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Time series

iIn M dimensions:
The power
spectrum

by Roger H. Yetzer

The approach presented here extends the
modeling of M-dimensional (spatial) time series
from the time domain into the frequency domain.
The autocovariance function for an M-
dimensional time series is transformed to obtain
the power spectrum in M dimensions. The latter
describes the variance within the series and can
be used to identify dependencies and/or test
the adequacy of a fitted model. An example is
provided.

Introduction

The analysis of M-dimensional time series is a methodology
that can be used to form a composite model of available
information across spatial regions over time to identify
underlying structure (dependencies). One of its objectives is
to identify, independent of a specific site or time, a single
model with the least number of parameters that provides an
adequate approximation to a stochastic event or process.
Some examples of processes that generate time series data
are climatic changes, sales volumes, process control, highway
deterioration, and pattern recognition,
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Spatial time series data or A/-dimensional time series data
are data collected at a number of different spatial locations
over a number of different times. Alternatively, this can be
regarded as a set of time series collected simultaneously at a
number of different spatial locations. A conceptual example
is given by the following: Assume we wanted to understand
how the amount of dissolved oxygen evolves over time in a
flowing stream. The approach for doing so would be to
establish P sampling sites along the stream at different spatial
locations. Each location would then generate a time series or
a realization of the underlying stochastic process. It would be
assumed that the amount of dissolved oxygen present at each
site depends upon the amounts present at locations
upstream, with a time lag. The objective would then be to
use the composite data to determine a single model that is
invariant from site to site to describe the spatial and
temporal dependencies. This differs from regression analysis,
in which one site would be selected as the dependent site.

The primary tool used to determine spatial and temporal
dependencies is the autocorrelation function. However, this
function is sometimes difficult to interpret and may be
misleading. An alternative and perhaps preferred approach is
to transform from the time/space domain into the
equivalent frequency domain via a Fourier transform of the
autocorrelation function.

The concepts of M-dimensional time series have been
developed and explained in [1-3]. Described here is the
development of an M-dimensional power spectrum that can
be used as a tool to analyze the variance. The area under its
curve is equal to the total variance of the data. A method for
estimating the associated spectrum is presented, along with
procedures for using the spectrum for model identification
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and diagnostic checking of model adequacy. A brief example
is provided to illustrate the concepts.

Definitions and terminology
Let the set {Z(u, t)} denote the realization of a stochastic
process in the M-dimensional space denoted by the spatial
vector 1 = (u,, u,, - -, Uy,) for | = u, < P, and its temporal
index ¢t =1, 2,---, N, where ¢ is a scalar. Each P, represents
the number of sampling locations in dimension  for
1 =i =< M. Thus, for each dimension u, there are P,
sampling locations, where N observations are made over a
period of time. In this context, time is viewed as an “index”
into the spatial data and not as a dimension. When M = 0,
Z(u, t) reduces to Z(t), which yields a traditional “Box~
Jenkins” time series [4].

As a minimum assumption it is assumed that weak
stationarity exists in space and time. This assumption is
ensured by the existence of the following:

e The mean u, = E[Z(u, t)] = 0; all trends have been
removed.

o The variance aé = E[Z — u} <  is a constant.

o The autocovariance y(m, n) = COV [Z(u, 1),

Z(u — m, t — n)] depends only on the lags m and », or on

the separation of the data points by a constant interval; it

does not depend on the choice of origin.

The autocorrelation function is given by p{(m, 1) =

y(m, n)/a’,.

® The random error a(u, ¢) is an i.i.d. variable with mean
zero and 0'2 >0.

Nonstationary behavior may be rendered stationary by
suitable differencing of the series, as given by Perry [5].

The autocovariance function y(m, r) for lags m and n,
and its estimate c(m, n) are given by

y(m, n) = E[Z(u, t) + Z{u — m, t — n)], (1)
1
cmn)=-—=33Zu,t)* Z(u—m, t — n), 2
NP u I
where u = (m, + 1, m;+ 2, -- -, P,) for positive or negative
values of m, for positive n,and forr=n+1,n+2,---,N.
The notation Y, is definedas Y --- Y 3.
u Uy uy u

An important property of + is the form of symmetry given
by

Y(=m, —=n) = y(m, n),

‘Y(_m’ ”) = 'Y(m’ —)’l); (3)
however, v(m, n) # y(—m, n) or ¥(0, n) # y(m, 0).
General models

The two basic models used are the autoregressive (AR)
model and the moving average (MA) model. The AR model
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is a form of multiple regression on past values of itself,
Z(u, t), and has the form

Zu, =Y ¥ ¢, Zu,)Z{u+p,t—q)+a(u). 4)

b q

For example,
Z(u, 1) =g Zu, 1~ )+ ¢, Z(u—1,t = 1)+ a(u, t).

