Natural quadrics:
Projections and
intersections

by Michael A. O’Connor

Geometrical modelers usually strive to support
at least solids bounded by the results of
Boolean operations on planes, spheres,
cylinders, and cones, that is, the natural
quadrics. Most often this set is treated as a
subset of the set of quadric surfaces. Although
the intersection of two quadrics is a
mathematically tractable problem, in
implementation it leads to complexity and
stability problems. Even in the restriction to the
natural quadrics these problems can persist.
This paper presents a method which, by using
the projections of natural quadrics onto planes
and spheres, reduces the intersection of two
natural quadrics to the calculation of the
intersections of lines and circles on planes and
spheres. In order to make the claims of the
method easily verifiable and provide the tools
necessary for implementation, explicit
descriptions of the projections are also included.

Introduction

The solid modelers used in mechanical part design and
analysis most often support objects bounded by regions of
surfaces drawn from a very simple class of surfaces: the
natural quadrics—planes, spheres, (right circular) cylinders,
and (right circular) cones [1]. If a modeler is to make explicit
use of the boundary of an object it processes, it must be able
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to compute this boundary; at a minimum, this implies the
ability to compute the intersection of the surfaces involved
in the definition of the object. The intersection of surfaces in
singular positions is an unstable problem, as can easily be
seen by considering two cylinders sharing a common line.
Moving the two slightly apart yields two cylinders with no
intersection; if they are moved slightly closer together, the
one line of intersection becomes two. If one cylinder is
rotated slightly in one direction, the intersection is reduced
to a point, but if rotation occurs in a different direction, the
intersection can become an arbitrarily large closed curve. In
sum, the slightest perturbation of either cylinder can cause
their intersection to undergo profound change. Given the
potential consequences of this inherent instability and the
simplicity of the surfaces involved, the search for some
closed-form analytic solution is appealing. Yet, their
simplicity notwithstanding, it has proved to be a surprisingly
difhicult task to find a computationally tractable method to
obtain these intersections exactly.

This paper addresses the problem of finding an exact
closed-form solution for the intersection of two natural
quadrics and solves it in what we believe is a conceptually
and computationally simple manner. We begin in Section 1
by giving a cursory discussion of the two main theoretical
methods applicable to the problem. These methods in fact
solve a natural generalization of the problem, determining
the intersection of two quadric surfaces, that is, surfaces
defined by second-degree polynomial equations in three
variables. Although they are elegant mathematical solutions,
in their full generality they pose problems for use in
geometrical modeling which are discussed here. When the
methods are specialized to natural quadrics, one of them,
due to Levin [2], simplifies greatly, and we study it in detail.
Except in the trivial intersections involving only plénes and
spheres, it becomes a method of intersecting a cylinder or
cone with an arbitrary natural quadric that proceeds by
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viewing the former as a ruled surface, a surface generated by
a family of lines through a base curve. This reduces the
calculation of the intersection of the two natural quadrics to
a one-parameter family of line and quadric surface
intersections. A completely satisfactory representation of the
intersection results if the domain of this one-parameter
family, that is, the domain of the base curve, can be
partitioned into segments that define smooth curves in the
intersection. Computation of such a partition, called a
domain segmentation, can be achieved in a straightforward
manner; in general, however, it requires the solution of a
fourth-degree polynomial. In practice, this equation is only
approximated, or it is avoided by a case-by-case analysis, or
some combination of these two approaches is used. We
present a different approach based on solving a related but
simpler problem: Rather than producing a domain
segmentation directly, we partition the base curve itself in a
similar manner, yielding a base curve segmentation. We
show that a base curve segmentation can be found by
intersecting a circle that serves as the base curve of the
cylinder or cone with a small number of circles, lines, and
points that define an appropriately partitioned projection of
the second natural quadric onto a plane or a sphere
containing the base curve. The first section closes by showing
that a base curve segmentation is sufficient by proving that it
leads directly to a domain segmentation. At this point we
have shown that by completing Levin’s method with the
calculation of a domain segmentation using projections, the
intersection of two natural quadrics can be obtained exactly
and explicitly by performing computations never exceeding
the difficulty of computing the intersection of two circles.

The technique presented in Section | presupposes access
to explicit descriptions of the projections of arbitrary natural
quadrics onto arbitrary planes and spheres. It further
presupposes that this projection has been partitioned into
regions such that any two points in the region have pre-
images with the same cardinality. Moreover, the regions and
the projections themselves must be described in terms of a
small number of circles, lines, and points. After establishing
some notation in Section 2, we turn to a presentation of just
such a description. In Section 3 we treat the planar
prdjections, and in Section 4 the spherical projections. Given
the long history of the study of quadric surfaces, it is likely
that these projections have been considered before, especially
since many of them are quite trivial to obtain. However,
since there seems to be no ready source which discusses
them completely and in the detail that is required in this
study, and since their explicit form is necessary for our
arguments, we have presented them in their entirety with
proofs of their derivation.

In Section 5 the intersection of an arbitrary cone and an
arbitrary cylinder is considered by an exhaustive case-by-case
analysis. In a real sense the results of Section 1 make this
type of analysis superfluous. By appeal to projections and
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lower-dimensional modeling utilities that can intersect
circles with planar and spherical regions bounded by circles,
lines, and spheres, this problem can more easily be solved.
Yet, while recognizing that an example is not a proof, we
believe that this example partially demonstrates some further
potential uses of the technique. In this section we assume
that the computations are to be performed in a system
allowing high-precision rational calculation, but do not
assume the ability to reliably manipulate or evaluate the
signs of irrational quantities. The projections themselves in
general involve a radical, even if we begin with surfaces
described by rational data. If we duplicate the calculations of
a modeling system by intersecting the base curve with the
curves describing the projection, more irrationalities arise.
Instead, we develop polynomials in the parameters of the
problems which we use to partition the space of parameters,
itself, into regions where the intersection can be easily
known and explicitly given. This has several advantages.
First, the original intersection problem can now be trivially
solved by evaluating the sign of at most six polynomials,
after which the intersection can be produced directly.
Second, because we have partitioned by the signs of
polynomials and considered the consequences of all possible
sign combinations, we can be assured of avoiding the bane
of all case-by-case analyses: missing a case. Third, if a
quadric is to be approximated by another, it seems
reasonable to require that the approximation not change the
topology of the intersections involving the quadric. The signs
of the polynomials give a ready means to test for this.
Alternatively, we could try to search in the region for a new
set of parameter values for an approximation. Finally, we see
that within any subset of the partition the intersection
problem becomes stable in contrast to the general situation.

The paper closes by summarizing the results and
identifying certain simple generalizations.

1. Intersection of natural quadrics

Two main theoretical tools are applicable to the problem of
computing the intersection of two natural quadrics. Each
addresses a natural generalization: computing the
intersection of two arbitrary quadric surfaces. The first is
based on the work of Levin [2] in rendering the intersection
of two quadric surfaces, and the second on that of Ocken,
Schwartz, and Sharir [3]. The Levin method proceeds by
finding a ruled quadric surface in the pencil of the two
quadric surfaces which is used to calculate the intersection as
a one-parameter family of intersections of a line and a
quadric surface. The auxiliary ruled quadric surface is
identified by computing the roots of a determinantal
equation, which yields a third-degree polynomial equation,
and evaluating the determinants of several matrices of
second through fourth order dependent on the roots and the
original surfaces. The method of Ocken, Schwartz, and
Sharir begins by obtaining the eigenvalues and generalized
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eigenvectors of a four-by-four (generally) nonsymmetric
matrix, dependent on the parameters of the problem, and
then uses them to obtain a decomposition of the four-
dimensional space on which the matrix acts. The
decomposition allows the intersection to be represented as
one of a small number of intersection problems.

Although both of these general methods are
mathematically elegant solutions, they suffer from similar
limitations for use in a geometrical modeler. First, there is
the problem of complexity. The intersection of surfaces is a
highly unstable problem, so that any error in calculation can
cause profound changes and logical inconsistencies. As
should be expected, both methods mirror this instability, so
that any approximation scheme would be problematical for
either method. On the other hand, using the exact
calculations needed in either case as the core routines of a
geometrical modeler seems to be beyond the power of the
current generation of symbolic manipulators. Second, to be
useful in a modeler the intersection should be segmented
into a small number of disjoint curves and points whose
topological, geometric, and relational structures are known
or can be easily ascertained. While each method is in a sense
complete, neither yields the intersection in a form that is
complete enough for a modeler. The one-parameter family
of intersections between lines and a quadric that is the result
of Levin’s method has the domain of the base curve of the
auxiliary ruled quadric as its parameter domain. The
intersection of a line and a quadric surface can be zero, one,
or two points or the line itself, so that each parameter value
may correspond to zero, one, or two points or a line of
intersection. The partition of the parameter domain into
maximal connected subsets with each subset corresponding
to one of these four intersection types can be used to
segment the intersection into useful parts, but this can
generally require the solution of high-degree polynomial
equations, Because the second method uses projective
transformations in three-space, it treats the intersection
problem by solving a projectively equivalent problem,
yielding the final result as a collection of points and curves
which is a subset of a sphere, a one-sheeted hyperboloid of
revolution, or a cylinder, and which is projectively
equivalent to the original intersection set. A projective
equivalence may map disjoint curves to intersecting curves,
planar curves to infinity, or bounded curves to unbounded
ones. Obtaining a complete description of the true affine
intersection could require calculations involving the
projectively equivalent curves, the projective
transformations, and the surfaces themselves. Thus each
method would require a different type of nontrivial
postprocessing, possibly by careful approximation methods,
but most likely by further symbolic calculation.

In sum, their complexity and need for further nontrivial
processing make the general methods unattractive to
implementers of geometrical modelers.
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Even in the special case of natural quadrics one finds little
simplification in the second method; however, Levin’s
method is greatly simplified in this case. Since the
intersection of two natural quadrics is either the intersection
of two spheres (which can easily be solved) or the
intersection must already involve a ruled surface, there is no
need to search for an auxiliary ruled quadric. Thus one may
avoid the computation of roots and evaluations of
determinants usually associated with this method, and
Levin’s method reduces to a technique for intersecting a
ruled natural quadric with an arbitrary natural quadric.
Because of this simplicity for natural quadrics, either
explicitly [4] or implicitly, some variant of Levin’s method is
most commonly used in practice, and yet a serious problem
still exists. To follow Levin’s technique further and to
explain this problem, we need more explicit information
about representing cones and cylinders as ruled surfaces.

A ruled surface is represented by choosing a parameterized
base curve on it, b:t € domain(b) — b(t) € ®°, and
describing the surface as the union of the parameterized
lines, L(s; 1), through the base curve. If T is a cylinder or
cone, then b is generally and most simply chosen to be some
parameterized circle on T. To be more concrete, b is
parameterized in terms of the transcendentals, sin(¢) and
cos(¢), or in terms of the equivalent rationals, (1 — tz)/(l + tz)
and 2¢/(1 + 12), so that b is parameterized as
b:t €[0,27) — p+ rlcos(t)u + sin(f)u’]orb:t ER —
p+rl+ ) Rru+( - t*)u’], where p is a point on the
axis of T (not equal to the vertex of T, if it is a cone), and u
and u’ are unit vectors such that u, u’, and the axis of T are
mutually orthogonal [5]. Thus, if T is a cylinder and vis a
vector parallel to its axis, then each line in T is represented
as L(s; 2) = {b(¢) + sv:s € R}, for some ¢ € domain(b),
while if T is a cone with vertex q, then each line in T is
represented as L(s; ¢t) = {q + sb(¢):s € R}, and in either case
T itself is represented [6] as T = {L(s; ¢):t € domain(b),

s E R}

Now let S and T be natural quadrics. S N T is easily
obtained if both S and T are a plane or a sphere, and so we
ignore these simple cases by assuming T to be a cylinder or
cone. Since S is a quadric surface, S can be represented as
the solution set of a second-degree polynomial in three
variables, f:x € R’ — 'xQx + 'yx + ¢, where Q is a
symmetric matrix, y is a vector, and c is a scalar, which all
depend on S. Now for any ¢ in domain(b), L(s; ¢t) N Sis
found by solving for s in f(L(s; ¢)) = A(t)s2 + B(t)s + C(t)
=0, where A(t) = "vQv, B(¢) = 2'vQb(r) + ‘yv, and
C(r) = (b )HQb(?) + 'yb{(r) + ¢, if T is a cylinder, while
A(t) = '(b(1))Qb(1), B(1) = 2'qQb(r) + 'yb(t), and
C(t) = "'qQq + 'yq + ¢, if T is a cone. If f(L(s; 1))
degenerates to the zero function, then every s solves it, so
that L(s; 1) NS = T',(¢) = L(s; ¢). If only A(z) and B(z)
degenerate to zero, then no s solves the equation, and the
intersection is empty. If A(¢) = 0, but B(¢) # 0, then 419
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s = —C(t)/B(t) is the sole solution, and T',(¢) =
L(—=C(¢)/B(t), t) is the sole point of intersection. Finally, if
A(t) # 0, and we denote the discriminant,

(B(t ))2 —4A4(t)C(t), by é(¢), then, of course, there are no
points of intersection, if 6(¢) < 0; T'5(¢) = L(—B(1)/(2A(t)); t)
is the sole point of intersection, if §(z) = 0; and ['5(z) =
L((~B(1) = (5(t))*)/(24(1)); 1) are the two points of
intersection, if 6(¢) > 0. If L(s; ) N S is empty, then we will
say that r has parameter value type of zero. Similarly, if

L(s; )N S=T,(t) fori= 1, 2, or 3, then we will say that

t has parameter value type of i, and we define ¢ to have
parameter value type four, if L(s; ) N S = I';(¢). Thus, for a
fixed ¢ € domain(b), by testing whether A(¢), B(¢), and C(¢)
are zero, and possibly computing the sign (—, 0, or +) of
8(t), we can find its parameter value type and so have an
explicit formula for L(s; 1) N S.

