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Error-control coding has played a significant role 
in the design and development of magnetic 
recording storage products. The trend toward 
higher densities and data rates presents 
continuing demands for an ability to operate at a 
lower signal-to-noise ratio and to tolerate an 
increased number of correctable errors. 
Heretofore, the magnetic disk storage products 
used coding schemes that provided correction 
of  one burst of errors in a record of length 
ranging from a few bytes of data to a full track 
on the disk. In this paper,  we present a  new 
coding architecture that facilitates correction of 
multiple-burst errors in each record in a typical 
disk storage application. This architecture 
embodies a two-level coding scheme which 
offers high coding efficiency along with a fast 
decoding strategy that closely matches the 
requirements of on-line correction of multiple 
bursts of errors. The first level has a smaller 
block delay and provides very fast correction of 
most of the errors commonly encountered in an 
average disk file. The second level, on  a larger 
block size, provides reserve capability for 
correcting additional errors which may be 
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encountered in a device with symptoms of  a 
weaker component or an oncoming failure.  The 
new IBM 3380J and 3380K disk files use a two- 
level scheme that is designed around the coding 
structure of the extended Reed-Solomon  code. 
This design and the related encoding and 
decoding methods and implementation are 
presented in detail. 

Introduction 
New disk storage products are required to provide better 
reliability and availability in  spite of their higher packing 
density and delivery rate with a large amount of on-line 
data. A relatively greater number of soft errors,  including 
multiple-burst  errors, must be processed very rapidly. 
Conventional  coding  techniques,  such  as  multiple-symbol- 
correcting  Reed-Solomon [ 11 or BCH [ 2 ]  codes  are very 
efficient in terms of redundancy. However, the algebraic 
constraints on their block size and  the relative time required 
for the decoding of multiple-byte  errors  in each block are 
major restrictions of their applicability to long records of 
data in computer products. 

Previously, disk products used error-correction  schemes 
that corrected one burst of errors in  a variable-length block 
of up  to  one full track. In these schemes, decoding for an 
error resulted in missing a disk revolution; and  the  error was 
usually corrected with data  in  the  main  memory, requiring 
CPU involvement in the error-recovery  procedure. The 
occurrence of a  multiple-burst error required  rereading of 
the data several times  in  order  to eliminate the presence of 
multiple errors. 
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In this paper, we present  a new coding  architecture that 
facilitates correction of multiple  bursts of errors  in each 
record in  a typical disk storage application. This architecture 
embodies  a two-level coding arrangement which offers high 
coding efficiency with a fast decoding strategy that closely 
matches the  requirements of on-line  correction of multiple- 
burst errors. The  product can make use of this  capability  for 
improved reliability as well as lower product cost through 
(1) increase in  recording  density, (2) trade-off in  head and 
disk tolerances, and (3) partial coverage of  small disk defects, 
particularly  those which are difficult to find in costly surface 
analysis testing. 

arrangement is designed for  a specific reliability 
performance, so that  an average disk file  will not be required 
to utilize the second-level capability  in  its routine daily 
operations. The second-level capability  is the ‘‘reserve” 
capability, which is frequently  invoked in  the case of a 
“weaker” device or a  “failing” device, in which the soft-error 
rate is substantially  above the average. Errors  corrected 
through the second-level capability may be logged and this 
information  may be used for flagging a  “weaker” or “failing” 
device before it  causes data loss through an uncorrectable 
error or a failure, thus reducing  unscheduled service calls. 

The first-level capability in  the two-level coding 

Two-level  coding  scheme 
The  data  format  in  the two-level coding  scheme [3] is 
designed around a two-level architecture  consisting of 
subblocks  within  a block. An example with a figure appears 
in  a  later section. Each  subblock consists of m data bytes and 
r, check bytes. The subblock is a  code  word from a  code 
with minimum  Hamming distance of d, symbol  units, and 
the symbols (bytes) are elements of the Galois field  [GF(2’)]. 
Each  block consists of n subblocks and r, check bytes which 
are  shared by all its subblocks. The  data part of the block- 
level code is viewed as modulo-2  superposition of n subblock 
code words. The r2 check bytes (either  independently or 
along with the superpositioned r ,  check bytes of all 
subblocks) provide a minimum  Hamming distance of d2 
(over one subblock) at  the block level where d2 > d l .  
The code words of both levels may be interleaved in  order  to 
provide correction  for  burst errors  or clustered  multi-symbol 
errors. 

The decoding process provides  correction of up  to t ,  errors 
and detection  of up  to t ,  + c errors  in each  subblock, where 
dl  = (2t ,  + c + 1). If the  number of errors  in a  subblock 
exceeds the  error-correcting  capability at  the first level, such 
errors are either left uncorrected or are miscorrected. If all 
errors  are confined to  one subblock, the block-level code will 
provide  correction of up  to t, errors, where d2 2 (2t2 + 1). 
However, many  combinations of errors in  multiple 
subblocks, including t, errors  not confined to  one subblock, 
are also correctable,  as  claimed  in the following theorem. 

Theorem I Let d, and d, denote  the  minimum  Hamming 
distance in  the subblock-level code and block-level code, 
respectively, where d, = (2 t ,  + c + 1) and d, 2 (2t, + 1). 
This two-level coding  scheme  provides  correction oft,  errors 
anywhere in  the block, provided t, 5 2t,  + c. In particular,  it 
provides  correction of a errors in the subblock with the most 
errors, up  to b errors in each of the  other subblocks, and y 
errors in the block-check bytes, where a, 6, and y are  any 
nonnegative integers such that (a + y )  5 t,, b 5 t, , and 

The set of parameters t,, t , ,  and c defines a two-level 
scheme. Let (a, b )  denote  an  error  combination consisting of 
a errors in one subblock and  up  to b errors in  each of the 
other subblocks  in  a block where a 2 b. The  errors in the 
block-level check bytes may be considered  as  part of a errors 
in the subblock that is corrected at  the second level. Then 
Theorem 1 defines the (a, b )  combinations corrected at each 
level. The (a, b )  combinations corrected at  the first level are 
defined by all values a 5 t ,  with b = a. The (a, b )  
combinations corrected at  the second level are defined by all 
values a such that t ,  < a 5 t, + c  with b = t , ,  and 
t ,  + c < a 5 t, with b = 2t, + c - a. 

increased beyond t,  errors  to  include (a, b )  combinations 
defined by t ,  < a 5 t ,  + c/2 with b = a. These additional 
corrections may be processed at  the second level using the 
first-level syndromes of all uncorrected subblocks. 

Before presenting the proof of the  theorem, we present  a 
simple  decoding strategy for the two-level coding  scheme, 
which provides  correction of all error  combinations specified 
in the  theorem. It is assumed that syndromes at each level 
are  decoded  for (up  to) a fixed number of errors using 
minimum-distance decoding which finds a  code word that 
differs from the received word in the fewest possible 
positions. The overall decoding process for the two-level 
code then follows the steps given below: 

(a + 6) 5 2 t ,  + c. 

