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In addition to the  basic crystalline and 
amorphous  structures  for  solids, it  is possible 
that  solids may  also  form  with  a  quasiperiodic, 
or  Penrose  tile,  structure. A current  problem in 
condensed-matter  physics is to  determine how 
this  structure  affects  the  various physical 
properties of a  material. A fundamental  question 
involves the consequences  of  quasiperiodic 
symmetry in the  eigenvalue  spectrum  and 
eigenfunctions of a  wave  equation.  While 
rigorous  theorems  have  been  derived  for  one- 
dimensional  systems,  there is currently no 
known  “quasi-Bloch  theorem”  for  two  and  three 
dimensions. To gain insight into this problem,  an 
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acoustic  experiment  has  been  used to study  a 
two-dimensional  wave  system  with  a  Penrose 
tile symmetry.  The results show  an  eigenvalue 
spectrum  containing  bands  and  gaps  with 
widths  which  are in the  ratio of the Golden 
Mean, (& + 1)/2. 

Introduction 
Until a few years ago it was believed that solid matter could 
exist in  two basic forms: crystalline and  amorphous (glassy). 
In an  amorphous material the  atoms  are positioned 
randomly, and a macroscopic  sample  would be 
homogeneous and isotropic. Crystals are, of course, quite 
different; crystals are formed by taking a unit cell and 
periodically repeating  it to fill three-dimensional space. In 
order to fill all space with long-range periodic  order,  only 
unit cells of particular  shapes are allowed; only  fourteen 
shapes fit together to fill space, and these  form the bases for 
the  fourteen Bravais lattices of crystallography (Figure 1). 
Since there  are only fourteen possible unit cells, only  certain 
rotational  symmetries are allowed; in  particular, fivefold 
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rotational symmetry is forbidden.  However,  a few years ago 
Shechtman [ 11 at  the  National Bureau of Standards  made  an 
aluminum alloy whose X-ray diffraction pattern indicated 
fivefold rotational  symmetry.  While  it is possible to have 
atoms  in clusters with fivefold (icosahedral)  order, the 
diffraction patterns  had  sharp spots,  indicating long-range 
order. Furthermore, macroscopic  samples  of the  aluminum 
alloy had facets indicating fivefold rotational  symmetry [2]. 
At first the existence of such  materials  seemed impossible, 
but theorists  pointed out  that while it is impossible to have 
fivefold rotational symmetry  and long-range periodic  order, 
it is possible to have fivefold rotational symmetry  and 
another type of long-range order which is  quasiperiodic. 
Thus  atoms  may  minimize  their energy by arranging 
themselves  quasiperiodically,  forming quasicrystals. 

In  one  dimension  the  notion of  quasiperiodicity is 
relatively easy to  understand, as  illustrated in Figure 2(a). 
For a  line with periodic lattice sites at a  spacing a, the 
Fourier transform (or diffraction pattern)  has a sharp line at 
T/a. If a line has points positioned randomly, as  shown  in 
the lowest line in Figure 2(a), then  the  Fourier transform 
shows a broad  spectrum. Now suppose one takes  a line with 
periodic lattice spacing b and superimposes it  on  the line 
with periodic  spacing a. The result may  appear similar to  the 
line  with random spacing. However, if the two  lattice 
constants a and b are  commensurate (i.e., their a/b ratio is 
equal to  the  ratio of two integers), then  the superposition will 
be periodic. The period  may be much larger than a or b, but 
it will be exactly periodic, the powerful theorems pertaining 
to periodic systems (Bloch’s theorem,  group theory, etc.) will 
apply, and  the properties of the system which follow from 
symmetry  may be calculated exactly. On  the  other  hand, if 
the two  lattice constants a and b are  not  commensurate (i.e., 
their a/b ratio is equal to  an irrational number),  then  the 
superposition is not periodic, and  there is in general no easy 
way to calculate the properties. Nevertheless, the 
superposition does possess long-range  order;  it is constructed 
from  simple rules, and its Fourier transform contains  sharp 
peaks at * / a  and */b. The superposition of periodic lines 
with incommensurate lattice constants is an example of one- 
dimensional  quasiperiodicity. 

