
Frames,
semantic
networks, and
object-oriented
programming
in APL2

by Manuel Alfonseca

This paper discusses the capabilities of APLP
for the implementation of frame systems and
semantic networks, and for the use of object-
oriented programming techniques. The fact that
the frame is a basic data structure of APLP
makes this language very appropriate for the
development of artificial intelligence applications
using the indicated techniques. Examples are
given of the way in which they may be applied to
realistic situations.

Introduction
Since the beginning of computer science, computer
programming has been an important and rapidly
evolving discipline. The first programming systems were
programs loaded by means of electrical connections

OCopyright 1989 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other

502 portion of this paper must be obtained from the Editor.

physically plugged into movable switchboards. These
were quickly replaced by other methods, easier to
implement, that made it possible to attain higher levels of
complexity. This evolution has changed not only the
interfaces (paper type, punched card, teletype,
teletypewriter, screen terminal, etc.) that introduce
programs and data to the computer and the
programming style (machine language, symbolic
languages, high-level languages, application development
systems, knowledge-based system environments, etc.), but
also the logical structures that are used to organize
information and data for manipulation by the program.
In this paper, we discuss two of these new structures,
frames and semantic networks, their use in a particular
type of nonprocedural programming called object-
oriented programming, and an implementation of these
constructs in the APL2 programming language.

Procedural programming
For roughly the first thirty years, most programming was
done with strictly procedural languages and techniques.
Programs written in this way process information and
data (the data space) by keeping it logically separated
from instructions. The data space is organized according

IBM J. RES. DEVELOP. VOL. 33 NO. 5 SEPTEMBER 1989 MANUEL ALFONSECA

to one or more abstract data structures, such as arrays,
tables, queues, stacks, trees, or directed graphs.

These logical representations of data must be
implemented internally by means of a smaller number of
basic data structures, such as vectors or linked lists.

Certain high-level languages are well prepared to
handle one or the other of these internal types-for
instance, vectors in COBOL and FORTRAN, lists in
LISP, and both in APL2. Moreover, it is always possible
to build procedures to represent almost any abstract data
structure on top of any internal structure. However, some
internal types are h J e r for certain abstract data
structures. For example, vectors are specially useful to
represent arrays and tables, while lists are used
successfully to represent tables, stacks, queues, and trees.

New programming techniques
In the 1970s (disregarding a few languages for restricted
applications which are even older), new programming
procedures and techniques began to appear, particularly
in relation to new research in the field of artificial
intelligence. These techniques, which soon gave rise to
new programming languages such as PROLOG, came to
be known as nonprocedural programming. Finally, a
certain subset of these techniques became known as
object-oriented programming.

Together with the new techniques, new abstract data
structures were introduced; these include logic structures
(based on first-order predicate logic), scripts, conceptual
dependency graphs, conceptual structures (after Sowa
[l]), production rules, semantic networks, and frames.
Here we describe in some detail the last of these two
structures and the concepts of object-oriented
programming.

Semantic networks
Semantic networks were first defined by Ross Quillian in
1968 [2], as a consequence of his work on psychological
models of human associative memory. A semantic
network is a special case of a directed graph, frequently
used in artificial intelligence systems as an appropriate
way of representing knowledge.

A semantic network is a graph containing a certain
number of nodes connected by a certain number of
branches. The nodes represent objects, while the branches
represent relations between objects. Both nodes and
branches are labeled.

there may be hierarchical relations, such as the following:

0 Is-a indicates that one object is a subset of another
object in the network, e.g., “Elephant i s a mammal”.

0 Znstance-of indicates that one object is an element of

Several types of relation are possible. For example,

0 Prototype-of indicates that one object is a special case

0 A-part-ofindicates that one object is a physical part of
or a model of another object.

another object, e.g., “Wheel a p a r t o f car”.

There can also be relations that define properties, such
as “Color,” “Price,” “Owner,” or “Starttime.”

One important concept in the operation of a semantic
network is the inheritance of relations. Let us assume, for
example, that relation R holds for objects A and B (in
that order), and that relation S holds for objects B and C.
Is there any relation between A and C? Of course, the
answer to this question will depend on what is
represented, respectively, by the relations R and S.

A particular case of relation inheritance is the
transitivity of a relation, which can be defined thus: Let
relation R hold for objects A and B; let relation R hold
also for objects B and C. Does it then hold for A and C?