Since the sign of the functions A(¢), B(¢), and C(f) can
change over domain(b), the parameter value type or even the
topological type of L(s; ¢) N S may change over domain(b),
so that we cannot expect to find a general formula expressing
L(s; t) N S as a function of ¢ valid over all of domain(b).
However, if g is a connected subset of domain(b) on which
the parameter value type does not change, then much more
follows. First assume that T is not a cone with its vertex on
S, so that no two lines in the ruling of T share a common
point of intersection with S. If the parameter value type of
all ¢ in g is zero, then the lines through g are disjoint from S.
If the parameter value type of all ¢ in g is one and g has a
nonempty interior, then S and T coincide over a two-
dimensional subset, and hence S = T. If the parameter value
type of all 7 in g is two (or three), then ¢ € g — T,(¢) [or
I';(¢)] defines a curve in S N T that is smooth on the interior
of g, since A(¢), B(t), and C(¢) are smooth functions of ¢.
Finally, if the parameter value type of all ¢ in g is four, then
{ € g — I';(¢) define two disjoint curves in S N T that are
smooth on the interior of g. Now let T be a cone with its
vertex, q, on S. Since q is always in L(s; ) N S, the
parameter value type of ¢ in g cannot be zero. If the
parameter value type of ¢ in g is one, then the interpretation
is the same as above. If the parameter value type of ¢ in g is
two or three, then, since q belongs to the intersection of each
line with S, the associated parameterized curves, T, and T'5,
must degenerate to the constant map, t € g — q. Since q
belongs to S, g must satisfy the defining equation of S, so
that C(¢) must be identically zero, which implies that
(—B(1) % (5(2))"*)/(24(2)) reduces to zero and —B(t)/A(z).
Since by the choice of parameterization zero corresponds to
q, we find that if all z € g have parameter value type four,
then the contribution to S N T of the lines through g is q
and the curve, 1 € g — I's(¢) = L(—B(¢)/A(t); t), which is
smooth on the interior of g and disjoint from g. Thus in any
case if g is a connected subset of domain(b) on which the
parameter value type does not change, then we can
immediately find the part of S N T corresponding to g. This

MICHAEL A. O'CONNOR

result in its simplicity, generality, and conciseness is very
appealing, and so leads naturally to a search for a partition
of domain(b) into finitely many connected subsets such that
on each of these subsets the parameter value type is
constant. We refer to such a partition as a domain
segmentation. If we can find an exact and explicit domain
segmentation, then the above implies that we can find an
exact and explicit representation of S N T. Thus, if we can
produce an exact and explicit domain segmentation in a
computationally tractable manner, then we can say that we
have exactly and explicitly solved the problem of intersecting
two natural quadrics.

Clearly, the obvious method of producing a domain
segmentation is to compute the roots of A(¢), B(t), C(t), and
6(1), and use them appropriately to define a partition of
domain(b), but herein lies the problem. If the rational
parameterization is employed, then in general B(¢) is a
rational quadric in ¢, and either A(¢) or C(¢) is a rational
quartic in ¢, with the other being constant in ¢, so that 6(¢) is
also a rational quartic; thus, finding the roots of A(¢) or C(¢)
and 6(¢) is equivalent to solving fourth-degree polynomial
equations. Using the transcendental parameterization is no
better. This leads to quadratic equations in sin(¢) and cos(z),
whose solutions again lead to fourth-degree polynomial
equations, but this time in sin(¢) [or cos(¢)], which adds the
burden of the evaluation of an inverse trigonometric
function. Closed-form solutions of fourth-degree equations
exist, but the complexity is daunting, and in practice the
roots can be and are only approximated [4], which can cause
large errors in singular situations. Thus, employing this
straightforward approach to solve the key problem of finding
an explicit domain segmentation seems to yield a problem
which is not computationally tractable in the general setting.

Others have recognized the problems in the application of
the theoretical methods of quadric and natural quadric
intersection and have attacked them and related problems by
many methods. Morgan [7] has suggested exploiting more
general techniques for approximating solutions to systems of
polynomial equations that are based on homotopy
continuation methods. Farouki et al. [8] have mixed classical
algebraic geometry with modern polynomial factorization to
explore recognition of simpler singular intersections and
their parameterization. Sarraga [4], using a formulation
equivalent to the one presented here, has applied analytic
and algebraic geometric techniques to simplify the equations
in special cases and then to solve them explicitly or by
standard approximation packages. Miller [9] has written an
exhaustive case-by-case analysis based on geometric
invariants for nonplanar intersection curves.

We offer a conceptually and computationally simple
alternative based on partitioning the base curve itself, rather
than its domain, by using projections, which completely and
explicitly solves the domain segmentation problem using
only trivial geometric calculations. As before, let S and T be
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natural quadrics, with T being a cylinder or a cone, and let b
be a parameterization of a circle on T, Let b be the circle,
itself, that is the image of b. Let p be a point of b. If the line
in the ruling of T through p is disjoint from S, define p to be
of type 0; if the line belongs to S, define p to be of type 1;

if it intersects once, define p to be of type 2-3; and if it
intersects twice, define p to be of type 4. Define a base curve
segmentation to be a partition of b into finitely many
connected subsets each of which is either a point or an open
arc of constant type points. Clearly, a domain segmentation
immediately yields a base curve segmentation, but as we will
see, it is much easier to reverse the process.

In Section 3 we present explicit formulas for the
perpendicular projection of an arbitrary natural quadric onto
an arbitrary plane, and moreover note the cardinality of the
pre-image of each point in the projection. In every case the
projection can be described by a set of at most three circles,
lines, or points in the plane, and this same set suffices to
partition the projection into regions in which all the points
have pre-images with the same cardinality, which we refer to
as a partitioned projection. If T is a cylinder, let P be the
plane containing b, and let II.(S) be a partitioned projection
of S onto P. Since a line in T intersects S in n points, if and
only if the line intersects II(S) in a point whose pre-image
has cardinality k, a base curve segmentation can now be
produced by intersecting b with the circles, lines, and points
that define I1(S) and using the points of intersection to
partition b. These intersections can be performed in terms of
some parameterization of b or directly by simple geometric
arguments.

In Section 4 we present explicit formulas for the spherical
projection of an arbitrary natural quadric onto an arbitrary
sphere, and again note the cardinality of the pre-image of
each point in the projection. In each case the projection can
be described by a set of at most five circles or points on the
sphere, and this same set suffices to determine a partitioned
projection. If T is a cone, let S be the sphere centered at q,
the vertex of T, and containing b, and let II s(S)bea
partitioned projection of S onto S’. Let b_ be the circle
antipodal to b, that is, b_ = {2q — x:x € b}. A base curve
segmentation can now be produced by intersecting band b_
with the circles and points that define IT ¢.(S) and observing
whether g € S. In particular, let £ be the union of the
isolated points of intersection that b has with the points and
circles that define I1.(S). Let £_ be the union of the isolated
points of intersection that b_ has with the points and circles
that define II;.(S), and let 2~ be the set of points antipodal
to points of /_; that is, x € P, if 2q — x € _. Now use
P U P~ to partition b into points and open arcs. If v is one
of the open arcs of this partition, then + is a subset of one
region in I1.(S), and the cardinality of the pre-images of
points in this region is k, if and only if each open half-line of
T emanating from q and passing through v intersects S in k
points. Moreover, if y_ = {2q — x:x € v},
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then v_ is a subset of one region in II ;.(S), and the
cardinality of the pre-images of points in this region is k_, if
and only if each open half-line of T emanating from q and
passing through +_ intersects S in k_ points. Thus, each line
in T passing through v intersects S in k + k_ + 1 points, if
q €S, and in k + k_ points, otherwise. The required
intersections can be performed in terms of parameterizations
of b and b_ or directly by simple geometric arguments. For
example, if € is one of the circles that define IT5.(S), then let
P, be the plane containing it, and let P; be the plane
containing b. Now ¢ N b= P.N Py N S’, which is nothing
more than a line-sphere intersection.

At this point we have shown that by using projections we
can always produce a base curve segmentation by
performing a small number of trivial intersection problems,
never more complex than a circle-circle intersection. Now
we show that a base curve segmentation leads directly to a
domain segmentation. For this purpose assume that a
parameterization, b, has been chosen for b, and that we have
computed a base curve segmentation of b. If we have used
the parameterization to find the base curve segmentation,
then we also have a partition of domain(b); if not, then
either applications of the arccos and arcsin for the
transcendental parameterization or solutions of the
associated second-degree polynomial equations for the
rational parameterization yield a partition of domain(b). In
fact, this partition is a domain segmentation, as we now
show. Let v be one of the connected components in the base
curve segmentation, and let g be the associated connected
subset of the partition of domain(b). If T is a cone with its
vertex on S, then the point type of points of v determines a
unique parameter value type for the values in g, so that the
partition is a segmentation. Thus, assume that T is not a
cone with its vertex on S. It is obvious that the points in vy
are of type 0, 1, or 4, if and only if the parameter values of g
have parameter value type 0, 1, or 4, respectively, so assume
that the points in v are of type 2-3. Clearly, each point of v
must correspond to a parameter value of type 2 or 3. If v is
a single point, then g is a single value, and v = b(g), so that
g is of parameter value type 2, if A(g) = 0, and is of type 3,
otherwise. Now assume that v is an open arc, and that ¢, has
parameter value type 3, for some b(¢,) = p € ¥, so that
A(t,) # 0 and 6(,) = 0. Since A is continuous, it must be
nonzero in some neighborhood of ¢,. If 5(¢) is not identically
zero in this neighborhood, then any subneighborhood of
1, must contain parameter values of type 0 or 4,
contradicting the assumption that v contains only points of
type 2-3. Thus & must be identically zero in a neighborhood,
and hence everywhere, and in particular, in g. If there exists
t’ € g such that A(¢’) = 0, then since 6(t') =0, B(t') =0,
but this implies that ¢ has parameter value type 0 or 1,
again contradicting the assumptions on 4. Thus, forallt € g
we have that A(¢) # 0 and §(¢) = 0, so that each ¢ € g has

parameter value type 3. Since we can distinguish 421
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between parameter value types 2 and 3 by testing A4, we find
that if v is a type 2-3 open arc, then all elements of g have
parameter value type 2, if A(f,) = 0 for any b(7,) € g;
otherwise, they have parameter value type 3. In conclusion,
we see that the partition of domain(b) determined by a base
curve segmentation is indeed a domain segmentation, as
claimed.