The MA model is similar to a linear filter where the inputs
are the past random shocks of a stochastic process; it has the
form

Z(u, )= 30, Z(u,)Z(u+p,t —q)+ a(u, t). )

P 9
For example,

Z(u, t)y=bga(u, t = 1)+ 0, ,au—1,1— 1)+ a(u, ).

There also exists a duality relationship between the two
models: Every stationary MA process can be converted to an
AR process.

Power spectrum
The literature does not provide a universal definition for a
multidimensional Fourier transform. The definitions cited
by [2, 3, 6, 7] all differ from Equation (6) below by a
constant multiple and by the range of the definition for the
transformation. It should be kept in mind that both Z(u, )
and the error term a(u, t) are regarded as time series. The
concepts developed here can be applied to the
autocovariance function of either without any loss of
generality.

The Fourier transform f{(w, A) is expressed by

LS 5 yimme @, ©)

b2

The transform is the amplitude at the frequencies w in the
spatial dimension and X in the time domain for ~r < w <=
and —7 < A < 7. The term w is the vector given by w =
(W, wy,*++,wy ), hascalar,and w - m = 3 w;m,.

The inverse of the transform is given by

~(m, n) = f f flw, Ne™ ™™ dwd . (7)

For spatial lags m and temporal lags n, (-2, < m, < P,,
—N < n < N), the power spectrum f(w, A) can be used to
identify variation within the sum of squares. The variance of
the error term from an autoregressive model a(u, ¢) is the
total area under the power spectrum. This property is
demonstrated as follows.

Let m = 0 and n = 0 in the inverse transform (7) to obtain

v(0, 0) = ff flw, A) dwd\,
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Table 1 Decomposition of the power spectrum into regions
along the axes for M = 1 time series.

Regions Pairs of terms =G(m, n)  Regions for
Jor G(m, n)

m R

0 0 £(0,0 =(G(0,0) m=0,n=0
+ + gmny+g(-m,—n) =Gmn) m>0,n>0
0 gmO)+g(-m0) =Gm0) m>0,n=0
0 + g0, n)+ g0, —n) = G(0, n) m=0,n>0
+ ¥ glm,—n)+g(-m,n) =G(-m,n) m>0,n>0

but (0, 0) = E[a(u, t) = a(u — 0, t ~ 0) = E[a’(u, £)] is the
total variance of a(u, t). Hence,

Ela’] = \[J;f(“” A) = £J;power spectrurn. ®)

It includes all frequencies in the range of (—, ) which
might contribute to the variation of the process. Any peak in
the spectrum would indicate an important contribution to
the variance at frequencies in the appropriate region. This
property provides the benefits of using the spectral function
over the autocorrelation function when analyzing data. It
may be more appropriate to rename the power spectrum as
the variance spectrum when dealing with spatial data.

The spectrum f(w, A) can be normalized by dividing by
the variance v(0, 0) to obtain the spectral density function
with the property

ff g(w, \) dwdX = 1.

In order to reduce Equation (6) from a transform defined
in terms of complex variables to a cosine transform, the
following is developed next.

Using the symmetry of the autocovariance function given
by property (3) and the identity ¢ ™ + e“ =2 cos (a), and
letting g(m, n) = v(m, n)e”" """
lemmas will aid in simplification.

, the following two

1

(21r)MH

Lemma 1

g(—=m,—n)+ g(m, n)=2v(m, n) cos (w - m+ \n). 9)
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Proof

g(=m, —n) + g(m, n)
= ‘Y(_‘m, _n)e—i(w»nﬂ—)\n) + 'Y(m, n)ei(w»WH—)\n)
— 'y(m, n)e—i(w-m+>\n) + 7(m, n)e—i(w<m+>\n)

H(w-m+An) —i(w-m+)\n)]

= ~y(m, n)le + e

= y(m, n)[2 cos (v - m + An)].

Lemma 2

g(—=m, n) + g(m, ~n) = 2vy(m, n) cos (w - M+ An). (10)

Proof

g(—m, n) + g(m, —n)

— 7(_m, n)e—i(w-m+)m) + ’Y(m, _n)e—i(w<m+)\n)
= ‘Y("‘m, n)e—i(w-m+>\n) + ’Y(—’m, n)e—i(—w»m+)\n)
= “/(_m, n)[e—i(—wm-f-)\n) + e—i(—w-m+%n)]

= y(—m, n)[2cos(—w - m + An)].

Letting G(m, n) = 2v(m, n) cos(w - m + An), Lemmas
and 2 can be summarized as follows:

[

G(xm, xn) = g(xm, xn) + g(¥m, Fn). (1)

M-dimensional power spectrum

The power spectrum f(w, A} given by definition (6) can be
reduced to a more desirable form, given by expression (12),
as discussed below. This is achieved by decomposing each
sum along the axes and then recombining in pairs of terms
such that all sums will be over their positive indices. The
pairing is done on regions symmetrical to the origin, with
care taken to avoid double counting. This procedure is
illustrated for an M = 1-dimensional spatial time series using
Equations (9), (10), and (11) to simplify the notation.