In  the case when  c 5: 2, the first-level corrections  could be 

Compute  and  decode  the  syndromes for  each  subblock 
for up  to t ,  errors. If a  subblock is uncorrectable or if the 
number of decoded errors is larger than  that  in  any of the 
previously decoded  subblocks, then  update  the  contents 
of a buffer memory.  (The buffer holds the  error 
information  and  the subblock number for  a  subblock 
which is either uncorrectable or requires  correction of the 
greatest number of errors.) 
Compute  the block-level syndrome set ( S )  from  the 
received data, including all subblock-level error 
corrections. If ( S )  # 0 or if  a  subblock has uncorrectable 
errors at  the first level, then second-level processing is 
required. The  subblockfis identified by the  information 
in the buffer memory as an uncorrected  subblock or a 
subblock with the greatest number of corrected symbols. 
Modify the block-level syndrome set (S) as follows: 

P ’ l  + IS) - (SfL 
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where {S, ) is the  contribution  to the block-level 
syndromes due  to the error corrections  in the  subblockf: 
If subblockfwas left uncorrected  in Step 1, then (S, ) = 0. 
The  error  information for computation of {Sf) is available 
in the buffer memory. 

4. Use the modified syndrome set (S’ ) of Step 3 and decode 
for up  to t2 errors  in  subblockJ;  including the block-level 
check bytes. If the errors are  found uncorrectable. then 
there are  too  many errors. 

subb1ock.f: Enter  the block-level corrections in subblockf 
and  the block-level check bytes. 

5. Remove  the subblock-level corrections, if any,  in 

Step 2 of the above  decoding  procedure  detects and identifies 
the subblock with more than t ,  errors uniquely. This is the 
key to  the proof  of the theorem. 

Proof of Theorem 1 We assume that  the subblock with the 
most  errors (i = f )  contains  up  to ( t ,  + c + x )  errors;  each of 
the  other subblocks (i Z f )  contains  up  to ( t ,  - x )  errors, 
and block check bytes contain y errors. The subblock 
numberfand  the nonnegative integers x and y are  not 
known. 

When x = 0, all errors at  the subblock level are corrected 
or detected  properly, since they are all within the capability 
of the subblock code. If a subblockfhas  more  than t ,  errors, 
it will be identified by the first-level decoder  as an 
uncorrectable  subblock. When x > 0, consider the subblock 
with ( t ,  + c + x )  errors.  Since the  minimum  Hamming 
distance dl is (2t ,  + c + l),  the nearest code word must differ 
from the received word in at least (2 t ,  + c + 1)  - 
( t ,  + c + x) positions. Thus,  the first-level decoder may 
miscorrect the subblockf by introducing  additional  errors in 
at least ( t ,  - x + 1)  positions and as many as t ,  positions. 
Alternatively, the decoder may find subblock funcorrectable 
if its Hamming distance from  the nearest code  word is 
greater than t ,  . In contrast, the first-level decoder will correct 
( t ,  - x) or fewer positions in each of the  other subblocks, all 
of which will be corrected  properly. 

At the block level, the  syndrome set {SI is computed  from 
the received data, which include all subblock-level error 
corrections. The set { S )  is, then,  the block-level syndrome set 
for all errors still present  in the block, that is, in  subblockf 
and  the block-level check bytes. These are  at most (t2 + t , )  
errors, which include ( t ,  + c + x )  + y original errors  and  up 
to t ,  miscorrections.  Since the  minimum  Hamming distance 
d2 exceeds ( tz  + t , ) ,  the corresponding syndromes {S)  must 
be nonzero. Thus,  the uncorrected or miscorrected errors in 
the block will be detected at  the block level in 
Step 2 of the decoding  procedure. The  subblockJ; with 
( t ,  + c + x )  errors, is uniquely identified in  Step 2 from  the 
fact that (it was declared  uncorrectable  or) the  number of 
corrections  in subblockfexceeds those in  any of the  other 
subblocks by at least 1. If the uncorrected errors  are  the y 

errors in block check bytes only, the value off is of no 
consequence at  the block level. 

patterns  introduced by the decoder  in  subblockf: We can 
remove  these error  patterns  from  subblockfand  their 
contribution {Sf) from  the syndromes IS). Thus,  the set 
( S )  - (Sf) represents the syndromes  for the original 
( t ,  + c + x) errors  in  subblockfand y errors  in  the block- 
level check bytes. The  syndromes (S) and (Sf) are all known 
quantities. The block-level decoding of (S) - {Sf) for t, 
errors will, then, provide proper correction of all remaining 
errors. This completes the proof of the theorem. 

From a practical viewpoint, a given decoding process can 
be considered on  the fly  if it  meets the following test: The 
error  correction on  the previously received subblock  is 
completed before the last byte of the next  subblock is 
received. The processing will require a one-subblock delay 
[4]. Thus, on-the-fly decoding is possible if and only if the 
subblock decoding time is smaller than or equal  to  the 
subblock read time.  The criterion for on-the-fly decoding can 
be given as 

Let (Sf) denote  the block-level syndromes  due  to  the  error 

subblock decoding time 
subblock size X data rate < 1. 

Another important consideration is the above-cited one- 
subblock delay in  decoding for errors. This delay directly 
affects the most important performance parameter of the 
disk file-namely, the access time.  Thus,  it is desirable to 
partition the block into subblocks  with  corresponding short 
subblock delay. 

The two-level scheme  provides  a fast decoding strategy 
that closely matches the  requirements of on-the-fly 
correction of errors in  a very flexible data  format.  The 
subblock level has the smaller block delay and provides very 
fast correction of most of the  errors  commonly  encountered 
in an average disk file. The second level, on a larger block 
size, provides  detection and correction of additional  errors 
that may be encountered  in a weaker device. The block-level 
decoding may  be relatively slow and  may include the 
conventional head-shift and reread  functions. This design 
makes the  most use of the available redundancy  and 
provides a  substantial match  to  the error-correction 
requirements of future disk files. The extended  shared 
relationship of all subblocks to  the block-level check bytes is 
a new structure,  not  found  in  other two-stage coding 
schemes such as  concatenated codes [5] or product codes [6].  

Error-rate  performance of two-level coding 
schemes 
The basic error event is a “byte-in-error.’’ A burst error  may 
cause correlated  errors in adjacent bytes; however, sufficient 
interleaving is assumed to effectively randomize these  errors. 
With appropriate interleaving, all bytes are assumed to be 
seen by the coding  scheme  as  equally likely to be in  error.  In 472 
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disk files, major defects in the media are avoided by means 
of surface analysis test and defect-skipping strategy. The 
error-correction  code is expected to provide coverage for 
errors caused by noise and small defects that  cannot be 
identified easily in the surface analysis test. These errors are 
usually two to  four bits long. Typically two-way or three-way 
byte  interleaving of the code  words is adequate in disk-file 
applications, which will also allow for  small amounts of 
error propagation  in the encoding and detection process. 