To summarize, we began this section with a cursory look
at the two major theoretical methods for quadric surface
intersection. One of these, Levin’s method, was seen to
simplify in the special case of natural quadrics, reducing to a
technique for intersecting a ruled natural quadric with an
arbitrary one. We examined this method in detail, and
showed that an intersection can be described explicitly in
terms of finitely many disjoint smooth parameterized curves
and points, if a domain segmentation is found. We then
showed that a related concept, a base curve segmentation,
can always be found by exploiting an appropriate partitioned
projection to segment a base curve. Since these projections
are describable by small numbers of circles, lines, and points,
it followed that this base curve segmentation could be
produced by calculations as simple as those required in
circle—circle intersection. Finally, we showed that a base
curve segmentation leads directly to a domain segmentation;
hence. by utilizing these techniques we always can explicitly
and exactly find the intersection of two natural quadrics by
means of tractable geometric calculations. In fact, if we
assume the existence of modeling utilities in a system that
supports objects in planes and spheres bounded by circles,
lines, and points that can intersect such objects with circles,
and assume the ability to evaluate polynomial functions,
then we can use these to determine completely the exact and
explicit intersection of two natural quadrics.

2. Notation

o General notation
All vectors are written as lowercase roman characters, and all
scalars are written as lowercase italic characters; for example,
p is a vector and r is a scalar.

If 4 is a point set, A denotes its topological closure.

Let f be a function with domain X and range Y. If Z is a
subset of Y, then fis referred to as an n-fold map onto Z, if
n is the cardinality of the pre-image of each z € Z.

o Linear notation

If w is a nonzero vector, let L(w, p) denote the affine line,
{p+tw:t € R}, L"(w, p) the open half-line, {p + tw:t > 0},
and L™ (w, p) the open half-line, {p + tw:f < 0}. Let P(w, p)
denote the affine plane, {x € @3:‘w(x —p) =0}, and

P*(w, p) and P~ (w, p) denote the related half-spaces
P'(w,p) = [x ER’:'W(x — p) > 0}, and

P (w,p)={x ER":'W(x — p) < O}.
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Let P = P(w, p) be a plane. For r > 0, if p’ € P, let
C(p’, r; P) denote the circle in P of radius r about p’.

If ¢ is a circle and p,, p,, and p, are three points on ¢, let
v(p,, p,; P;) denote the open arc of € that connects p, and
p, and contains p;, and let v°(p,, p,; p;) denote the open arc
of ¢ that connects p, and p, and does not contain p,.

If L C Pisaline, let S(L, r; P) be the strip in P of width
2r about L; that is, S(L, r; P) = {x € P:d(x, L) < r}, where d
denotes Euclidean distance.

For v X w # 0, let V(v, w, p) denote the planar cone
p+av+pwia, BER, ab = 0}. If V= V(v, w, p), then the
complementary cone, V°, is the cone V(—v, w, p). V and V°
partition the plane that contains them into two regions that
intersect only at their boundaries. If 'wv = 0, then we say
that V is acute. Either V or V° (or possibly both) must be
acute.

Let I1, denote perpendicular projection onto P; that is,
My:x € R — x — ‘'w(x — p)(w/||w|?) € P. Note that II, is
linear if and only if 0 € P, so that
0= I — (wWp)(W/| w®) is linear.

® Spheres
For r> 0 let S(p, r) be the sphere about p of radius r.

For the sphere S = S(p, r) let H (w, q; S) = SN P (w, q),
G(w, q; S) = SN P(w, q), and H*(w, q; S) = SN P*(w, q).
Note that if p € P, then H~ and H " are hemispheres
bounded by the great circle G.

Let IT¢ denote spherical projection onto S; that is,
Oox€R\p—p+rx—p)/lx—pl €S

o Cylinders
For r > 0, let C(w, p, r) be the right circular cylinder with
axis L(w, p) and radius r.

o Cones
For r> 0, let V(w, p, r) be the right circular cone with vertex
p, axis L(w, p), and such that if 4 is the angle between any
line in ¥ and L(w, p), then [tan 8] = r.

For the cone V= V(w,p, r),letV =V (w,p, r)=
VNP (w,p)and V' = Vi (w, p, )= VNP (w,p).

Let V, = V(w, p, r) be the union of the two regions inside
V; that is,

Viw, p, 1) | € R\ (wlx ~ p) >t }

X p: 3
| Iwillc—plI? F+1

{x € R\p:|tan 6| < r},
where ¢ is the angle between w and x — p,

and let ¥, = V (w, p, r) be the region outside V; that is,
Vw,p, r)=R\(YU V).

Let V" =V (w, p, r) = V, N P*(w, p) and
V=V (w,p,r)=V,NP (w,Dp).
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V;' is the region inside the upper half-cone V" U p, and
V| is the region inside the lower half-cone ™ N p. Note

that ¥ = ¥~ U V" U p and that R’ = V;U VUV, both as
disjoint unions.

3. Planar projections

In this section, we first examine the projections onto a plane,
which are simpler than those onto a sphere, as would be
expected. We proceed here and in the next section in
increasing order of complexity: that is, first with the
projection of a plane, then a sphere, then a cylinder, and
finally a cone.

e Projection of a plane onto a plane

Proposition 1
Let P=P(v, p)and P’ = P(v’, p’).
11, (P)

_ P
"Ly x v, p)

if v is not perpendicular to v’,
if v is perpendicular to v’,

wherep=p+ v (' —=p)v | v

Proof Since 'vp="‘vpand 'v'p="v'p’, when vis
perpendicular to v’, it follows that p € P N P’, and the
claims are now easily verified. O

o Projection of a sphere onto a plane

Proposition 2

Let P = P(w, p) and let S = S(q, r). I1 ,(S) is the closed disc
A C P about I ,(q) = q — 'w(q — p)(w/|| w | *) of radius r. If
11, is restricted to S, then it is twofold on the interior of A
and onefold on ¢ A. (Interior and boundary are defined with
respect to the natural topology of P.) See Figure 1.

Proof Obvious. O
e Projection of a cylinder onto a plane

Proposition 3
Let P = P(w, p) and let C = C(v, q, r).

Projection of a sphere onto a plane.

(Il (q), r; P)
if w aznd v are parallel,
> t
S wl™v = Cwv)w, IIx(@)), r; P)
if w and v are not parallel.

(€)=

If I, is restricted to C, then in the first case each point of

the circle is the image of a regula of C, and in the second

case I, is onefold on the boundary of the image and twofold
on the interior of the image. (Boundary and interior are
defined with respect to the natural topology of P.) See Figure 2.

Proof 1f wand v are parallel, then C = {c + tw:ic €
C(I1,{(q), r; P) and ¢ € R}, and the resuit follows.
If w and v are not parallel, then

i VX W i VX W v
C=Jrcost9———+sm0———x——
| Ivxw vxwl ™ vl

|

+q+tv:0€[0,2r)and t € E@J;

If Q = P(w, 0), then, since v X w L w and I is linear, it
follows that

II(C) = Ip(q) = M(C) = M(q) = I(C — g)

vV X W

———— | +sin 0\ ———
I|V><WII> Q<IIV><WII

v X W rsin 6

o
v < wi

vVXw

v wilvl

r sin 6('vw)

Ivxwl fvxwllvl

X w

v
B—
v X w
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VX W X h)) + tI4(v):0 € [0, 27}y and 7 € ]IDQ}

o (|l v||2w — (‘'vwv) + tIy(v):0 € [0, 2w) and ¢ € LDR}»

o(v) + 1 g(v):0 €0, 27) and 1 € pz}-

+ Oy (v):8 €0, 27)and 1 € J“R}}.
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b v

W = AV

Projection of a cylinder onto a plane.

A circle with an exterior point and two points of tangency.

From this the result follows immediately, since
(V) =v — (wy)(w/ w|?), so that v X w L I o(v). O

o A technical lemma

The following lemma and its two corollaries will be useful in
the final planar projection we consider, and also in the
section on spherical projections. The lemma would possibly

MICHAEL A. O’CONNOR

W F AV

seem simpler if expressed in terms of sin and cos, but would
be more troublesome in symbolic manipulations later, so
these are avoided here.

Lemma 1
Let P = P(v, q). Let ¢ = C(p, r; P) and let p’ € P be outside
C. Let

_ VX(p'—p)
Ivx (@ -pl
Let
2
r ?
p:=p+—=(p" — D)
Ip” —pll
rZ
+r = ———w.
Ilp’" —pl

The lines L(p_ — p’, p’) and L(p, — p’, p’) are tangent to €
at p_and p,, respectively. They are the only lines tangent to
€ and containing p’. See Figure 3.

Proof One checks easily that || p_ — p|| = » and that
(o_—=p) L (p_ — p’), which imply the claims for the first
line. The same calculations work for the second line. That
no more than two lines can share these properties is
obvious. O

Corollary 1
Let S = S(p, r) and p’ be outside S. Let
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V=VI{p-p.p,

s 2
Vip-p' W =7r

V circumscribes S. No other lines through p’ are tangent
to S.

Proof 1If one applies the lemma to each plane containing p
and p’, and calculates the tangent of the angle between

L(p — p’,p’) and L(p: — p’, p’), then the corollary
follows. [J

The final claim follows immediately, since if p’ — p L x,

r then

t, 2
IS - pyy? = Y@=
:

and'y(p' =p)==%lp’ ~pll. O

& Projection of a cone onto a plane

The final planar projection considered is that of a cone. The
most obvious situation yielding a planar cone turns out to be
the most difficult to describe precisely, while the other two

cases are trivial to describe but easy to overlook.

Corollary 2
LetP=P(v,q’). Let &= {p + rcosfx + r’ sin fy:0 €

[0, 27)} with x and y orthonormal be an ellipse in P, and let
p’ € P be outside &£. Let

p —p

P+ =D

r_ 2 _ _t ' t r_ ’
N . \ /IS -l 4 1( yo' = p)r X' = pr y>,
I S(p’ — p)l I Se* — ) r’ r

where S:q € R’ - ('xa/nx + (‘ya/r’)y. The lines '

L(p_ — p’,p’) and L(p, — p’, p’) are tangent to £ at p_ and
p.., respectively. They are the only lines tangent to £ and
containing p’. If p’ — p L x, then

pt=p+rI2#£_2
Ip” = pl
r’z
*r |- ———x
Iip” —pl

Proof Since p’ is outside &, then

, (xp’ - p) . (Yo' - p)’
ISt =PI = PP+ ﬂp

so that S(p’ — p) is outside C(0, 1; P(0, v)) = ¢. Applying the

> 1,

P
(V) =y P\L"

Proposition 4
Let P=P(v,q)and V= V(w, p, r).

if v + p is inside V,
fv+p€eV,
if v + p is outside V,

where L™ = L*(w X v, T,(p)) U L™(w X v, I1(p)), and V is
the planar cone,

V=Vu,u,p+(va-p)ivlv,

with us = [ W] > (| w X v||> = FA(wv))]Pv x (w X v)
2 2
FIw I vIw X v
If 11, is restricted to V, then in the first case it is onefold
on I1,(p) and twofold elsewhere; in the second case a full
line 1s mapped to I1,(p) and it is onefold elsewhere; and in
the final case it is twofold on the interior of its image and

lemma to S(p’ — p) and C yields points of tangency at t

. _ Sp'-p

p)

\/1- 1 v X S(p’ —
IS’ —p)I* v % S(p’ -

S s’ - pi?

Il

='v(p’ = p) . x(p’ — p) >
X + Yy
r’ r

) IIVII(
_ S(p—p)zi\/l_ 1 i
IS’ = p ISp” = p)ll

_ Sip'—-p)

IvilSe” = pl

IS’ - i’

N \/Amm'—mu:1<—ww—p&+&m’—my>
IS(p’ = P r’ 4

We now define the affine transformation T:q € R’ —
'xgrx + 'yqr’y + p. It is easy to see that T( ) = £ and that
T(S(p’ — p)) = p’. Since tangency is an affine invariant, it
follows that T(p.) must be the points of tangency for the
lines through p’ and tangent to .
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I
onefold on the boundary of its image. (Interior and

boundary are defined with respect to the natural topology of P.)

Proof If w is parallel or orthogonal to v, then the claims
are obvious, so assume that || v X w| # 0 # ‘wv. This
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implies that zvq
Ip(z) = Oy h(2) + —— v,
VX w v

| w
Oplyp + —— + r{cos 0 ————
P(lp | w ( v xw the general result follows. [

I
VXX W) XWwW . . -
"—évﬂ—;—xTO:o € [0, 27r)}-) 4. Spherical projections
Now we turn to the spherical projections. The first two are
straightforward, but those for cylinders and cones are more

+ sin 6

is an ellipse, <.