In a system based on semantic networks, decisions
about the transitivity and inheritance of relations depend
on the actual relations. Therefore, these systems usually
provide a way to define the properties of relations in
some particular programming language.

Semantic networks may be implemented using the
linked list as the internal data structure. This explains the
fact that LISP has been used as the programming
language for many of these systems. However, as we
show later, there are other data structures more
appropriate than lists for representing a semantic
network.

0 Frames
Frames were proposed by M. Minsky in 1975 [3], in
relation to his work on visual perception and natural
language processing, as a data structure that tries to
imitate the way in which human beings keep information
in the brain and make use of it when the need arises.
Like the semantic network, the frame is a special case of
the directed graph.

A frame system is a graph in which the nodes (frames)
contain all the information available about a given object,
divided into a series of attributes or slots, each of which
has a name (the name of a property of the object) and
one or several values. A frame has also a name, by means
of which all the information contained in the frame (all
the slots) can be retrieved. For example,

Frame TABLE
I-: FURNITURE
Files: 0, 1, 2
Drawers: 0, 1
Legs: integer (default 4)
Light: 0, 1

another object in the network, e.g., “Jumbo instance-of Once a given frame has been defined, it can be used to
elephant”. define new frames that will inherit automatically the

IBM J. RES. DEVELOP. VOL. 33 NO. 5 SEPTEMBER 1989 MANUEL ALFONSECA

properties of the first frame. For instance,

Frame MY-DESLTABLE
I s a : TABLE
Files: 2
Drawer: 0
Light: 1

In the preceding example, certain properties are repeated
(some slots have the same name as the parent frame
TABLE), and they specify the properties of the new
frame with a greater detail. Other properties may be
missing (in this case the number of legs, which will be
taken to be 4, the default value), or they may be new.

Frames use certain slots to generate a hierarchical
structure similar to the one described for semantic
networks, and properties may be inherited within this
structure.

properties:
Sefnantic networks and frames differ in the following

1. Properties of the data structure
0 In a semantic network, nodes hold no associated

In a frame system, a node contains a great deal of
information except their names.

information in the form of slots.
2. Properties of the relations

0 In a semantic network, all kinds of relations are
automatically managed according to a set of
methods of inheritance that can be defined by the
programmer of the network.
In frame systems, there is usually a single class of
relations that always allows the inheritance of
properties.

However, the differences between semantic networks and
frame systems are small enough that a system
programmed for a semantic network may easily be used
to build a frame system, and vice versa.

is the possibility of defining actions that should be
performed under certain conditions-for example, to
compute the actual value of a parameter or to produce
secondary effects in the structure of the network
whenever a slot value is requested and/or replaced. These
actions are usually called demons or attached procedures,
and are normally programmed as procedural programs in
a high-level language.

One of the most important properties of frame systems

0 Object-oriented programming
How do classical (procedural) programming,
nonprocedural programming, and object-oriented
programming differ?

A procedural program (written in COBOL,
504 FORTRAN, BASIC, PASCAL, LISP, or APL) comprises

MANUEL ALFONSECA

a certain number of sentences that execute sequentially in
a predefined order that depends only on the values of the
data being used by the program. This order can usually
be deduced by visual inspection of the program.

A nonprocedural program (written in PROLOG, for
instance) contains instructions that are not executed in
any predefined order. They receive control from an
inference processor, a procedural program that decides at
every moment the order in which the sentences of the
program should receive control (should be fired).

In both the procedural and the nonprocedural case, the
basic unit of execution is the program. The data only
provide values that will be used to perform computations
or to decide the order of execution. A given application is
a hierarchical set of programs (modules) each of which is
capable of invoking other programs in the hierarchy. The
data may be global (accessible from every program in the
hierarchy) or local (accessible by the program to which
they belong and, sometimes, by those at a lower level in
the hierarchy).

In object-oriented programming, the environment is
very different. Here it is the data that are organized in a
basic control hierarchy. One datum may be linked to
another datum through a relation of any type, and these
relations give rise to a network (a tree or a graph) that
resembles the hierarchy of programs in procedural
programming. There are programs in object-oriented
programming, but they are appendages of the data (as in
classical programming data are appendages of programs).
It is possible to build global programs (accessible to all
data in the hierarchy) and local programs (accessible
from certain objects and their descendants).

