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The  approach  presented  here  extends  the 
modeling  of M-dimensional  (spatial)  time  series 
from  the  time  domain  into  the  frequency  domain. 
The  autocovariance  function  for  an M- 
dimensional  time  series  is  transformed  to  obtain 
the  power  spectrum  in M dimensions.  The  latter 
describes  the  variance  within  the  series  and  can 
be  used  to  identify  dependencies  and/or  test 
the  adequacy of a  fitted  model. An example  is 
provided. 

Introduction 
The analysis of M-dimensional time series is a  methodology 
that  can be used to  form a  composite  model of available 
information across spatial regions over time  to identify 
underlying structure (dependencies). One of its objectives is 
to identify, independent of a specific site or  time, a single 
model with the least number of parameters that provides an 
adequate  approximation  to a  stochastic  event or process. 
Some examples of processes that generate time series data 
are climatic changes, sales volumes, process control, highway 
deterioration,  and  pattern recognition. 
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Spatial time series data  or M-dimensional time series data 
are  data collected at a number of different spatial  locations 
over  a number of different times. Alternatively, this can be 
regarded as  a set of time series collected simultaneously at a 
number of different spatial  locations.  A conceptual example 
is given by the following: Assume we wanted to understand 
how the  amount of dissolved oxygen evolves over time  in a 
flowing stream. The  approach for  doing so would be to 
establish P sampling sites along the  stream  at different spatial 
locations. Each  location  would then generate  a time series or 
a  realization of the underlying  stochastic process. It would be 
assumed that  the  amount of dissolved oxygen present at each 
site depends  upon  the  amounts present at locations 
upstream, with a time lag. The objective would then be to 
use the composite data  to  determine a single model  that is 
invariant from site to site to describe the spatial and 
temporal dependencies. This differs from regression analysis, 
in which one site would be selected as  the dependent site. 

The primary  tool used to  determine spatial and  temporal 
dependencies is the  autocorrelation  function. However,  this 
function is sometimes difficult to  interpret  and  may be 
misleading. An alternative and perhaps preferred approach is 
to transform from  the time/space domain  into  the 
equivalent  frequency domain via a Fourier  transform of the 
autocorrelation function. 

The concepts  of  M-dimensional time series have  been 
developed and explained in [ 1-31. Described  here  is the 
development of an M-dimensional  power spectrum  that  can 
be used as a  tool to analyze the variance. The  area  under its 
curve is equal to  the total  variance of the  data. A method for 
estimating the associated spectrum is presented,  along  with 
procedures  for  using the  spectrum for model identification 
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and diagnostic  checking of model  adequacy.  A brief example 
is provided to illustrate the concepts. 

Definitions  and  terminology 
Let the set (Z (u ,  t ) ]  denote  the realization of a stochastic 
process in the M-dimensional  space denoted by the spatial 
vector u = ( u l ,  u 2 , .  . . , ujv)  for 1 5 u, I P, and its temporal 
index t = 1, 2, . . . , N ,  where t is a scalar. Each P, represents 
the  number of  sampling  locations  in dimension i for 
1 5 i I M. Thus, for each dimension u, there  are P, 
sampling  locations, where N observations are  made over  a 
period of  time. In this  context, time is viewed as  an “index” 
into  the spatial data  and  not as  a dimension. When M = 0, 
Z(u ,  t )  reduces to Z ( t ) ,  which yields a traditional “Box- 
Jenkins”  time series [4]. 

As a minimum  assumption it is assumed that weak 
stationarity exists in space and time. This  assumption is 
ensured by the existence of the following: 

The  mean f iz = E[Z(  u, t )] = 0; all trends have been 
removed. 
The variance ui = E [ Z  - pI2  < co is  a  constant. 
The autocovariance y ( m ,  n )  = COV [Z(u, t ), 
Z(u - m, t - n)]  depends only on  the lags m and n, or  on 
the separation of the  data  points by a constant interval;  it 
does  not depend  on  the choice of origin. 
The autocorrelation function is given by p(m, n )  = 

The  random  error a(u, t )  is an i.i.d. variable with mean 
zero and 0: > 0. 

r ( m ,  n)/u:. 