Since . .
Interesting.
V= + ¢ i + r{cos 8 VX W
p IIwl [vxw] e Projection of a plane onto a sphere
. VX W) XWwW ..
+ sin 6 —g——»:t ER, €0, 21)}, Proposition 5
(v X w) < wi

Let P=P(v,p)and S’ = S(p’, r').

the image of V' is the union of the lines passing through ., ) ) )
I1,(p) and a point of £. The three cases above correspond to 7 P) = H'(v,p’;S") .lf p’ '1s -not in P,
[ ,(p) inside, on, or outside £, respectively. This observation s G(v,p’; S’) ifp’isin P,

and simple arguments lead immediately to the claims for the
first two cases. For the third case, more detailed information

about & is needed. Proof Obvious. O
First, let us assume that q = 0, so that II is linear, and L

where ¢ = sgn(‘v(p — p’)).

1l
o= -{n,,(p) + n,,(—vv—) + r<cos 8 "z—zv‘z—" 4+ sin 0 M>:e 1o, 271')}

Iw v X w) X w |
t 2
w vxw . I(ww—[w]| v)
=111 +O,{——)+rlcosd ——— +sin @ :0 € [0, 27)
{"(p) *’(uwu> ( v xwi o X w) X wi
‘ (‘wv)’v
w fywv vVXw - ||v||2
11 + - +r\cos ———— +sinf) —————— J 0 € [0, 2«
#(P) ITwil  pwinvy? vxwl (v X w)xw [0, 2m)
Since 1 v IPw = 'wwv 2= [ v I *1w 17 = 20 v 13wl + v 1Py = v UV P w i = (o)) = v Py < w |,

¢ has a semimajor axis of length » and a semiminor axis of length r| ‘'wv | /(]| v || || w ||). The distance from the center of & to
I .(p)is

““(u—:ﬁ)H = H u:u_nwmvvnz {l = \/ l—ﬁz‘vﬁ—“ﬁ||v><w||/(||wu||vu>.

Since I ,(w) L v X w, Corollary 2 implies that the two lines through IT,(p) and

HP<-W—> 2
Iw i 1_(rI'WVI/(IIVIIIIWII)) VX w

N ekl

()

2t 2 H(W) 2.t 2 X
=Hp(p)+<1— r(wy) 2) r i,\/l_ r{wy) S
hvxw)? lwl v xwi? lvxw]

are tangent to £ at p.. This establishes the result for q = 0, and since

l) — (] 'wv /A Y W DY

pe = 1)+ {1
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s’

p’ inside § p’onS

o

o Projection of a sphere onto a sphere

Proposition 6
Let S= S(p, r)and S’ = S(p’, r').

s’

p’ outside §

S’ if p’ is inside S,
H@-p,p;S") if p’ is on S,

I (S) =
— e T PPN
Hlp-p.p +r Vlp-p'|"=r — S if p’ is outside S.

lp—pl
If IL. is restricted to .S\p’, then in the first two cases it is r
onefold everywhere, while in the third case it is twofold on Lemma 3

the interior of its image and onefold on the boundary of its
image. (Interior and boundary are defined with respect to the
natural topology of S’.) See Figure 4.

Proof If p’ isinside S, the claim is obvious. When p’ is on
S, by considering the hyperplane of support for S at p’, the
claim is easily verified. The last case follows from Corollary
1 and simple trigonometry. O

e Projection of a cylinder onto a sphere

The proposition describing the projection of a cylinder onto
a sphere depends on two technical lemmas.

Lemma 2
The point p = ‘w(p’ — p)(w/|| w|*) + p minimizes the

distance from a point on L(w, p) to the point p’.

Proof (p—p)Llw 0O
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Let S’ = S(p’, r’)and L = L(w, p) be a line such that

p’ & L. I (L) is the “open” half of the great circle of S’
determined by the plane containing L and p’ that runs
between p’ — r’(w/llw])and p’ + ' (w/| w| ) and is
“closest” to L. More precisely, if p minimizes the distance
fromLtop’, then I (L)y=G({(p—p’) X w,p’;5)N
H®-p.p;S). I, restricted to L is onefold. See
Figure 5.

Proof LetP =P((p—p’) X w,p’). Since clearly L C P and
p’ € P, it follows directly from the definition of IIg, that
I, (L) € PN S’. The claims now follow from the
analogous, but obvious, planar result concerning the
projection of a line onto a circle whose center is not on the
line. O

If Cis a cylinder and V is a cone, we could use
Proposition 4 to obtain II(V), for P orthogonal to the axis
of C, and then segment the parameter domain of the ruled
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Projection of a line onto a sphere.

surface, C, by intersecting circle ¢ = C N P with (V).
Alternatively, we could use the following proposition to
project C onto a sphere, .S, whose center coincides with the
vertex of V, and segment the parameter domain of V by
intersecting circle ¢’ = V"N § with this projection. Thus, as
the means to aid in cone~cylinder intersection problems,
either Proposition 4 or the following alone would suffice.

Proposition 7
Let C=C(w,p,r)and S’ = S(p’, r’).

S'\p if p’ is inside C,

PUH'(p-p’,p’;S’) ifp isonC,
O, (C) =9 _,

H(n_,p';8")

NH (n,p’;S)\p ifp’is outside C,
where
/9=Jp’+r’L1- p="Wp' — p) —— +p

LT Iwi®

Ip—p'lI>~r

2172
n:=ﬁ—p'i[ SIS ] WX (p~p')
rrliwii
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If I, is restricted to C'\p’, then in the first case it is onefold
everywhere; in the second case it is onefold on H p-1p’,
p’; S’), while it maps the half-line [p’ + ¢ w:z > 0} onto

p’ + r’(w/|l w ||) and the half-line {p’ + ¢t w:¢ < 0} onto

p’ = r’(w/|| w ||); and in the third case it is twofold on the
interior of Il;.(C) and onefold on 8 Il (C)\ 2. (Interior and
boundary are defined with respect to the natural topology of
S’.) See Figure 6.

Proof Letp’ beinside C, L = L(v, p’), and P be any plane
containing L and p’ + w. PN C will be two lines L, and L,,
neither of which will coincide with L. LN C=LN (L, UL,)
will be two points if L is not parallel to C, and empty if it is.
This implies the result in the first case.

Let p’ be on C. Let P be the tangent plane to Catp’. It is
easily seen that p — p’ .L P. Since P is a hyperplane of
support of C at p’, it follows that if 'v(p — p’) < 0, then
L'(v,p YN C=@.PNC=Lw,p"). If 'v(p —p’) >0,
since P is the tangent plane to C at p’, then L*(v, p’) must
begin inside C, so that by the first part of this proof the
closure of L™ (v, p’) intersects C twice, once at p’ and once
at another point. Since distinct rays share the initial point
p’, these points of intersection cannot coincide.

Now let p’ be outside C. Let P=P(w,p’). PN Cisa
circle € of radius r about p. Lemma 1 implies that I, (€) is
the arc of G(w, p’; S’) between r'(p_— p’)/lp_—p’ || and
r'(p, —p' ) p, — p’ Il containing I1.(p), and that IT, is
onefold on the two endpoints and twofold on the interior of
the arc. Each line of C passes through one point of circle ¢
and is parallel to w. Lemma 3 implies that each line is
mapped onto an open half-circle emanating from
p’ — r’w/|w| and terminating at p’ + r'w/(| w .

Since two circles coincide if and only if they coincide at
three points, the half-circles agree on II.( ¢} if and only if
they coincide everywhere.

Since by Lemma |

2
r N
px—p'=<—,—i—2—1)(p'—p)
Ilp" =Pl
r w X (p’ — p)
xr 1 - > p/ ? ,
Ip’ —pl* Ilwx(® =Dl

(b= —p' == |Ip' = pI* =7

then

, a2 , .
S e R N
Ip” =pllw] lIwllp” — bl
It is also clear that ‘n+(w) = 0. Thus n. is perpendicular to
the plane containing p’, . (p+), and p’ — r’(w/| w ]| ).
Since

o-pXp-p)

(P~ p')ne
_ G =)

T Ip’ = pl’,
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p’ inside C

Projection of a cylinder onto a sphere.

the Cauchy-Schwartz inequality implies that 1. (p) €
H'(n_,p’;S’YN A (n,, p’; S’). This implies the claim for
the final case. [

o Two technical lemmas

The final projection, that of a cone onto a sphere, is by far
j

p'onC

s

p’ outside C

Lemma 4

Let S= S, r).Let ¢ =Gv,p+v;S)andlet ¢~ =
Glv,p—v;S)withO< |v| <r.Letq€H (v, p+v;S)N
H (—v,p — v; S); that is, q belongs to the region of S
between the two antipodal spherical caps bounded by ¢*
and €. Finally, define

pr=p+ (lIv]®=Cv@a— o)) PIvITAVIE = (va = p))v + (va = o) = IvI®)a — p)

= [PV = vVt = (va - p))1"@q - p) x v,

p,=p-—(p. ~p)

and

p_=p—(p; - p)

2,2 2
v — v

+=F - X +
n:=FQ@-p XV \/r2(|| vt = (Vg - p))

the most complicated. Four cases need to be distinguished
which differ only by the location of the center of the sphere
relative to the cone. The four occur when the center
coincides with the vertex of the cone, when the center is on
the cone, when the center is inside the cone, and when the
center is outside the cone. Only in the last case is the image
difficult to describe precisely (see Figure 9, shown later). The
two lemmas which precede the proposition make the
description of the final case easier. Each pertains to circles
having special properties with respect to two antipodal
circles and an exterior point on a sphere.
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((a—p)XVv)X(Q-Dp)

The only two great circles of S passing through q and
tangentto ¢ or ¢ are G* = G(n,, q; $)and G~ =

G(n_, q; S). G intersects ¢* only at p} and intersects ¢~
only at p_, and G intersects ¢* only at p and intersects ¢~
onlyatp,. p, € H'(n_, q; S),and p_ € H'(n,, q; S).

See Figure 7.

Proof 1If a great circle G is tangent to ¢ at p, then

p — (p — p) must lie in the plane which determines G, so
that it also is on G. The symmetry of the sphere and
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antipodal circles then implies that G must also be tangent to ¢ at the point antipodal to p. Any two circles which are
tangent at one point and which share a different point must coincide, so that no great circle tangent to ¢ * can intersect it
again, since by definition ¢” is not a great circle. That only two great circles may pass through g and be tangent to ¢ *

is clear.

If 'v(q — p) = 0, since most terms vanish or simplify greatly, the claims are readily verified. Thus we assume that
V(g - p)#0.

Let

2

, vl

pP=p+——@-p.
v(@ = p)

Since 'vp’ =‘'vp + || v ’= Mp+Vv),p  EP(v,p+v)2 ¢*. Since ¢ is on S, and its center is p + v, its radius must equal

V¥ = || v|*. Since

2 Ivi*@~p) = V@ - p)
p'—(p+v)=<p+———t L] (q—p)>“(D+V)= - ql " V’
v(ig — p) v — p)
if we define
t 2 2
pl=p+v+—d TP ZIVE) gy y2q - p) — 'via - )

Hvi*a-p)— ‘v@ - pvi’

. rz_uvuz\ﬂ_ (Ma=-p)'C" = IvlH)  _@-pxv

Hvi*a=-p - 'va-pvi’l@=-pxvl’

then by Lemma 1 p_ is the point of ¢* at which the line L* through p} and p’ is tangent to ¢*, and p_ is the point of ¢ at
which the line L™ through p. and p’ is tangent to €*. If P* is the plane containing p and L*, and P~ is the plane containing p
and L™, then by construction q € P* and P" is tangent to ¢ at p;, and q € P and P is tangent to ¢ at p". The geodesics
determined by these planes thus satisfy the claims of the lemma.

We simplify the expressions of px by recognizing that | q — p | = r, since q € S, and by using the following
formulas for cross products of arbitrary vectors a and b:

*l@xb)xbl=faxblib].

e laxbl’=[al*Ib]*- (‘ab)’.

* (aXb)Xb="bab— |b]’a.

