470

Two-level coding
for error control
In magnetic disk
storage products

by Arvind M. Patel

Error-control coding has played a significant role
in the design and development of magnetic
recording storage products. The trend toward
higher densities and data rates presents
continuing demands for an ability to operate at a
lower signal-to-noise ratio and to tolerate an
increased number of correctable errors.
Heretofore, the magnetic disk storage products
used coding schemes that provided correction
of one burst of errors in a record of length
ranging from a few bytes of data to a full track
on the disk. In this paper, we present a new
coding architecture that facilitates correction of
multiple-burst errors in each record in a typical
disk storage application. This architecture
embodies a two-level coding scheme which
offers high coding efficiency along with a fast
decoding strategy that closely matches the
requirements of on-line correction of multiple
bursts of errors. The first level has a smaller
block delay and provides very fast correction of
most of the errors commonly encountered in an
average disk file. The second level, on a larger
block size, provides reserve capability for
correcting additional errors which may be

©Copyright 1989 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

ARVIND M. PATEL

encountered in a device with symptoms of a
weaker component or an oncoming failure. The
new IBM 3380J and 3380K disk files use a two-
level scheme that is designed around the coding
structure of the extended Reed-Solomon code.
This design and the related encoding and
decoding methods and implementation are
presented in detail.

Introduction

New disk storage products are required to provide better
reliability and availability in spite of their higher packing
density and delivery rate with a large amount of on-line
data. A relatively greater number of soft errors, including
multiple-burst errors, must be processed very rapidly.
Conventional coding techniques, such as multiple-symbol-
correcting Reed—Solomon [1] or BCH [2] codes are very
efficient in terms of redundancy. However, the algebraic
constraints on their block size and the relative time required
for the decoding of multiple-byte errors in each block are
major restrictions of their applicability to long records of
data in computer products.

Previously, disk products used error-correction schemes
that corrected one burst of errors in a variable-length block
of up to one full track. In these schemes, decoding for an
error resulted in missing a disk revolution; and the error was
usually corrected with data in the main memory, requiring
CPU involvement in the error-recovery procedure. The
occurrence of a multiple-burst error required rercading of
the data several times in order to eliminate the presence of
multiple errors.

IBM J. RES. DEVELOP. VOL. 33 NO. 4 JULY 1989

In this paper, we present a new coding architecture that
facilitates correction of multiple bursts of errors in each
record in a typical disk storage application. This architecture
embodies a two-level coding arrangement which offers high
coding efficiency with a fast decoding strategy that closely
matches the requirements of on-line correction of multiple-
burst errors. The product can make use of this capability for
improved reliability as well as lower product cost through
(1) increase in recording density, (2) trade-off in head and
disk tolerances, and (3) partial coverage of small disk defects,
particularly those which are difficult to find in costly surface
analysis testing.

The first-level capability in the two-level coding
arrangement is designed for a specific reliability
performance, so that an average disk file will not be required
to utilize the second-level capability in its routine daily
operations. The second-level capability is the “reserve”
capability, which is frequently invoked in the case of a
“weaker” device or a “failing” device, in which the soft-error
rate is substantially above the average. Errors corrected
through the second-level capability may be logged and this
information may be used for flagging a “weaker” or “failing”
device before it causes data loss through an uncorrectable
error or a failure, thus reducing unscheduled service calls.

Two-level coding scheme

The data format in the two-level coding scheme [3] is
designed around a two-level architecture consisting of
subblocks within a block. An example with a figure appears
in a later section. Each subblock consists of 7 data bytes and
r, check bytes. The subblock is a code word from a code
with minimum Hamming distance of d, symbol units, and
the symbols (bytes) are elements of the Galois field [GF(2b)].
Each block consists of # subblocks and r, check bytes which
are shared by all its subblocks. The data part of the block-
level code is viewed as modulo-2 superposition of # subblock
code words. The r, check bytes (either independently or
along with the superpositioned r, check bytes of all
subblocks) provide a minimum Hamming distance of d,
{over one subblock) at the block level where d, > d,.

The code words of both levels may be interleaved in order to
provide correction for burst errors or clustered multi-symbol
errors.

The decoding process provides correction of up to ¢, errors
and detection of up to ¢, + ¢ errors in each subblock, where
d, = (21, + ¢ + 1). If the number of errors in a subblock
exceeds the error-correcting capability at the first level, such
errors are either left uncorrected or are miscorrected. If all
errors are confined to one subblock, the block-level code will
provide correction of up to ¢, errors, where d, = (21, + 1).
However, many combinations of errors in multiple
subblocks, including ¢, errors not confined to one subblock,
are also correctable, as claimed in the following thecrem.

IBM J. RES. DEVELOP. VOL. 33 NO. 4 JULY 1989

Theorem | Let d, and d, denote the minimum Hamming
distance in the subblock-level code and block-level code,
respectively, where d, = (2t, + ¢ + 1) and &, = (2¢, + 1).
This two-level coding scheme provides correction of ¢, errors
anywhere in the block, provided ¢, < 2¢, + ¢. In particular, it
provides correction of g errors in the subblock with the most
errors, up to b errors in each of the other subblocks, and y
errors in the block-check bytes, where a, b, and y are any
nonnegative integers such that (a + y) < ¢,, b < ¢, and
(a+b)=<2t +c.

The set of parameters ¢,, ¢, and ¢ defines a two-level
scheme. Let (a, b) denote an error combination consisting of
a errors in one subblock and up to b errors in each of the
other subblocks in a block where a = b. The errors in the
block-level check bytes may be considered as part of ¢ errors
in the subblock that is corrected at the second level. Then
Theorem 1 defines the (a,) combinations corrected at each
level. The (a, b) combinations corrected at the first level are
defined by all values a < ¢, with b = a. The (a, b)
combinations corrected at the second level are defined by all
values a such that f, <a =<1t + cwith b =1, and
LL+c<ast,withb=2t +c—a.

In the case when ¢ = 2, the first-level corrections could be
increased beyond ¢, errors to include (a, b) combinations
defined by 1, < a = t, + ¢/2 with b = a. These additional
corrections may be processed at the second level using the
first-level syndromes of all uncorrected subblocks.

Before presenting the proof of the theorem, we present a
simple decoding strategy for the two-level coding scheme,
which provides correction of all error combinations specified
in the theorem. It is assumed that syndromes at each level
are decoded for (up to) a fixed number of errors using
minimum-distance decoding which finds a code word that
differs from the received word in the fewest possible
positions. The overall decoding process for the two-level
code then follows the steps given below:

1. Compute and decode the syndromes for each subblock
for up to ¢, errors. If a subblock is uncorrectable or if the
number of decoded errors is larger than that in any of the
previously decoded subblocks, then update the contents
of a buffer memory. (The buffer holds the error
information and the subblock number for a subblock
which is either uncorrectable or requires correction of the
greatest number of errors.)

