments:

1. Terminal reliability is proportional to the number of
alternate routes.

2. Terminal reliability is inversely proportional to the
average hop distance.

Raghavendra and Silvester have observed that for this
optimal FLBH network, the fraction Fj,, of double-node
faults resulting in a trapped-node situation is

2

Foy = —— 3)

N-1

This occurs when two nodes fail at a distance \/X’ +1
apart.

Quantitative reliability analysis of loop topologies has
been scarce. Yu et al. [9] develop models for a token ring
with a bypass mechanism. Raghavendra and Silvester
address two-terminal reliability of FLBH networks. In
this paper, we develop a reliability model for the FLBH
class of networks in terms of nodes and communication
links where transmitters and receivers are included as
part of the communication link. We develop reliability
models for nonrepairable networks and availability
models for repairable networks. For small networks, we
can obtain exact results, but for large networks we
propose an approximate solution method. Upper and
lower bounds are also proposed that are relatively tight
for the cases shown. Results for FLBH networks are
compared to those for single-loop networks.

In Section 2, we discuss the initial modeling
assumptions. Section 3 describes the reliability model and
develops the approximation for our solution method. In
Section 4, the reliability results for the FLBH network are
presented and compared to simple ring networks and to
rings with node bypass. Finally, Section 5 contains the
availability analysis and comparisons.

2. Modeling assumptions

As shown in Figure 2, a communications adapter for a
LAN consists of a transmitter for each outbound link, a
receiver for each inbound link, and control circuitry.
Since analog and digital circuits are difficult to combine
on a single chip, these units are usually packaged
separately. This model exploits that separation by
defining a link to include a transmitter, a receiver, and
the communication medium connecting them. A node
contains the remaining circuitry, which provides control
and access to the transmitters and receivers and is
assumed to be the same for both single-loop and multi-
loop networks. By viewing the network in this way, we
may progress from a single-loop architecture to multi-
connected architectures using the same model.
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Comparisons will reflect differences in the numbers of
links and the ways in which they are connected.

The purpose of the network modeled here is to provide
continuous, active communication between N nodes such
as may be required for automated manufacturing or air
traffic control. The following assumptions are utilized to
construct our model:

e All components are assumed to have constant failure
rates. Links fail at a rate A, and nodes at a rate .
Times to failure of all components are assumed to be
mutually independent.

o Network failure is caused by any combination of link
faults that results in one or more disconnected nodes.

e Any node fault or a network failure is assumed to
cause system failure.

o Since the failure rate for wiring is very low compared
to that for other link components, differences between
wiring lengths in links can be ignored, and links may
be modeled as having identical failure rates.

The structure of the model and the assumptions for
causes of system failure allow us to determine the
reliability of FLBH communication systems, R (¢), as the
product of the reliability of the nodes and the reliability
of the interconnection network. Thus,

R(1) = R(1) X Ry(?), “4)

where the reliability of the nodes is Ry () = e and
R(¢t) is the reliability of the FLBH interconnection

network which is to be determined.

3. Reliability model

An FLBH network of N nodes has 2N links. In the worst
case, the state space of the Markov chain model will be
exponential in the number of links (i.e., 22 states). Even
for small networks, the state space will be so large that
effective reduction techniques such as lumping [10, 11] or
aggregation [12] must be considered.

Najjar and Gaudiot [13] have considered a similar
problem for multiprocessor systems using hypercube
interconnection networks. They define a system to be
disconnected whenever there are two or more
disconnected components in the network graph. They
compute this disconnection probability after i failures
(i > 0) and use these probabilities to compute state-
dependent coverage factors. For our problem, we have
adopted a notation consistent with that of Raghavendra
and Silvester, as shown in Equation (3), and proceed to
analyze the FLBH network using Markov chain methods
similar to those of Najjar and Gaudiot. First, we develop
the state-dependent disconnection probabilities for small
networks; we then propose bounds and an approximation
for larger networks.
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Node and link model elements.

o State-dependent disconnection probabilities

For each node in this network, there are exactly two link
faults that will isolate the node from inbound messages
and two other links that can fail and, if they do, prevent
the node from sending outbound messages. Let F;; be
the conditional probability that the ith link fault causes a
network failure given that the network was operational
with (i — 1) link faults. Obviously, F,; = 0. Observe that
no single link fault will cause network failure; hence,

F,, = 0. Any of the 2N links may fail first. Any of the
remaining 2N — 1 links is equally likely to be the second
link to fail, but only two of these will result in network
failure. Thus, the fraction of second-link faults causing
network failure is

2
2N - 1°

Fy = &)

Observe that the FLBH network is represented by a
directed graph [14] in Figure 1, and that links are
represented as directed arcs incident on network nodes
which form the vertices of the digraph. Links may be of
two types, either a forward loop link or a backward hop
link. Also, links have an orientation relative to each
node. Two links are incident into each node and two
links are incident out of each node. The following
definitions are useful in evaluating the network for other
values of F; .