Thus,

_ @ =p)r = IvI®)
I(a —p) x v) X v|*

T \/_(‘v(q—p»z(rz—uvuz) @-p)xv

(g = p) x v) x vij> ll@—p)xv]

pi=p+v (@=p) X V)XV

M@= = v
Ivi*i@—p) x viI®

=p+v @-pxXv)XvVv

c FIIT \/||V||2||(q_p)xV,,z_('v(q_p))z(rz_uvuz) @-p)xv

v’ Ia=-p)x v’

Vg = p)(r’ = v
IvIAvIErY = (va = p)))

N \/(?— VI AV~ (va=p))  @-p)xv
430 i’ IvIPr? = (va = o)

=p+v- (V@ = pv = lIvi‘(a—p)
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Collecting terms and applying simple algebra yield the desired formulas for p, and p” of the lemma.
If we let

. ! \ﬂ = VI A = (va = p))
a=((q-p) X - 5 5 (@-px
@y o = a - o Ivl '

_ \/rz—uvu2>r2<uvu“—(‘v<q—p»z) @ —p) xv)’
Ivi® ZIvi? = (va - p)’

_ \/ ¢ = Iv I VI = Cvia = p)) PIvIE = (v = p))
Ivi® PIvIZ = (@ - p)

_ \/ Gl L T il 7 C i )
vl
o AUV = (va = p)) IvIEe® = v
6=< s : ><\/ = (@-p) % )x(q—p)>
VIV = (v = o)) AV = Va—- o) k

_ \/ = BV = (v = p))) V@ = p) X V) X (@ = p))
Ivi? ZIvi® = (va = o)’

2

¢ = IvIHUvIE = (va = p)Y) (W@ = p)g = p) ~ V)
vl PlIvi? = (Vi@ — p)Y’

_ \/ ¢ = IvIDPAVIE = (v@ = p)) (W@ = p)¥ = Zlivi’
Ivi? PlIvi® = (va - p)’

_ \/ = VI AV = (va = p))
vi? ’

then « = 8 > 0. In terms of these values it follows that ‘n,(p;, ~p)=—a+=0,'n_(p  —p)=—a +8=0,
‘n.(p> —p)=a+>0,and ‘n_(p; — p) = a + > 0. The final claims now follow, since it is obviously also true that

‘n(q-p)=0,and'n_(g-p)=0. O

Lemma 5
Letk = — '@ —p)r’v+ [ vli*a - p). Let S, p, q, v, r, ps, and p: be as in Lemma 4. p}, p_, p,, and p_ belong to the great
circle, #= G(k, p; S). g € H'(k, p; S).

See Figure 8.

‘(='v(a - p)’v + IIvl*@ - p))

Proof Since k(p, — p) VI IvIE = Cva = p))

UV = (vl = p)Y)v + IvIiFva — po® = Ivi®)a - )

2t _
- — V(q, p) = [=Uv* = (va = ) + VI = (g = p))ivil?
rrvil® = (via — p)

— (= IvID(Ma = P+ ¢ = VDIV

= MDY + VI = (v = Pl
PlIvi? = (v - p)

- 720va = p)’ + IvIPCva = p) + vt = 1vi1 =0,
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then k is perpendicular to (p.. — p). Since (p, — p) differs
from (p_ — p) only by a term that is perpendicular to k, then
? - k is also perpendicular to (p© — p). This implies that p} and
p. belong to #. Since p; and p_ are antipodal to p; and p,
they also must belong to £.
If ¢ is the angle between q — p and v, then the constraints
on the choice of q imply that

[rcos(8)| < llv],so that [v|® % 'v(@ — p)

= IVl VI % r cos(8)) > 0.
Thus,
="v(@ - p)r’v + I vi*a - p)a - p)
~(v@ = p)’r’ + FIv]*
UV = va - p)vI® + 'va = p) >0,
5o that by definition g € H*(k, p; S). O

® Projection of a cone onto a sphere

We are now ready for the final projection. The four

The two tangential great circles containing q. previously mentioned cases—center and vertex coincide,
center on cone, center inside cone, and center outside
cone—are shown to have as images two antipodal circles, a
hemisphere minus a spherical cap plus the antipodal cap, the
sphere minus a spherical cap, and an hourglass-like region.
In stating these results, care is required to avoid a notational
nightmare, but each of the component parts in this version is
nearly rational, involving at most one root.

Proposition 8
Let V= V(w,p,r)and S’ = S(p’, r’).
If we define

o = sgn('w(p = p")),

PV b
q" = o) =p +r ——P—,
Ilp—p'l
- ’ ’ p - p,
qQ =p -r ——,
Ip—p"l
rl
r
- , r’ w
w =p ————,
The great circle containing the four points of tangency. vr + 1 hw
W= (WX (p=p)X(®-Dp)

‘wip —p')p-p") = llp—p |I°W,
1 k==wp-p)r+ Dw+ |w[’p-p)

n.=Fp-p)xXw+ \/ bl 5 ((p—p) X W)X (p~p)

432 Iwllip = p 1> = ¢F + D(wp — p))
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and V*=[H*(n,,q;8)N H*(n_, q"S") N H'(k, p’; ")} U HE(w, w*; S"),

Gw, w" S")YU G(w, w: ")

H' (W', p’3 §") N H'(w, w3 S") U H'(w, W', S") U g

then Hs(V)= , .
Hw, w8

viu v

Let I, be restricted to V'\p’.

In the first case, if y belongs to the image of V, then
O, (L*(y = p’, p’)) = y. In the second case I (L*(x(p — p’),
p’)) = q*, and is onefold elsewhere. In the third case it is
twofold on H°(w, w*; S")\q" and onefold elsewhere. In the
final case Il is onefold on H¥(w, w'; SYU H (w,w™; S”)
and on the boundary of ILo.(V)\[H " (w, w"; §') U
H (w, w ; §")] and is twofold elsewhere. (Interior and
boundary are defined with respect to the natural topology of
S’.) See Figure 9.

Proof Since for anyy € G(w, w'; S))U G(w, w_; S'),

\/uy—p'u2— H(p'izr_:’_j”—:])—p'

’

2

p

b+ )

N

so that y € V, and the first case follows.

Note that the first case implies that I, (V, — p + p’) =
Hw,w ; SYUH (w,w ;5.

In the second or third case o cannot equal zero. We begin
by assuming that ¢ > 0.

In the second case p’ € V™. Since p’ € ¥, then L (u, p’)
intersects V™, if and only if either u = A(p — p’) for some A
>0, in which case L*(u, p’) N ¥V'=L"(u, p’),oru € V; —p,
in which case there is a one-point intersection. Since the
circle contained in ¥ which contains p’ has a tangent
direction at p’ which is orthogonal to the plane generated by
wand p — p’, and since w”™ is in this plane, and 'w*(p — p’)
=0, then P = P(w™, p’) is the tangent plane to ¥ at p’. If we
note that 'w(=w) = | w|I*llp = p’ " = (‘w(p — p'))" > 0,
then it follows that if 'w™*(u) < 0, L"(u, p’) N ¥V~ = O, while
if 'w™(u) > 0, then there exists an ¢ > 0 such that
fp’ + ru:r €(0, ¢)} C V7, so that L*(u, p’) intersects V'~
once, unless u € ¥, — p, in which case there is no
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ifp’ =p,

if p’ is on V, but p’ # p,
if p’ is inside V,

if p’ is outside V.

r
intersection. In P itself clearly only L*(x(p — p’), p’)
contribute to the projection. If we note that P separates V'~
from V", this completes the proof for the second case with
o> 0.

In the third case, because p’ € V7, L*(u, p’) intersects 7~
once, unless u € I7i' ~ p, in which case there is no
intersection, and L"(u, p’) intersects * only ifu € ¥; ~ p,
in which case there is a one-point intersection. This implies
the result for the third case with ¢ > 0.

If 5 < 0, then applying the already proven sections to —w
and rewriting the results in terms of w yields the proof for
the second and third cases when ¢ < 0.

Now we turn to the fourth case. For each line L = L(v, p)
in V" with 'vw > 0, let P be the plane containing L and p’. It
is easy to see that IL¢ (L) is an open great half circle which
contains q* and starts at p’ + r’v/[ v || and ends at
p’ ~ r'v/{ v|. Thus, each line in V' is mapped to an
open half great circle containing q* and starting at a point
yion (V" —p+p’)NnS’ =¢" and ending at the antipodal
pointy =p’ —(y —~p)E(W —p+p)NS' =C".
Conversely, each open half great circle containing q” and
starting at a point y© € ¢* and ending at the antipodal
point y” € ¢~ is the image of a unique line L(y" — p’, p)
in V. Lemma 4 implies that only two great circles through
q" are tangent to ¢*, one which we denote as G* =
G(n,,q"; S’) with point of tangency p,, and the other
which we denote as G~ = G(n_, q"; §*) with point of
tangency p.. It also implies that G* and G~ are the only two
great circles tangent to ¢~ with G* tangent at p_ and G~
tangent at p,, and that p; € H*(n_,q"; "), and
p.EH (n,,q"; 8"

Let 2" be the region bounded by G* and G~ whose
closure contains ¢*, and £ be the region bounded by G*
and G~ whose closure contains ¢ ; that is, " = H'(n,, q";
SYNH (n_,q";S), ande” =H (n,q";S)NH (n_,
q*; S"). Each great circle through q” contained in ™ U £~
U q* intersects both ¢ and ¢~ twice, and hence
transversely, and no other great circles through q" except GV
and G~ can intersect either ¢* or ¢~. Each of these great
circles determines two open half great circles through q" that
begin at a point of ¢*. The two agree between ¢ and ¢~
with one intersecting ¢* but not intersecting ¢, while the
other intersects ¢~ but not ¢”. This implies that IT,
restricted to ¥V is twofold only on that part of its image
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Projection of a cone onto a sphere.
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obtained as the union of the open arcs between ¢ and ¢~ of these open half circles, and is onefold elsewhere.

Let G be a great circle contained in 2* U @~ Let #= G(k, p’; S’) be the circle through p}, p, p, and p_, with
q € H*(k, p’; S’). Bintersects ¢* twice transversely at p’ and p_, and & intersects ¢~ twice transversely at p” and p_.
Hence

GNI,(V)=(GNH (p; S'NDUGNH (w,w ;S HWU(GNH (w,w ;S5)).
Taking the union over all great circles G C 2T UR yields
O.(V)=(R" N H'(k, p’; S"))UH (W, w; S)U(R NH'(k p;S)UH(w,w;S),

as claimed.
All that remains to be done is to apply the formulas of Lemmas 4 and 5 to obtain explicit values for n. and k.
In the terms of Lemma 4, q, p, v, and r here are ¢, p’, (r"/~ P+ )w/|| w ||, and r’. Substituting these values for the

formula for n, yields
\/7;2 < r/2 rr W
’2 + + ’
ro- (@ —p')x———>x(q -p’)
, P+ 1 r2+1>< JE— vl

r w
+
vVr +1"W" 4 ' 2 ;
’ r r ,
r 2( s (W@ —p ))2>

C+1Y Al w]

n. =%q —p’)X

’2 ’ —_— ’
r? - 2r <<r’ Ll )Xw)X(r’p—p—>
r -, _p—p r+1 Ip—p'l Ilp—p'l
=—— | F{rr—— | Xw+
Pl w lp—pl v NG
| R
5 w7
,

— :
+1 Iwi® Ilp-p'll

’2
r

I ,
rr="1]wllp-p'l

Fp-p)Xw

/2(1- - )«p—p')Xw)x<r'—p1)
r+1 lp—p’l

+

"’4 2 2 2 t 2
Awiltip = p'I° = ¢ + D('w(p — "))
\/(r2+1)||w||2up-p'u2

2
r

Vre+ 1 wlllp=p’ll

Fp—-p)Xw

Iw
2 t ( — "y X )X _ ,) ’
\/"Wllzllp_p," _(r2+ 1)(w(p_p,))2(p p')Xw —p

which verifies the formula for n..
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By Lemma 5,

4

r , b—p'

et 'w <r’ p-p ) P w
e WX p=pll

s
r

T F+Dlp-p'l

’s
¥

¢+ Dlp—p Iwl

- i
- w(p = p’)w +
[nmﬁ r+

which verifies the formula for k and completes the proof.