Let p denote  the probability of the basic error event-a 
byte in  error. For a given value of p ,  the probability of any 
combination of multiple errors  in a  subblock and a block 
can  then be calculated using binomial  and  multinomial 
expressions. The total  probability of no-error and 
correctable-error combinations  at  the first level of decoding 
will then lead to  the uncorrectable (or miscorrected) error 
rate at  the first level. Similarly, the total  probability of no- 
error  or correctable-error combinations  at  the second level of 
decoding will lead to  the uncorrected  (or  miscorrected) error 
rate at  the second level. 

Let PsB(t)  denote  the probability that t bytes are in error 
in  a  subblock of N bytes. Then PsB( t )  can be computed from 
P as 

Next, we compute  the probability PB(<tl) of up  to t ,  errors 
in each of the n subblocks of a block. This is the probability 
of no-error and all correctable-error combinations  at  the 
first-level decoding: 

PB(Stl) = [io pSB(t)T ' 

We next compute  the probability PJa, b) of the event with a 
errors  in one subblock and  up  to b errors in all the  other 
subblocks,  in  a block where b < a. This is the probability  of 
an additional combination (a, b) of errors corrected at  the 
second level. This probability is given by 

n- I 

PB(a> b,  = n P S B ( a )  for b < a. 

Now it is easy to  compute  the total  probability of no-error 
and correctable-error combinations  at  the first and second 
levels by combining probabilities of mutually exclusive error 
combinations covered by both levels of decoding. Let 
PT(t2,  t, ; c) denote  this probability  for  a  scheme 
characterized by parameters t,, t, , and c. Then we write the 
total  probability  as 

PT(t2> t ,  ; c )  = PB(stl) + p B ( a >  b ) 3  

I(a,b)l 

where {(a,  b ) )  represents the set of all (a, b )  combinations 
correctable at  the second level, namely, all values of a such 
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that t ,  < a I t, + c with b = t ,  and  t, + c < a I t ,  with 
b = 2t, + c - a. From  the above three  equations, we can 

Now we can compute  the probability PUB of 
uncorrectable error in  a block after first-level correction, 

P U J s t , )  = 1 - PB(5t , ) ,  

and the  total  probability PUT of an uncorrectable error for 
the two-level scheme  as 

The average number of bytes transferred  per  uncorrectable 
error  event at  the first and second levels can be computed 
from the error  probabilities PUB  and PUT, respectively, as 
follows: 

Bytes per uncorrectable  error  at first level 

= (n x N)IPUB, 

Bytes per uncorrectable  error at second  level 

= ( n  X N)IPUT. 

In  Figure 1 we plot the results of these computations for 
some typical examples. The line  marked t, = 3 represents 
the performance of a  conventional one-level coding  scheme 
with correction of three  errors  in every 250-byte  (sub)block. 
The  next four lines  represent the two-level coding 
arrangements  consisting of 40 subblocks  in  a  block and 
(t2, t , ;  c) = (4, 3; 0), ( 5 ,  3; 0), ( 5 ,  3; l), and (6, 3; I) ,  showing 
successive and substantial improvements  in error-rate 
performance  provided by the small amount of additional 
shared redundancy  at  the second level over t ,  = 3 at  the first 
level. Also plotted,  for comparison, is the performance of a 
conventional one-level coding  scheme with correction of six 
errors (t, = 6) in every 250-byte (sub)block. 

Two-level  coding  in IBM 33805  and  3380K  files 
The J and K models of the 3380 file use the new two-level 
coding arrangement for  correction of multiple  bursts of 
errors. The  data  format of  a  disk  track is designed around a 
two-level architecture  consisting of subblocks  within  a  block, 
combined with interleaved  code words. The first-level coding 
structure of the subblock  provides  one-symbol correction- 
the  primary  capability which is routinely processed on-line at 
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the subblock level. The coding structure is extended to two- 
symbol correction-the secondary  capability at  the block 
level. The code words are two-way interleaved. The  data 
format is shown  in Figure 2. The 3380 files use the 
traditional  count-key-data (CKD) arrangement for storing 
and accessing the user data, where each  of the  count, key, or 
data fields can be treated  as  a variable-length block for  error- 
correction  coding.  Various  details relative to  count, key, and 
data fields are excluded  from the  data  format of Figure  2  for 
the sake of simplicity. 

The  data  are stored  in the  form of user-defined variable- 
length blocks (records). Each block is partitioned into fixed- 
length  subblocks,  except that  the last subblock may be 
shorter, with fewer user bytes, or may include  pad bytes. 
Each subblock  (except  the last) consists of 96 user bytes and 
six first-level check bytes in  the  form of two  interleaved  code 
words. At the  end of the block, six additional check bytes are 
appended, two of which are used for second-level error 
correction and  the remaining four for an overall data- 
integrity check after  correction of the  errors  at  both levels. 

The basic error event in  the 33805 and 3380K files is a 
burst error  that may affect up  to  two adjacent bytes. The 
two-way interleaved two-level code of Figure 2  provides 
correction of  at least one  error event  in  each  subblock and 
up  to two error events  in any  one of the  many subblocks of a 
variable-length block. With this code and  an acceptance 
criterion of one uncorrected or miscorrected  record in IO” 
read bytes, one  can accept  a  device  error  rate of one  error  in 
IO’ read bytes using the first-level decoder  only and a 
“weak”-device error rate  of one  error  in 1 .2  X IO5 read bytes 
using both the first- and second-level decoders. This 

compares with the acceptable device error  rate of one  error 
in  2 x IO8 read bytes with the code in  the 3380D and E files 
for an equivalent error performance  in  reading  long records. 
In the following sections, we present the encoding and 
decoding processes in  the new two-level code,  including the 
details of  hardware and software implementations. 

Coding equations 
The coding equations  are created  in terms of symbols  in 
GF(28).  These  symbols are represented by 8-bit  binary bytes. 
A subblock consists of two interleaved  words of a  primary 
code. The primary  code  word consists of three check bytes 
denoted by Bo,  B, , and C,, and m data bytes denoted by B2, 
B,, . . . , B,,,, which satisfy the following modulo-2 matrix 
equations: 

B, e TB, e T’B, e..  .e T”+’B,+, = 0, (1) 

where Cl3 signifies modulo-2 sum, B, is an 8-bit column 
vector, i = 0, I ,  . . . , m + 1 5 (28 - 2), T i s  a companion 
matrix of a  primitive  polynomial of degree 8, and T’ denotes 
T multiplied by itself i times with modulo-2 addition. We 
use m = 48 and the following T matrix  corresponding to  the 
polynomial I + x’ + x’ + x’ + x 8 :  

0 0 0 0 0 0 0 1  
1 0 0 0 0 0 0 0  
0 1 0 0 0 0 0 0  
0 0 1 0 0 0 0 1  
0 0 0 1 0 0 0 0  
0 0 0 0 1 0 0 1  
0 0 0 0 0 1 0 0  
0 0 0 0 0 0 1 1  

T = [  

The code given by Equations (l), (2), and (3) is an  extended 
Reed-Solomon  code [ 1, 7 ,  81 with Hamming distance 4. The 
8-bit column vectors represent the field elements  in GF(2’), 
and multiplication by the matrix T’ corresponds  to  the 
multiplication by cy‘, where a is the primitive element 
represented by the first column of the matrix T. The  matrix 
r‘ for any positive integer i can be computed from T. Then, 
for a given matrix  T’,  it  is easy to  construct a hard-wired 
circuit to  compute modulo-2 product T’B corresponding to 
any  input byte B. Figure 3 illustrates  such  a  circuit  for the 
matrix T3. 