In object-oriented programming, the execution of a
program is initiated (fired) by means of a message sent to
a given object by the user, another program, or another
object. The recipient of the message decides which
program should be executed (it may be a local program,
or a global program which must be located through the
network defining the structure of the objects).

objects, messages, and methods:
The basic elements of object-oriented programming are

0 Objects are the fundamental data structure, normally
represented by means of lists or graphs and related to
each other by means of abstract data structures such as
frames or semantic networks.

another and with the external world.

when the messages are received.

Messages allow objects to communicate with one

0 Methods are the procedures that should be executed

The fundamental properties of object-oriented
programming can be summarized thus:

IBM J. RES. DEVELOP. VOL. 33 NO. 5 SEPTEMBER 1989

Encapsulation: All the information related to a given
object is directly accessible from this object or its
ancestors.
Inheritance: Objects may inherit properties from other
objects, and it is not necessary to repeatedly define a
given property when it is shared by several objects.
Hiding: Programs (methods) may be made local to
certain objects and their descendants.
Message parsing: Programming is performed by means
of messages.
Dynamic binding: Objects may be added and the
hierarchy may be changed on the fly. Normally, this
property requires the use of an interpreter rather than a
compiler. This increases the flexibility of object-
oriented programming, but lessens its performance.

Logical data structures in APL2
APL was noteworthy for the ease with which it could
manage data with the logical structure of an array.
However, its capacity for list processing was quite small,
since it did not provide an efficient way to represent
logical structures such as stacks, queues, trees, and
directed graphs.

The APL2 language [4], designed by J. Brown, is a
smooth extension to APL that incorporates a new basic
data structure: the general array. Some of the ways in
which this powerful data structure enhances the language
and makes it appropriate for artificial intelligence
applications and parallel programming have been
described in [5] and [6] . However, the general array also
makes it very easy to define and implement the most
complicated data structures currently used in object-
oriented programming applications in an extremely
efficient way, far superior to any other programming
language.

APL2 supports the following basic data structures:

Scalar: A number or a character.
Simple array: A rectangular collection of scalars in any
number of dimensions. The simplest instance of a
simple array is the vector, an array in one dimension.
General array: A rectangular collection of simple
arrays in any number of dimensions.

The general array is the most powerful data structure
existing in computer languages today. It makes it very
easy to represent very complex abstract data structures in
a simple way. The following subsections present some
examples.

Lists
A list can be defined as a general vector of simple or
general vectors. For instance, a list of three character
strings would be represented in APL2 in the following
way:

1BM J. RES. DEVELOP. VOL. 33 NO. 5 SEPTEMBER 1989

'String 1 ' 'String2' 'String3'

The above example is a general vector of three elements.
All three elements are simple character vectors.

The APL2 expression

'String 1 ' ('String2' 'String3') 'String4'

is also a general vector of three elements, and the first
element, 'String 1 I, is a simple character vector; the
second element, however, is another list, a general vector
of two elements (the first of which is the simple character
vector 'String 2 I , and the second, the simple character
vector 'String 3 '). The third element in the total structure
is the simple character vector 'String4 '.

The above structure can also be considered as a list of
three elements, the second of which is itself a list of two
elements.

Trees
A tree can be considered as a special case of a list, in
which each element may be another list. Therefore, the
preceding example is actually a tree.

The tree

A F

B E

C D

is represented in APL2 in the following way:

A (B (C D) E) F,

where A, B, C, D, E, and F would be replaced by actual
values in the terminal nodes of the tree.

Frames
A frame can be considered as a general matrix of two
columns, where the first element in each row contains the
slot name and the second element the slot value. For
example, the frame mentioned above,

Frame TABLE
I s a : FURNITURE
Files: 0, 1, 2
Drawers: 0, 1
Legs: integer (default 4)
Light: 0, 1

is a general matrix of five rows and two columns; it can
be represented in APL2 in the following way:

MANUEL ALFONSECA

505

T A B L E + 5 2 p
' IS-A ' I FURNITURE
' F I L E S ' (0 1 2)
'DRAWERS' (0 1)
' L E G S ' 4
' L I G H T ' (0 1)

where the p symbol is the APL2 function that creates an
array, with the shape indicated by the left argument. In
the example, TABLE becomes a matrix of five rows and
two columns. Each element of this array is an array in
itself (in this case, a vector or a scalar).

defining multi-valued slots. In fact, it can be said that
APL2 is the only general-purpose high-level computer
language that fully supports frames as a basic data
structure.