Definition Corresponding links are defined relative to
two nodes. To be corresponding links, the links must be
of the same type, either forward loop or backward hop.
They must also have the same orientation, incident either
into or out of the respective node.
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Node clusters from a 16-node FLBH network: (a) A four-node
cluster illustrating Lemma 1. (b) A forward node cluster illustrating
Lemma 2.

Definition A critical link is a link whose fault causes the
network to fail. This depends on the current state of the
network.

Definition A forward node cluster is a proper subset of
all nodes that are consecutively numbered along the
forward loop. Note that nodes in a cluster are connected
such that each node, except the two end nodes, shares its
two forward loop links with two other nodes in the
subset. The two end nodes share only one forward loop
link with other members of the subset. Nodes 3, 4, 5, and
6 in Figure 1 form a forward node cluster.

Definition A backward node cluster is a proper subset of
all nodes such that these nodes are separated by a
distance 2 = v N and are interconnected by backward
hops. There may be up to /N nodes in a backward node
cluster, in which case, a backward hop loop is formed.
Nodes 0, 4, 8, and 12 in Figure 1 form a backward node
cluster and a backward hop loop.

Lemma 1
A forward node cluster of size k2 = k = VN ) can be
disconnected only if both of the links incident info or
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both of the links incident out of a node in the cluster
have failed and, hence, the single node itself has become
disconnected.

Proof Since we chose a backward hop distance of NG, ,
all backward hop links connected to nodes of a cluster

of size ¥ N or smaller must connect to other nodes
outside the cluster. Thus, to disconnect the cluster, all
inbound (outbound) links must fail. This requires that all
inbound (outbound) backward hop links must fail along
with the inbound (outbound) forward loop link. Thus,
one node will have the inbound (outbound) forward loop
link and backward hop link failed when the cluster is
disconnected. [

In Figure 3(a), we have depicted a four-node cluster
from the network with 16 nodes shown in Figure 1. Note
that failure of links from nodes 4, 5, 6, 7, and 15
disconnects this cluster from inbound communications,
but that only failure of the links from nodes 4 and 15 is
required to disconnect node 0.

Lemma 2

The disconnection of forward node clusters of size > VN
requires the failure of /N backward hop links and one
forward loop link.

Proof From our definition of a forward node cluster,
there will be one inbound forward loop link to the cluster
and one outbound forward loop link from the cluster.
Call the node connected to the inbound link the first
node in the cluster, and the node connected to the
outbound link the last node in the cluster. By choosing
the backward hop distance of Vv N, we require that the
first node and the next «/]T/' — 1 nodes chained to it via
the forward loop must all connect to nodes outside the
cluster via outbound backward hop links. Similarly, we
require that the last node and the previous v N — 1 nodes
chained to it via the forward loop must all connect to
nodes outside the cluster via inbound backward hop
links.

Since disconnection of the cluster requires failure of all
inbound (outbound) links, there must be VN inbound
(outbound) backward hop links and one inbound
(outbound) forward loop link that have failed. Now,
however, the set of nodes connected to the inbound
(outbound) backward hop links does not include the
node connected to the inbound (outbound) forward loop
link. Single-node disconnection conditions are not
met. [

In Figure 3(b), network failure is caused by faults in
the backward hop links to nodes 4, 5, 6, and 7 plus the
forward loop link to node 14, disconnecting outbound
communications from the cluster.
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Lemma 3

A backward node cluster can cause network
disconnection only if single-node disconnection
conditions are met or if all forward loop links at a
distance v/N have failed.

Proof Consider any backward node cluster where

each node is at a distance Vv N. If there are exactly VN
nodes in the cluster, all backward hop links are contained
within the cluster. Only the VN forward links into the
cluster or the VN forward links out of the cluster must
fail to cause network disconnection. By definition, these
links must be at a distance JN.