straightforward, in two and  three  dimensions  the  notion is 
considerably more interesting  [3]. To show how to  obtain 
quasiperiodicity  in higher dimensions,  a  second method of 
obtaining one-dimensional  quasiperiodicity is illustrated in 
Figure 2(b). One begins with a  periodic lattice in  a higher 
dimension, e.g., a  square lattice in two  dimensions. The 
higher-dimensional  lattice is traversed by a lower- 
dimensional  surface, e.g., a  straight  line passing through  the 
square lattice, making an angle 0 with one of the lattice 
directions.  Next  a window width is defined, and lattice 
points falling within that window are projected onto  the 
lower-dimensional surface. If the direction cosines describing 

While  quasiperiodicity  in one  dimension is fairly 
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the orientation of the lower-dimensional surface are 
irrational, then  the sites projected onto  the surface will form 
a  quasiperiodic pattern.  In  the one-dimensional  example,  a 
particularly interesting case occurs  when the slope of the  line 
is such that  tan 0 = (A+ 1)/2, the  Golden  Mean (also 
known  as the Divine  Ratio), which is “the most irrational 
number.” In this case the  pattern of sites can be related to a 
Fibonacci  sequence, and rigorous theorems describing the 
properties of this special quasiperiodic symmetry can be 
derived. General  theories  for  one-dimensional systems have 
been reviewed by Simon [4], and renormalization-group and 
dynamic mapping techniques  have  been introduced by 
Kohmoto, Kadanoff, and  Tang  [5]  and by Ostlund et al. [6]. 
Since the discovery of the  aluminum alloy quasicrystals [ 11, 
there has been considerably more work with 
renormalization-group  techniques and  numerical 
calculations [7, 81. Some special properties of 1D 
quasiperiodic systems are  as follows: 

1. The eigenvalue spectrum is a Cantor set. 
2. There  may exist a  mobility edge and a  metal-insulator 

transition. 
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(b) 

tan 0 = irratimal 
Fibonacci sequence: 
tan 0 = Golden Mean 

= ( f l +  1)/2 

3. The eigenfunctions may be extended, localized, or 
critical. 

One-dimensional  quasiperiodic systems have received 
some experimental attention,  through  measurements of 
infrared reflectivity in  quasiperiodic  superlattices  formed 
with molecular  beam epitaxy [9]. 

If one begins with a  six-dimensional  periodic  lattice (e.g., a 
hypercubic  lattice) and intersects it with  a  three-dimensional 
surface, then  one  may  obtain a  three-dimensional 
quasiperiodic pattern; such patterns  may describe the 
recently discovered aluminum alloy quasicrystals. If one 
begins with a five-dimensional periodic  lattice and intersects 
it  with  a  two-dimensional  (plane) surface, one may  obtain  a 
two-dimensional  quasiperiodic pattern,  or Penrose tiling 

458 [ 10, 1 11: one such pattern is illustrated in Figure 3(c). If one 

tries to tile a  plane with only one tile shape (unit cell), then, 
as in three  dimensions,  only  certain  shapes and rotational 
symmetries are allowed. However, if one is allowed to use 
tiles of two  or  more shapes, fivefold and  other symmetries 
arc possible. Articles and cover stories on Penrose tiling have 
appeared  in Scientific American [ 1 I] ,  American Scientist 
[ 121, etc. There is even a company which makes bathroom 
tiles to be set in  quasiperiodic  Penrose  patterns, and  the 
patterns  are also found on quilts. 

Although Penrose tile patterns  are  not periodic,  they do 
have some symmetry  properties [ 1 I ,  121. Special patterns 
may have “inflation  symmetry,” so that a  decoration of the 
tiles with certain  lines will produce  a  replication of the 
original Penrose pattern,  but with a  reduced scale. There is 
also Conway’s theorem, which states that given any local 
pattern  (having  some nominal diameter), an identical local 
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(Bloch theorem) 
Perlodlc 

(a) 

Random 
(\tatistics) 

pattern will be found within  a  distance of two  diameters. 
The typical Penrose tiling shown  in  Figure 3(c) is formed 
with two different rhombuses,  a fat one  and a skinny one; 
the ratio of the areas is the  Golden Mean, (A+ 1)/2. 