The encoding  for the first two check bytes Bo and B,  can 
be performed by means of a shift-register network  built for 
modulo-g(x) operations,  where g(x) is  a  polynomial with 
roots cy and a’, as given by 

g(x) = (x CJ3 a)(x e a’) 

= x’ e (a CJ3 .’)X e a3.  
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1 Input 
B,,, , B,, B,-,, . . . , B,, B, are entered into  the register in m 
successive shifts as 8-bit parallel vector inputs. At the  end of 
this  operation, the register contains  the check bytes Bo and 
B,  in its low-order and high-order positions, respectively. 

C, in each subblock is camed  out separately by means of a 
shift register shown  in Figure 6 and  the multiplier T3 of 
Figure 3. Initially, the register is set to all zeros. The ordered 
sequence of subblock bytes B,, , , B,, B,- I ,  . . . , B,  , Bo are 
entered into  the register in rn + 2 successive shifts. At the 
end of this  operation, the register contains  the check byte C, 
corresponding to  the subblock. 

The block consists of any  number of subblocks, say n, 
with one additional  check byte denoted by C, at  the  end. 
This check byte is the  modulo-2  sum of all subblock bytes 
excluding C, and accumulated  over all subblocks  as specified 
by the following modulo-2  matrix equation: 

Unlike the computations of Bo and B,  , the  computation of 

I 

b i n q  \torase 
element sum 11111111 

8-blt Input, B, 

The primary  code  words described above are two-way 
interleaved. Thus,  there  are six check bytes at  the  end of 
each subblock and two check bytes at  the  end of the block 
that provide the desired error-correction  capability. The 
remaining four check bytes at  the  end of the block are for 
data integrity check over the corrected data stream. This 
error-detection  part of the second-level code is described in  a 
separate  section  entitled Data integrity check. 

It is readily seen that for n = 1, Equations (l) ,  (2), (3), and 
(6) together represent a  code that is an extended Reed- 
Solomon  code for correction of two-symbol errors. In  the 
case of n greater than 1, the block-level code word can be 
viewed as  modulo-2  superposition  of n subblock  code words. 
Two-symbol errors  in  this  superpositioned  code  word are 
correctable. Suppose that a block consisting of n subblocks 
encounters  multiple  symbols  in  error. If these  errors are 
located in  separate  subblocks,  each error will be corrected  as 
a single-symbol error  in the corresponding  subblock, and  the 
block-level error syndromes will vanish by the corrected 
error patterns. If one of the subblocks has two  symbols  in 
error, the subblock-level processing will detect  these errors 
and correct all others  as single-symbol errors. Then,  at  the 
block level, the subblock-level syndromes,  together with 
block-level syndromes, will be reprocessed for the correction 
of the subblock with two  symbols in error. If any subblock 
has more  than two  symbols in error, or if two or more 
subblocks  have  multiple  symbols  in  error,  these errors 
cannot be corrected. 

The block diagram  of  this shift register appears in Figure 4, 
and  the shift register with binary-circuit components is 
shown  in Figure 5. The check bytes Bo and B, are  computed 
by processing the  data bytes in  this shift register. Initially, the 
register is set to all zeros. The ordered  sequence of data bytes 

Decoding process:  First  level 
Let B ,  and e, denote  the read bytes corresponding to  the 
written bytes B, and C,, respectively. The syndromes of error 
at the  subblock level are  denoted by SI, S,, and S,, 
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corresponding to  the coding equations  (I), ( 2 ) ,  and (3), 
respectively, and  are given by 

SI = Bo @ TB, @ T2B2 @ .  . . @ T m + I j m + , ,  (7 1 
s, = 8, @ T 2 B ,  @ T4B,  e . .  . @ T2(mCI) B m + ,  7 (8) 

S, = Bo @ T3Bl @ T6B,  @ .  . . @ T3(+0bm+l @ e,. (9) 

The syndromes S,  and S, are  computed by processing the 
ordered  sequence of read bytes B,,, , E,, Bm-l ,  . . . , B,  , Bo 
in  two shift registers with premultipliers T and T', 
respectively. The shift registers are similar to  that shown  in 
Figure 6 except  for the premultiplier  circuit.  Each  shifting 
operation  multiplies the previous content of the register by 
the multiplier  matrix and  then combines (by modulo-2 
vector addition)  the results with the entering byte. The 
resultant 8-bit byte  becomes the new content. After m + 2 
shifting operations, the two shift registers contain  the 
syndromes SI and S, in  accordance with Equations (7) and 
(8), respectively. The  syndrome S, is computed similarly 
except that Bo is EX-ORed with C, before entering the shift 
register, and  the multiplier  matrix is T3.  

A nonzero value of SI, S,, or S, indicates the presence of 
an error.  Suppose the subblock  has  only one byte in error. 
Let x and E, denote  the  error location and  error  pattern, 
respectively. That is, 

* A  " 

Then, in view of Equations (1)-(3) and (7)-( lo),  the 
syndromes  reduce to 

S,  = T"E,, 

s, = T=,E,, 

S, = T3,Ex. 

Thus,  the decoding equation is given by 

E = T-"S = T-,"S = T-,"S 
3 (14) 

if B, is  in  error. 

Note  that a  one-byte  error in check byte C, affects the 
syndrome S, only. In  that case the decoding equation is 
given by 

0 = SI = S, # S, if C, is  in  error.  (15) 

The decoding can be accomplished by means of three shift 
registers, with T-I, TW2, and T-, multiplier circuits. With SI, 
S,, and S, as  initial  contents, the  three registers are shifted 
and  the  contents  are  compared after each shifting operation 
until they are equal. The resultant number of shifts 
determines x, and  the final content in each register is the 
error pattern E,. The byte b, is then corrected  as b, @ E,. 