If the cluster is of size < \/—1\7, there must be at least one
inbound and one outbound backward hop link. To
disconnect this cluster, all inbound links or all outbound
links must have failed. Therefore, one node must have
the inbound backward hop link and an inbound forward
loop link to faii, or one node must have the outbound
backward hop link and an outbound forward loop link to
fail. In either case, single-node disconnection conditions
are met.

If the cluster is of size >~/J—V—, it can be constructed by
adding clusters from adjacent backward hop loops in one
of two ways:

¢ Adding another cluster from the adjacent backward
hop loop on the inbound side of the original cluster
will cause the combined cluster to keep the
disconnection conditions for the outbound links of the
initial cluster. On the inbound side, if the added cluster
is of size \/’17, the combined cluster will require faults
on all forward loop links into the added cluster.
Otherwise, the inbound side will include single-node
disconnection conditions for at least one node, that
being a node in the added cluster.

¢ Adding another cluster from the adjacent backward
hop loop on the outbound side of the original cluster
will cause the combined cluster to keep the
disconnection conditions for the inbound links of the
initial cluster. On the outbound side, if the added
cluster is of size «/-];’: the combined cluster will require

faults on all forward loop links out of the added cluster.

Otherwise, the outbound side will include single-node
disconnection conditions for at least one node, that
being a node in the added cluster. O

Lemma 2 states that at least \/X’ + 1 total link faults
are required to disconnect a forward node cluster of
size greater than v N. Lemma 3 shows that at least \/]T/
total link faults are required to disconnect a backward
node cluster of size v N or larger. If we examine the
network for less than VN total link faults, we are looking
at disconnected node clusters of sizes smaller than VN
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which can, by Lemmas 1 and 3, be evaluated using the
conditions for single-node disconnection. We now
develop the expressions for the disconnection
probabilities for link faults when the total number of link
faults is less than VA.

After one link fault, we have noted that there are two
links that are critical links and (2N — 3) links that are not
critical links. If one of the (2N — 3) links becomes the
second link to fail, we wish to determine the probability
F,; that the network does not survive a third link fault.
There are two cases to consider:

1. If the second link that failed is a corresponding link at
a distance ( JN + 1) from the first, only three of the
remaining nonfaulty links are critical links. In fact,
one of these three will cause one node to lose
outbound communication and will cause a second
node to lose inbound communication. Relative to any
first link fault, there will be exactly two of these links.
For example, note that if links 4 and ¢ in Figure 1 are
the first two links to fail, both nodes 6 and 10 become
disconnected if link @ becomes the third link to fail.

2. For the other (2N — 5) links that can become the
second link to fail, there will be four critical links.

The total number of triple-link faults that are possible
is the number of ordered sequences of three links out of
2N links minus the number of sequences of three faults
that cannot occur because the network would not survive
the previous two faults. Given that the network has not
failed after faults have occurred on the first two links in
the sequence, and that there are 2(2/NV) sequences of two
link faults causing network failure, there will be
2(2N)(2N — 2) sequences of three link faults that cannot
occur. Thus, for \/]T’ >3,

IN[42N — 5) + 3(2)]

Fy = 2NN — 1)(2N — 2) — 2(2N)(2N - 2) ©)
8N — 14
T (2N -2)(2N - 3)° )
Similar analysis shows that the fraction of possible
fourth-link faults causing network failure is
24N* — 120N + 150
aL (®)

" (2N - 3)(4N? — 18N + 20)’

which is valid for VN > 4.

Closed-form expressions for F;, (4 <i< VN ) can be
determined. For F,; (i = VN ), we must consider all fault
conditions which disconnect a cluster of any size.
However, Lemmas 1 and 3 allow us to determine the 2NV
conditions for disconnecting single nodes and to use
them to evaluate disconnection of clusters of size < JN.
Lemma 2 establishes that there will be «/]T’ + 1 links in
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each cutset that disconnects either inbound or outbound
communication for forward node clusters of size >V N.
Also, note that disconnecting inbound communication
from a forward node cluster of size j is the same as
disconnecting outbound communication for a cluster of
size N — j. Thus, we also need all combinations of cutsets
for forward node clusters of size N+ 1 up to LN/21.
Finally, we must also consider the /N conditions that
cause disconnection of backward node clusters of size

N. These failure conditions can be represented by
means of a fault tree of the form shown in Figure 4. The
total number of inputs (basic events) to the fault tree is
the number of network links 2. The total number of
gates (internal nodes) Gy, 5, required in the fault tree is

Gropn = 2N<H - VN + 1) + VN. ©)