of nature; it is important  to  understand how this new 
symmetry affects the properties of materials. For example, 
what is the density  of  states  for phonons  and for  electrons in 
a quasicrystal? What is the heat  capacity and electrical 
conductivity? How is a  superconducting  transition effected? 
A fundamental question is this: Given a wave equation (for 
Schrodinger waves or sound waves) with  a  potential field 
having  quasiperiodic  symmetry,  what are  the eigenvalues 
and eigenfunctions?  Unlike the  theorems for the 
quasiperiodic patterns  in  one dimension, theorems for two 
and  three dimensions, if they exist, have not yet been 
discovered. For a pattern which is  periodic [Figure 3(a)], 
Bloch’s theorem  may be used to  obtain exact solutions. For 
a pattern which is random [Figure 3(b)], statistical methods 
may be used to  make predictions about properties (e.g., 
Anderson localization). However, a  quasiperiodic pattern 
[Figure 3(c)] is not periodic, so that Bloch’s theorem  cannot 
be used; and it is not  random, so statistical methods  cannot 
be used. In the absence of a quasi-Bloch theorem, progress in 
understanding the consequences  of 2D quasiperiodic 
symmetry has relied mostly on numerical  calculations. Early 
methods suggested the occurrence of a  van Hove singularity 
[ 131, but  nothing significantly unique  to quasiperiodic 

Quasiperiodic patterns  are a newly discovered symmetry 

symmetry [ 141. More precise numerical studies  indicated 
that  there was no van Hove  singularity, but  rather a highly 
degenerate  eigenvalue  (at the  center of a symmetric 
spectrum) with a gap  on each side [ 151. The states 
corresponding to  the degenerate eigenvalue have been shown 
to be completely localized, and  the  surrounding  gap is the 
result of the depletion of the nearby  states into  the central 
peak. There have been a few exact  eigenfunctions discovered 
for 2D quasiperiodic systems [ 16, 171, but these only apply 
to certain eigenvalues or special Hamiltonians. 

Despite the notable efforts described above in searching 
for unique consequences of 2D quasiperiodic  symmetry, 
existing studies do  not  treat  the problem of a wave equation 
with a  quasiperiodic  potential. All of the  current theoretical 
research has  dealt with a hopping  Hamiltonian involving  a 
matrix reflecting quasiperiodic topology, but having all 
nonzero matrix  elements  identical. For  an actual wave 
equation,  the problem can be reduced to a  similar matrix, 
but the  nonzero matrix elements would be complex 
functions of the eigenvalue, whose determination would 
involve solving a  complicated transcendental  equation. It is 
likely that  the resulting eigenvalue spectrum would be quite 
different from the  ones  found with the existing theoretical 
models, because now one  must  contend with the possibility 
of phase  coherence effects in a system of scatters  with  a 
quasiperiodic pattern.  Another way of viewing the  situation 
is to  note  that  another length, the wavelength, has entered 
the problem. The relation between the wavelength and  the 
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Schematic drawing of tuning fork quasicrystal. The tuning forks are mounted at the center of the rhombuses in the Penrose tile, with the two tines ' oriented in line with  the shorter diagonal (for the sake of drafting simplicity, the tuning forks are not drawn with the correct orientation). For the 

inflation and pattern-repetition  properties of the 
quasiperiodic pattern  may result in new features  in the 
density of the states. Such effects have  already  been observed 
in other 2D quasiperiodic systems where a characteristic 
length has been introduced [ 18, 191, but  these systems have 
not involved  wave-mechanical effects. 