5. Intersections of cylinders and cones
In this section we consider the problem of obtaining the
intersection of an arbitrary cylinder and an arbitrary cone.
By the results of Section 1 for any fixed cylinder and fixed
cone, it is sufficient to produce a base curve segmentation of
a circle serving as the base curve of the cylinder or as the
base curve of the cone. We have shown, moreover, that by
using the partitioned projections of Sections 3 and 4 we can
completely solve the problem, if we assume the existence of
a two-dimensional modeling system capable of representing
objects on a plane or a sphere that are bounded by circles,
lines, and points and capable of intersecting such objects
with a circle. The data describing the partitioned projections
are not of great complexity, but do generally involve
radicals. The internal intersections may involve more
radicals. Thus, our assumption concerning the two-
dimensional modeler implies the ability to manipulate
radical expressions and also to evaluate their signs. In this
section we show that at least in this case we need not make
the assumption pertaining to the modeler or the implicit
assumption regarding the ability to handle irrational
quantities. Instead, we make a more common and less
expansive assumption: the ability to perform arbitrary-
precision rational calculation.

Let V= V(w,p,r)and C= C(v, q, '), and let
P = P(v, p), the plane orthogonal to C containing the vertex
of V. We now sketch how we will proceed in the remainder
of this section. First, we obtain II,(V'), a partitioned
projection of ¥ onto P. Next we note that C N P is a circle
C= C(c, r'; P), where ¢ = L(v, qQ) N P, so that we may use ¢
as the base curve of C that will be partitioned into a base
curve segmentation by II;(¥). In each of the three cases of
Proposition 4, I1 (V) partitions P into special points,
segments of lines, and regions determined by the segments
and points. € N II(V) can be decomposed into finitely
many, maximal, connected subsets, each one of which is
contained in one of the subsets in I1(V). We denote the
partitioning by ¢ N I1 (V). Determining ¢ N I1,(V) reduces
to considering the ways that an arbitrary circle can interact
with the partitioning. In fact, once we have determined the
topological type of the intersection of € and I ,(V'), we are
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r + > 2r ,
AW+ e -pll
(p - p’)]
1

S [=(" + D'wp — p")w + [w[’(p — p")],

able to give explicit formulas for the base curve
segmentation. To determine the specific topological
configuration of ¢ N I1,(V"), we find all the possible
configurations, and by a careful analysis of them can define
polynomials in the parameters of C and ¥ whose signs
determine the topological type of ¢ N I1 (V). We define
cases in terms of these signs. Thus, by testing the signs of
polynomials we perform a case analysis, and then use the
formulas appropriate to that case to define a base curve
segmentation. If we provide a parameterization of each arc
of the base curve, then by determining the parameter value
type of the domain of the arc and appealing to formulas
T, through T, of Section 1, we obtain C N V. As with any
case-by-case analysis, the difficulty is in determining and
organizing the large number of subcases. In this regard we
are aided by the fact that we are defining the cases in terms
of signs of polynomials. Thus, there is a natural notation,
and if we ensure that all possible sign combinations are
considered, we can be sure that no situations can escape
scrutiny.

To begin, if we define

f,:(xl,xz,s)em3x1@3x}l@

— 1% 17 1%, 0% = (57 + D%,

then by Section 2, v + p is inside, on, or outside V'
depending upon whether f,(w, v, r) is less than, equal to, or
greater than zero. Thus, by Proposition 4, IT (V) doubly
covers P\p and singly covers p, if f,(w, v, r) < 0; II .(V)
singly covers P\L(w X v, p) and maps the line L(v, p) onto
p, if f,(w, v, r) = 0; and I1 () doubly covers the interior of

V={p+au +8u:a fER af =0},

where

t 2,172
)

ui=(||w><V||2—r2(vw) v X (W X V)

2
rivitliwlwXxv

and singly covers L(u., p), if f,(w, v, r) > 0. We refer to
these cases as the (—) case, the (0) case, and the (+) case,
respectively.
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Since P is perpendicular to C, P N C is a circle in P of
radius r’ whose center, ¢, is on the axis of C, L(v, q). A
trivial calculation yields
1

vip — q)
—_— v

Y

v
ThusPN C=¢=C(c, r'; P).

c=Lv,q)NP=q+

o The simple cases

The (—) case is particularly simple. Here IL(}) partitions P
into the point. p, and the rest of P. The circle, ¢, in P has the
point inside it, on it, or outside it, which is equivalent to

lc = pll® — r'* being negative, zero, or positive. Since

le=pl’=lla+vp-alvi?v-p|’
=(la~-pl*Ivi’ = (va=-pHivi™
=l@-pxvi’Iv]™

if we define

fz:(xl,xz,xg,s)E]fomsx]@}xm
2 2 2
- "(x1 - xz) X xg" =S ||X3 " )

it follows that f,(q, p, v, r) negative, zero, or positive implies
that p is respectively inside, on, or outside C. We refer to
these subcases as the (— —) case, the (—0) case, and the (—+)
case. In the (—0) case, IT (V) decomposes € into p and

v(p, p; p), while in the other two cases [1,(V) N ¢ = C. The
arcs are doubly covered and p is simply covered.

The (0) case is almost as simple. I1;(}) partitions P into
the point, p, the two half-lines of L™ = L(w X v, p) separated
by p, and the two half-planes with boundary L™. We
partition ¢ by its intersections with L™. Thus each arc is
singly covered, while if p € ¢ N I1,(V'), it is covered by a
line of C. If L™ intersects € in two points, they can be found
explicitly by solving for sin [ sw X v+p—c|’=r"", and
we denote them asp,» =p + (W X v)(c — p) +
2w x v P = W X vy X (e = p)I) P w x v Tw x v
If p € ¢, then the root in this expression reduces to
£ (W X v)(c — p), so that {p,._, p,.} = {p, ., }, Where p,,
=p+ 2w X v}{c~p}lw X v] “w X v. When L™ is tangent
to ¢, the root vanishes, and we find that p,, the point of
tangency, satisfies p,; =
p+(wxvXc—p)|wXv| wxv. Finally, let p* =
c+r'vx(wx v)/|vXx{(wxv). If L™ is tangent to
C, then p* = p,.;, but otherwise p* does not belong to L™

We may use f, again to determine three subcases (0-),
(00), and (0+) depending upon whether p is inside, on, or
outside ¢. For the (0~) case, L™ must partition ¢ into two
arcs, o that C N ILL(Y) = v(Dury Pu_s PYY U v (Docys P
pY). For the (00) case, either ¢ is.tangent to L, or L™
partitions C into two arcs. This tangency is equivalent to ¢
being r’ distant from L, and since v X (w X v) lies in P and
is orthogonal to L™, it is equivalent to | ‘(]| v X (w X v}| Y
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X (W X v))¢ — p)| equaling r’. which in turn is equivalent to
(v X (w X V)| "'v X (w X v))(g — p)| equaling r’. since
v X (w X V) is also orthogonal to v. Thus, if we define

f3:(xl,xz,x3,x4,s)em23xmz3x@3XR3XIRZ
2
- (t(xl X (X2 X xl))(x3 - X4))
2 2
= sTlx X (X X x5,

Cis tangent to L™ only if fy(v, w, q, p, ¥’ ) = 0. Because
pEC, fy(v.w, q.p, r') = 0, so it is reasonable to denote
the cases of tangency and nontangency as (000) and

(00—). Now, in the (00—) case

CNMHY) =pUY(D, Duy: P U YD, Pi i pH), while in
the (000) case ¢ N I1,(V) =p U ¥°(p, p; p)-

In the (0+) case either ¢ intersects L™ in two points, so that
1,(V) N Cis the union of the two arcs v(p, ., p._; p*) and
Y (Pxy» P_; P); OF Cis tangent to L™ at Py, SO that
(V) 0 C= Y (Purs Prrs Pxy); OF Cis disjoint from L™, so
that ¢ N II,(V) = C, depending upon whether the distance
from ¢ to L™ is less than, equal to, or greater than r’. As in
the (00) case, this is equivalent to the sign of f,(v, w, q, p, r")
being negative, zero, or positive, and we designate the cases
as (0+-), (0+0), and (O + +).

Figure 10 depicts examples of the nine cases considered
thus far.

e Cases where I1,(V) is a planar cone

The (+) case is more complex, or at least more complicated.
Here I1(V') is the planar cone, V, and so we denote II (V)
as V', Let us denote L(u., p) by L.. We partition C by its
intersections with L.. Thus, each arc in €N V' is doubly
covered, and its boundary points are singly covered, since

V is doubly covered on its interior and singly covered on its
boundary. As above, when L, intersects twice, let px+ = p +
(usle = p) £ (" uel® = ue X (¢ =PI ve | u,
and whenp € C, let p,, = p + 2'u.(c — p) | u« | “u,.

If L. is tangent to C, let py = p + 'ux(c — p) | ux | “ug.

As in the (—) and (0) cases, we begin by considering the
relationship of p and C. As before, p is inside, on, or outside
€ depending on the sign of f,(q, p, v, r’), and we designate
the corresponding subcases as (+ =), (+0), and (+ +).

In the (+ —) case p is inside ¢, and so L, and L_ must each
intersect € in two points, p, , and p_x, respectively. Thus,
V'’ N Cis the union of p, ,, p_, and the arc connecting
them, y°(p,,, P_.; P, _). and p, _, p__ and the arc
connecting them, vy (p,_, P__; D, .)-

In the (+0) case, p € Cand so L, intersects € at the
second point, p, ,, unless it is tangent to € at p, and L_
intersects ¢ at the second point, p_,, unless it is tangent to
atp.Since V=V(u,,u_,p)z€ R’ belongs to V if and
only if

< (W X v)(z = p) <
(v X (W X )}z — p)
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Examples of the nine subcases of the ( —) and (0) cases.

fora=r|wl(wxv|®=r(vw)’)"". We need to classify
the tangent to Cat p, which equals (p —c) X v=(p—q) X v,
and so we define

fo 1 (x., X5, X5, 5) € RPxR'XxR’ X R
= (% X XU X K017 = 7% x,))
2 2 2
= 51X 1700 X (%) X %,))x,)

Now, the tangent to ¢ at p is in the interior of V, or is in
the boundary of V (and hence L, or L_ is tangent to € at p),
or is exterior to V, depending upon whether f,(w, v, (p — q)
X v, r) is negative, zero, or positive, and we designate these
cases as (+0=), (+00), and (+ 0 +).

Since the tangent to € at p is in the interior of V in the
(+0—) case, it follows that ¢ N V' is composed of p, p, ,.
P_., ¥ (P, P.4: P_,), the arc connecting p and p, ,,
and ¥°(p. p_,: p, . ), the arc connecting p and p_,.

In the (+00) case, p — q is perpendicular to either L, or
L_. Assume that p — q is perpendicular to L, . One sees
easily that ¢ N V must be an arc of € connecting pand p_,.

MICHAEL A. O'CONNOR

Since LivX (wXx v),plCV,L{vX(wXv),ppNnccCecnVv.
Obviously, p is one point of the intersection, and since L, is
tangent to € at p, there is a second point, p,,., =

P+ 2'(v X (WX v))ec—p)vX(wx v v (wXv),in
Livx(wxv),p)NC Thus, NV =puUp_,U~vyp p_,:
Powrs ) Similarly, if p — q is perpendicular to L_, then
cnv’ = pUp,, U (D, | S pvwvx}'

When we consider the (+0+) case, the tangent to Cat p is
exterior to V, so pis isolated in N V. Thus N V' is
composed of p, p, ,. P, and the arc of €,

Y (Dsas P-ui D)

Figure 11 depicts examples of the (+—) and (+0)

subcases.

Intersections of ¢ with L.

In the remaining subcases of the (+) case, p is outside €. If ¢
is at a distance greater than ' from L, and L_, thencn 'V
is either empty or C itself. If ¢ is exactly »* from L, (or L_),
then L, (or L_) is tangential to C. If the distance to L_ from
¢ is less than ', then L, divides € into two arcs, only one of
which can be contained in ¢ NV, Let
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(+-)

(+0-)

(++-)

(+00)

(+0+)

ur=rllvliwlvx(wxv)

2)1/2w X v,

— 2 2.t

FvICwxv™=r(vw)
ut is perpendicular to u,, and u’ is perpendicular to u_.
‘utu_ >0, and ‘utu, > 0.

