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Effects of
quasiperiodic
(Penrose tile)
symmetry

by Shanjin He
J. D. Maynard

on the eigenvalues

and eigenfunctions

of the wave
equation

In addition to the basic crystalline and
amorphous structures for solids, it is possible
that solids may also form with a quasiperiodic,
or Penrose tile, structure. A current problem in
condensed-matter physics is to determine how
this structure affects the various physical
properties of a material. A fundamental question
involves the consequences of quasiperiodic
symmetry in the eigenvalue spectrum and
eigenfunctions of a wave equation. While
rigorous theorems have been derived for one-
dimensional systems, there is currently no
known “quasi-Bloch theorem” for two and three
dimensions. To gain insight into this problem, an
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acoustic experiment has been used to study a
two-dimensional wave system with a Penrose
tile symmetry. The results show an eigenvalue
spectrum containing bands and gaps with
widths which are in the ratio of the Golden
Mean, (v5 + 1)/2.

Introduction

Until a few years ago it was believed that solid matter could
exist in two basic forms: crystalline and amorphous (glassy).
In an amorphous material the atoms are positioned
randomly, and a macroscopic sample would be
homogeneous and isotropic. Crystals are, of course, quite
different; crystals are formed by taking a unit cell and
periodically repeating it to fill three-dimensional space. In
order to fill all space with long-range periodic order, only
unit cells of particular shapes are allowed; only fourteen
shapes fit together to fill space, and these form the bases for
the fourteen Bravais lattices of crystallography (Figure 1).
Since there are only fourteen possible unit cells, only certain
rotational symmetries are allowed; in particular, fivefold
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rotational symmetry is forbidden. However, a few years ago
Shechtman [1] at the National Bureau of Standards made an
aluminum alloy whose X-ray diffraction pattern indicated
fivefold rotational symmetry. While it is possible to have
atoms in clusters with fivefold (icosahedral) order, the
diffraction patterns had sharp spots, indicating long-range
order. Furthermore, macroscopic samples of the aluminum
alloy had facets indicating fivefold rotational symmetry [2].
At first the existence of such materials seemed impossible,
but theorists pointed out that while it is impossible to have
fivefold rotational symmetry and long-range periodic order,
it is possible to have fivefold rotational symmetry and
another type of long-range order which is quasiperiodic.
Thus atoms may minimize their energy by arranging
themselves quasiperiodically, forming quasicrystals.

In one dimension the notion of quasiperiodicity is
relatively easy to understand, as illustrated in Figure 2(a).
For a line with periodic lattice sites at a spacing a, the
Fourier transform (or diffraction pattern) has a sharp line at
w/a. If a line has points positioned randomly, as shown in
the lowest line in Figure 2(a), then the Fourier transform
shows a broad spectrum. Now suppose one takes a line with
periodic lattice spacing b and superimposes it on the line
with periodic spacing a. The result may appear similar to the
line with random spacing. However, if the two lattice
constants g and b are commensurate (i.e., their a/b ratio is
equal to the ratio of two integers), then the superposition will
be periodic. The period may be much larger than a or b, but
it will be exactly periodic, the powerful theorems pertaining
to periodic systems (Bloch’s theorem, group theory, etc.) will
apply, and the properties of the system which follow from
symmetry may be calculated exactly. On the other hand, if
the two lattice constants @ and b are not commensurate (i.c.,
their a/b ratio is equal to an irrational number), then the
superposition is not periodic, and there is in general no easy
way to calculate the properties. Nevertheless, the
superposition does possess long-range order; it is constructed
from simple rules, and its Fourier transform contains sharp
peaks at m/a and =/b. The superposition of periodic lines
with incommensurate lattice constants is an example of one-
dimensional quasiperiodicity.

While quasiperiodicity in one dimension is fairly
straightforward, in two and three dimensions the notion is
considerably more interesting [3]. To show how to obtain
quasiperiodicity in higher dimensions, a second method of
obtaining one-dimensional quasiperiodicity is illustrated in
Figure 2(b). One begins with a periodic lattice in a higher
dimension, €.g., a square lattice in two dimensions. The
higher-dimensional lattice is traversed by a lower-
dimensional surface, e.g., a straight line passing through the
square lattice, making an angle # with one of the lattice
directions. Next a window width is defined, and lattice
points falling within that window are projected onto the
lower-dimensional surface. If the direction cosines describing
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Unit cells for the fourteen Bravais lattices.