At The Pennsylvania  State  University an acoustic  model is 
being used to answer the  fundamental question  concerning 
the eigenvalues and eigenfunctions of the wave equation 
with a quasiperiodic  potential  [the fivefold Penrose  tiling 
pattern of Figure 3(c)]. It is anticipated that  once actual 
solutions can be observed, then  theorems  may be more 
readily developed, and  further properties and applications 
may be revealed. The study of energy eigenstates of the 
Schrodinger equation through the use of acoustic wave 
analogs is discussed in  the  literature [20]. The wave 
function # may be energy eigenstates with time dependence 
exp (iEr/h) for quantum particles or  monotonal waves with 
time dependence exp ( i d )  for sound waves. In either case 
the wave equation  may  be written 

V2# + [q2 - V(r) ]#  = 0, (1) 460 
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where for  particles q2 = 2mE/h2 (with m the particle mass), 
and for sound waves q = w/C (with C the characteristic 
speed of sound). V(r )  is the potential  (normalized with 
2m/h2) for  particles and a combination of a stiffness 
operator and mass  density  for an acoustic medium. Using a 
suitably constructed  acoustic system, the salient  features of 
the quantum system and  the acoustic system can be made 
mathematically  identical. 

A convenient  model  for developing theorems  and 
computer simulations is the tight-binding  model. In this 
model  lattice sites are occupied by local oscillators which, if 
isolated, would  have one  or  more  sharp eigenfrequencies 
(such as the  quantized energy levels of an isolated atom). 
These local oscillators are allowed to interact through  some 
coupling  mechanism to nearest-neighbor  lattice sites; the 
local oscillator eigenfrequencies then  broaden  out  into  bands 
of eigenfrequencies. The  symmetry of the coupling, i.e., the 
quasiperiodic  Penrose pattern, should  have some 
manifestation in  the resulting eigenvalue spectrum  and  band 
structure. 

For the ideal case, the system should  have little or  no 
damping; i.e., the local oscillators and  the coupling 
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mechanism  should have a high quality  factor (Q). Ordinary 
commercial tuning forks  (440 Hz) were used for the local 
oscillators in the acoustic simulation. These have the 
advantage that they can be mounted by the stem and still 
maintain a high Q oscillation. The  tuning forks are epoxied 
into a heavy aluminum plate in the Penrose pattern  at  the 
centers of the rhombuses (a schematic of the  tuning fork 
quasicrystal is shown in Figure 4). For  the nearest-neighbor 
coupling,  arcs of 1-mm-diameter steel wire are spot-welded 
from one  tine of  a tuning fork to  that of  a  nearest  neighbor. 
Other coupling  schemes were tested and  found  to be either 
too weak or  too lossy, or they had  too low a  coupling wave 
velocity. Using the  four sides of each rhombus,  four nearest 
neighbors are identified, and each tine of a tuning fork is 
coupled to  the two nearest tines of the adjacent tuning forks. 
With  this  coupling  pattern  each local oscillator has four 
nearest neighbors, but  the nearest-neighbor length varies in  a 
quasiperiodic pattern. There are  four different lengths: 3.7, 
5.8, 7.26, and 7.77 cm.  From a  separate measurement of the 
fundamental resonance  in an isolated  arc of the coupling 
wire, the  nominal wavelength in the coupling wire system at 
440 Hz was determined  to  be -20 cm,  or approximately 3 to 
5 nearest-neighbor lengths. With a wavelength of this size, it 
is possible for the coupling wire system to interact with the 
quasiperiodic pattern  in interesting ways and produce 
structure in the eigenvalue spectrum. Another  method of 
coupling would have the local oscillators positioned at  the 
vertices of the rhombuses in  the Penrose pattern;  the 
coupling  lengths  would then be the same, but  the  number of 
nearest neighbors would vary. 

In order to drive the oscillations of the coupled tuning 
fork system, an electromagnet is positioned  near one  tine of 
the array, and  an  ac  current is passed through  the 
electromagnet.  The response of the system is monitored with 
four electrodynamic  transducers (electric guitar pickups) 
positioned  next to  random tines  in the array. By sweeping 
the frequency of the drive  electromagnet, the resonant 
response of the system is detected with the  pickup 
transducers; the resonant frequencies, in  bands near  440  Hz, 
correspond to  the eigenvalues of the quasiperiodic system. 
The eigenvalue spectrum, determined as  a  composite of the 
resonant  spectra from twenty different positions in  the 
Penrose pattern, is  presented in Figure 5(a). This spectrum 
shows gaps and  bands whose widths are  in  the ratio of the 
Golden  Mean, T = (A+ 1)/2. Refemng  to Figure 5(a), 
r/a = 7 ,  SIP = 7 ,  (y + @/(a + p)  = T ,  and a /€  = 2 ,  with an 
average deviation of *5%.  The density of states, determined 
as the inverse of the difference in  frequency  for  neighboring 
eigenvalues, is shown  in Figure 5(b). 