The representation of demons, or associated
procedures, is also straightforward. For instance, if a
given frame needs to associate a pair of demons with a
given slot (the first one receives control whenever the slot
value is requested, the other one when the slot value is
modified), the frame is defined as a four-column
structure, where the third and fourth columns provide
the names of the read and write demons, respectively, for
each slot in the frame.

Semantic networks are not directly supported as APL2
basic data structures. However, since they are quite easy
to represent by means of frames, it can be said that APL2
is also specially fitted for them.

The example makes it clear that there is no difficulty in

Object-oriented programming in APLP
It is quite easy to build an object-oriented programming
paradigm in APL2. The main data structure is the frame
(which is a basic data structure in this language). The
different objects in the frame system are linked to form a
hierarchy. The root of the hierarchy is called OBJECT.

0 Attributes and methods
Each object in the hierarchy has a number of different
slots, belonging to the following classes:

Hierarchy definition slots: These are called PARENT
and CHILD.
0 PARENT always exists in every object. Its value is

the name of the parent frame to this object, except in
the case of the root of the hierarchy (frame
OBJECT), where the value of the PARENT slot is
empty.

hierarchy (an object with no descendants). This is a
multi-valued slot; i.e., its value is a vector of object
names (the list of direct descendants of this object).

0 Method definition slots: Their value is METHOD; their
506 name is the method name. For each method M defined

0 CHILD exists unless this object is a leaf in the

to an object 0, an APL2 function called 0-M
describes the operation to be performed.

their values are restricted, except for those restrictions
implicit in the preceding considerations.

0 Property slots (attributes): Neither their names nor

Each object in the hierarchy automatically inherits the
properties and the methods defined by its ancestors (its
parent and the ancestors of its parent), unless some
property or method has been redefined, either by the
same object or by a lower-level ancestor. (We define the
level of an ancestor as the length of the path in the
hierarchy between the ancestor and the object.)

The root frame (OBJECT) usually embodies the list of
all methods that should be automatically applicable to all
the objects in the hierarchy. The following is an example
of the initial definition of the OBJECT frame:

OBJECT + 8 2 p
I PARENT 1 1

CREATE I METHOD '
ERASE I METHOD '
PARENTS ' I METHOD

'CHILDREN' 'METHOD'
' P R O P E R T I E S ' 'METHOD'

VALUE ' METHOD
METHODS ' ' METHOD

It defines OBJECT as a frame with no parent, and
provides the following methods for general use:

CREATE creates a descendant of the object that

ERASE erases the object that receives the message to

PARENTS generates the list of all the ancestors of the

CHILDREN generates the list of all the immediate

receives the message to execute this method.

execute this method.

object that receives the message to execute this method.

descendants of the object that receives the message to
execute this method.

0 PROPERTIES generates the list of all the properties
known (including those inherited from ancestor
frames), together with their corresponding values, for
the object that receives the message to execute this
method.

0 VALUE obtains the value of a given property of the
object that receives the message to execute this method.
The property may be either owned or inherited.

0 METHODS generates the list of all the methods
(including those inherited from ancestor frames)
available for the object that receives the message to
execute this method.

0 Messages
The ability to send messages to one object is easily
implemented by means of the APL2 function

MANUEL ALFONSECA IBM J. RES, DEVELOP. VOL. 33 NO. 5 SEPTEMBER 1989

MESSAGE, which is described in the Appendix.
The syntax of MESSAGE is

MESSAGE 'Object ' 'Method ' [additional information]

where the presence or absence of any additional
information, and the nature of this information, depend
on the method being requested in the message. For
example, in the methods ERASE, PARENTS,
CHILDREN, PROPERTIES, and METHODS, described
above, no additional information should be given.
However, in the methods CREATE and VALUE, the
following information is expected:

MESSAGE 'Object ' 'CREATE' 'Child '

MESSAGE 'Object ' 'VALUE' 'Slot '

In the case of CREATE, the optional information after
the new child name represents a set of pairs Slot-Value
that will be defined for the new object at the time of
creation.

[('Slot ' 'Value') . . .]