As the lags m and » increase to infinity, the
autocovariance function y(m, n) converges to zero. A
truncated autocovariance function with finite limits can thus
be used without any loss of generality for —= < w < 7,

7 < A < 7. The M-dimensional power spectrum for time
series data is then given by

P—1 N

0,00 +2 ¥ Y4(m, n)cos(w -
m=—P+1 n=0
(m,m#=0
(+m;,0)

m+ yn)|, (12)

where (+m;,, 0) is defined, when 7 = 0, as m, > 0, and all
succeeding values of m are zero: i.e., m,,, = M, =+ M,
= (.

Equation (12) is derived by first rewriting Equation (6) in
the form f(w, A) = k ¥ ¥ g(m, n) and then decomposing
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each sum along the axes, as illustrated in Table 1. Combining the regions shown in Table | gives

P—1 N—-1 P—-1 N—-1 P—1 N—1
20,00+ ¥ ¥ Gmm+ T Gm 0O+ L GO.m+ X X G(=m,n)
m=1 n=1 m=1 n=1 m=1 n=1
— v )
P—1 N—1 pP-1  N-l
=g(0,0) + 2 X Gim n + X X Gmn
m=0 n=0 m=—P+1 n=1
(+m,0)
(m,n)#0
P-1  N-1
=¢(0,0) + r X Gmm,
m=—P+1 n=0
(+m,0)
(m,m)#0

where (+m, 0) corresponds to m > 0 when n = 0. This yields Equation (12) for M = 1, viz.,

N

m=-P+1 n=0

Aw, >\)=(—21—)2 ['Y(O, 0O+2 ¥ 3 v(m,n)cos(w - m+'yn)}.

(m,my=0
(+m.0)

Estimation of the power spectrum

The estimate of the spectrum should not be obtained by
replacing the theoretical autocovariance v (m, n) with the
estimates ¢(m, n). The sample spectrum of a stationary time
series fluctuates about the theoretical spectrum. This is
analogous to using too small a group interval for the
histogram when estimating an ordinary probability
distribution.

Since the cosine function is periodic, variations at
frequencies higher than = cannot be distinguished, and
appear “aliased” with lower frequencies in (—=, 7). The
phenomenon of aliasing depends on the sampling rate. One
should try to choose an appropriate sampling interval so that
the maximum frequency that can be detected from the data
exceeds the maximum frequency present and is at least twice
the frequency of interest. These concepts are further
discussed in [4, 7, 8].

By using a modified or tapered estimate of the sample
autocovariance ¢(m, n), it is possible to increase the
“bandwidth” and obtain a smoother estimate for the
spectrum. A popular method of smoothing is achieved by
multiplying the autocovariance function by a weighting or
tapering function that gives less weight to values of ¢(m, n)
as | m | and n increase [6, 8, 9]. One such weighting function,
or “lag window,” is given by

h(m, n)
1

P+

[1 + cosnx/R)] I [1 + cos(mx/S)], (14)

2

with truncation points R and S. The associated estimate of
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(13)

[
f(w, \) is given by
1

Qry

Flw, N = [ﬂam

+ 23 % h(m, nyy(m, n)cos(w - m + 'yn)]. (15)

The proper choice of R and .S may be difficult to make in
attempting to determine the overall nature of the true
spectral density. Low values will give an indication of where
the large peaks exist, but the curve is likely to be too smooth.
Large values are likely to produce a curve showing a large
number of peaks, some of which may be spurious. A
compromise can be achieved through the use of intermediate
values.

Use of spectral analysis

The modeling of time series data follows a three-stage
iterative approach: model identification, parameter
estimation, and testing of adequacy. The goal of the
modeling is to identify a model with the smallest number of
parameters that provides an adequate approximation for the
process of interest.

The spectral function applied to a spatial time series
provides insight into spatial and temporal dependencies and
thus aids in model selection and identification. This provides
an alternative approach to viewing the visual appearance of
the autocorrelation function to analyze the total variance
(mean squared value) of the data. From peaks in the spectral

function it can be inferred which terms should be 467
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Table 2 Ssite locations.

Site Station Location U.T.M. coordinates
H 3101-16 Niagara & Hawley, Lockport 199.2E 4786.1N
D 1451-03 Audubon Golf Course, Amherst 193.0E 4766.5N
B 1401-18 Dingens & Weiss, Buffalo 188.8E 4754.0N
A 1402-01 Lehigh St., Lackawanna 186.1E 4747.7N

U.T.M. = Universal Transverse Mercator

Table 3 Average concentration of sulfur dioxide emissions
{micrograms per cubic meter).