2. Compute the block-level syndrome set {S} from the
received data, including all subblock-level error
corrections. If {§} # 0 or if a subblock has uncorrectable
errors at the first level, then second-level processing is
required. The subblock fis identified by the information
in the buffer memory as an uncorrected subblock or a
subblock with the greatest number of corrected symbols.

3. Modify the block-level syndrome set {S} as follows:

(87} — (S} = {S),

ARVIND M. PATEL

471

472

where {5} is the contribution to the block-level
syndromes due to the error corrections in the subblock f.
If subblock f'was left uncorrected in Step 1, then {S,} = 0.
The error information for computation of {S,} is available
in the buffer memory.

4, Use the modified syndrome set {S’} of Step 3 and decode
for up to ¢, errors in subblock f, including the block-level
check bytes. If the errors are found uncorrectable, then
there are too many errors.

5. Remove the subblock-level corrections, if any, in
subblock /. Enter the block-level corrections in subblock
and the block-level check bytes.

Step 2 of the above decoding procedure detects and identifies
the subblock with more than ¢, errors uniquely. This is the
key to the proof of the theorem.

Proof of Theorem 1 We assume that the subblock with the
most errors (i = /) contains up to (¢, + ¢ + x) errors; each of
the other subblocks (i # /) contains up to (¢, — x) errors,
and block check bytes contain y errors. The subblock
number f'and the nonnegative integers x and y are not
known.

When x = 0, all errors at the subblock level are corrected
or detected properly, since they are all within the capability
of the subblock code. If a subblock f'has more than ¢, errors,
it will be identified by the first-level decoder as an
uncorrectable subblock. When x > 0, consider the subblock
with (£, + ¢ + x) errors. Since the minimum Hamming
distance d, is (2¢, + ¢ + 1), the nearest code word must differ
from the received word in at least (2¢, + ¢ + 1) —

(¢, + ¢ + x) positions. Thus, the first-level decoder may
miscorrect the subblock /" by introducing additional errors in
at least (£, — x + 1) positions and as many as ¢, positions.
Alternatively, the decoder may find subblock funcorrectable
if its Hamming distance from the nearest code word is
greater than ¢,. In contrast, the first-level decoder will correct
(t, — x) or fewer positions in each of the other subblocks, all
of which will be corrected properly.

At the block level, the syndrome set {S} is computed from
the received data, which include all subblock-level error
corrections. The set {S} is, then, the block-level syndrome set
for all errors still present in the block, that is, in subblock f
and the block-level check bytes. These are at most (¢, + ¢,)
errors, which include (¢, + ¢ + x) + y original errors and up
to ¢, miscorrections. Since the minimum Hamming distance
d, exceeds (¢, + 1)), the corresponding syndromes {S} must
be nonzero. Thus, the uncorrected or miscorrected errors in
the block will be detected at the block level in
Step 2 of the decoding procedure. The subblock f, with
(t, + ¢ + x) errors, is uniquely identified in Step 2 from the
fact that (it was declared uncorrectable or) the number of
corrections in subblock fexceeds those in any of the other
subblocks by at least 1. If the uncorrected errors are the y

ARVIND M. PATEL

errors in block check bytes only, the value of fis of no
consequence at the block level.

Let {Sf} denote the block-level syndromes due to the error
patterns introduced by the decoder in subblock /. We can
remove these error patterns from subblock fand their
contribution {S,} from the syndromes {S}. Thus, the set
{8} — {S;} represents the syndromes for the original
(t, + ¢ + x) errors in subblock fand p errors in the block-
level check bytes. The syndromes {5} and {S,] are all known
quantities. The block-level decoding of {S} — {S,} for ¢,
errors will, then, provide proper correction of all remaining
errors. This completes the proof of the theorem.

From a practical viewpoint, a given decoding process can
be considered on the fly if it meets the following test: The
error correction on the previously received subblock is
completed before the last byte of the next subblock is
recetved. The processing will require a one-subblock delay
[4]. Thus, on-the-fly decoding is possible if and only if the
subblock decoding time is smaller than or equal to the
subblock read time. The criterion for on-the-fly decoding can
be given as

subblock decoding time

- X data rate < 1.
subblock size rate

Another important consideration is the above-cited one-
subblock delay in decoding for errors. This delay directly
affects the most important performance parameter of the
disk file—namely, the access time. Thus, it is desirable to
partition the block into subblocks with corresponding short
subblock delay.

The two-level scheme provides a fast decoding strategy
that closely matches the requirements of on-the-fly
correction of errors in a very flexible data format. The
subblock level has the smaller block delay and provides very
fast correction of most of the errors commonly encountered
in an average disk file. The second level, on a larger block
size, provides detection and correction of additional errors
that may be encountered in a weaker device. The block-level
decoding may be relatively slow and may include the
conventional head-shift and reread functions. This design
makes the most use of the available redundancy and
provides a substantial match to the error-correction
requirements of future disk files. The extended shared
relationship of all subblocks to the block-level check bytes is
a new structure, not found in other two-stage coding
schemes such as concatenated codes [5] or product codes [6].

Error-rate performance of two-level coding
schemes

The basic error event is a “byte-in-error.” A burst error may
cause correlated errors in adjacent bytes; however, sufficient
interleaving is assumed to effectively randomize these errors.
With appropriate interleaving, all bytes are assumed to be
seen by the coding scheme as equally likely to be in error. In

IBM J. RES. DEVELOP. VOL. 33 NO. 4 JULY 1989

disk files, major defects in the media are avoided by means
of surface analysis test and defect-skipping strategy. The
error~-correction code is expected to provide coverage for
errors caused by noise and small defects that cannot be
identified easily in the surface analysis test. These errors are
usually two to four bits long. Typically two-way or three-way
byte interleaving of the code words is adequate in disk-file
applications, which will also allow for small amounts of
error propagation in the encoding and detection process.

Let p denote the probability of the basic error event—a
byte in error. For a given value of p, the probability of any
combination of multiple errors in a subblock and a block
can then be calculated using binomial and multinomial
expressions. The total probability of no-error and
correctable-error combinations at the first level of decoding
will then lead to the uncorrectable (or miscorrected) error
rate at the first level. Similarly, the total probability of no-
error or correctable-error combinations at the second level of
decoding will lead to the uncorrected (or miscorrected) error
rate at the second level.

Let Pgy(1) denote the probability that ¢ bytes are in error
in a subblock of N bytes. Then Pg,(¢) can be computed from
pas

],")p‘(l -

o=
Next, we compute the probability Py(<¢,) of up to ¢, errors
in each of the n subblocks of a block. This is the probability
of no-error and all correctable-error combinations at the
first-level decoding:

Py(st) = [go PSB(t)] .