Examples of the use of MESSAGE are

MESSAGE 'OBJECT' 'CREATE' 'JOHN'
('AGE' 50)

MESSAGE 'JOHN' 'VALUE' 'AGE'
50

0 Other primitive operations
Besides MESSAGE, five other primitive operations may
be performed on objects, namely:

ASSIGN 'Object ' 'Slot ' 'Value'

If 'Object ' does not contain an attribute named 'Slot ',
the attribute is created. In any case, 'Value' is the new
value of attribute 'Slot ' . In actual fact, 'Value' can be
a list, as in the following example:

ASSIGN 'JOHN' 'SONS' ('PHIL' 'TED'

MESSAGE 'JOHN' 'VALUE' 'SONS'
'NICK')

PHIL TED NICK

0 ERASE 'Object' 'Slot' ['Value' . . .]
If the list of values is not given, attribute 'Slot ' is
deleted from 'Object '. Otherwise, the corresponding
values are deleted from the list of values of attribute
'Slot ' . If, after deletion of the list of values, the value
of 'Slot ' is an empty list, the attribute 'Slot ' is deleted
from 'Object '. A list of values may be given only if the
value of attribute 'Slot ' is a list; for example,

ERASE 'JOHN' 'SONS' 'TED'
MESSAGE 'JOHN' 'VALUE' 'SONS'

PHIL NICK

IBM J . RES. DEVELOP. VOL. 33 NO. 5 SEPTEMBER 1989

INSERT 'Object I 'Slot ' 'Value' [. . .]
The list of values given is added to the current list of
values of attribute 'Slot ' ; for example,

INSERT ' JOHN' 'SONS' 'PETER'
MESSAGE 'JOHN' 'VALUE' 'SONS'

PHIL NICK PETER

TAKE 'Object ' 'Slot '

The value, or the list of values, of attribute 'Slot ' is
passed back as the result of this function; for example,

TAKE 'JOHN' 'SONS'
PHIL NICK PETER

There is an important difference between TAKE and
the VALUE method. The former only returns the
value of attributes owned by the object, while the latter
also provides the value if the attribute has been
inherited from an ancestor.

'Object 1 ' IS-A 'Object 2'

This function returns a 1 if 'Object 1 ' is a descendant
of 'Object 2'. It returns a 0 in the opposite case.

A semantic network
It is easy to implement a semantic network in APL2 and
use the methods of object-oriented programming to
access, update, or erase the information contained in the
network. The following program defines such a network,
in this case one containing information about the subject
matter in a curriculum or textbook.

C 0 I CREATE-THEMES
C 11 I N I T ' THEMES OOP '
C 2 1 A S S I G N ' O B J E C T ' ' W H O ' 'METHOD'
[SI M E S S A G E ' O B J E C T ' ' C R E A T E ' ' L I F E '
C 4 I MESSAGE ' OBJECT ' ' CREATE ' ' WORLD '
C 5 1 M E S S A G E ' O B J E C T ' ' C R E A T E ' ' M A N '
c 6 I M E S S A G E L I F E C R E A T E BIOLOGY I
C 7 I MESSAGE ' L I F E ' CREATE '

C 8 1 MESSAGE ' BIOLOGY ' ' CREATE '
' M E D I C I N E '

' BOTANY '
c 9 1 M E S S A G E I BIOLOGY I C R E A T E

ZOOLOGY '
C 10 1 MESSAGE ' BIOLOGY ' ' CREATE '

' MOLECULAR-B '

' ANATOMY '
C113 M E S S A G E ' B I O L O G Y ' ' C R E A T E '

C121 M E S S A G E ' B I O L O G Y ' ' C R E A T E '

C 13 I MESSAGE ' BIOLOGY ' ' CREATE '
' P H Y S I O L O G Y '

' H I S T O L O G Y '

MANUEL ALFONSECA

507

1 4 1 MESSAGE ' BIOLOGY ' ' CREATE ' [38] M E S S A G E ' P H Y S I C S ' ' C R E A T E '

(' R E L A T I O N ' ' C H E M I S T R Y ') C 39 3 MESSAGE ' P H Y S I C S ' ' CREATE '
'B IOCHEMIST ' OPTICS

C 1 5 1 M E S S A G E ' M E D I C I N E ' ' CREATE ' ' G R A V I T A T I O N '
PATHOLOGY C401 CLOSE

C 1 6 1 MESSAGE 'MEDICINE CREATE 8

' MEDICAL-TEC'
(' R E L A T I O N ' ' T E C H N O L O G Y ')

[: 1 7 I M E S S A G E ' M E D I C I N E ' ' CREATE

c 1 8 I MESSAGE M A N ' CREATE' HISTORY
' PRENATAL"'

C 19 1 MESSAGE 'MAN ' ' CREATE '
'TECHNOLOGY'