2
lu, i

2 2 2
= lu_ ("= lul o

=|u
=NV IwI + Uwx vl = PO v T w xov ]
=(wxv|*+ VI w) = W) v wx v
=1+ wxv|*Ivi®

‘ut(c ~ p)/[lut| is the signed distance from c to L,, so that

(uic = p) = r'lus ) uic = p)+r'llutl) =
(‘ut(c - ) — r'zl] uy | * is negative, zero, or positive
when C intersects L, twice, L, is tangent to C, or Cis

disjoint from L, respectively. Similarly, (‘ut(c - p))2

72 2. . .
—r “|lut|l” is negative, zero, or positive when ¢
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intersects L_ in two points, L_ is tangent to ¢, or Cand L_
are disjoint. From

‘up(c = p) = r'llutll
= VI WY X (w X V) e = p)
= (Iw x v[* = rF(vw))'(w x v)(e = p)
= lw X v+ )7,

we see that 'ut — r’ || ut || is not a polynomial in its
parameters. If we define o = ri| w || '(v X (w X v))(c = D),
B=wxvl®=r(vwh" (wx vic—p),and y =

Fllwx vt + )", then utc—p)—rfuil =
Ivite—8=v), ubc—p) + r' usll = I vi(a =B +7),
e —p) = ' lutl = I vi(a + 8 — v), and ‘ut(c — p)
+r'ut| =] vl(a + B8+ v). Thus, none of these

expressions are polynomials in their parameters.
Moreover, since (a = 8 —yNa — B+ v) =
o’ - 2a8 4+ 8 - 72, and «f is not polynomial, the

products above are not polynomials. However, since 439
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(@=B=Ma=B+a+B~7)(+B+7)=
(o = 8% = ¥’ — 48747, the product of these four
expressions is always a polynomial. Thus, we define

fi 1 (X)s X5 X35 Xy, 5y, 5y)
ERXRXR’XRXRXR
— (sTI% 1700 X (x, X %)%= X))
— (%, X %, 17 = 57C%, %)) (%, X %,)(%; = %,))°
=53l %, X X, 11+ 59))'= 4(lx, X x, 11
— 5%, %) N, X X% = x5 0%, X x, 11+ 5D,

and distinguish three subcases (+ + =), (++0), and (+ ++),
where f;(w, v, q, p, 7, ¥") is negative, zero, or positive.

In the (+ 4+ —) case, one and only one of (‘uﬁ(c -p)’ —
r'*lut | and (‘ui(c — p))’ — r’ *[ ut|” is negative and
corresponds to the one and only one of L, and L_ that
intersects € in two points, with € being disjoint from the
other. Since L, and L_ are symmetric about L(w X v, p) and
L(v X (w X v), p), the quadrant defined by L(w X v, p) and
L(v X (w X v), p) which contains ¢ determines which of L,
and L_ is closer to c. Thus, if (‘(w X v)(c — p))((v X
(w X v))(c—p))>0,ciscloserto L,, and so L, intersects ¢
atp,_andp,,, and €N Vis an arc between them. One
easily sees that ¢ + or’u/ | € €NV, where ¢ is the sign
of (v X (WX v))c —p),sothat cN V' =p,_Up,,

U ¥(Ds—s Dyys € + or’ul/ | uy |)). Similarly, if

(WX V) e=—p)vxX (WX V)c—p)<0,thencNV’ =
p._Up_,U~vy(__,p_,;c+ ar’ut/| ut|). We note that
the expression cannot equal zero, because this implies that ¢
ison L(w X v, p) or L(v X (w X v), p), and symmetry would
imply that € intersects both L, and L_, or neither of them.
See Figure 11 for an example of the (+ + —) case.

The dual cone and the relative sizes of cones

Let the dual cone of V, denoted V*, be defined as V" =
V(uz, ul, p). V*is of interest, because it is composed of
those points z € P such that z is closer to L+(u+, p)
(hereafter denoted L) than to L™(u,, p) (hereafter L_), if
and only if z is closer to L¥(u_, p) (hereafter L") than to

L (u_, p) (hereafter L_). This implies that any circle whose
center is in V" can interact only with L and L, or with L
and L_, and that any circle whose center is in V*° interacts
only with L} and L”, or with L, and L”. Any circle with p
exterior to it whose center is on the boundary of V* can
interact with at most one of L, and L_. In a manner similar
to the (+—) case, we find that z € R’ belongs to v* if and
only if

e XVe-D
(v X (W X V)z = )

2 2 2 .
fora=(fwxv|* = CvwH" 2wl v, and so we
define
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fﬁ:(x,,xz,x3,x4,s)E]R23XE?23XIR23x]R23X]R
22 2 4
i (‘(Xl X Xz)(x:; - X4)) N " X ” " X, "
2 X 2 2
(s X (%, X X% = XV % X %0 = 520 %)),

and distinguish three subcases of the (++0) case which we
denote as (++ 0 =), (++00), and (++0+) depending upon
the sign of f,(w, v, q, p, ), which in turn depends upon
whether ¢ belongs to the interior of V* to the boundary of
V™, or to the interior of V*.

In the (+ +0—) case, if ¢ € V and ¢ is sufficiently “small”
relative to V, ¢ must be contained in V and have a single
tangency to 8V. As € grows “larger,” it may acquire a second
tangency, or even cease to be contained in V. In order to
quantify these vague ideas of smaller and larger, we recall
that by Lemma | there is a unique planar cone, V(z, z’, p),
that circumscribes ¢, and we denote this cone as V(). The
Pythagorean theorem implies that the square of the tangent
of the half angle between L(z, p) and L(z’, p) equals
" p—cl®=r"?"", where

lp=cl®=1lq+ v -av/Ivl’-pl’
=lvi*a-p - va-pviI*vi™
=(Ivi*la-pl* = (@ =)V~
= vi?Ivx@-pl*

If ¢ intersects both L] and L or intersects both L, and L_,
the half angle of V(€) must be greater than or equal to that
of V, which is equivalent to 7 [ w || >l v [ ( w x v |I* =
POy = P IvIP(Qla = ) X vIlF = r ¥ v )T since
the tangent function is increasing. Thus, if we define

f7 : (xl’XZ’ x3’ x4’ sl’ SZ)
3 3 3 3
ER"XR XR XR XRXR
2 2 2 2 2
"‘)51"7(1" (||X2>((X3_X4)|| _52")(2" )
2 2 2,1 2
-5 x X0 - S1(x1xz) )s

f,(w, v, q, p, r, ') is negative, zero, or positive when V has
an angle smaller than, equal to, or greater than V().
Similarly, if

fs : (xl’ x2’ X3, X4, Sl, S2)
3 3 3 3
ER"XR XR XR XRXR
2 2 2 2
= (% X (x5 = %) 7 = 53 Ex 1)U %, X x|
2.t 2 22 2 4
= 51(x, %)) = szl x 171 %, 0,

fg(w, v, q, D, r, r") is negative, zero, or positive when V* has
an angle smaller than, equal to, or greater than V(C).

In the (+ + 0 ~) case we define three subcases (++0——),
(++0-0), and (++0—+), when p is inside V, on 3V, or
exterior to V, which is implied by the sign of f,(w, v, q — p,
r). We partition the (++0 — —) case into three cases
(++0—=—=), (++0——-0), and (+ +0——+) by using the
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sign of f,(w, v, q, p, 1, "), that is, depending on the relative
sizes of V and V(©).

In the (++0———) case, since € is tangential to 4V,
cE V*, ¢ € V, and V is smaller than V() it follows that
Cintersects dV at one point tangentially and at two points
transversely. The three points either belong to L and L or
belong to L, and L_ with the two points of transverse
intersection on one half-line and the point of tangential
intersection on the other. Thus ¢ N V is composed of the arc
that connects the two points of transverse intersection and
contains the point of tangential intersection. As before, if
(‘tw % v)(c = p)('(v X (W X V))c — p) >0, then c is closer to
L, than L_, and so L, intersects € in the two points p, _ and
p.,,s0that CN V' =p,_Up,,Up_+Ur(p,_, P_r;P.s)
U v(P, .. P_r; P,_)- If, on the other hand, (‘(w X v)(c —
PH((v X (WX v))c—p))<0,then cN V' =p__Up_, U
Per U (P__, Pori Poy) U (P_y, Doy D__). Symmetry
again shows that the expression cannot take the value zero.

In the (++ 0——20) case, since Cis tangent to 3V, V()
and V share a common boundary. In fact, since ¢ € V and
the two cones are of equal size, they must coincide. Thus, ¢
is contained in V and meets dV tangentially at two points,
one on L, and the other on L_. It follows from symmetry
that c € L(v X (w X v}, p)so thatc, .+ =cx r'v X (w X v)/
|[vx(wxvV)] €N V. Thus we may write CN V'’ =
Por U P YUY (Pots Pats Coun—) Y ¥ (P15 Dars Covt)-

In the (+ +0——+) case, Cis tangential to dV, c € V, and
V(C) is smaller than V, so that V contains ¢ and 8V
intersects € in only the one tangential point. Once again, if
(‘(w x v)(c = p)((v X (W X V))}c — p)) > 0, then c is closer
toL,,sothat NV’ =p, Uy (p,r, Py7s P,p), while if
(WX e —p)(vX (WX V)c—p)<0,eNV’ =
P_r U ¥ (01, P_1; P_1).

C €9V in the (++0~-0) case; thatis,c€ L, or L_, and
s0 C intersects this line transversely in two points. ¢ must
also intersect 8V tangentially, and because ¢ € V¥, all three
of these points must lie either in L] and L” orin L, and L_.
This implies that the (+ +0—0) case is equivalent to the
(++0——-) case, which we have already considered.

¢ is exterior to V in the (+ +0—+) case. Since ¢ € V*, ¢
intersects only L} and L”, or it intersects only L, and L_.
Thus, either C is exterior to V, except at the point of
tangential intersection, or C intersects one of L, and L_ twice
transversely and is tangential to the other. In the latter case
Cis forced to intersect L(v X (w X v), p). C intersects this line
if and only if the distance from c to it is less than or equal to
r’,or (‘tw X v/||w X v|)c - p))’ = r'? < 0. Accordingly,
we define

fo: (X, Xy Xp X, H ERXRX R X R X R
t 2 2 2
= (X X x)(x3 = X)) = s x; X %, |7,

and define subcases (+ +0—+ —) and (++ 0 —++) based on
whether fo(w, v, q, p, 7) is negative or positive. Case
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(++0—+—) is equivalent to case (++0——-). In the
(++0—++) case, CN 'V is a single point which equals p, if
((w x v)(c — p)((v X (w X V))(c — p)) is positive, and equals
p_y if it is negative. If f; were to take the value zero, ¢ would
be tangential to L(v X (w X V), p), a bisector of L, and L_,
and thus could be tangential to neither.

The analysis of the (+ + 0 —) subcases is now completed.
Next, we consider the (+ <+ 00) case. Since ¢ is on the
boundary of V*, € can intersect only one of L, and L_.
Since € is tangential to dV, ¢ must intersect V at a single
point. If ¢ is interior to V, then ¢ C V,and so N V' is as in
the (++ 0 —— +) case, while if ¢ is exterior to V, then
¢c VS, and ¢N V' is as in the (+ + 0—+ +) case. The sign
of f,(w, v, q — p, r) distinguishes these cases: the (++00-)
case for the interior circle, where f, < 0, and the (++00+)
case for the exterior circle, where f, > 0. If f, were to have
the value of zero, then ¢ € 4V, and thus would imply that ¢
intersects @V in at least two points, contradicting ¢ € 6V*,
and C intersects 9V tangentially.

The analysis of the (+ + 0 +) subcases is very similar to
that of the (++0—) subcases. In fact, if we replace V with V*
and make the concomitant changes, the partitioning into
subcases is identical. First, we define three subcases
(++0+-), (++0+0), and (+ + 0+ +), depending upon
whether c is interior to V°, in 9V, or exterior to V°, which is
equivalent to —f,(w, v, g — p, ) being negative, zero, or
positive. In the (++ 0+ —) case, we further partition into
(++0+—-), (++0+—0), and (++ 0+ —+) when the size
of V° is less than, equal to, or greater than the size of V(©),
that is, by the sign of f(w, v, q, p, r, ). In the (++0++)
case we partition by the sign of f,(v, w X v, p, q, r), which
implies that the distance from c to L(w X v, p) is less than,
equal to, or greater than r’, which in turn implies whether ¢
intersects L(w X v, p) transversely, tangentially, or disjointly.