We next compute the probability Py(a, b) of the event with a
errors in one subblock and up to b errors in all the other
subblocks, in a block where b < a. This is the probability of
an additional combination (a, b) of errors corrected at the
second level. This probability is given by

b

Py(a, b) = nPSB(a)[¥ PSB(I)} for b < a.
1=0

Now it is easy to compute the total probability of no-error
and correctable-error combinations at the first and second
levels by combining probabilities of mutually exclusive error
combinations covered by both levels of decoding. Let

P1(1,, t,; ¢) denote this probability for a scheme
characterized by parameters ¢,, f,, and ¢. Then we write the
total probability as

PT(tZ’ tl; C) = PB(SI1) + Z PB(a, b)s
{(a,b)}

where {(a, b)} represents the set of all (a, b) combinations
correctable at the second level, namely, all values of a such

IBM J. RES. DEVELOP. VOL. 33 NO. 4 JULY 1989

thatt, <a=<t¢ +cwithb =1t andt + c<a={, with
b= 2t, + ¢ — a. From the above three equations, we can
express Pr(¢2,, t,; ¢) as

PT(tza l17 C) = [2‘ PSB([):I
=0

1+ 0

+ 2 nPSB(a)[z PSB(Z):I
a=i+1 =0
+) D 1 ”Psa(a)[go PSB(Z):| .

Now we can compute the probability PU, of
uncorrectable error in a block after first-level correction,

PU\(st) = 1 = P (=),

and the total probability PU; of an uncorrectable error for
the two-level scheme as

PUL,, tsc)=1— P, t;).

The average number of bytes transferred per uncorrectable
error event at the first and second levels can be computed
from the error probabilities PU, and PU;, respectively, as
follows:

Bytes per uncorrectable error at first level

= (n X N)/PU_,
Bytes per uncorrectable error at second level

= (n X N)/PU_.

In Figure 1 we plot the results of these computations for
some typical examples. The line marked ¢, = 3 represents
the performance of a conventional one-level coding scheme
with correction of three errors in every 250-byte (sub)block.
The next four lines represent the two-level coding
arrangements consisting of 40 subblocks in a block and
t, t50)=1(4,3;0),(5, 3;0), (5, 3; 1), and (6, 3; 1), showing
successive and substantial improvements in error-rate
performance provided by the small amount of additional
shared redundancy at the second level over t; = 3 at the first
level. Also plotted, for comparison, is the performance of a
conventional one-level coding scheme with correction of six
errors (7, = 6) in every 250-byte (sub)block.

Two-level coding in IBM 3380J and 3380K files
The J and K models of the 3380 file use the new two-level
coding arrangement for correction of multiple bursts of
errors. The data format of a disk track is designed around a
two-level architecture consisting of subblocks within a block,
combined with interleaved code words. The first-level coding
structure of the subblock provides one-symbol correction—

the primary capability which is routinely processed on-line at 473

ARVIND M. PATEL

474

o fud o .

/ A

~r PN A I ¥ N

NIRRT
/

oy
!

Error rate after correction
(bytes per uncorrectable error cvent)

250 bytes per subblock
40 subblocks per block

10’ 10t 10’

Error-rate performance of two-level coding schemes.

the subblock level. The coding structure is extended to two-
symbol correction—the secondary capability at the block
level. The code words are two-way interleaved. The data
format is shown in Figure 2. The 3380 files use the
traditional count-key-data (CKD) arrangement for storing
and accessing the user data, where each of the count, key, or
data fields can be treated as a variable-length block for error-
correction coding. Various details relative to count, key, and
data fields are excluded from the data format of Figure 2 for
the sake of simplicity.

The data are stored in the form of user-defined variable-
length blocks (records). Each block is partitioned into fixed-
length subblocks, except that the last subblock may be
shorter, with fewer user bytes, or may include pad bytes.
Each subblock (except the last) consists of 96 user bytes and
six first-level check bytes in the form of two interleaved code
words. At the end of the block, six additional check bytes are
appended, two of which are used for second-level error
correction and the remaining four for an overall data-
integrity check after correction of the errors at both levels.

The basic error event in the 3380J and 3380K files is a
burst error that may affect up to two adjacent bytes. The
two-way interleaved two-level code of Figure 2 provides
correction of at least one error event in each subblock and
up to two error events in any one of the many subblocks of a
variable-length block. With this code and an acceptance
criterion of one uncorrected or miscorrected record in 10"
read bytes, one can accept a device error rate of one error in

10’ read bytes using the first-level decoder only and a
“weak”-device error rate of one error in 1.2 X 10° read bytes
using both the first- and second-level decoders. This

ARVIND M. PATEL

compares with the acceptable device error rate of one error
in 2 % 10° read bytes with the code in the 3380D and E files
for an equivalent error performance in reading long records.
In the following sections, we present the encoding and
decoding processes in the new two-level code, including the
details of hardware and software implementations.

o Coding equations

The coding equations are created in terms of symbols in
GF(28). These symbols are represented by 8-bit binary bytes.
A subblock consists of two interleaved words of a primary
code. The primary code word consists of three check bytes
denoted by B, B,, and C,, and m data bytes denoted by B,,

B,, -, B, ,, which satisfy the following modulo-2 matrix
equations:;

2 m
B,®TB ®T°B,®---®@T""'B . =0, (1)
B,®T'B &®T'B,®---®T""B . =0,)
B,®T'B,®T°B,®---®T""B,_ =C,, (3)

where @ signifies modulo-2 sum, B, is an 8-bit column
vector,i=0,1,--- , m+ 1= (28 —2), Tis a companion
matrix of a primitive polynomial of degree 8, and T’ denotes
T multiplied by itself / times with modulo-2 addition. We
use m = 48 and the following 7 matrix corresponding to the
polynomial 1 + S+t x+ x5

[0 000000 1]
10000000
01000000
0010000 1
T=100010000 (4)
00001001
00000100
(0000001 1

The code given by Equations (1), (2), and (3) is an extended
Reed-Solomon code [1, 7, 8] with Hamming distance 4. The
8-bit column vectors represent the field elements in GF(28),
and multiplication by the matrix T’ corresponds to the
multiplication by &', where « is the primitive element
represented by the first column of the matrix 7. The matrix
T’ for any positive integer / can be computed from T. Then,
for a given matrix T, itis easy to construct a hard-wired
circuit to compute modulo-2 product T'B corresponding to
any input byte B. Figure 3 illustrates such a circuit for the
matrix T°.