C 2 0 1 MESSAGE 'MAN' ' C R E A T E '
' E D U C A T I O N '

C 2 1 I MESSAGE ' WORLD ' ' CREATE '
' M A T H E M A T I C S '

C 2 2 1 MESSAGE 'WORLD' 'CREATE'
' GEOLOGY '

C 2 3 1 MESSAGE ' WORLD' ' CREATE '
'ASTRONOMY '

C 2 4 1 MESSAGE ' WORLD ' ' CREATE '
' P H Y S I C S '

C 2 5 1 MESSAGE ' WORLD ' ' CREATE '
' C H E M I S T R Y '

C 2 6 1 MESSAGE 'MAN ' ' CREATE '
' B I O G R A P H Y ' (' W O R K S ' ' M E T H O D ')

C271 M E S S A G E ' B I O G R A P H Y ' ' C R E A T E '
' S C H W A R T Z C H '
(' W O R K ' ' B L A C K - H O L E S ')

C 2 8 1 MESSAGE ' BIOGRAPHY ' ' CREATE '
' HOYLE '
(' WORK ' ' S T E A D Y - S P A ')

'HAWKING'
(' W O R K ' ' B L A C K - H O L E S ')

' S O L A R - S Y S T '

' G A L A X I E S '

c 2 9 I MESSAGE BIOGRAPHY CREATE

E301 M E S S A G E ' A S T R O N O M Y ' ' C R E A T E '

c311 M E S S A G E ' A S T R O N O M Y ' ' C R E A T E '

C 3 2 1 MESSAGE 'ASTRONOMY ' ' CREATE '
'COSMOLOGY'

C 3 3 1 MESSAGE ' G A L A X I E S ' ' CREATE '
' BLACK-HOLES '

' Q U A S A R S '
c 34 I MESSAGE G A L A X I E S ' ' C R E A T E

C351 MESSAGE'COSMOLOGY' 'CREATE'
' BIG-BANG'

' STEADY-STA '

'NEWTON' (' W O R K '

C 36 1 MESSAGE ' COSMOLOGY' ' CREATE '

C371 M E S S A G E ' B I O G R A P H Y ' ' C R E A T E '

508 (' O P T I C S ' ' G R A V I T A T I O N '))

The preceding APL2 function was completely written
using the object-oriented techniques and the functions
MESSAGE and ASSIGN defined above. It creates a
semantic network consisting of 38 nodes linked by means
of the normal hierarchical relations PARENT/CHILD in
the structure of a tree. At the same time, there are a
couple of nonstandard relations (WORK and
RELATION) linking certain nodes in the network. These
relations are implemented as slots of certain objects. The
slot name is the name of the relation, and the slot value
is the list of names of the nodes in the network linked to
this object by the relation. Multiple relationship is
automatically supported by the fact that the value of an
attribute may be a list.

The value of the WORK relation is the list of fields in
which certain authors or scientists have worked. This
relation has meaning only for the immediate children of
the node BIOGRAPHY. Two methods have been built in
this context, one of them to follow the relation in one
direction, the second to follow it in the opposite
direction:

0 WORKS. This method generates the list of all fields in
which an author can be said to have worked. To obtain
the list, the method finds the value of the WORK
attribute and adds to the resulting list the names of all
the ancestors of the members of the list. Those nodes
that would appear as ancestors of more than one
member of the list are not repeated. The method is
defined at node BIOGRAPHY, and in this way is
available only for this object and its descendants.

Example:

MESSAGE 'HAWKING' 'WORKS'
BLACK-HOLES GALAXIES ASTRONOMY

WORLD OBJECT
MESSAGE 'NEWTON' 'WORKS'

OPTICS PHYSICS WORLD OBJECT
GRAVITATION

0 WHO. This method generates the list of all authors
who have worked in a given field. To obtain the list,
the method finds the names of all the authors who have
worked in either the indicated field or one of its
descendants.

Example:

MESSAGE 'ASTRONOMY ' 'WHO '
SCHWARTZCH HOYLE HAWKING

MANUEL ALFONSECA IBM 1. RES. DEVELOP. VOL. 33 NO. 5 SEPTEMBER 1989

MESSAGE 'PHYSICS' 'WHO'
NEWTON

Both methods have been written in APL2 and are shown
in the Appendix. (The RELATION relation is
implemented in the same manner.)

that extracts information from the indicated semantic
network using only the techniques of object-oriented
programming.