We have used HARP [15] in an interesting but
originally unintended manner to solve the counting
problem on hand for N = 9 and partially for N = 16.
HARP can generate the set of link fault combinations
that form the set of critical links by using the fault tree in
Figure 4. By generating the state space, we determined
the count of the number of possible transitions C; to
network failure states and the total number of transitions
S; out of all states with (i — 1) link faults. These counts
are shown in Table 1. Exact values for F,, are computed
from

F, =

iL

(10)

In Figure 5 we plot the fraction of ith-link faults that
cause network failure, given that the network had not
failed after ({ — 1) link faults. For networks of four nodes
and nine nodes, we are able to compute F,; for all i. For
a 16-node network, values of F,, are plotted for only
small values of i because of computation and memory
limitations.

e Disconnection probability bounds and approximation
Bounds for the values of F;; can be determined. Recall
that there are two critical links following the first link
fault. In the worst case, there will be two more critical
links added after every additional link fault. Thus, these
values of F,, , which give the worst case or lower bound
on network reliability, are

wc . 2 -1
F, = mln{m, 1}'.

Similarly, in the best case, there will be two critical
links after the first link fault, but only one critical link
will be added for each additional link fault. As a result,
the values of F,; which give an upper bound on network
reliability are

(11)
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9-node worst case

16-node worst case

9-node best case

16-node best case

Exact values

© = 4-node network
2 = 9-node network
0 = 16-node network

Number of link faults

F, for FLBH networks.

Table 1 Ratio of failure transitions to all transitions, C/S,.

Number Number of nodes

failed, i

9 16

0/0 0/0 0/0
20/56 36/306 64/992
144/216 1062/4320 3648/27840
336/360 19062/48870 140064/701568
96/96 225072/417312 4263552/15722112
1712880/2499120
7756560/9434880
17010000/18461520
14152320/14515200
3265920/3265920

— OO 00NN B W

—_——

e —
T TAN-i+ ]

In Figure 5, F};* and F;; are shown for N = 9 and
N=16.

The values of F;; are known or can be determined
exactly for N < 16 and i < 4. For values of i > 4, F,; can
be approximated as a linear function forupto i=N—1
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Markov chain for FLBH network without repair.
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Unreliability of a nine-node FLBH network.

faults. For larger networks, we approximate the slope
between Fy; and F,; and calculate an estimate of F,, as

1 3 3
F’ +—F —— 4 — 1 N.
Fj=1 % N 2N 4N’ d<i<h,

518 1.0 i=zN.

(13)
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Using these estimated values of F,; as the probability
of network failure when exiting state (i — 1), we can
construct a Markov chain of N + 2 states. N + |
operational states are labeled from O through N, where
the state index denotes the number of failed links in the
network. The final state is the network failure state,
labeled F. The rate \,_, , from state (i ~ 1) to state i is
calculated as

Mo == F)R2N = (i = DA, (14)

i-1,i
where A, is the failure rate of a single link. Similarly, the

transition rate from state (i — 1) to the network failure
state F is

>"—1.F =F,[2N-(G—- D].. (15)

This Markov chain is shown in Figure 6.

4. Network reliability

The reliability R(¢) for the FLBH interconnection
network can be determined from the Markov chain by
solving for the state probabilities [7]. We require that
state O be the initial state. We modify the failure rates
and notation of [13] and give the state probabilities as

P() =

[ﬁ (- F,-J](z;\z/f ,.) e - e (1)

j=1
Let 5,(¢) be the error in the ith state probability that is
induced by the approximation method described earlier.
For the FLBH network this can be determined from

0t) = P,(t) — P/ (1), (17)
where P,(¢) is the /th state probability determined from
the exact values of the F,|, and P/ (¢) is the
corresponding state probability determined from the

approximate values F given in (13).
We can compute the relative error ¥,(¢) as follows:

5,1)

At =m. (18)

Recall that we have closed-form equations to determine
F,, for i < 5. Substituting Equation (16), we find that the
relative error in computing the state probabilities for
i = 5 is not time-dependent. Thus,

0 i<5,
¥,= 1— M i=5 (19

,s(1=F,)

The reliability of the interconnection network is the
probability that the network is in an operational state:

R@) = X P(). (20)
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Using the modeling tool SHARPE [16], we have
evaluated the Markov chain in Figure 6 for R(z) of a
nine-node network with the link failure rate A, = 107",
The nine-node network was chosen because it was the
largest network for which all of the F;, factors were
known precisely and an exact solution could be
determined. Four variations of the Markov chain were
examined. The unreliability for each case is shown in
Figure 7. The variations are as follows:

1. Exact: The Markov chain is solved using exact values
for F, .

2. Approximate: The Markov chain is solved using
approximate values for F,; as suggested in Equation
(13). The exact solution and the approximate solution
are indistinguishable in the graph.