Nonstationary behavior may be rendered stationary by 
suitable differencing of the series, as given by Perry [ 5 ] .  

and its estimate c(m, n )  are given by 

y(m, n)  = E[Z(u ,  t )  * Z(u - m, t - n)] ,  (1) 

c(m, n) = - 2 Z(u,  t )  * Z(u - rn, t - n), ( 2 )  

where u = (m,  + 1, m, + 2, . . . , P, ) for positive or negative 
values of m, for positive n, and for t = n + 1, n + 2, . . . , N.  
The  notation is defined as . . . . 

The autocovariance  function r(m,  n )  for lags m and n, 

1 

N P ”  r 

I( ‘M ‘2 ‘I 

An important property of y is the form of symmetry given 
by 

r(-w -n) = Y ( r n >  n), 

- f ( - rn ,  n) = dm, -1; (3) 

however, y ( m ,  n) # y(-m, n) or y(0, n) # y ( m ,  0). 

General  models 
The two basic models used are  the autoregressive (AR) 
model and  the moving average (MA) model. The AR model 

is a  form of multiple regression on past values of itself, 
Z(u, t ) ,  and has the form 

Z(u, t )  = c c dJpqZ(u, t )Z(u  + P ,  t - 4)  + 4 4  t ) .  (4) 
P Y  

For example, 

Z(u ,  t )  = 40,z(u, t - 1) + 4 , , Z ( u  - 1, t - 1) + a(u, t ) .  

The MA model is similar to a  linear filter where the  inputs 
are  the past random shocks of a stochastic process; it has the 
form 

Z(u,  t )  = c c O,Z(u, t ) z ( u  + P ,  t - 4)  + a(u, t ) .  (5) 
P Y  

For example, 

Z(u, t )  = Oo,a(u, t - 1) + O,,a(u - I ,  t - 1) + a(u, t ) .  

There also exists a  duality  relationship between the two 
models: Every stationary  MA process can be converted to  an 
AR process. 

Power  spectrum 
The literature  does not provide  a universal definition for a 
multidimensional  Fourier transform.  The definitions cited 
by [2, 3 , 6 ,  71 all differ from Equation (6) below by a 
constant multiple and by the range of the definition  for the 
transformation. It should be kept in  mind  that  both Z(u, t )  
and  the  error  term a(u, t )  are regarded as time series. The 
concepts developed here can be applied to  the 
autocovariance function of either  without any loss of 
generality. 

The Fourier  transformf(w, X )  is expressed by 

1 
m m  

f ( w ,  X)  =” 
y(m, n)e- i (w.m+W (6) 

(2r) m=-m n=-a 

The transform is the  amplitude  at  the frequencies w in  the 
spatial dimension  and X in the  time  domain for -T < w < T 

and -K < X < T.  The  term w is the vector given by w = 

( u , ,  w 2 , .  . . , w”), X a scalar, and w . m = w,m,. 
The inverse of the transform is given by 

y(m,  n)  = J X)e+m+Xn) dwdX. (7)  

For spatial lags m and  temporal lags n, (-P, < mi < Pi,  
-N < n < N ) ,  the power spectrumf(w, X) can be used to 
identify variation  within the  sum of squares. The variance of 
the  error  term from an autoregressive model a(u, t )  is the 
total  area under  the power spectrum.  This property is 
demonstrated as follows. 

W X  

Let m = 0 and n = 0 in  the inverse transform (7) to obtain 
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Table 1 Decomposition of the power  spectrum into regions 
along the axes for M = 1 time  series. 