Finally, the Appendix also includes an APL2 function

Conclusions
The preceding considerations, as well as the simplicity of
the programs listed in the Appendix, show that APL2 is a
very appropriate language for object-oriented
programming. The fact that frames are one of the basic
data structures of the language makes this kind of
application very natural and efficient.

The set of functions described above, together with a
subsidiary set of auxiliary functions and four others
embodying a windowing system, applicable both to frame
systems and semantic networks, and supporting
associated procedures (demons), have been implemented
and are working successfully. The system (an APL2
workspace) runs both under APL2JPC and APL2/370
and supports the generation of frames and semantic
networks, both as objects in the active APL2 workspace
and as logical records in a file system specially created for
this purpose.

The semantic-network example described in this paper
has been expanded successfully to implement a hypertext
application embodying an on-line dictionary. The total
number of objects in the application is 2 133, of which
2 130 are contained in 44 files, while the remaining three
objects (which make up the root of the hierarchy) are
located in the main memory workspace. Each object in a
file corresponds to the definition of a word in the
dictionary. The total size of the files is about 1.3
megabytes, which corresponds to an average of 644 bytes
per word. File management has also been implemented
by means of the object-oriented paradigm. The
application allows the user to display the information
about each word in the dictionary, either through a direct
call or by simply pointing to it anywhere. Mouse and
window support is included in the hypertext application.

Appendix

0 Messages in APL2

C 0 1 AR+MESSAGEAX;AOB;AMET;ASRCH;
A A ; AI; AB

C11 AOB+' ' ELM4AX
C 2 1 AMET+' ' ELM 23AX

IBM I. RES. DEVELOP. VOL. 33 NO. 5 SEPTEMBER 1989

C 3 1 AX+2+ AX
C 4 3 +AE 1 IF-EXIST AOB
C 5 1 ASRCHtAOB
[S I AL:AA+(AB+GETASRCH)C;ll
C71 +AL1 IF (p A A) >AI+AAlcAMEP
C81 +AE 2 IF O=pASRCH+

C91 +AL
C l O l ALl:AX+(cAOB) ,AX
C l l l ' ' OEA 'AR+' ,ASRCH,

c 1 2 3 +o
C 1 3 1 AE1:AMSG'THEOBJECT' AOB 'DOES

C141 +O
C 1 5 1 AE2:AMSG 'UNKNOWNMETHOD' AMET

3ABCAAtc'PARENT' ; 2 1

' - ' ,AMET, ' AX'

NOT EXIST. METHOD = ' AMET

' FOR OBJECT AOB

Methods related to the WORK relation

C 0 I Z+BIOGRAPHY-WORKS OBJ ; A ; B
c11 Z+"
C 2 1 +O IF O=pA+TAKE (4 O B J) ' WORK'
C 3 1 +L IF lt=A
C 4 1 Z+ (C A) ,MESSAGE A ' PARENTS '
C 5 1 +O
C 6 1 L : B+MESSAGE (+ A) PARENTS '
C71 Z+Z, (4 A) , (- B E Z) / B
C8l A+l+A
C91 +L IF 0 * p A

The preceding APL2 function generates the result of the
execution of the method in the variable Z.

Line 2 gets the list of the values of the attribute WORK
in the object receiving the message (OBJ). If this list is
empty, the method is abandoned with an empty result.
Otherwise, line 3 of the method tests to find whether
WORK is a single-value attribute (when line 4 is
executed) or a multi-value attribute (when control is
passed to line 6 to execute a loop on the values).
In both cases, lines 4 and 6 add to the result the list of
all the ancestors of the values of the attribute WORK
(the result of executing the method PARENTS against
each of the objects in that list).
Line 7 simply eliminates duplicates from the result.

C O I ZtOBJECT-WHO0BJ;I;A;B

C 2 1 AtTAKE ' BIOGRAPHY ' ' CHILD '
C 3 1 L:+O IF O=pA
C41 +L2 IF O=pB+TAKE (+ A) 'WORK'
C 5 1 + L 1 I F (4 O B J) r B
C 6 1 + L 1 I F O B J E B
C71 +LO IF l==B

c11 Z+"

MANUEL ALFONSECA

510

C 8 1 L 3 : + L 2 I F O=pB
C 9 1 +L 1 I F OBJeOBJECT-PARENTS B
C l O I B + l + B
C l l l + L 3
C 1 2 1 L O : + L 2 I F - O B J E

O B J E C T - P A R E N T S c B
C 1 3 1 L l : Z + Z , A [l]
C 1 4 1 L 2 : A + l + A
C 1 5 1 + L

The preceding APL2 function generates the result of the
execution of the method in the variable Z.