3. Upper bound: The Markov chain is solved using the
worst-case values, F}, - for 4 < i < N, with F, = 1.0.
This yields an upper (lower) bound on unreliability
(reliability).

4. Lower bound: The Markov chain is solved using F;
= F2 for all 4 < i < N. This yields a lower (upper)
bound for unreliability (reliability).

We find that the approximation [Equation (13)] for F,
yields very good results, and that the upper and lower
bounds are rather close. The maximal difference between
upper and lower bounds in Figure 7 is 6.2%.

o Mean time to failure

Assuming that a faulty node always causes network
failure, the reliability of the FLBH network, including
nodes, is given by

Ry(t) = R(t)e™" @1

By considering the imbedded Markov chain for the
system described by Equation (21), the mean time to
failure of the system, MTTFj, can be derived as

N

MTTF, = 3 uV,, (22)
i=0

where p, is the mean holding time in state / and V; is the

probability of reaching state i. Thus, for the FLBH

network, we have

V=l (-Fyea S D
fu (2N = j+ DA+ N)y ’
23)
where V;, = |, and
H; ] (24)

TON- N+ N
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0

Using the worst- and best-case values of F,; from
Equations (11) and (12), we can compute ViW €and
Vf’c. Using these values in Equations (22) and (23), we
can determine the worst-case MTTF for the optimal

FLBH network,

N
MTTF, =Y p V], (25)

i=0

and the best case,

N
MTTE,. = 3 u V. (26)
i=0
In Figure 8, we show MTTF,, MTTF,,., and MTTF,.
for optimal FLBH networks varying in size from 16 to
400 nodes. Here we have used the approximation
method presented in Equation (13) to compute unknown
values of F;; for MTTFg. We obtain a comparison of the
interconnection of the FLBH network to that of the same
size ring network by setting A, = 10™°/h and A=0.
Note that the approximation and the worst-case bound
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MTIF for optimal FLBH networks vs. simple ring.

are nearly indistinguishable in the figure, and that the
absolute difference between MTTF;. and MTTF,,. is
decreasing slightly as network size increases. This
difference, relative to MTTF,., approaches 37% for large
networks due to the fact that MTTF decreases more
quickly than the difference between the bounds.

® Mean time to failure improvement factor
In order to draw comparisons between network
topologies, we use the mean time to failure improvement
factor MTIF, which is defined by the ratio of MTTF; to
the mean time to failure of the network that is being
compared. Let MTTF, be the mean time to failure for a
simple ring. Then,

1
MTTF, = NOwF A 27

Comparing the MTTF for the FLBH network to that

of a simple ring, we compute the mean time to failure
improvement factor MTIFj,

MTIF MTTF;
S MTTF,® 28)
For the optimal FLBH network, this is
N N\, + 7))
MTIF = 3, — 29)

LN = n + N
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Let ¢ be the ratio of the node failure rate to the link
failure rate. Thus,

>

N

§—=;\:' (30)

In Figure 9, we show MTIF; for optimal FLBH networks
consisting of M 2 nodes, 4 = M = 20, for values of ¢
ranging from 0 to the limiting case with { approaching cc.
We have again used approximation (13) for the values
F., . Note that for finite {, MTIF; is an increasing
function of the number of nodes. For these values of ¢,
larger optimal FLBH networks offer a substantial
improvement in MTTF over simple rings with the same
number of nodes. The two networks are equivalent in
terms of MTTF only when links are not allowed to fail,
which is the case with { — .

As a second comparison, consider a simple ring that
has a bypass mechanism for failing nodes. This has been

discussed in detail in [9]. For this network, the mean
time to failure MTTFy is

MTTF § N (A )”"'INI 1 (31
. = - 4 TN L AT N
P ) B wej (KX, + NX)

where c¢ is the probability that a node bypass is successful
and M is the maximum number of nodes that can fail
before the ring is declared down. We use ¢ = 0.9 and

M =LN/2] + 1 in our example. We assume that a failed
node that is not successfully bypassed will cause system
failure, and that no bypass is provided for the optimal
FLBH network. Also, the failure rates of the nodes and
links of the ring network are not increased to compensate
for the additional functionality that they possess.