Regions 
for 

Pairs of terms = G(m, n) Regionsfor 
G(m. n) 

m n  

0 0 d o ,  0 )  = G(0, 0 )  m = 0, n = 0 
f f g(m, n)+g(-m,  -n)  = G(m, n )  m > 0 ,  n > 0  
k 0 g(rn,O)+g(-m.0) = G(m,O) m > 0 ,  n = O  
0 f g(0, n )  + g(0, -n) = G(0, n )  rn = 0, n > 0 * T g(m, -n )+g( -m,n )  =G(-m,n )  m>O,n>O 

but y(0,O) = E[a(u ,  t )  * a(u - 0, t - 0) = E[a2(u, t ) ]  is the 
total variance of a(u, t ) .  Hence, 

E[a2] = J $ r ( w ,  A )  = 11 power  spectrum. (8) 

It includes all frequencies  in the range of (-T, x )  which 
might contribute  to  the variation  of the process. Any peak in 
the  spectrum would indicate an  important  contribution  to 
the variance at frequencies in  the  appropriate region. This 
property  provides the benefits of using the spectral  function 
over  the  autocorrelation function when analyzing data. It 
may be more appropriate  to  rename  the power spectrum as 
the variance  spectrum when dealing with spatial data. 

The spectrum f (  w,  X )  can be normalized by dividing by 
the variance y(0, 0) to  obtain  the spectral density function 
with the property 

ss g(w, A)  dwdX = I .  

In order to reduce Equation (6) from  a  transform defined 
in terms of complex variables to a  cosine transform,  the 
following is developed next. 

by property (3) and  the identity e"" + e" = 2 cos (a), and 
letting g(m, n) = y (m,  n)e , the following two 
lemmas will aid  in  simplification. 

Using the  symmetry of the autocovariance function given 

- ! (w .m+hn)  

Letting G(m, n)  = 2y(m, n) cos (w  . m + An), Lemmas 
1 and 2 can be summarized as follows: 

G(+m, +n) = g ( f m ,  +n) + g(Tm, Tn).  

M-dimensional  power  spectrum 
The power spectrum f (w ,  X )  given by definition (6) can be 
reduced to a  more desirable form, given by expression ( 12), 
as discussed below. This is achieved by decomposing  each 
sum along the axes and  then  recombining  in pairs of terms 
such that all sums will be over  their positive indices. The 
pairing is done  on regions symmetrical to  the origin, with 
care  taken to avoid double counting. This procedure is 
illustrated  for an M = 1-dimensional  spatial time series using 
Equations (9),  (lo), and ( 1  1)  to simplify the notation. 

autocovariance function y(m, n) converges to zero.  A 
truncated autocovariance function with finite limits can  thus 
be used without any loss of generality for -7r < w < T, 
T < X < T.  The M-dimensional power spectrum for time 
series data is then given by 

As the lags m and n increase to infinity, the 

I 
where (+m,, 0) is defined, when n = 0, as m, > 0, and all 
succeeding values of m are zero: i.e., mJ+, = m,+, = . . . mM 

= 0. 
Equation ( 12) is  derived by  first rewriting Equation (6) in 

Lemma 1 

466 g(-m, -n) +g(m, n)  = 2y(m, n)  cos (w . m + An). (9) the  formf(w, A )  = k g(m, n )  and  then decomposing 
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each sum along the axes, as illustrated  in Table 1. Combining  the regions shown  in  Table 1 gives 

P - l  N - l  P- I N -  I 1’-l N-I  

g(0, 0) + G(m, n)  + C G(m, 0) + C 0 ,  n)  + C G(-W n)  
m=I n=I m= I n= I m=I n = I  

where (+m, 0) corresponds to m > 0 when n = 0. This yields Equation (12) for M = 1, viz., 

Estimation of the  power  spectrum 
The estimate of the spectrum  should not be obtained by 
replacing the theoretical  autocovariance r(m,  n) with the 
estimates c(m, n). The sample spectrum of a  stationary time 
series fluctuates about  the theoretical  spectrum. This is 
analogous to using too small  a group interval  for the 
histogram when estimating an  ordinary probability 
distribution. 