The hardware implementation of the decoding  function 
described above is shown  in Figure 7. The syndromes SI, S,, 
and S, are entered  into  appropriate shift registers at clock 

I 
I 

"_ 

I '  

1 
I 

s 
Encoding shift registers for C,. 

zero. Each clock cycle generates  a shifting operation of the 
decoding shift registers, creates  a  zero or  nonzero  error 
pattern for the corresponding  byte  position, and delivers a 
corrected data byte. After m + 1 clock cycles, if none of the 
bytes received a  correction  (indicated by latch L,  off) and SI 
and S, both  are  not 0 (indicated by latch L, on),  the decoder 
declares an uncorrected  subblock error by turning  on  the  UE 
signal. When  the  UE signal is on,  the uncorrected  subblock 
is  flagged and the original syndromes SI, S,, and S, are 
passed on  to  the block level for  two-error  correction. 

are delivered in a reverse order  compared  to  that  in  the 
encoder of Figure 5. If desirable,  this reversal can be 
eliminated by modifying the decoder  as follows. We 
substitute (m + 1)  - 2 for x in  Equation (14) and 
rewrite it  as 

Note  that  the corrected bytes in  the decoder of Figure 7 

477 
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I Clocki I 

4 First-level decoder. 

In this equation, 2 represents the  number of shifts, and .f = 
0, 1, 2, . . . , rn, rn + 1 corresponds to  the byte-position 
values x = rn + 1, rn, rn - 1, . . . , I ,  0, thereby  canceling the 
reversal of the byte order. To accomplish  this, the decoder 
hardware in Figure 7 must be modified in  accordance with 
Equation ( 16) as follows: 

1. The shift-register multipliers T-I, T-’, and T-3 in Figure 
7 must be replaced by the multipliers T, T’, and T3,  
respectively. 

2. The syndromes SI, S,, and S3 must be premultiplied by 
T - ( m + l )  T-2(m+l), and T-3(m+l) , respectively, before being 
entered into  the respective shift registers. Note  that when 
(rn + 1) = 255, this premultiplication is not required, 
since T255 = I .  

In general, the circuits for premultiplication by T-(m+l), 

T-2(m+”> and T - 3 ( m + l )  depend  on  the value of rn, and each 
478 circuit  requires  a  small number of EX-OR gates. 

ARVIND M. PATEL 

With these modifications, the decoder delivers the 
corrected bytes in  the  same  order  as they were processed by 
the encoder,  starting with B,+, and  ending with Bo. 

Decoding process: Second level 
The  syndrome of error  at  the block level is denoted by So, 
corresponding to  the coding equation (6), and is given by 

subbk subbk 

This  syndrome is computed as the modulo-2 sum of the 
(first-level-corrected) read bytes excluding the check bytes 
c3 for all subblocks and including the block-level check 
byte eo. 
byte in  error, they will all be corrected by the first-level 
processing. In the absence of any uncorrected  error, the 
second-level syndrome So will be zero.  However, if one of 

If each subblock  in  a block encounters,  at  the most, one 
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the subblocks encounters two bytes in error, then  the first- 
level processing for that subblock will  give an uncorrectable- 
error (UE) signal and pass on  the syndromes S ,  , S,, and S, 
to  the second level for further processing. Let y and z denote 
the locations and E, and E, denote  the corresponding 
patterns for the uncorrected  two errors. Then  the second- 
level syndrome  equation ( 17) for So and  the first-level 
syndrome  equations (7) ,  (8), and (9) for SI, S,, and S, will 
reduce to  the following relations  in terms of the  error 
locations y and z and  the  patterns E, and E, for the two 
errors: 

So = E, @ E,, (18) 

SI = T'E, @ T'E,, (19) 

s, = T ' ~ E ,  T ~ ~ E ~ ,  (20) 

S, = T3'E, @ T3'EZ. (21) 

Next, we proceed to decode the  combined set of subblock- 
and block-level syndromes  for two-symbol errors. First we 
obtain the 8-digit vectors P, Q, and R, which are  functions of 
the syndromes So, S I ,  S,, and S,, as given by 

p = (S,  €3 S,) @ (S3  €3 SI), (22) 

Q = (S, €3 SI) @ (S ,  @ So), (23) 

R = (So  €3 S,) @ (SI €3 5'219 (24) 

where C3 denotes  the  product operation of the field elements 
in GF(2*), and  the field elements are represented by binary 
8-digit vectors. The product  operation can be realized using 
hard-wired logic or through the use of log and antilog tables 
in GF(28), as discussed in Appendix A. 

We note here that P, Q, and R are necessarily nonzero 
when  there  are  two bytes in  error  and  both  are  in  one of the 
subblocks. In contrast, when the check  byte C, or C, is 
among  the two erroneous bytes, this is indicated by 
P=R=O.  

Assertion 1 Suppose that  there  are exactly two bytes in 
error  in one of the subblocks; then,  the error-location values 
y and z are  two unique solutions of i in  the  equation 

T-" P e T-'Q = R, (25) 

where P, Q, and R are  functions of the  syndromes So, S I ,  S,, 
and S,, as given by Equations (22)-(24). For each of the two 
solution values of i, the  error  pattern is given by 

E, = R / ( T " s ~  @ s,). (26) 

The proof  of Assertion 1 appears in  Appendix B. 
The decoding can be accomplished using a software 

method involving  table-lookup  operations. The vectors P, Q, 
and R are  computed from  syndromes So, SI, S,, and S, 
using the log and antilog  tables of Appendix A. This 
requires, at the most, 18 references to  the tables in  memory, 
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six binary-add  (modulo-255)  operations, and  three vector- 
add (modulo-2)  operations. 

a  simple  table-lookup  procedure. The table and  the theory 
behind  this  procedure appear in  Appendix C. In this 
method, the error-location values y and z are obtained 
through the following four-step  procedure: 

The error-location values y and z can be obtained through 

Obtain binary numbers u and v from vectors P, Q, and R, 
using log tables of Appendix A: 

u = (loga P - logu Q )  modulo  255, (27 ) 

v = (logu R - logu Q) modulo 255. (28) 

Obtain  the value d :  

d = ( u  + v )  modulo  255. (29) 

Obtain  the value t ,  corresponding to value d, from  Table 
1 of Appendix C. 
Obtain  error-location values y and z :  

y = ( u  - 2 )  modulo  255, (30) 

z = ( t  - v )  modulo 255. (31) 

All terms in Equations (27)-(3 1) of the above  procedure  are 
%digit binary  sequences  undergoing  modulo-255 add or 
subtract  operations. The procedure requires four table- 
lookup operations, four modulo-255  subtract  operations, 
and  one modulo-255 add operation. In this procedure, an 
invalid value of d (the  one with no entry  in  Table 1) or an 
invalid value for y or z (greater than m + 1) indicates an 
uncorrectable error involving three or more bytes in  error. 

The  error  pattern E, can be computed using the log and 
antilog tables of Appendix  A in accordance with Equation 
(26), in which matrix  multiplication T2'S, is replaced by the 
product 01" 63 S, of the two field elements a'' and So. The 
error  pattern E, can be computed similarly, using Equation 
(26), or alternatively from  Equation (1 8), which gives 

E, = So @ E,. (32) 

The  subblock  correction is then accomplished by correcting 
bytes B y  and B, with error  patterns E, and E,. 