the orientation of the lower-dimensional surface are
irrational, then the sites projected onto the surface will form
a quasiperiodic pattern. In the one-dimensional example, a
particularly interesting case occurs when the slope of the line
is such that tan 8 = (v/5 + 1)/2, the Golden Mean (also
known as the Divine Ratio), which is “the most irrational
number.” In this case the pattern of sites can be related to a
Fibonacci sequence, and rigorous theorems describing the
properties of this special quasiperiodic symmetry can be
derived. General theories for one-dimensional systems have
been reviewed by Simon [4], and renormalization-group and
dynamic mapping techniques have been introduced by
Kohmoto, Kadanoff, and Tang {5] and by Ostlund et al. [6].
Since the discovery of the aluminum alloy quasicrystals [1],
there has been considerably more work with
renormalization-group techniques and numerical
calculations [7, 8]. Some special properties of 1D
quasiperiodic systems are as follows:

1. The eigenvalue spectrum is a Cantor set.
2. There may exist a mobility edge and a metal-insulator
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(a) Ilustration of periodic, quasiperiodic, and random structures in one

dimensional quasiperiodicity.

dimension. (b) Illustration of the projection technique for obtaining one-

3. The eigenfunctions may be extended, localized, or
critical.

One-dimensional quasiperiodic systems have received
some experimental attention, through measurements of
infrared reflectivity in quasiperiodic superlattices formed
with molecular beam epitaxy [9].

If one begins with a six-dimensional periodic lattice (e.g., a

hypercubic lattice) and intersects it with a three-dimensional
surface, then one may obtain a three-dimensional
quasiperiodic pattern; such patterns may describe the
recently discovered aluminum alloy quasicrystals. If one
begins with a five-dimensional periodic lattice and intersects
it with a two-dimensional (plane) surface, one may obtain a
two-dimensional quasiperiodic pattern, or Penrose tiling
[10, 11]; one such pattern is illustrated in Figure 3(c). If one
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tries to tile a plane with only one tile shape (unit cell), then,
as in three dimensions, only certain shapes and rotational
symmetries are allowed. However, if one is allowed to use
tiles of two or more shapes, fivefold and other symmetries
are possible. Articles and cover stories on Penrose tiling have
appeared in Scientific American [11], American Scientist
[12], etc. There is even a company which makes bathroom
tiles to be set in quasiperiodic Penrose patterns, and the
patterns are also found on quilts.

Although Penrose tile patterns are not periodic, they do
have some symmetry properties [11, 12]. Special patterns
may have “inflation symmetry,” so that a decoration of the
tiles with certain lines will produce a replication of the
original Penrose pattern, but with a reduced scale. There is
also Conway’s theorem, which states that given any local
pattern (having some nominal diameter), an identical local
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pattern will be found within a distance of two diameters.
The typical Penrose tiling shown in Figure 3(c) is formed
with two different rhombuses, a fat one and a skinny one;
the ratio of the areas is the Golden Mean, (V5 + 1)/2.

Quasiperiodic patterns are a newly discovered symmetry
of nature; it is important to understand how this new
symmetry affects the properties of materials. For example,
what is the density of states for phonons and for electrons in
a quasicrystal? What is the heat capacity and electrical
conductivity? How is a superconducting transition effected?
A fundamental question is this: Given a wave equation (for
Schrodinger waves or sound waves) with a potential field
having quasiperiodic symmetry, what are the eigenvalues
and eigenfunctions? Unlike the theorems for the
quasiperiodic patterns in one dimension, theorems for two
and three dimensions, if they exist, have not yet been
discovered. For a pattern which is periodic [Figure 3(a)],
Bloch’s theorem may be used to obtain exact solutions. For
a pattern which is random [Figure 3(b)], statistical methods
may be used to make predictions about properties (e.g.,
Anderson localization). However, a quasiperiodic pattern
[Figure 3(c)] is not periodic, so that Bloch’s theorem cannot
be used; and it is not random, so statistical methods cannot
be used. In the absence of a quasi-Bloch theorem, progress in
understanding the consequences of 2D quasiperiodic
symmetry has relied mostly on numerical calculations. Early
methods suggested the occurrence of a van Hove singularity
[13], but nothing significantly unique to quasiperiodic
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symmetry [14]. More precise numerical studies indicated
that there was no van Hove singularity, but rather a highly
degenerate eigenvalue (at the center of a symmetric
spectrum) with a gap on each side [15]. The states
corresponding to the degenerate eigenvalue have been shown
to be completely localized, and the surrounding gap is the
result of the depletion of the nearby states into the central
peak. There have been a few exact eigenfunctions discovered
for 2D quasiperiodic systems [16, 17], but these only apply
to certain eigenvalues or special Hamiltonians.