Since the  cosine  function is periodic,  variations at 
frequencies higher than H cannot be distinguished, and 
appear “aliased” with lower frequencies  in (-H, H). The 
phenomenon of aliasing depends  on  the sampling rate. One 
should try to choose an  appropriate sampling  interval so that 
the  maximum frequency that  can be detected from  the  data 
exceeds the  maximum frequency present and is at least twice 
the frequency of interest.  These  concepts are  further 
discussed in [4, 7, 81. 

autocovariance c(m, n),  it is possible to increase the 
“bandwidth”  and  obtain a smoother estimate for the 
spectrum. A popular method of smoothing is achieved by 
multiplying the autocovariance function by a weighting or 
tapering function  that gives less weight to values of c(m, n) 
as I m I and n increase [6,8,9]. One such weighting function, 
or “lag window,” is given by 

By using a modified or tapered  estimate of the sample 

h(m, n) 

- ” [ I  + cos (na/R)] n [ l  + cos(m,~/S) ] ,  (14) 
2p+1 

with truncation  points R and S. The associated estimate of 

f ( ~ ,  x) is given by 

+ 2 h(m, n)r(rn, n) cos(u  . m + rn) . (15) 
m n  1 

The proper  choice of R and S may be difficult to  make  in 
attempting  to  determine  the overall nature of the  true 
spectral  density. Low values will give an indication of where 
the large peaks exist, but  the curve is likely to be too  smooth. 
Large values are likely to produce  a  curve  showing  a large 
number of peaks, some of which may be spurious. A 
compromise can be achieved through the use of intermediate 
values. 

Use of spectral  analysis 
The modeling of time series data follows a three-stage 
iterative approach: model  identification, parameter 
estimation, and testing of adequacy. The goal of  the 
modeling is to identify a  model with the smallest number of 
parameters that provides an  adequate  approximation for the 
process of interest. 

provides insight into spatial and  temporal dependencies and 
thus aids  in  model selection and identification. This provides 
an alternative approach  to viewing the visual appearance of 
the autocorrelation  function to analyze the total  variance 
(mean squared value) of the  data.  From peaks in  the spectral 
function  it  can be inferred which terms should be 

The spectral function applied to a spatial time series 
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Table 2 Site locations. 

Site Station 
~ ~ _ _ _ _ _ _  

Location U. T.M. coordinales 

H 3101-16 Niagara & Hawley, Lockport 199.2E 4786.1N 
D 1451-03 Audubon Golf Course, Amherst 193.OE 4766.5N 
B 140 1 - 18 Dingens & Weiss, Buffalo 188.88 4754.0N 
A 1402-01 Lehigh St., Lackawanna 186.IE 4747.7N 

U.T.M. = Universal Transverse  Mercator 

Table 3 Average concentration of sulfur dioxide  emissions 
(micrograms per cubic meter). 

Month ( I  982) 

Dec 
Nov 
Oct 
Sept 

Jul 
Jun 
May 
Apr 
Mar 
Feb 
Jan 

Mean ( I  980-82) 

~ 

Sites 

A B D H Mean 

0.010 0.020 0.014 0.012 0.014 
0.008 0.01 1 0.013 0.013 0.01 I 
0.007 0.013 0.012 0.009 0.010 
0.007 0.01 1 0.006 0.009 0.008 
0.006 0.012 0.007 0.017 0.011 
0.005 0.01 I 0.009 0.012 0.009 
0.007 0.010 0.007 0.012 0.009 
0.008 0.015 0.009 0.021 0.013 
0.013 0.016 0.012 0.018 0.015 
0.016 0.016 0.015 0.022 0.017 
0.019 0.024 0.021 0.022 0.022 
0.017 0.014 0.020 0.024 0.019 

0.013 0.016 0.011 0.013  0.013 

Partial data set. 

Albany, New York 12233 
Source: New York State  Department of Environmental  Conservation, 50 Wolf Road, 

considered. Any peaks in the  spectrum would indicate an 
important  contribution  to  the variance at frequencies in the 
appropriate region. 

After fitting an AR or MA model to a set of spatial data, a 
test of model adequacy is performed. The spatial function 
can then be applied to the  corresponding residuals a(u, t )  as 
an effective tool to test model  adequacy. 