(26)] can be camed out with a  hardware  decoder 141 using 
shift registers and binary logic. 

Alternatively, the second-level processing [Equations (22)- 

Data  integrity check 
In the IBM 33805 and 3380K disk files, the two-level code 
includes four  additional check bytes at  the second level 
(Figure 2). These check bytes provide  a  strong  data-integrity 
check over the corrected data stream.  Each of these four 
check bytes is applied to both code words, disregarding the 
two-way interleaving.  They are  denoted as CRC checks and 
are given by 479 
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CRCI = C, T"D, , 

CRC2 = C, T-2'Zl , 

CRC3 = T-,'D,, 

CRC4 = C T-,'Z1, 

I 

1 

I 

I 

where matrix T" and  the sequences (0,) and (Z,)  are 
defined as follows. 

The matrix T i s  the  companion matrix  of a degree-8 
primitive  polynomial P(x) ,  and T" = T255--i. We use 
different powers of the  same T to create all CRC as well as 
error-correction  functions. It provides  a computational 
convenience when second-level error correction  requires 
recomputation of the  CRC check in software. In particular, 
the software will be able to use the  same tables  for 
computation of  Galois field operations. 

of all bytes in  a record excluding the second-level check 
bytes; { Z, ) also excludes two check bytes corresponding to 
the last two  byte  positions of each normal-length subblock. 
The first-level check bytes in  these  sequences (and  the 
corresponding error patterns) may be replaced by null bytes 
(all-zeros) in CRC calculations. This eliminates the need  for 
correcting errors  in  the check bytes. 

The sequence ( Z ,  ) is offset from  the sequence (0, ) by two 
bytes at  the  end of each subblock.  With 255 as the  exponent 
for T-l and T-2,  this offset arrangement provides an 
effective CRC cycle length of  255 X 256 = 65 280 bytes in 
sequence (D, } and 255 X 254 = 64 770 bytes in sequence 
{Z,} .  This  means  that two  identical  detectable error  patterns 
will not cancel each other  in  both types of CRC checks in 
any record of up  to 255  subblocks of data.  This is  a novel 
method of obtaining  long cycle length while still operating in 
a  Galois field of  reasonable size, namely GF(2'). 

In  the readback process, the  CRC syndromes are 
generated on-the-fly along with the error-correction 
syndromes  as the  data are received, using shift registers with 
premultipliers T-I, T-,, T 3 ,  and T-,. Furthermore,  CRC 
syndromes will be adjusted  for the first-level error correction 
in  hardware and later  for the second-level error correction in 
software. The  equations for the  four  CRC syndromes S-, , 
S+ X 3 ,  and S-, are 

The byte-sequence (D, } and  the byte-sequence ( Z , )  consist 

480 

ARVlND M. P 

@ C, T-3'E,(D,) @ C, T-3'E2(D1), 
I I 

(39) 

where the symbol A indicates  readback bytes, E,  (D,) and 
E, (Z , )  represent the first-level error-correction  patterns, and 
E,@,) and E2(Z , )  represent the second-level error-correction 
patterns  corresponding to the recorded bytes D, and Z,, 
respectively. The error patterns corresponding to  the check 
bytes will be replaced by null bytes. 

error-correction patterns (E,(D,)) appear  at  the  input  and 
output of the first-level decoder, respectively, with exactly 
one subblock delay. If second-level error correction is 
required, the  error  patterns (E2(D,)) will be available  later 
through software decoding at  the second level. 

the-fly error  correction, first-level CRC  syndromes  can be 
computed  from  the corrected data which is the  combined 
sequence {D, @ E,@,)).  However, if the first-level error 
correction is deferred, the first-level CRC syndromes may be 
computed by combining separate computations with (Dl  } 
and (E ,  ( D l ) )  sequences. 

The second-level error correction, if any, will involve one 
of the subblocks and  up  to  four  error bytes. The byte count i 
in sequence IDi) for each of the  four  error bytes will be 
determined from  the error-location numbers.  Then  the  terms 
such as T-3'E2(D,) for  each error  can be computed using the 
antilog tables, 

T-3'E2(D,) 

The data sequence (0, ) and  the corresponding  sequence  of 

If the first-level decoder  includes  a  subblock buffer and  on- 

= log:' ( [loga E,(D,) - 3i]  modulo 255). (41) 

This leads to  the second-level CRC check  corresponding to 
the syndromes S-, and S-,. The byte count i in  sequence 
( Z, ) for each  of the  four  errors will also be  determined,  and 
the computations for syndromes S-, and S-, will be done  in 
a  similar manner. These final values of CRC syndromes 
must be zero if no errors are present. 

The four  CRC bytes in two-level code provide error 
detection for protection against miscorrections  of excessive 
errors. However,  any errors in CRC bytes will tend to create 
unnecessary reread operations with undue performance 
penalty. In  order to avoid  this, one  nonzero  CRC check on 
the (0,) sequence and  one  on  the (Z ,  ) sequence may be 
ignored whenever errors  are  not corrected at  the second 
level. All nonzero  CRC checks may be ignored whenever 
errors are  not corrected at either level. Alternatively, the 
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CRC bytes may be placed within the last subblock SO that 
the two-level correction is applicable to the CRC bytes as 
well. 

The four CRC check bytes provide more  than adequate 
data integrity check.  Four  separate CRC checks in GF(2') 
using the same  primitive field element  are not only 
convenient but also provide the desired long cycle length 
without using degree- 16 polynomials. 

Conclusion 
A two-level coding  scheme with subblocks  within  a block is 
defined with parameters (t?,  t ,  ; c). A general result regarding 
various combinations of correctable error  patterns  at  the two 
levels is established, and a practical decoding strategy is 
given. The scheme is designed for disk files; the emphasis is 
on correcting  multiple-burst errors on-line  in  most devices, 
while providing reserve capability at the block level for 
protecting an  uncommon weaker or failing device against 
potential data loss. 

3380K disk files is described in  detail,  including the 
encoding and decoding  implementations. This design is 
characterized by the two-level coding  parameters ( t z  = 2, 
t ,  = 1; c = 1) using the coding structure of the extended 
Reed-Solomon code with two-way interleaving. A three- 
register hardware  decoder  provides  correction of one-symbol 
errors  and detection  of two-symbol errors  in  each  subblock 
at  the first level. A table-lookup  software  decoder  provides 
correction  of two-symbol errors  in one of the subblocks at 
the second level. An additional check at  the  end of the block 
provides an overall data integrity  confirmation against 
miscorrections in  the presence of an excessive number of 
errors. 