The encoding for the first two check bytes B, and B, can
be performed by means of a shift-register network built for
modulo-g(x) operations, where g(x) is a polynomial with
roots « and o, as given by

g(x) = (x ® a)(x ®)
XO®@®a)x®a’. (5)

IBM J. RES. DEVELOP. VOL. 33 NO. 4 JULY 198%

Data track

T ondisk T T
\
/ —_—
\
—— —_—
Track = Block - | 28 | |
—
/ ——
e T
Block | | | «——— Subblock ———| [CR;| CR, | CRCR & |
\ | 1 C() V/:{
- ™~ Check bytes ———]
;4 Two interleaved code words \i
Subblock 22 Bo oz B voor B zze Bue 200, Bis o 2z Bz B Bz G
By 7 By 777 By Z By L 8y; B, 77 B 71 B, 7 G ‘
I Data bytes } Check bytes ~———n|

]
:

OO~ OOOO
oCc—oCcCcoo
(=X Yol el olola]
—_—_ODOoOCOC
—_—0 = O =D D -
e
O ——

—_—

~
It
cooo—oCD

A

~
=]

o

I Matrix multiplier T,

IBM J. RES. DEVELOP. VOL. 33 NO. 4 JULY 1989 ARVIND M. PATEL

475

476

3

Multiplication by matrix 7~

\~ binary storage \-modulo»Z ” “l”
element sum A
8-bit input, B,

The block diagram of this shift register appears in Figure 4,
and the shift register with binary-circuit components is
shown in Figure 5. The check bytes B, and B, are computed
by processing the data bytes in this shift register. Initially, the
register is set to all zeros. The ordered sequence of data bytes

ARVIND M. PATEL

B... B,B B;, B, are entered into the register in m
successive shifts as 8-bit parallel vector inputs. At the end of
this operation, the register contains the check bytes B, and
B, in its low-order and high-order positions, respectively.

Unlike the computations of B, and B,, the computation of
C; in each subblock is carried out separately by means of a
shift register shown in Figure 6 and the multiplier T° of
Figure 3. Initially, the register is set to all zeros. The ordered
sequence of subblock bytes B, , ,, B,,, B,,.,,- - -, B,, B, are
entered into the register in m + 2 successive shifts. At the
end of this operation, the register contains the check byte C;
corresponding to the subblock.

The block consists of any number of subblocks, say #,
with one additional check byte denoted by C, at the end.
This check byte is the modulo-2 sum of all subblock bytes
excluding C, and accumulated over all subblocks as specified
by the following modulo-2 matrix equation:

=12 " s

n m+1
G= X <Z B,-> . (6)
subbk=1 i=0 subbk

The primary code words described above are two-way
interleaved. Thus, there are six check bytes at the end of
each subblock and two check bytes at the end of the block
that provide the desired error-correction capability. The
rematning four check bytes at the end of the block are for
data integrity check over the corrected data stream. This
error-detection part of the second-level code is described in a
separate section entitled Data integrity check.

It is readily seen that for » = 1, Equations (1), (2), (3), and
(6) together represent a code that is an extended Reed-
Solomon code for correction of two-symbol errors. In the
case of n greater than 1, the block-level code word can be
viewed as modulo-2 superposition of # subblock code words.
Two-symbol errors in this superpositioned code word are
correctable. Suppose that a block consisting of n subblocks
encounters multiple symbols in error. If these errors are
located in separate subblocks, each error will be corrected as
a single-symbol error in the corresponding subblock, and the
block-level error syndromes will vanish by the corrected
error patterns. If one of the subblocks has two symbols in
error, the subblock-level processing will detect these errors
and correct all others as single-symbol errors. Then, at the
block level, the subblock-level syndromes, together with
block-level syndromes, will be reprocessed for the correction
of the subblock with two symbols in error. If any subblock
has more than two symbols in error, or if two or more
subblocks have multiple symbols in error, these errors
cannot be corrected.

e Decoding process: First level

Let B, and C, denote the read bytes corresponding to the
written bytes B; and C;, respectively. The syndromes of error
at the subblock level are denoted by S, S;, and Sj,

IBM J. RES. DEVELOP. VOL. 33 NO. 4 JULY 1989

corresponding to the coding equations (1), (2), and (3),
respectively, and are given by

S, =B,®TB®TB® --&T"'8,,,, (M
S,=B,®T'B®&T'B,®-- T8, (8)

S,=B,®TB®TB,® T "B _ &C. (9

m+1

The syndromes S, and S, are computed by processing the
ordered sequence of read bytes B, ,, B,,, B -+, B,, B,
in two shift registers with premultipliers 7 and T,
respectively. The shift registers are similar to that shown in
Figure 6 except for the premultiplier circuit. Each shifting
operation multiplies the previous content of the register by
the multiplier matrix and then combines (by modulo-2
vector addition) the results with the entering byte. The
resultant 8-bit byte becomes the new content. After m + 2
shifting operations, the two shift registers contain the
syndromes S, and S, in accordance with Equations (7) and
(8), respectively. The syndrome S, is computed similarly
except that B, is EX-ORed with C, before entering the shift
register, and the multiplier matrix is T

A nonzero value of S|, S,, or §, indicates the presence of
an error. Suppose the subblock has only one byte in error.
Let x and E_ denote the error location and error pattern,
respectively. That is,

m—1?

Be {5t Wi o)
Then, in view of Equations (1)—(3) and (7)~(10), the
syndromes reduce to

S, =TE_, (11)
S, =T*E,, (12)
S,=T"E,. (13)
Thus, the decoding equation is given by

E =T7"S =T7%S,=T7%"8, (14)

if B, is in error.

Note that a one-byte error in check byte C, affects the
syndrome S; only. In that case the decoding equation is
given by

0=8=S5,#S5, if C,isin error. (15)

The decoding can be accomplished by means of three shift
registers, with 7', T~%, and 7~ multiplier circuits. With S "
S,, and 8, as initial contents, the three registers are shifted
and the contents are compared after each shifting operation
until they are equal. The resultant number of shifts
determines x, and the final content in each register is the
error pattern £_. The byte B_ is then corrected as B, ® E..
The hardware implementation of the decoding function

described above is shown in Figure 7. The syndromes S, S,,
and S, are entered into appropriate shift registers at clock

IBM J. RES. DEVELOP. VOL. 33 NO. 4 JULY 1989

&S O
O

3

-]

Multiplication by matrix 7

i

e

oRe

b

i Encoding shift registers for C,.

zero. Each clock cycle generates a shifting operation of the
decoding shift registers, creates a zero or nonzero error
pattern for the corresponding byte position, and delivers a
corrected data byte. After m + 1 clock cycles, if none of the
bytes received a correction (indicated by latch L, off) and S|
and S, both are not 0 (indicated by latch L, on), the decoder
declares an uncorrected subblock error by turning on the UE
signal. When the UE signal is on, the uncorrected subblock
is flagged and the original syndromes S, S,, and .S, are
passed on to the block level for two-error correction.