Month (1982) Sites

A B D H Mean
Dec 0.010 0.020 0.014 0.012 0014
Nov 0.008 0011 0.013 0.013 0011
Oct 0.007 0.013 0.012 0.009 0.010
Sept 0.007 0.011 0.006 0.009 0.008
Aug 0.006 0.012 0.007 0.017 0.011
Jul 0.005 0.011 0.009 0.012 0.009
Jun 0.007 0.010 0.007 0.012 0.009
May 0.008 0.015 0.009 0.021 0013
Apr 0.013 0.016 0.012 0018 0.015
Mar 0016 0.016 0.015 0.022 0017
Feb 0.019 0.024 0.021 0.022 0.022
Jan 0.017 0.014 0.020 0.024 0.019

Mean (1980-82) 0.013 0.016 0.011 0.013 0.013

Partial data set.

Source: New York State Department of Environmental Conservation, 50 Wolf Road,

Albany, New York 12233

considered. Any peaks in the spectrum would indicate an
important contribution to the variance at frequencies in the
appropriate region.

After fitting an AR or MA model to a set of spatial data, a
test of model adequacy is performed. The spatial function
can then be applied to the corresponding residuals a(u, t) as
an effective tool to test model adequacy.

If {a(u, t)} were a purely random process,

2
_Ja(a) m=0,n=0,
y(m, n) = | 0 otherwise, (16)
causing the power spectral function
flw, ) = o*(a)/n” a7)

to be a constant.

If f(w, \) were plotted for {w, A} in (~=, 7), a purely
random process would yield a plane in the M + 2
dimensional space { w, A ). The power (variance) spectral
distribution function describes how the variability (power) of
the process is distributed over a continuous range of
frequencies. A large spectrum at low frequencies indicates
the possibility of nonstationarity. Peaks in the spectrum
indicate a contribution to the variance at frequencies in the
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appropriate regions, or a lack of fit. A topic for future work
would be to extend the Kolmogorov-Smirnov goodness-of-
fit test [10] to several variables to provide a statistical test for
deviations from a constant.

Example: Sulfur dioxide emissions

The purpose of the following example is primarily to
illustrate how the power spectrum can be used as a tool for
identifying an underlying mechanism and ascertaining
model adequacy.

The New York State Department of Environmental
Conservation maintains continuous air monitors throughout
the State of New York. Four sites from the Buffalo area
(Niagara Frontier) were selected for analysis. The
characteristic analyzed was the monthly average
concentrations in micrograms per cubic meter of sulfur
dioxide contained in air samples. The sites used, their
relative locations, and the monthly average concentrations of
sulfur dioxide for a representative set of data are presented in
Tables 2 and 3. The sites were located along a N-NE path,
while the prevailing winds were in the NE, E-NE direction.
The data were obtained over the 36-month period from
January 1980 to December 1982, The means shown are for
the total period.

The data were initially modeled with an autoregressive
model of the form (4) without any seasonal terms, viz.,

z(u, t) = 0.27z(u, t — 1)
+0.53z(u—1,¢t— 1) + a(u, t). (18)

The indicated coefficients were estimated using an ordinary
least-squares estimate of properly ordered data.

Figure 1 depicts the power spectrum for time lags of
n = 18 and spatial lags between sites of m = 3, plotted for
intervals of 0.5 units. The peaks in the time direction occur
at a lag of 3 or 18/3 = 6-month period. The peaks in the
spatial direction occur at lags of 0 and 3, thus showing a
dependency of a site with itself and with the site at 3/3 = 1
location away. Note that the time lags are positive, whereas
the spatial lags are both positive and negative.

An analysis of the power spectrum reveals that in addition
to a six-month seasonal “characteristic” of sulfur dioxide
emissions, there was also a strong dependency on
neighboring sites. On the basis of the spectrum, it might be
useful to entertain a model containing a six-month seasonal
term and additional site dependencies.

Nevertheless, considering the locations of the sites and the
general wind patterns, it would seem feasible that the spatial
dependencies observed reflected the effects of wind on the
emissions.

Summary

This treatment has extended the analysis of M-dimensional
spatial time series from the time/space domain into its
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equivalent frequency domain. The resulting function, the
power spectrum, was derived as a cosine transform of the
autocovariance function. The value of analyzing the power
spectrum is that it describes how the total variance of the
data is distributed within the continuous range of
frequencies from —= to 7. Some of the difficulty associated
with the interpretation and use of the autocorrelation
function are thereby avoided. The power spectrum provides
a means for identifying existing temporal/spatial
dependencies and testing the adequacy of a fitted model. An
example has been included, with some discussion of how to
estimate an associated power spectrum using the sample
autocovariance.
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