The two-level coding  scheme used in the IBM 33805 and 

Appendix A: Logarithms of field elements 
Let G ( s )  denote a  primitive  polynomial of degree 8 with 
binary coefficients, 

G(x) = go @ g , X  @ g,X2 . @ g7x7 @ X' . 
The  companion matrix of the polynomial G(x) is defined as 
the following nonsingular  matrix: 

identity  matrix, which can also be written as To. These 255 
matrices represent (2' - 1)  nonzero elements of GF(2'). Let 
CY denote  the primitive element of GF(2'). Then T' 
represents the nonzero element CY' for all i. The zero  element 
is represented by the  8 X 8 all-zero matrix. The  sum  and 
product  operations in GF(2')  are, then, defined by modulo-2 
matrix-sum and matrix-product  operations, using these 
matrix  representations of the field elements. 

The  elements of GF(2')  can also be represented by the 
8-digit binary vectors. The square  matrices  in the above 
representation are very redundant. In fact, each matrix can 
be uniquely identified by just  one of its columns  (in a 
specific position), which can very  well be used for 
representation  of the corresponding field element without 
ambiguity. In particular, the first column of each 8 X 8 
matrix  in  the above set is the  commonly used 8-digit vector 
representation of the corresponding field element. This 
establishes a  one-to-one  correspondence between the set of 
all nonzero 8-digit vectors and  the set of T' matrices 
representing the field elements a'. Thus, each nonzero 8-digit 
vector S corresponds to a unique integer i (0 5 i I 254) 
which can be regarded as its logarithm to  the base CY. That is, 

i = loga S 

and 

s = log:' i. 

A  table of logarithms which maps all field elements  into 
powers of a and a  table of antilogarithms which maps 
integer powers of a into corresponding field elements  can be 
generated using the  companion matrix of Equation (4) as  the 
representation  for a. Each  table can be stored in a memory 
of 8 X 256  bits  in which the word number or memory 
location expressed as an 8-bit vector is the  input vector. The 
stored 8-bit vector in that  memory location  represents the 
logarithm and  the antilogarithm  corresponding to  the  input 
vector in the two tables, respectively. With  the help of these 
tables, the  product SI @ S, (of the two elements represented 
by 8-digit vectors S,  and S,) can be computed as follows: 

SI = a" Use log table: loga SI = i, . 

T =  

I o o o o o o o g ,  
1 o o o o o o g ,  
0 1 0 0 0 0 0 g 2  
0 0 1 0 0 0 0 g 3  
o o o 1 0 0 0 g 4  
o o o o 1 0 0 g 5  
0 0 0 0 0 1 0 g ,  
0 0 0 0 0 0 1 g ,  

We use matrix T of Equation (4) corresponding to G(x) = 
1 + x3 + x' + x' + x8. The matrix T' denotes T multiplied 
by itself i times with all results reduced modulo 2. The 
matrices T, T2,  T 3 ,  . . . , T2" are all distinct, and T2" is the 

s, = a'2 Use log table: loga S, = i, . 

SI @ s, = a"" Add (modulo 255): i = i, + i, 

CY) = s Use antilog table: log,' i = S. 

Appendix B: Proof  of Assertion 1 
Assertion I provides the decoding  algorithm  for  two-symbol 
errors. This assertion follows from  the general results in 
decoding Reed-Solomon or the generalized BCH code [4,9]. 
Here, we present  a  proof  for  this  assertion from  the basic 
matrix  equations. 
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Assertion 1 Suppose that  there  are exactly two bytes in 
error in one of the subblocks; then  the location values y and 
z for these  bytes are two unique  solutions of i in  the 
equation 

T - ~ ' P  03 T"Q = R, (B1) 

where P, Q, and R are  functions of the syndromes So, SI, S,, 
and S,, as given by Equations (22)-(24). The  error  pattern E, 
for i = y or i = z is given by 

E, = R/(T"s, 03 s,). (B2) 

Proof The syndromes are expressed as  a function o f  the two 
errors in  Equations (1 8)-(2 1). These equations  are rewritten 
here as 

So = E, 03 E,, 033) 

S,  = T'E, 03 T'E,, 034) 

s2 = T',E, 03 T ~ '  E, ~ 

S3 = T3'E, 03 T3'EZ. 

Combining  the  appropriate  equations  from (B3) through 
(B6), we have 

T'S, 03 SI = (TY  @ T')E,, (B7 ) 

TyS,  @ S, = T'(TY 03 T')E,, (B8) 

T,S, 03 S, = T~'(T' 03 T')E,. (B9) 

Matrix  equations (B7), (BS), and (B9) are relations among 
field elements  in GF(28) represented by matrices. In 
particular, the matrix  multiplication of the type T'B 
represents the  product of field element a' and 0, where ai is 
represented by the first column o f  matrix T', and (3 is 
represented by the  column vector B. In view o f  this 
interpretation,  Equations (B7), (BS), and (B9) yield the 
relationship 

( TySo 03 SI ) €3 ( T'S, 03 S3)  

= (T'S, 03 S2)2 €3 (T'S, 03 S2), 

where C3 denotes  the  product of corresponding elements  in 
GF(2'). Equation (B10) can be rearranged into  the matrix 
equation 

03 T'Q P = 0. (B1 1) 

In these equations, P, Q, and R are  column vectors given by 

Thus y is one of the solutions  for i in  the  equation 

T - ~ ' P  03 T"Q = R. (B15) 

By exchanging the variables y and z in the above process, we 
can  show that z is the second  solution  for i in Equation 
(B15). 

Equation (B2) for i = y and i = z can be verified by direct 
substitution of values for R, So, SI, and S, using Equations 
(B14), (B3), (B4), and (B5), respectively. This completes the 
proof of Assertion 1. 

Appendix C: Table-lookup  solution  for  two  error 
locations 
In Assertion 1 of Appendix B, it was shown that  the  error 
locations y and z for  two errors in  a  subblock  can be 
determined by solving for i in Equation (Bl). That  equation 
is rewritten here as 

T-"P 03 T"Q = R. (C1) 

The  constants P,  Q, and R are  functions of the syndromes 
So, SI, S,, and S,, given by Equations (22)-(24), 
respectively. We can  obtain logarithms  of P, Q, and R from 
the log table of Appendix A: 

P = loga p,  (C2) 

q = loga Q, (C3) 

r = loga R.  (C4) 

Then  the matrix equation  (Cl)  can be rewritten  as  a  relation 
among field elements in GF(2') as follows: 

-2, p 
(Y a 03 2 a q  = ar. (C5) 

Multiplying  both sides of Equation (C5) by we obtain 

(2a-2q-21) a(p-q- l )  (p -Zq+r )  
(Y =(Y (C6) 

Substituting t for ( p  - q - i )  in  Equation (C6), we get 
21 r ( ~ - 2 q + r )  a @ a = a  (C7 ) 

and 

i = ( p  - q )  - t modulo 255. (C8) 

The right-hand side of Equation  (C7) is a known field 
element ad, where 

d = ( p  - q )  + ( r  - q )  modulo  255. (C9) 

Next we present  a  simple  table-lookup  solution  for Equation 
(C7), which can  be rewritten  as 

a'(a' 03 aO) = ad. (C10) 