Note that the corrected bytes in the decoder of Figure 7
are delivered in a reverse order compared to that in the
encoder of Figure 5. If desirable, this reversal can be
eliminated by modifying the decoder as follows. We
substitute (m + 1) — x for x in Equation (14) and
rewrite it as

E T [T™"™"s,]

(m+1)—Xx

i

TZE[T—Z(m+ l)SZ]

il

T3£[T_3(M+I)S3]. (16)

ARVIND M. PATEL

477

478

T :/+> #{OR ‘
O

Clock’.

£

Buffer
B,
8-bit shift register !
(feedback) I
Clock
i 8 AND
s [72 ’;1 IR + .
Bl > g\ >
--4—‘>
Clock’.

Not
Not

First-level decoder.

R

Clock >m + 1

In this equation, X represents the number of shifts, and x =
0,1,2,-++,m, m+ 1 corresponds to the byte-position
valuesx=m+ 1, m,m—1,---, 1,0, thereby canceling the
reversal of the byte order. To accomplish this, the decoder
hardware in Figure 7 must be modified in accordance with
Equation (16) as follows:

1. The shift-register multipliers 7~', T~>, and 7" in Figure
7 must be replaced by the multipliers 7, T°, and T3,
respectively.

2. The syndromes S|, S,, and S; must be premultiplied by
770 7720 and T, respectively, before being
entered into the respective shift registers. Note that when
(m + 1) = 255, this premultiplication is not required,
since 727 = 1.

In general, the circuits for premultiplication by T,

772*Y and 77" depend on the value of m, and each

circuit requires a small number of EX-OR gates.

ARVIND M. PATEL

With these modifications, the decoder delivers the
corrected bytes in the same order as they were processed by
the encoder, starting with B, ,, and ending with B,.

& Decoding process: Second level
The syndrome of error at the block level is denoted by .S,
corresponding to the coding equation (6), and is given by

&=Q@z(2@ . (17)
subbk i subbk

This syndrome is computed as the modulo-2 sum of the
(first-level-corrected) read bytes excluding the check bytes

C, for all subblocks and including the block-level check

byte C,,.

If each subblock in a block encounters, at the most, one
byte in error, they will all be corrected by the first-level
processing. In the absence of any uncorrected error, the
second-level syndrome S, will be zero. However, if one of

IBM J. RES. DEVELOP. VOL. 33 NO. 4 JULY 1989

the subblocks encounters two bytes in error, then the first-
level processing for that subblock will give an uncorrectable-
error (UE) signal and pass on the syndromes S,, S,, and S
to the second level for further processing. Let y and z denote
the locations and E, and E_ denote the corresponding
patterns for the uncorrected two errors. Then the second-
level syndrome equation (17) for S, and the first-level
syndrome equations (7), (8), and (9) for S, S,, and S, will
reduce to the following relations in terms of the error
locations y and z and the patterns E, and E, for the two
eITors:

S,=E®E,, (18)
S, =TE,®TE_, (19)
S,=TYE,® T"E,, (20)
S,=T"E, & T"E,. @21

Next, we proceed to decode the combined set of subblock-
and block-level syndromes for two-symbol errors. First we
obtain the 8-digit vectors P, Q, and R, which are functions of
the syndromes S,, S|, S,, and S;, as given by

P=(5,085)®(5,85), (22)
0=(5,®5)0 (S, ®S,), (23)
R = (So ® Sz) & (Sl ® Sz)’ (24)

where ® denotes the product operation of the field elements
in GF(28), and the field elements are represented by binary
8-digit vectors. The product operation can be realized using
hard-wired logic or through the use of log and antilog tables
in GF(2®), as discussed in Appendix A.

We note here that P, Q, and R are necessarily nonzero
when there are two bytes in error and both are in one of the
subblocks. In contrast, when the check byte C; or C; is
among the two erroneous bytes, this is indicated by
P=R=0.

Assertion 1 Suppose that there are exactly two bytes in
error in one of the subblocks; then, the error-location values
y and z are two unique solutions of i in the equation

T"P®T'Q=R, 25)

where P, Q, and R are functions of the syndromes S, 5), S,,
and S,, as given by Equations (22)-(24). For each of the two
solution values of i, the error pattern is given by

E = RAT”S, ® S,). (26)

The proof of Assertion 1 appears in Appendix B.

The decoding can be accomplished using a software
method involving table-lookup operations. The vectors P, Q,
and R are computed from syndromes S, S|, S,, and S,
using the log and antilog tables of Appendix A. This
requires, at the most, 18 references to the tables in memory,

IBM J. RES. DEVELOP. VOL. 33 NO. 4 JULY 1989

six binary-add (modulo-255) operations, and three vector-
add (modulo-2) operations.

The error-location values y and z can be obtained through
a simple table-lookup procedure. The table and the theory
behind this procedure appear in Appendix C. In this
method, the error-location values y and z are obtained
through the following four-step procedure:

1. Obtain binary numbers « and v from vectors P, Q, and R,
using log tables of Appendix A:

u = (log, P — log, Q) modulo 255, 27

v = (log, R — log, Q) modulo 255. (28)
2. Obtain the value d:

d = (u + v) modulo 255. 29)

3. Obtain the value ¢, corresponding to value d, from Table
1 of Appendix C.
4. Obtain error-location values y and z:

y = (u — t) modulo 255, (30)

z = (t = v) modulo 255. 31
All terms in Equations (27)-(31) of the above procedure are
8-digit binary sequences undergoing modulo-255 add or
subtract operations. The procedure requires four table-
lookup operations, four modulo-255 subtract operations,
and one modulo-255 add operation. In this procedure, an
invalid value of d (the one with no entry in Table 1) or an
invalid value for y or z (greater than m + 1) indicates an
uncorrectable error involving three or more bytes in error.

The error pattern E, can be computed using the log and
antilog tables of Appendix A in accordance with Equation
(26), in which matrix multiplication T S, is replaced by the
product &” ® S, of the two field elements a”” and S,. The
error pattern £, can be computed similarly, using Equation
(26), or alternatively from Equation (18), which gives

E =S,0E,, (32)

The subblock correction is then accomplished by correcting
bytes B, and B, with error patterns E, and E..

Alternatively, the second-level processing [Equations (22)-
(26)] can be carried out with a hardware decoder [4] using
shift registers and binary logic.

e Data integrity check

In the IBM 3380J and 3380K disk files, the two-level code
includes four additional check bytes at the second level
{Figure 2). These check bytes provide a strong data-integrity
check over the corrected data stream. Each of these four
check bytes is applied to both code words, disregarding the
two-way interleaving. They are denoted as CRC checks and

are given by 479

ARVIND M. PATEL

480

CRC1=3T7'D,, (33)

CRC2=YT7"Z, (34)

CRC3=3%T7D,, (35)
—4i

CRC4=3YT"Z, (36)

where matrix 7~ and the sequences {D,} and {Z,} are
defined as follows.