In Figure 10, note that the mean time to failure
improvement factor favors the FLBH network whenever
¢ < 1, except for the case of { near ] and N=4 or 9.
Even for { = 1.1, FLBH networks larger than 256 nodes
provide better MTTF. In fact, the FLBH network should
be considered for even larger ¢, because our assumptions
are somewhat favorable to the ring with bypass. The ring
with bypass may operate in a degraded mode with up to
M nodes bypassed, and this will reduce throughput and
other performance measures. On the other hand, the
FLBH network is considered to be down when a single
node is down.

5. Availability model

We now allow failed links and nodes to be repaired by a
single repair facility and assume that repair times are
exponentially distributed with mean 1/u. The repair
strategy employed is to always repair the element that
caused the network to fail first, then repair any other
failed elements. Once the network has failed, no other
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elements are allowed to fail until the network becomes \\
operational again. We assume that repair rates are orders 0.99951

. , . o = FLBH \
of magnitude higher than failure rates and use u = 1/h o = Ring with bypass

0.9994

& = Simple ring \

_ _ 46
09993} A =Ny =10

here.
The Markov chain in Figure 6 is modified as follows:

. A repair arc w.1th rate u is added from state / to state 0.9992 = 160 50 200 2% 300 50 400
i—1lforl=i=<N.
o The network failure state F is split into N failure states Number of nodes

labeled F, through F,.. From state /, the arc that
previously went to state F goes now to state F,. Also, to
account for node faults, an arc with rate N\ emanates
from state i to state F,for0 < i< N.

® A repair arc with rate p is added from state F; to state
iforiz0.

Availability of FLBH network vs. ring networks.

For this new Markov chain shown in Figure 11, we can
easily determine steady-state probabilities [7] from which  nearly duals of one another. The Markov chain in Figure

we obtain the steady-state availability. 11 becomes the Markov chain of the ring with bypass by
In Figure 12, we compare the steady-state availability
of the optimal FLBH network to that of a simple ring 1. Interchanging A, and A,.
with the same number of nodes ranging from 4 to 400. 2. Substituting the constant coverage factor ¢ for the
The FLBH network offers substantial improvement for (1 — F;) terms.
larger networks. 3. Replacing the 2N factors with N.
If we now allow the simple ring to bypass faulty nodes
with a constant probability of success ¢, we have found In Figure 12, we have also plotted the availability of a
that the Markov chain models for the two networks are ring network that bypasses faulty nodes with a coverage 521
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factor ¢ = 0.9. For this combination of coverage factor
and failure rates, the FLBH network has higher
availability for all sizes of networks.

Now vary the ratio of node failure rates to link failure
rates {, and compute the coverage factor that causes the
FLBH network and the ring network with node bypass to
have the same availabilities. Because of the near duality
of the Markov availability models for the two networks,
the results show only a very slight variation in the
number of nodes N, which is ignored. Thus, the effects of
a constant coverage factor for node failures on the ring
are compared to the link fault tolerance for the FLBH
network. The results are plotted in Figure 13. For any
combination of ¢ and ¢ beneath the curve, the FLBH
network has higher availability. As expected, a ring with
bypass becomes advantageous as the failure rate for the
node in the adapter shown in Figure 2 increases and
becomes larger than the failure rate associated with the
link elements. This assumes that node failures can be
tolerated on the ring if nodes can be successfully
bypassed to remove them. These results confirm that the
FLBH network is the network of choice in many cases
when network availability is a primary consideration.
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6. Conclusions

In this paper, we have evaluated the reliability and
availability of the forward loop, backward hop class of
networks. We have analyzed the probability that a subset
of nodes becomes disconnected from the network,
causing the network to fail. We have developed an
approximation for these probabilities for use on larger
networks where the computation of exact values is
prohibitively expensive. These disconnection probabilities
are then utilized as state-dependent branching (coverage)
factors in Markov chain models. We have also developed
simple yet close upper- and lower-bound models for the
reliability of the FLBH network.

Even with the severe restriction that a node fault
always causes the FLBH network to fail, we have shown
that the FLBH network offers improvement in reliability
over simple rings and some ring networks with node
bypass. In fact, even in the case where the FLBH network
is less reliable, it may offer a better combination of
performance and reliability than a ring network with
node bypass. We have also identified the conditions
under which the availability of the FLBH network is
better than that of the simple ring network with node
bypass.
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