Line 2 gets the list of the direct descendants of the
object BIOGRAPHY (i.e., the list of all the people who
can work in any field). This list becomes the variable A.
Lines 3 to 15 make a loop on the elements of A.
Line 4 finds the list of works of one person in list A.
This becomes list B.
Lines 5 to 7 compare list B to the object receiving the
message (OBJ, the field where we want to find the
workers). If the object is in the list, control is passec‘
line 13, which inserts this person in the result vari?
(Z). Otherwise, a test is done to find whether OBJ
ancestor of any element in B. If so, the corresponding
element of A is also included in the result. Otherwise, it
is ignored.

Object-oriented programming access to a semantic
network

C O I THEMES
C 11 OPEN ‘THEMES OOP’
C 2 1 ’ P A R E N T S OF HAWKING
C 3 1 MESSAGE HAWKING ‘ P A R E N T S ’
C 4 1 CHILDREN OF BIOGRAPHY
C 5 1 M E S S A G E ‘ B I O G R A P H Y ’ ‘ C H I L D R E N ’
C 6 1 ’ P R O P E R T I E S OF HAWKING‘
C 7 1 MESSAGE HAWKING ‘ P R O P E R T I E S ‘
C 8 3 WORKS OF HAWKING I

C 9 1 MESSAGE I HAWKING ‘ WORKS
C 1 0 1 ’ W H O WORKS IN BLACK-HOLES? ’
C 11 1 MESSAGE ’ BLACK-HOLES W H O ’
C 1 2 1 W H O WORKS IN ASTRONOMY? ’

C 1 4 1 ‘ W H O W O R K S I N O P T I C S ? ’
C 1 5 1 M E S S A G E O P T I C S ’ W H O
C 1 6 1 ’ WORKS OF NEWTON ‘
C171 MESSAGE ‘NEWTON’ ‘WORKS‘
C 1 8 1 C L O S E

c 1 3 I MESSAGE ASTRONOMY W H O I

References
1. John F. Sowa, Conceptual Structures: Information Processing in

Mind and Machine, Addison-Wesley Publishing Co., Reading,
MA, 1976.

MANUEL ALFONSECA

2. M. R. Quillian, “Semantic Memory,” Semantic Information
Processing, M. Minsky, Ed., MIT Press, Cambridge, MA, 1968,

3. M. Minsky, “A Framework for Representing Knowledge,” The
Psychology of Computer Vision, P. Winston, Ed., McGraw-Hill
Book Co., Inc., New York, 1975, pp. 21 1-217.

4. APL2 Programming Language Reference, Order No. SH20-9227,
1987; available through IBM branch offices.

5 . James A. Brown and Manuel Alfonseca, “Solutions to Logic
Problems in APL2,” APL Quote Quad 17,356-361 (1987).

ij. James A. Brown, Janice Cook, Leo H. Groner, and Ed Eusebi,
“Logic Programming in APL2,” APL Quote Quad 16,282-288
(1986).

pp. 227-270.

Received May 24, 1988; accepted for publication August I,
I989

Manuel Alfonseca IBM Madrid ScientiJic Center, P. Castellana,
4, 28046 Madrid, Spain. Dr. Alfonseca is Senior Technical Staff
Member at the IBM Madrid Scientific Center. He joined the

ientific Center in 1972, and has since participated in a number of
;*ejects related to the development of APL interpreters, continuous
simulation, artificial intelligence, and object-oriented programming.
Results of this work are reflected in ten announced international
IBM products. Dr. Alfonseca received the Electronics Engineering
and Ph.D. degrees from Madrid Polytechnical University in 1970
and 197 1, respectively, and the Computer Science Licenciature in
I“72. He is a Professor of Theoretical Computer Science on the
I ::ulty of Computer Science in Madrid and is the author of several
aoks. Dr. Alfonseca received the National Graduation Award in

I97 1 and two IBM Outstanding Technical Achievement Awards in
1983 and 1985. He has also been recognized as a writer of children’s
literature.

IBM J . RES. DEVELOP. VOL. 33 NO. 5 SEPTEMBER 1989