The matrix 7T is the companion matrix of a degree-8
primitive polynomial P(x), and T7 = 77" We use
different powers of the same T to create all CRC as well as
error-correction functions. It provides a computational
convenience when second-level error correction requires
recomputation of the CRC check in software. In particular,
the software will be able to use the same tables for
computation of Galois field operations.

The byte-sequence {D,} and the byte-sequence {Z,} consist
of all bytes in a record excluding the second-level check
bytes; {Z,} also excludes two check bytes corresponding to
the last two byte positions of each rnormal-length subblock.
The first-level check bytes in these sequences (and the
corresponding error patterns) may be replaced by null bytes
(all-zeros) in CRC calculations. This eliminates the need for
correcting errors in the check bytes.

The sequence {Z,} is offset from the sequence {D,} by two
bytes at the end of each subblock. With 255 as the exponent
for T™" and 777, this offset arrangement provides an
effective CRC cycle length of 255 X 256 = 65 280 bytes in
sequence {D,} and 255 X 254 = 64770 bytes in sequence
{Z,}. This means that two identical detectable error patterns
will not cancel each other in both types of CRC checks in
any record of up to 255 subblocks of data. This is a novel
method of obtaining long cycle length while still operating in
a Galois field of reasonable size, namely GF(28).

In the readback process, the CRC syndromes are
generated on-the-fly along with the error-correction
syndromes as the data are received, using shift registers with
premultipliers 77", T, T™°, and T™*. Furthermore, CRC
syndromes will be adjusted for the first-level error correction
in hardware and later for the second-level error correction in
software. The equations for the four CRC syndromes S_|,
S5, S ,,and S_, are

S, =CRCI®Y T'D,
®Y TE(D,)® Y T E/D,), (37)
S,=CRC203T7Z,

i

© 3 T7E(2)® 3 TE(Z), (38)

ARVIND M. PATEL

S,=CRC3® 3 T7D,

—3i -3

®Y TVE(D)®Y T E,D,), (39)
S,=CRC40®3TZ,

—4i —4i

® 3 17"E(2) ® I TEAZ), (40)

where the symbol ~ indicates readback bytes, £ (D,)and
E\(Z,) represent the first-level error-correction patterns, and
E,(D,)and E,(Z,) represent the second-level error-correction
patterns corresponding to the recorded bytes D, and Z,,
respectively. The error patterns corresponding to the check
bytes will be replaced by null bytes.

The data sequence {D,} and the corresponding sequence of
error-correction patterns {¥,(D,)} appear at the input and
output of the first-level decoder, respectively, with exactly
one subblock delay. If second-level error correction is
required, the error patterns {E,(D,)} will be available later
through software decoding at the second level.

If the first-level decoder includes a subblock buffer and on-
the-fly error correction, first-level CRC syndromes can be
computed from the corrected data which is the combined
sequence {D, ® E,(D,)}. However, if the first-level error
correction is deferred, the first-level CRC syndromes may be
computed by combining separate computations with {D,}
and {E,(D,)} sequences.

The second-level error correction, if any, will involve one
of the subblocks and up to four error bytes. The byte count /
in sequence {D,} for each of the four error bytes will be
determined from the error-location numbers. Then the terms
such as T—3iE2(D,) for each error can be computed using the
antilog tables,

~3i

TE,(D,)

= log ' {[log, E,(D,) — 3i] modulo 255}. (41)

This leads to the second-level CRC check corresponding to
the syndromes S_, and S_;. The byte count / in sequence
{Z,} for each of the four errors will also be determined, and
the computations for syndromes S_, and S_, will be done in
a similar manner. These final values of CRC syndromes
must be zero if no errors are present.

The four CRC bytes in two-level code provide error
detection for protection against miscorrections of excessive
errors. However, any errors in CRC bytes will tend to create
unnecessary reread operations with undue performance
penalty. In order to avoid this, one nonzero CRC check on
the {D;,} sequence and one on the {Z,} sequence may be
ignored whenever errors are not corrected at the second
level. All nonzero CRC checks may be ignored whenever
errors are not corrected at either level. Alternatively, the

IBM J. RES. DEVELOP. VOL. 33 NO. 4 JULY 1989

CRC bytes may be placed within the last subblock so that
the two-level correction is applicable to the CRC bytes as
well.

The four CRC check bytes provide more than adequate
data integrity check. Four separate CRC checks in GF(28)
using the same primitive field element are not only
convenient but also provide the desired long cycle length
without using degree-16 polynomials.

Conclusion

A two-level coding scheme with subblocks within a block is
defined with parameters (z,, f,; ¢). A general result regarding
various combinations of correctable error patterns at the two
levels is established, and a practical decoding strategy is
given. The scheme is designed for disk files; the emphasis is
on correcting multiple-burst errors on-line in most devices,
while providing reserve capability at the block level for
protecting an uncommon weaker or failing device against
potential data loss.

The two-level coding scheme used in the IBM 3380J and
3380K disk files is described in detail, including the
encoding and decoding implementations. This design is
characterized by the two-level coding parameters (¢, = 2,

t, = 1; ¢ = 1) using the coding structure of the extended
Reed-Solomon code with two-way interleaving. A three-
register hardware decoder provides correction of one-symbol
errors and detection of two-symbol errors in each subblock
at the first level. A table-lookup software decoder provides
correction of two-symbol errors in one of the subblocks at
the second level. An additional check at the end of the block
provides an overall data integrity confirmation against
miscorrections in the presence of an excessive number of
errors.

Appendix A: Logarithms of field elements
Let G(x) denote a primitive polynomial of degree 8 with
binary coefficients,

Gx)=g,®gx0g,x ® - ®gx &x°.

The companion matrix of the polynomial G(x) is defined as
the following nonsingular matrix:

2 |
A
b
&3
&4
8s
8s
&,

COOCODOO—O
SO O— OO0
SO0 —~OOCO
[=ReNel e NeNoNe)
SO~ OO0
OC— O OO OO
— O OO OoOOO0O

We use matrix T of Equation (4) corresponding to G(x) =
1 +x° + x° + x" + x°. The matrix T" denotes T multiplied
by itself / times with all results reduced modulo 2. The

matrices 7, TZ, Ta, e, T are all distinct, and 7°°° is the

IBM J. RES. DEVELOP. VOL. 33 NO. 4 JULY 1989

identity matrix, which can also be written as T°. These 255
matrices represent (28 — 1) nonzero elements of GF(28). Let
« denote the primitive element of GF(2®). Then 7"
represents the nonzero element «' for all /. The zero element
is represented by the 8 X 8 all-zero matrix. The sum and
product operations in GF(2") are. then, defined by modulo-2
matrix-sum and matrix-product operations, using these
matrix representations of the field elements.