We could now analyze these subcases in the manner of the
(++0-) case, but rather we omit the details and summarize
the results. The (++ 0+ — —) case is analogous to the
(++0———) case. Here we find that ¢ € V™, ¢ € V*, and
V*° smaller than V(&) imply that ¢ N 3V has one point of
tangential intersection and two points of transverse
intersection and that cN V' =p_, U ¥ (D, _, P, 4 P_p), if
((w X vc = p)((v X (W X V))}(c — p)) >0, whilecN V' =
P, U7 (b__, P_,; D,7), Otherwise. The (++0+ —0) case is
analogous to the (++0——0) case. In this case, we again
find two points of tangential intersection, so that CN'V =
p.r U p_r. The remaining subcases are equivalent to
previously considered cases. In particular, the (++0+0)
case and the (++ 0+ + —) case are equivalent to the
(++0+ ——) case, the (++0+— +) case is equivalent to the
(++0—++) case, and the (+ +0+ ++) case is equivalent to
the (+ +0——+) case.

Figure 12 contains a pictorial representation of the
partitioning scheme of the (++0) cases and examples of the
six distinguishable types of base curve partitioning.
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(+++1D (+++2) (+++3)
(+++4
- (+++D
—— size (V)f— size (V(6')) 0  impossible
+ (+++2)
—— cmV -0 (+++1D
f4
- (+++D
L-+ distance c to L(v X (w X v),p) — r’ 0  impossible
f
’ + (+++3)
—— (+++2)
cinV¥F~0 cinV -0 impossible
f6 4
-+ (+++3)
- (+++D
— size (V) ~ size (V(G)) [~ 0  impossible
f
8 4 (143
L+ cinVe 0 (+++4)
—f
4
- (+++9
+ distancectoL{w X v,p) — 1’ 0 impossible
f
i + (4 +D)

The final cases

Only the (+ + +) case remains to be analyzed. In this case
f(w, v, q, p, r, ¥') is positive, so that both (‘ui(c — D) -

r 2ll ut ||2 and (‘ut(c - p))2 - (| ut ll2 are negative or
both are positive; that is, either € transversely intersects each
of L, and L_ or Cis disjoint from each of them. To discover
the ways in which this may happen, we follow the scheme
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developed for the (+ + 0) case. First, we define three subcases
dependent on the sign of f,(w, v, g, p, 7), which is equivalent
to ¢ being interior to V", in 8V", or interior to V™, We
partition each of these subcases by the sign of f,(w, v,q — p,
r) to distinguish when c is interior to V, in @V, or exterior to
V. In the (+++ — —) case we use the sign of f.(w, v, q, p, 7,
r’) to partition further into subcases that correspond to V
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being smaller than, equal to, or greater than V(¢). Similarly,
the (+ ++—+) case is partitioned by the sign of f,(w, v, q, p,
r, r*) into subcases depending on the relative sizes of V* and
V(). In the (+ ++ —+) case we define three subcases
depending upon whether L(v X (w X v), p) transversely
intersects ¢, tangentially intersects €, or is disjoint from ¢,
and distinguish the three by the sign of fy(w, v, q, p, 7).
Finally, the sign of f,(v, w X v, q, p, r) partitions the

(++ + ++) case into subcases where L(w X v, p) intersects
transversely, tangentially, or disjointly.

In the (+++ —0) case, ¢ € 9V, so that € must intersect
one of, and hence both of, L, and L_. Since ¢ € V*, it
follows that NV’ =p_, Up,, Uy (P_,, D0 DP__)
Up__Up,_ Uy (p__,p,_iP,,)

In the (+ ++0) case, c € 6V*, and so can intersect only
one of, and hence neither of, L, and L_.

In the (+++0-) case,c € V,s0 CN V' = C, while in the
(+++0+) case ¢ € VS, so that ¢ N V is empty.

In the (++++0) case, c € 9V, so that € must intersect
one of, and hence both of, L, and L_. Since ¢ € V™, it
follows that MV’ =p__Up_, U~Y(P__, P_y; P.s)
Up,_Up,, Uy (psos Prys Do)

Similar analysis reveals the following equivalences. The
(+++ — ——) case and the (+ + + —+ —) case are equivalent
to the (+ ++ - 0) case. The (+++ ——+) case and the
(+++ + ++) case are equivalent to the (+++0—) case. The
(+++ —++) case and the (+ ++ + — +) case are equivalent
to the (++ +0+) case. Finally, the (+ +++——) case and
the (+ + + + + —) case ar¢ equivalent to the (+ + + +0) case.
Since the remaining cases that we have defined can easily be
shown to lead to contradictory assumptions, we have
completed the analysis of the (+ + +) case, and hence of 24
possible topological configurations of ¢ N IT (V).

Figure 13 contains a pictorial representation of the
partitioning scheme of the (+ + +) cases and examples of the
six distinguishable types of base curve segmentation.

o Determination of parameter value type

In the previous section we obtained a base curve
segmentation for each of the possible configurations of ¢ N
IT.(V). It is now easy to choose a parameterization of each
point and arc of the base curve segmentation to obtain a
domain segmentation, and we will assume this has been
done. By the results of Section 1, once we have determined
the parameter value type of each subset of the domain
segmentation, we can apply the one of the four maps, T, to
I',, which is appropriate to each subset, and so explicitly
obtain C' N V. As noted in Section 1, only in type 2-3
subsets of the base curve segmentation, that is, only in
subsets singly covered by I1,(V), can there be ambiguity,
with it being possible for such a subset to correspond to a
subset of the domain segmentation of parameter value type
2 or 3, and hence to lead to T, or I';. We showed that if for
any ¢, in the subset A(#,) = 0, the parameter value type of
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the subset is 2 at all values, and hence we apply I',, while if
A(ty) # 0, the parameter value type of the subset is 3 at all
values, and hence we must apply T',. In fact, this test is
unnecessary, because this information is already implicitly
contained in the decomposition into cases, as we now show.
As we have seen, by Section 2 for any x € R x eV, if
and only if f(x) = | x = p | *| wi|* = (" + 1)('w(x — p))’ =
0, and since fis a quadratic polynomial in the coordinates of
X, it serves to define V as a quadric surface. If we define
matrix Q as Q = | w|’I — (** + )w'w for the identity I,
then it is easy to see that 'xQx is the pure quadratic part of f,
and so for this choice of defining equation for ¥ we find by
Section 1 that 4(¢) = "vQv = [ v’ w[® = (" + D(‘wv),
which we recognize to be f (w, v, 7). By [2], any other
defining equation, T, leads to an A(7) such that A(r) = sA(z)
for some nonzero scalar s. Thus, if v is a type 2-3 subset in
the base curve segmentation and g its corresponding subset
in the domain segmentation, t € g — I',(¢) is the pre-image
of v in CN V,if ¢ N I1;(¥) is in one of the (0) subcases,
while 1 € g — T',(¢) is the pre-image of y in CN ¥,
if €N IIL(V) is in one of the (—) or (+) subcases.

o A comment on stability

Case-by-case analysis tends to be laborious. Ours is no
exception. However, the partitioning we have defined in our
analysis provides an unexpected benefit of stability. Let J;in
be I2° minus the origin, and R, be the positive real
numbers. P = mi X R X R, can serve as a parameter
space of cylinders or cones, so that in a natural way we can
identify the topological product, 2, = P X p, with the
parameter space of intersection problems of cylinders and
cones. Formally, we have used the polynomials f, through f;
to partition 2, into subsets where an intersection problem
can easily be solved by fixed formulas. Let .S be one of these
subsets and z = (v, q, 7', w, p, 7) be an element of S. If we
follow the methods discussed above, then z determines

f(x; z), the defining equation of the cone; a projection, I1(z);
and a base curve circle, ¢(z), and hence a base curve
segmentation, y(z). Each of these objects changes smoothly
as z moves through S, as can easily be seen from the
formulas we have developed for them. In particular, since
C(z) changes smoothly, it is possible to choose a
parameterization of each €(z), so that z smoothly determines
a domain segmentation, g(z) = {g,(z)}, and even a smooth
set-valued map from z to the intersection, I''z —

{T'(g; z, i)}, where I'(g;; z, i) denotes the image of g, under
the one of the maps T',(z) through T,(z) which is appropriate
for the i-th subset of g(z) and is invariant over S

by construction. Thus, in a sense, rather than solving the
specific problem of C N V, we have simultaneously solved all
such problems in a manner such that when we restrict
considerations to any subset of the partition of /2, the
inherent instability of the intersection problems, as
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(++04)

(++02) (++03)

(++05) (++06)
— (++0D
—— size(V) — size(V(G') 0 (++02
f
7
+ (+4+03)
——~ cinV 0 (++0D
f
— (++01)
i -+ distance ¢ to L{v X (W X V),p) ~ 1’ 0  impossible
9
+ (++06)
—— (++03)
cinV¥[~0 cinV  [~0 impossible
f6 f4
=+ (++06)
— (++04)
~ size(VY) — size(V(G)) 0 (++05)
f
8 + (++406)
L+ cinV' 0 (++04)
_f4
— (++04)
+ distance ctoL(w X v,p) - r' 0 impossible
f,
s + (++06)

i

exemplified by the two-cylinder intersection considered in
the Introduction, is replaced by the smooth map I' whose
values are all topologically equivalent.

6. Concuding remarks
In this paper we have treated the problem of computing the
intersection of two natural quadric surfaces. In Section 1 we
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began by considering in detail a restriction of Levin’s
method of intersecting two quadric surfaces to the case
where both surfaces are natural quadrics and one is a ruled
quadric, that is, either a cone or a cylinder. We saw that a
solution for the purposes of geometrical modeling would be
obtained by this method, if we could also produce a domain
segmentation, but that the normal means of producing a
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domain segmentation led to the necessity to solve fourth-
degree polynomials. However. by using explicit knowledge of
the partitioned projections of natural quadrics. we found
that a related object. a base curve segmentation. was
computable using only the intersection between lines and
circles, and evaluations of polynomials. Section 1 closed with
a proof that a base curve segmentation led directly to a
domain segmentation. so that we could conclude that the
exact intersection of two natural quadrics could be produced
by a two-dimensional modeling system supporting objects
bounded by circles. lines. and points on a sphere or plane. In
Sections 3 and 4 we presented the projections of natural
quadrics onto planes and spheres. and thus offered a
complete description of the objects necessary for
implementation of the method of Section 1. In Section 5 we
observed that the two-dimensional modeler assumed in
Section 1 implied the ability to handle data involving
irrationalities exactly. Since this is in fact a strong
assumption, we chose to weaken it by assuming only the
ability to perform exact rational arithmetic. The techniques
of Section 1 motivated the search for a partition of the
parameter space of intersections between cylinders and cones
into subsets where a base curve segmentation could easily be
explicitly obtained. In this setting, the partition was defined
by the signs of polynomials in the parameters of the
problem. The section closed by noting that when
consideration is restricted to one of the subsets of this
partition. the instability usually associated with intersection
problems is replaced by a smooth map from the parameters
of the intersection problem to the intersection itself.

At its most fundamental level, this paper vields a
reduction in the difficulty of finding a domain segmentation
for use in intersecting two natural quadrics from the
computation of roots of a fourth-degree equation to second-
degree geometric calculations. It is reasonable to ask if such
a simplification can be extended to the natural domain of
Levin’s method: the quadric surfaces. If we consider the
intersection of two parallel elliptic cylinders, then projecting
and intersecting to obtain a base curve vields a final problem
of intersecting two ellipses, which in general leads to a
fourth-degree polynomial equation. Although we have only
shown that domain segmentation by the usual means leads
to fourth-degree polvnomial equations for natural quadrics,
it is also possible to show that this is true for all quadrics.
Thus, in this case, the general technique and using
projections can lead to the same degree of difficulty, so that
we must recognize that projections are not a panacea for the
algebraic complexity of domain segmentation in all quadric
surface intersection problems. However, the technique has a
wider range of applicability than just the natural quadrics:
similar reductions can be obtained for other types of quadric
surface intersections using little more than the tools that
have been developed here. For example, consider the
problem of intersecting C, a general cylinder (elliptic,
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parabolic. or hyperbolic) with T, a general cone. If P is the
plane containing the vertex of I and orthogonal to the axis
of C. then by a nonisotropic change of scale we can
transform " to a right circular cone. I, We can then find the
partitioned projection of I onto P using Proposition 4.

and by inverting the scaling obtain the partitioned projection
of T onto P. which can again be described by points and
lines in P. The intersection of C with P is an ellipse. a
parabola. or a hyperbola. which serves as a base curve for C.
Thus. we can produce a base curve segmentation by
intersecting lines and points with ellipses. parabolas. and
hyperbolas. Each of these problems reduces to a simple
second-degree polynomial calculation. and. as before. we can
proceed to find a domain segmentation.
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