Despite the notable efforts described above in searching
for unique consequences of 2D quasiperiodic symmetry,
existing studies do not treat the problem of a wave equation
with a quasiperiodic potential. All of the current theoretical
research has dealt with a hopping Hamiltonian involving a
matrix reflecting quasiperiodic topology, but having all
nonzero matrix elements identical. For an actual wave
equation, the problem can be reduced to a similar matrix,
but the nonzero matrix elements would be complex
functions of the eigenvalue, whose determination would
involve solving a complicated transcendental equation. It is
likely that the resulting eigenvalue spectrum would be quite
different from the ones found with the existing theoretical
models, because now one must contend with the possibility
of phase coherence effects in a system of scatters with a
quasiperiodic pattern. Another way of viewing the situation
is to note that another length, the wavelength, has entered
the problem. The relation between the wavelength and the
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nearest-neighboring coupling, arcs of steel wire (not

inflation and pattern-repetition properties of the

Schematic drawing of tuning fork quasicrystal. The tuning forks are mounted at the center of the rhombuses in the Penrose tile, with the two tines
oriented in line with the shorter diagonal (for the sake of drafting simplicity, the tuning forks are not drawn with the correct orientation). For the

shown) are spot-welded from one tine of a tuning fork to that of a nearest neighbor.

where for particles g2 = 2mE/A? (with m the particle mass),

quasiperiodic pattern may result in new features in the and for sound waves ¢ = w/C (with C the characteristic
density of the states. Such effects have already been observed  speed of sound). ¥(r) is the potential (normalized with

in other 2D quasiperiodic systems where a characteristic 2m/h?) for particles and a combination of a stiffness

length has been introduced [18, 19], but these systems have operator and mass density for an acoustic medium. Using a

not involved wave-mechanical effects.

suitably constructed acoustic system, the salient features of

At The Pennsylvania State University an acoustic model is  the quantum system and the acoustic system can be made

being used to answer the fundamental question concerning mathematically identical.

the eigenvalues and eigenfunctions of the wave equation A convenient model for developing theorems and

with a quasiperiodic potential [the fivefold Penrose tiling computer simulations is the tight-binding model. In this
pattern of Figure 3(c)]. It is anticipated that once actual model lattice sites are occupied by local oscillators which, if
solutions can be observed, then theorems may be more isolated, would have one or more sharp eigenfrequencies
readily developed, and further properties and applications (such as the quantized energy levels of an isolated atom).
may be revealed. The study of energy eigenstates of the These local oscillators are allowed to interact through some
Schrodinger equation through the use of acoustic wave coupling mechanism to nearest-neighbor lattice sites; the
analogs is discussed in the literature [20]. The wave local oscillator eigenfrequencies then broaden out into bands

function ¢ may be energy eigenstates with time dependence of eigenfrequencies. The symmetry of the coupling, i.e., the

exp ({Et/h) for quantum particles or monotonal waves with quasiperiodic Penrose pattern, should have some
time dependence exp (iw?) for sound waves. In either case manifestation in the resulting eigenvalue spectrum and band
the wave equation may be written structure.

VY + (¢ = VNl =0,
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For the ideal case, the system should have little or no
(1) damping; i.e., the local oscillators and the coupling
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mechanism should have a high quality factor (Q). Ordinary
commercial tuning forks (440 Hz) were used for the local
oscillators in the acoustic simulation. These have the (@)
advantage that they can be mounted by the stem and still l‘——“—'l B i Y "I 8 l €
maintain a high Q oscillation. The tuning forks are epoxied
into a heavy aluminum plate in the Penrose pattern at the |
centers of the rhombuses (a schematic of the tuning fork } i l ‘ ‘ i ‘l
quasicrystal is shown in Figure 4). For the nearest-neighbor | j
coupling, arcs of |-mm-diameter steel wire are spot-welded
from one tine of a tuning fork to that of a nearest neighbor.
Other coupling schemes were tested and found to be either -
too weak or too lossy, or they had too low a coupling wave
velocity. Using the four sides of each rhombus, four nearest
neighbors are identified, and each tine of a tuning fork is
coupled to the two nearest tines of the adjacent tuning forks.
With this coupling pattern each local oscillator has four 3
nearest neighbors, but the nearest-neighbor length varies in a ) )
quasiperiodic pattern. There are four different lengths: 3.7, Frequency
5.8, 7.26, and 7.77 cm. From a separate measurement of the
fundamental resonance in an isolated arc of the coupling
wire, the nominal wavelength in the coupling wire system at
440 Hz was determined to be ~20 cm, or approximately 3 to
5 nearest-neighbor lengths. With a wavelength of this size, it
is possible for the coupling wire system to interact with the
quasiperiodic pattern in interesting ways and produce
structure in the eigenvalue spectrum. Another method of
coupling would have the local oscillators positioned at the
vertices of the rhombuses in the Penrose pattern; the
coupling lengths would then be the same, but the number of
nearest neighbors would vary.