The elements of GF(ZS) can also be represented by the
8-digit binary vectors. The square matrices in the above
representation are very redundant. In fact, each matrix can
be uniquely identified by just one of its columns (in a
specific position), which can very well be used for
representation of the corresponding field element without
ambiguity. In particular, the first column of each 8 X 8
matrix in the above set is the commonly used 8-digit vector
representation of the corresponding field element. This
establishes a one-to-one correspondence between the set of
all nonzero 8-digit vectors and the set of 7' matrices
representing the field elements «'. Thus, each nonzero 8-digit
vector S corresponds to a unique integer { (0 < i < 254)
which can be regarded as its logarithm to the base «. That is,

i=log,S
and
S=log,'i.

A table of logarithms which maps all field elements into
powers of « and a table of antilogarithms which maps
integer powers of « into corresponding field elements can be
generated using the companion matrix of Equation (4) as the
representation for «. Each table can be stored in a memory
of 8 X 256 bits in which the word number or memory
location expressed as an 8-bit vector is the input vector. The
stored 8-bit vector in that memory location represents the
logarithm and the antilogarithm corresponding to the input
vector in the two tables, respectively. With the help of these
tables, the product S, ® S, (of the two elements represented
by 8-digit vectors S, and S,) can be computed as follows:

S, = ah

Use log table: log, S, = i,.

S, = a” Use log table: log, S, = i,.

5, ®8,=a""" Add (modulo 255): i=

|
-~
+
~.

~

o' =8 Use antilog table: log,' i = S.

Appendix B: Proof of Assertion 1

Assertion | provides the decoding algorithm for two-symbol

errors. This assertion follows from the general results in

decoding Reed-Solomon or the generalized BCH code [4, 9].

Here, we present a proof for this assertion from the basic

matrix equations. 481

ARVIND M. PATEL

482

Assertion 1 Suppose that there are exactly two bytes in
error in one of the subblocks; then the location values y and
z for these bytes are two unique solutions of i in the
equation

TP®T Q=R (B1)
where P, , and R are functions of the syndromes .S, S|, S,,

and S;, as given by Equations (22)~(24). The error pattern E,
fori= yori=zisgiven by

E, = RAT"S, ® S,). (B2)

Proof The syndromes are expressed as a function of the two
errors in Equations (18)-(21). These equations are rewritten
here as

S,=E,®E,, (B3)
S, =T’E,® T’E,, (B4)
S,=T"E,® T"E_, (BS)
S,=T"E,® T”E,. (B6)

Combining the appropriate equations from (B3) through
(B6), we have

T's,®S, =(T"®T)E, (B7)
7’8, @ 8,=T(I" & T°)E,, (B8)
T°S,® S, = T*(T" & T')E, . (B9)

Matrix equations (B7), (B8), and (B9) are relations among
field elements in GF(28) represented by matrices. In
particular, the matrix multiplication of the type T'B
represents the product of field element « and 8, where o'is
represented by the first column of matrix T and B is
represented by the column vector B. In view of this
interpretation, Equations (B7), (B8), and (B9) yield the
relationship

(T’S,® S)®(T’S,® S,)
=(T"S,®S,),® (T’S, ® S,), (B10)
272 1

where ® denotes the product of corresponding elements in
GF(28). Equation (B10) can be rearranged into the matrix
equation

T"ROT°0®P=0. (B11)

In these equations, P, Q, and R are column vectors given by

P=(5®85,)®(S,®S,), (B12)
0=(5,8®5)® (S, ®S,), (B13)
R=(5,8S5,)8 (S, ®S,). (B14)

Thus y is one of the solutions for / in the equation

TP®T Q=R (B15)

ARVIND M. PATEL

By exchanging the variables y and z in the above process, we
can show that z is the second solution for / in Equation
(B15).

Equation (B2) for i = y and { = z can be verified by direct
substitution of values for R, S;, S|, and S, using Equations
(B14), (B3), (B4), and (B5), respectively. This completes the
proof of Assertion 1.

Appendix C: Table-lookup solution for two error
locations

In Assertion 1 of Appendix B, it was shown that the error
locations y and z for two errors in a subblock can be
determined by solving for / in Equation (B1). That equation
is rewritten here as

TP®T Q=R (C1)

—2i

The constants P, Q, and R are functions of the syndromes
S,s 51, S,, and S;, given by Equations (22)-(24),
respectively. We can obtain logarithms of P, Q, and R from
the log table of Appendix A:

p=log, P, (C2)
g = log, Q, (C3)
r=log, R. (C4)

Then the matrix equation (C1) can be rewritten as a relation
among field elements in GF(2®) as follows:

a ¥’ ®aal = a. (C5)
Multiplying both sides of Equation (C5) by "%, we obtain
a(zli-—Za—Zi) ® a(p—q—i) - CY(p—2q+r)' (C6)

Substituting ¢ for (p — ¢ — i) in Equation (C6), we get

o ®a = (C7)
and
i=(p— q)— t modulo 255. (C8)

The right-hand side of Equation (C7) is a known field
clement ad, where

d=(p - q)+ (r — q) modulo 255. (C9)

Next we present a simple table-lookup solution for Equation
(C7), which can be rewritten as

a'(a' @ a’) = a’. (C10)

Using this expression, we can relate each value of ¢ (from 0
to 254) to a value of d. We note that some values of d are
absent in this relationship, and that each valid value of d
corresponds to two values of ¢. For a given value of 4, if

t = t, is one of the solutions of Equation (C10), it is easy to
see that ¢ = ¢, is also a solution, where

a”=a" @ (C11)

IBM I. RES. DEVELOP. VOL. 33 NO. 4 JULY 1989

Table 1 Tableofvs. dina’ =o' (a'®a”).