If {a(u, t ) }  were a purely random process, 

causing the power spectral function 

f ( w ,  X) = u2(u)/7r2 (17) 

to be a  constant. 
Iff(W, X )  were plotted  for (w, X] in (-T, T), a purely 

random process would yield a  plane  in the A4 + 2 
dimensional space ( W, X ). The power (variance) spectral 
distribution  function describes how the variability (power) of 
the process is distributed  over  a continuous range of 
frequencies. A large spectrum at low frequencies indicates 
the possibility of nonstationarity. Peaks in the spectrum 
indicate  a contribution  to  the variance at frequencies  in the 
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appropriate regions, or a lack of fit. A topic  for  future  work 
would be to extend the Kolmogorov-Smirnov goodness-of- 
fit test [ IO] to several variables to provide  a statistical test for 
deviations  from  a  constant. 

Example:  Sulfur  dioxide  emissions 
The purpose of  the following example is primarily to 
illustrate how the power spectrum can be used as  a  tool  for 
identifying an underlying  mechanism and ascertaining 
model adequacy. 

The New York  State Department of Environmental 
Conservation maintains  continuous  air  monitors  throughout 
the State of New York. Four sites from  the Buffalo area 
(Niagara Frontier) were selected for analysis. The 
characteristic  analyzed was the  monthly average 
concentrations in  micrograms  per  cubic meter of sulfur 
dioxide contained in air samples. The sites used, their 
relative locations, and  the  monthly average concentrations of 
sulfur  dioxide  for  a  representative set of data  are presented in 
Tables 2 and 3. The sites were located  along  a N-NE path, 
while the prevailing winds were in the NE, E-NE direction. 
The  data were obtained  over the  36-month period from 
January 1980 to December 1982. The  means shown are for 
the total  period. 

The  data were initially modeled with an autoregressive 
model of the  form (4) without any seasonal terms, viz., 

Z(U, t )  = 0 . 2 7 ~ ( ~ ,  t - 1) 

+ O . ~ ~ Z ( U  - 1,  t - 1) + U ( U ,  t ) .  (18) 

The indicated coefficients were estimated using an  ordinary 
least-squares estimate of properly  ordered data. 

Figure 1 depicts the power  spectrum  for time lags of 
n = 18 and spatial lags between sites of m = 3, plotted  for 
intervals of 0.5 units. The peaks in the  time direction occur 
at a lag of 3 or 18/3 = 6-month period. The peaks in the 
spatial direction occur  at lags of 0 and 3, thus showing a 
dependency of a site with itself and with the site at  3/3 = 1 
location away. Note  that  the  time lags are positive, whereas 
the spatial lags are both positive and negative. 

to a  six-month seasonal “characteristic” of sulfur  dioxide 
emissions, there was also a  strong  dependency on 
neighboring sites. On  the basis of the  spectrum, it  might be 
useful to  entertain a  model containing a six-month seasonal 
term  and  additional site dependencies. 

Nevertheless, considering the locations  of the sites and  the 
general wind  patterns,  it  would seem feasible that  the spatial 
dependencies observed reflected the effects of wind on  the 
emissions. 

An analysis of the power  spectrum reveals that  in  addition 

Summary 
This  treatment has extended the analysis of M-dimensional 
spatial time series from the time/space domain  into its 
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equivalent frequency domain.  The resulting function,  the 
power spectrum, was derived  as  a  cosine  transform of the 
autocovariance  function. The value of analyzing the power 
spectrum is that it describes how the total  variance of the 
data is distributed  within the  continuous range of 
frequencies from - X  to T .  Some of the difficulty associated 
with the interpretation and use of the autocorrelation 
function  are  thereby  avoided. The power spectrum provides 
a means for identifying existing temporal/spatial 
dependencies and testing  the  adequacy of a fitted model. An 
example has been  included,  with some discussion of how to 
estimate an associated power spectrum using the sample 
autocovariance. 
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