In order to drive the oscillations of the coupled tuning
fork system, an electromagnet is positioned near one tine of
the array, and an ac current is passed through the
electromagnet. The response of the system is monitored with
four electrodynamic transducers (electric guitar pickups)
positioned next to random tines in the array. By sweeping
the frequency of the drive electromagnet, the resonant
response of the system is detected with the pickup
transducers; the resonant frequencies, in bands near 440 Hz,
correspond to the eigenvalues of the quasiperiodic system.
The eigenvalue spectrum, determined as a composite of the
resonant spectra from twenty different positions in the
Penrose pattern, is presented in Figure 5(a). This spectrum
shows gaps and bands whose widths are in the ratio of the
Golden Mean, r = (v/5 + 1)/2. Referring to Figure 5(a),
y/a=17,0/8=1,(y +8)/(a+p)=r,and a/e = r’, with an
average deviation of £5%. The density of states, determined
as the inverse of the difference in frequency for neighboring
eigenvalues, is shown in Figure 5(b).

Spectrum

Density of states

i

(a) Eigenvalue spectrum of the tuning fork quasicrystal. It is
determined as a composite of the resonant spectra from twenty
different positions in the Penrose pattern, and shows the gaps and
bands whose widths are in the ratio of the Golden Mean, (/5 + 1)/2.
(b) The density of states, as the inverse of the difference in frequency
for neighboring eigenvalues.
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Tuning
fork
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Scanner

Schematic drawing of the system used to photograph the
eigenfunctions of the tuning fork quasiperiodic system.

i
|

Measuring the eigenfunction involves driving the tuning
fork array at one of its eigenfrequencies and recording the
motion of each of the 300 tines. It would have been a
prohibitive task to instrument and calibrate each tine small mirror is placed at the end of each tine, and the tuning
(including two-dimensional movement). Instead, a very fork array is mounted on one wall of a dark room, with a
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distributions have the symmetry of a mirror plane.

Y @

drawing depicting the mirror image of the Penrose pattern
mounted on the opposite wall, as shown in Figure 6. The
mirrors are adjusted so that a laser beam directed to one of
the tines is reflected to the corresponding position of the tine
in the image drawing. If a tine is vibrating, its motion
(amplitude and polarization) will be reproduced in the
motion of the laser spot in the image drawing, but with an
amplified displacement resulting from the optical lever arm
provided by the laser beam traversing the room. By scanning
the laser beam over the entire tuning fork array, the motion
of the tines may be observed in the motion of the laser spots
in the image drawing. A time-exposed photograph of the
moving laser spots taken during the scan records lines,
ellipses, or circles of various amplitudes indicating the
motion of each of the tuning forks; this is essentially a
photograph of the eigenfunction at that particular
eigenfrequency.

Several eigenfunctions are shown in Figure 7. It should be
noted that the tuning fork quasicrystal is not perfect; there

SHANIJIN HE AND J. D. MAYNARD

Several eigenfunctions of the tuning fork quasiperiodic system. They show the motion (both amplitude and polarization) of the system (note that
the longer the laser spot, the larger the amplitude). In (a), (b), (¢), and (d) encrgy distributions have fivefold rotational symmetry; in (e) and (f) the

are defects arising primarily from unavoidable variations in
the spot welds between the tines and the coupling wires. As a
consequence of the adiabatic theorem for small
perturbations, the defects have a minor effect on the
eigenvalue spectrum, so that the observations concerning the
gaps and bands are still valid. However, the defects may have
a much greater effect on the eigenfunctions; furthermore, it
was not possible to align the mirrors and identify the
individual tines exactly in the eigenfunction photographs. As
a consequence, the photographs are used only to obtain a
qualitative idea of the nature of the eigenfunctions. Figure 7
illustrates some of the basic patterns which were found; lines
have been drawn indicating the general areas containing the
larger amplitudes. In (a) energy is uniformly distributed; in
(b) energy is concentrated in the center; in (c) energy is
concentrated in the five symmetric arms; in (d) energy is
concentrated both in the center and in the arms; in (e)
energy is localized in the center and partly at the edges; and
in (f) energy is localized in three of the five corners. The lack
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of fivefold symmetry in (e) and (f) may be due to a
combination of degenerate eigenstates.

Conclusion

As already mentioned, including the effects of a finite
wavelength in a system coupled in a quasiperiodic pattern
significantly increases the complexity of the eigenvalue
problem. However, for a system with a few hundred
scattering sites, a numerical computation should be possible.
It is hoped that the acoustic “analog computer” results will
stimulate further studies of waves in quasiperiodic systems
and aid progress in finding theorems dealing with the
consequences of quasiperiodic symmetry in two dimensions.
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