d t d t d t d t d !
000 01010101 051 10001010 102 000101014 153 01000101 204 00101010
00r ------ 052 ------ 103 10001011 154 10100101 205 11100101
002 ------ 053 01001011 104 ------ 155 11001011 206 00010111
003 00111000 054 ------ 105 00011111 156 10101011 P
004 ------ 055 10010111 106 10010110 157 00101110 208 ------
005 ------ 056 00000100 107 10011100 158 00100001 209 e-----
006 01110000 057 01010111 108 ------) 210 00111110
007 10000000 058 ------ 109 10010011 160 ------ 211 00100100
008 ------ 059 01011100 110 00101111 6r ae---- 212 00101101
009 ------ 060 ------ S 162 00110101 213 ---e--
o0 ------ 061 01000010 112 00001000 163 ------ 214 00111001
011 00001100 062 ------ 13 ------ 164 ------ 215 ------
012 00101011 063 ------ 114 10101110 165 00101001 216 ----e-
013 ------ 064 ------ 115 01111001 166 00111101 217 11100010
014 00000001 065 ------ e ------ 167 01001000 218 00100111
015 -ee--- 066 ------ I 168 01001101 219 -ee---
016 ------ 067 ------ 118 10111000 169 01001111 220 01011110
017 01110111 068 01100110 119 00010110 170 00100010 221 01011000
018 ------ 069 01101010 120 EEREE 71 e 222 ee----
019 01000001 070 ------ 121 aee--- 172 00011011 223 00100110
020 ------ 071 - 122 10000100 173 00111011 224 00010000
021 01101011 072 ------ 123 ------ | 225 e----s
022 00011000 073 ------ 124 R 175 ------ 226 ------
023 ------ 074 ------ 125 -eee-- 176 11000000 227 -ee---
024 01010110 075 01010010 126 ------ 177 aeee-- 228 01011101
025 ------ 076 00000101 127 10011000 178 01000110 229 -----
026 ------ 077 01111010 128 ------ 179 11000101 230 11110010
027 ------ 078 01111000 129 00011100 180 00100101 231 -
028 00000010 079 10010000 130 -ee--- 181 01001110 232 aeee--
029 ------ 080 ------ 131 01000000 182 11001001 233 00010010
03 ------ 081 10011010 132 ee---- 183 ------ 234 aee---
03t e----- 082 ------ 133 00000110 184 ------ 235 ee----
032 a--e--- 083 10011110 134 ------ 185 10111100 236 01110001
033 ------ 084 10100110 135 -e---- 186 ------ 237 e
034 00110011 085 00010001 136 10111011 187 00001011 238 00101100
035 ------ 086 10001101 137 10100000 188 .----- 239 00010011
036 e----- 087 ------ 138 10110101 189 ------ 240 ------
037 ------ 088 01100000 139 --e--- 190 ------ 241 -
038 10000010 089 00100011 140 ------ 191 01001100 242 aee---
039 00111100 090 10010010 141 ------ 192 00001110 243 ------
040 ------ 091 01110110 142 ------ 193 00100000 244 00001001
041 ------ 092 ------ 143 --e--- 194 00000011 245 ------
042 01010011 093 ------ 144 ------ 95 ------ 246 ------
043 01100100 094 ------ 145 ------ 196 01010000 247 01101110
044 00110000 095 e----- 146 ------ 197 e---- 248 ------
045 01001001 096 00000111 147 00011110 198 ------ 249 ------
046 ------ 097 10000001 148 -e---- 199 -e---- 250 ---e--
047 ------ 098 00101000 149 00110010 200 ------ 251 00110111
048 10000011 099 ------ 150 10100100 201 00001111 252 e-----
049 00010100 100 ------] N 202 00011001 253 01100010
056 ------ 101 10001100 152 00001010 203 ---e-- 254 00110001

The field element « is represented by matrix T of Equation (4).
The absence of a value for ¢ implies an invalid value of d.

Substituting ¢ = ¢, in Equation (C10) and then using (C11),
we see that

T d
ala’=a.

(C12)

This expression provides a simple way to obtain the second
value of ¢ from the first:

1, = (d — t,) modulo 255. (C13)

IBM J. RES. DEVELOP. VOL. 33 NO. 4 JULY 198%

Table 1 relates each valid value of d to one of the two
values of t. Values of d are listed in ascending order for easy
reference as addresses of an 8 X 256-bit memory. The
corresponding value of ¢ is stored in the memory as an 8-bit
binary number. The all-zeros vector (invalid value) is stored
at addresses corresponding to the invalid values of &, and is
so interpreted.

ARVIND M. PATEL

483

In the case of two errors, the computed value of fetches
one of the two values for ¢ from Table 1. The second value
for ¢ is obtained from the first by using Equation (C13). With
these two values of ¢, Equations (C8) and (C9) provide the
two values of i as the error locations y and z given by

modulo 255,
modulo 255.

(C14)
(C15)

y=(p—-—gq)—1

z=1—(r—-¢q)

An invalid value of d fetches ¢ = 0 from Table I, which is
interpreted as an uncorrectable error involving three or more
bytes of the code word.

References

1. 1. S. Reed and G. Solomon, “Polynomial Codes Over Certain
Finite Fields,” J. Soc. Indust. Appl. Math. 8, 300-304 (1960).

2. R. C. Bose and D. K. Ray-Chaudhuri, “On a Class of Error-
Correcting Binary Group Codes,” Info. Control 3, 68=79 (1960).

3. A. M. Patel, U.S. Patents 4,525,838 and 4,706,250, dated June
25, 1985 and November 10, 1987, respectively.

4. A. M. Patel, “On-The-Fly Decoder for Multiple Byte Errors,”
IBM J. Res. Develop. 30, 259-269 (1986).

5. G. D. Forney, Concatenated Codes, M.1T. Press, Cambridge,
MA, 1966.

6. P. Elias, “Error-Free Coding,” IEEI Trans. Info. Theory 1T-4,
29-37 (1954).

7. A. M. Patel, “Error-Recovery Scheme for the IBM 3850 Mass
Storage System,” IBM J. Res. Develop. 24, 32-42 (1980).

8. J. K. Wolf, “Adding Two Information Symbols in Certain
Nonbinary BCH Codes, and Some Applications,” Befl Syst. Tech.
J. 48, 2408-2424 (1969).

9. R. T. Chien, *Cyclic Decoding Procedures for Bose~Chaudhuri-
Hocquenghem Codes,” IEELE Trans. Info. Theory 1T-10, 357-363
(1964).

Received August 31, 1988, accepted for publication January
11, 1989

484

ARVIND M. PATEL

Arvind M. Patel /BM General Products Division, 5600 Cottle
Road, San Jose, California 95193, Dr. Patel is an IBM Fellow at the
GPD Laboratory in San Jose. He is currently involved with the
development of advanced signal processing techniques for computer
storage products. He received his B.E. from Sardar Vallabh-Bhai
Vidyapeeth, India, in 1959, his M.S. from the University of Illinois,
Urbana, in 1961, and his Ph.D. from the University of Colorado at
Boulder in 1969, all in electrical engineering. Dr. Patel joined IBM
at the Poughkeepsie, New York, laboratory in 1962. Since then he
has participated in various aspects of magnetic recording technology
and product development projects in the Poughkeepsie, Boulder, and
San Jose laboratories. His main theoretical interest has been in
exploring the area of information theory and coding for computer
applications. His work on data encoding and error-correcting codes
has won him five Outstanding Invention Awards from IBM in 1972,
1973, 1983, 1985, and 1987, and an Outstanding Technical Paper
Award from the American Federation of Information Processing
Societies in 1970. Dr. Patel has been elected a Fellow of the Institute
of Electrical and Electronics Engineers, with the citation: “For
contributions to data encoding/decoding and error correction and
their application to magnetic storage devices.”

IBM J. RES. DEVELOP.

VOL. 33 NO. 4 JULY 1989