Using this  expression, we can relate  each value o f t  (from 0 
to 254) to a value of d. We  note  that  some values of d are 
absent  in  this  relationship, and  that each valid value o f  d 
corresponds to two values o f t .  For a given value of d, if 
t = t ,  is one of the solutions o f  Equation (CIO), it is easy to 
see that t = t, is also a  solution, where 

ar2 = CYr1 03 (Yo. (C11) 
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Table 1 Table of t  VS. d i n  ad = 01' (CY'@ CY') 

d 

000 
00 1 
002 
00 3 
004 
005 
006 
007 
008 
009 
010 
01 I 
012 
013 
014 
015 
016 
017 
,018 
019 
020 
02 1 
022 
023 
024 
025 
026 
027 
028 
029 
030 
03 I 
032 
033 
034 
035 
036 
037 
038 
039 
040 
04 1 
042 
043 
044 
045 
046 
047 
048 
049 
050 

t d t d t d t d t 

01010101 
""" 

001  11000 
""" 

""" 

""" 

01 I10000 
10000000 
""" 

""" 

0000 1 I O 0  
0010101 I 

0000000 I 

""" 

""" 

""" 

01110111 

0 I00000 1 

01  10101 I 
000 I IO00 

010101 I O  

""" 

""" 

""" 

""" 

""" 

""" 

""" 

000000 10 
""" 

""" 

""" 

""" 

""" 

001 1001 I 
""" 

""" 

1 00000 10 
001 11  100 

""" 

""" 

""" 

0101001 1 
01  100100 
00 1 10000 
01001001 
""" 

100000 1 I 
00010100 

""" 

""" 

05 I 
052 
053 
054 
055 
056 
057 
058 
059 
060 
06 1 
062 
063 
064 
065 
066 
067 
068 
069 
070 
07 1 
072 
073 
074 
075 
076 
077 
078 
079 
080 
08 I 
082 
083 
084 
085 
086 
087 
088 
089 
090 
09 1 
092 
093 
094 
095 
096 
097 
098 
099 
IO0 
101 

10001010 

01001011 

100101 I 1  
00000 IO0 
010101 1 I 

0101  1100 

01000010 

""" 

""" 

""" 

""" 

""" 

""" 

""" 

""" 

""" 

01  1001  10 
01  101010 

""" 

""" 

""" 

""" 

""" 

""" 

01010010 
00000 I O  1 
01111010 
01 11  1000 
100  10000 

10011010 

1001 11 10 
101001 10 
000 1000 1 
10001  101 

0 1 100000 
0010001 1 
10010010 
01110110 

""" 

""" 

""" 

""" 

""" 

""" 

000001 11  
1000000 1 
00101000 

""" 

""" 

""" 

10001  100 

I02 
103 
104 
105 
106 
107 
108 
I09 
I10 
111 
I12 
113 
114 
115 
116 
117 
118 
I19 
I20 
121 
122 
123 
124 
125 
I26 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
I40 
141 
142 
143 
144 
145 
146 
I47 
148 
149 
150 
151 
152 

00010101 
1000101 1 

00011111 
10010110 
1001  1100 

1001001 I 
00101 11  I 

0000 1000 

10101  I10 
01 11  1001 

""" 

""" 

""" 

""" 

""" 

101 I1000 
000101  10 

""" 

. - - - - - - 

10000 I 00 
""" 

""" 

""" 

""" 

""" 

1001 1000 

0001  1100 

0 1000000 

00000 1 10 

""" 

""" 

""" 

""" 

""" 

101  1101 1 
10 I00000 
10110101 
""" 

""" 

""" 

""" 

""" 

""" 

""" 

0001 I 1  10 

001  10010 
10100100 

00001010 

""" 

""" 

""" 

153 
154 
155 
156 
I57 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
I72 
173 
I74 
175 
176 
177 
178 
179 
I80 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
20 1 
202 
203 

01000101 
10100101 
1100101 I 
1010101 I 
00101 1 I O  
00 10000 1 
""" 

""" 

001  10101 
""" 

""" 

""" 

00101001 
00111101 
01001000 
01001  101 
01001111 
00100010 

0001  101 1 
00111011 

""" 

""" 

""" 

1 I000000 

01000110 
11000101 
00100101 
01001  110 
I lOOI0Ol 

""" 

""" 

""" 

101 11  100 

0000101 1 
""" 

""" 

""" 

""" 

01001 100 
00001 1 I O  
00 I00000 
000000 1 1 

01010000 
""" 

""" 

""" 

""" 

""" 

00001 I 1  1 
0001  1001 
""" 

204 
205 
206 
207 
208 
209 
210 
21 I 
212 
213 
214 
215 
216 
217 
218 
219 
220 
22 1 
222 
223 
224 
225 
226 
227 
228 
229 
230 
23 1 
232 
233 
234 
235 
236 
237 
238 
239 
240 
24 I 
242 
243 
244 
245 
246 
247 
248 
249 
250 
25 1 
252 
253 
254 

00101010 
11  100101 
000101 I I 
""" 

""" 

""" 

00111110 
00100100 
00101 101 

001 11001 
""" 

""" 

""" 

I I100010 
001001 11  

0101 11  10 
0101 1000 

001001  10 
000 10000 

""" 

""" 

""" 

""" 

""" 

0101  I101 

I 1  110010 
""" 

""" 

00010010 
""" 

""" 

""" 

01  110001 

00101 100 
000 100 I I 

""" 

""" 

""" 

""" 

""" 

0000 100 1 
""" 

01  101  110 
""" 

""" 

""" 

001 101 11  

01  100010 
001  10001 

""" 

""" 

The field element a is represented by matrix T of Equation (4) 
The absence of a value for f implies an invalid value of d. 

Substituting t = tl  in  Equation (C10) and  then using (C1 l ) ,  Table 1 relates each valid value of d to  one of the two 
we see that values oft. Values of d are listed in  ascending order for easy 

corresponding value o f t  is stored in  the  memory as an 8-bit 
This expression provides  a  simple way to  obtain  the second  binary number.  The all-zeros vector (invalid value) is stored 
value o f t  from the first: at addresses corresponding to  the invalid values of d, and is 
t, = (d  - t l )  modulo  255. (C 13) so interpreted. 483 

a h a 1 2  - d (c12) reference as addresses of an 8 X 256-bit memory.  The - a .  
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In the case of two  errors, the  computed value of d fetches 
one of the two values for t from Table 1. The second value 
for I is obtained from the first by using Equation (C13). With 
these two values of 1 ,  Equations (C8) and (C9) provide the 
two values of i as the error  locations y and z given by 

y = ( p  - 4 )  - 1 modulo 255, (C 14) 

z = 1 - ( v  - y) modulo 255. (C15) 

An invalid value of d fetches 1 = 0 from Table I ,  which is 
interpreted  as  an  uncorrectable error involving three or more 
bytes of the  code  word. 
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