Measuring the eigenfunction involves driving the  tuning 
fork array  at  one of  its eigenfrequencies and recording the 
motion of each of the 300 tines. It would have  been  a 
prohibitive  task to  instrument  and calibrate  each tine 
(including  two-dimensional movement). Instead,  a very 
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(a) Eigenvalue  spectrum  of  the  tuning  fork  quasicrystal.  It  is 
determined a5 a  composite  of  the  resonant  spectra  from  twenty 
different  positions in the  Penrose  pattern,  and  shows  the  gaps  and 
bands  whose  widthsare in the  ratio ofthe  Golden  Mean, ( f l +  1)12. 
(b) The  density of states, as the  inverse of the  difference in frequency 
for neighboring  eigenvalues. 

S c h e m a t i c   d r a w i n g  of t h e   s y \ t e m   u s e d   t o   p h o t o g r a p h   t h e  
elgenfunctions  of  the  tuning  fork  quasiperiodic  system. B 

3 

small mirror is placed at  the  end of each  tine, and  the  tuning 
fork array is mounted  on  one wall of a dark  room, with a 46 
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drawing  depicting the  mirror image of the Penrose pattern 
mounted  on  the opposite wall, as  shown in Figure 6. The 
mirrors are adjusted so that a laser beam  directed to  one of 
the tines is reflected to  the corresponding  position of the  tine 
in  the image drawing. If a tine is vibrating,  its motion 
(amplitude  and polarization) will be reproduced in  the 
motion of the laser spot in  the image  drawing, but with an 
amplified displacement resulting from  the optical lever arm 
provided by the laser beam  traversing the  room. By scanning 
the laser beam  over the  entire  tuning fork array, the  motion 
of the tines may be observed in the  motion of the laser spots 
in  the image  drawing. A time-exposed photograph of the 
moving laser spots  taken during  the scan  records lines, 
ellipses, or circles of various amplitudes indicating the 
motion of each of the  tuning forks; this is essentially a 
photograph of the eigenfunction at  that particular 
eigenfrequency. 

noted that  the  tuning fork quasicrystal is not perfect; there 
Several eigenfunctions are shown in Figure 7. It should be 
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are defects arising  primarily from unavoidable  variations in 
the spot welds between the tines and  the coupling wires. As a 
consequence of the adiabatic theorem for  small 
perturbations, the defects have  a minor effect on  the 
eigenvalue spectrum, so that  the observations  concerning the 
gaps and  bands  are still valid. However, the defects may have 
a much greater effect on  the eigenfunctions; furthermore, it 
was not possible to align the  mirrors  and identify the 
individual  tines exactly in  the eigenfunction  photographs. As 
a  consequence, the photographs are used only to  obtain a 
qualitative  idea of the  nature of the eigenfunctions.  Figure 7 
illustrates some of the basic patterns which were found lines 
have been drawn indicating the general areas containing  the 
larger amplitudes. In (a) energy is uniformly  distributed;  in 
(b) energy is concentrated  in  the center; in (c) energy  is 
concentrated in  the five symmetric arms; in (d) energy is 
concentrated  both in  the  center  and  in  the  arms;  in (e) 
energy is localized in the  center  and partly at  the edges; and 
in (f) energy is localized in three of the five comers.  The lack 
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of fivefold symmetry  in (e) 
combination of degenerate 

and  (f)  may be due  to a 
eigenstates. 

Conclusion 
As already mentioned, including the effects of a  finite 
wavelength in a system coupled in a  quasiperiodic pattern 
significantly increases the complexity of the eigenvalue 
problem.  However, for a system with a few hundred 
scattering sites, a  numerical computation should be possible. 
It is hoped that  the acoustic  “analog computer” results will 
stimulate  further studies of waves in  quasiperiodic systems 
and aid progress in finding theorems dealing with the 
consequences of quasiperiodic  symmetry in two  dimensions. 
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