
Natural  quadrics. 
Projections  and 

. by Michael A. O'Connor 

intersections 

Geometrical  modelers  usually  strive  to  support 
at least solids  bounded  by  the  results of 
Boolean  operations  on planes, spheres, 
cylinders, and cones,  that  is,  the  natural 
quadrics. Most often  this set is treated as a 
subset of the  set of quadric  surfaces.  Although 
the  intersection of two  quadrics is a 
mathematically tractable problem, in 
implementation  it leads to  complexity  and 
stability  problems.  Even  in the restriction  to  the 
natural  quadrics these problems can persist. 
This paper presents a  method  which,  by  using 
the  projections of natural  quadrics  onto planes 
and spheres, reduces the  intersection of two 
natural  quadrics  to  the  calculation of the 
intersections of lines and circles on planes and 
spheres.  In  order to make the claims of the 
method  easily  verifiable and provide  the  tools 
necessary for implementation,  explicit 
descriptions of the  projections are also  included. 

Introduction 
The solid modelers used in  mechanical  part design and 
analysis most often support objects bounded by regions of 
surfaces drawn from  a very simple class of surfaces: the 
natural quadrics-planes, spheres, (right circular) cylinders, 
and (right circular)  cones [I] .  If  a  modeler is to make explicit 
use of the  boundary of an object  it processes, it  must be able 
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to  compute this boundary;  at a minimum, this  implies the 
ability to  compute  the intersection of the surfaces  involved 
in the  definition  of the object. The intersection of surfaces in 
singular  positions is an unstable  problem, as  can easily be 
seen by considering  two  cylinders  sharing  a common line. 
Moving the two slightly apart yields two  cylinders with no 
intersection; if they are moved slightly closer together, the 
one  line  of intersection  becomes two. If one cylinder is 
rotated slightly in  one direction, the intersection  is reduced 
to a point,  but if rotation occurs  in  a different direction, the 
intersection  can  become an arbitrarily large closed curve. In 
sum,  the slightest perturbation of either  cylinder can cause 
their  intersection to undergo profound change. Given the 
potential  consequences of this  inherent instability and  the 
simplicity of the surfaces involved, the search for some 
closed-form analytic  solution is appealing.  Yet,  their 
simplicity notwithstanding,  it has proved to be a surprisingly 
difficult task to find a  computationally  tractable method  to 
obtain these  intersections exactly. 

This paper  addresses the problem of finding an exact 
closed-form solution for the intersection  of two  natural 
quadrics  and solves it  in  what we believe is a  conceptually 
and  computationally simple manner. We begin in Section 1 
by giving a  cursory discussion of the two main theoretical 
methods applicable to  the problem.  These methods  in fact 
solve a natural generalization  of the problem, determining 
the intersection of two quadric surfaces, that is, surfaces 
defined by second-degree polynomial equations  in  three 
variables. Although they are elegant mathematical solutions, 
in  their full generality they pose problems  for use in 
geometrical modeling which are discussed here. When the 
methods  are specialized to  natural quadrics, one of them, 
due  to Levin [ 2 ] ,  simplifies greatly, and we study it  in  detail. 
Except in the trivial intersections  involving  only  planes and 
spheres, it  becomes  a method of intersecting  a  cylinder or 
cone with an  arbitrary  natural  quadric  that proceeds by 417 
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viewing the  former as  a ruled surface, a surface generated by 
a family of lines  through  a base curve. This reduces the 
calculation of the intersection of the two natural  quadrics  to 
a one-parameter family of line and  quadric surface 
intersections.  A completely satisfactory representation of the 
intersection results if the  domain of this  one-parameter 
family, that is, the  domain of the base curve, can be 
partitioned into segments that define smooth curves in  the 
intersection. Computation of such  a partition, called a 
domain segmentation, can be achieved in a straightforward 
manner; in general, however, it  requires the solution of a 
fourth-degree polynomial. In practice, this equation is only 
approximated, or it is avoided by a case-by-case analysis, or 
some  combination of these two  approaches is used. We 
present  a different approach based on solving a related but 
simpler  problem: Rather  than producing  a domain 
segmentation directly, we partition the base curve itself in  a 
similar manner, yielding a base curve  segmentation. We 
show that a base curve  segmentation  can be found by 
intersecting  a circle that serves as  the base curve of the 
cylinder or cone with a  small number of circles, lines, and 
points  that define an appropriately  partitioned  projection of 
the second natural  quadric  onto a  plane or a  sphere 
containing the base curve. The first section closes by showing 
that a base curve  segmentation is sufficient by proving that  it 
leads directly to a domain segmentation. At this point we 
have  shown that by completing Levin’s method with the 
calculation of a domain segmentation using projections, the 
intersection of two natural  quadrics  can  be obtained exactly 
and explicitly by performing computations never exceeding 
the difficulty of computing  the intersection of two circles. 

The technique  presented  in  Section 1 presupposes access 
to explicit descriptions of the projections of arbitrary natural 
quadrics onto arbitrary  planes and spheres. It further 
presupposes that this  projection  has been partitioned into 
regions such that  any two points  in  the region have pre- 
images with the  same cardinality.  Moreover, the regions and 
the projections  themselves must be described in  terms of a 
small number of circles, lines, and points. After establishing 
some  notation in Section 2 ,  we turn  to a  presentation of just 
such  a  description. In Section 3 we treat  the  planar 
projections, and  in Section 4 the spherical projections.  Given 
the long history of the study of quadric surfaces, it is likely 
that these  projections have been considered before, especially 
since many of them  are  quite trivial to  obtain. However, 
since there seems to be no ready source which discusses 
them completely and in the detail that is required  in  this 
study, and since their explicit form is necessary for our 
arguments, we have  presented them in  their  entirety with 
proofs of their  derivation. 

In Section 5 the intersection  of an arbitrary cone  and  an 
arbitrary  cylinder is considered by an exhaustive case-by-case 
analysis. In a real sense the results of Section 1 make this 
type  of analysis superfluous. By appeal to projections and 418 
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lower-dimensional  modeling utilities that  can intersect 
circles with planar  and spherical regions bounded by circles, 
lines, and spheres, this  problem  can more easily be solved. 
Yet, while recognizing that  an example is not a proof, we 
believe that this  example partially demonstrates  some  further 
potential uses of the technique. In this  section we assume 
that  the  computations  are  to be performed in a system 
allowing high-precision rational  calculation, but  do  not 
assume the ability to reliably manipulate or evaluate the 
signs of irrational  quantities. The projections  themselves  in 
general involve  a radical, even if we begin with surfaces 
described by rational data. If  we duplicate the calculations of 
a  modeling system by intersecting the base curve with the 
curves describing the projection, more irrationalities arise. 
Instead, we develop  polynomials in  the  parameters of the 
problems which we use to partition the space of parameters, 
itself, into regions where the intersection can be easily 
known and explicitly given. This has several advantages. 
First, the original intersection  problem can now be trivially 
solved by evaluating the sign of at most six polynomials, 
after which the intersection  can be produced directly. 
Second, because we have partitioned by the signs of 
polynomials and considered the consequences  of all possible 
sign combinations, we can be assured of avoiding the  bane 
of all case-by-case analyses: missing a case. Third, if a 
quadric is to be approximated by another, it  seems 
reasonable to require that  the  approximation  not change the 
topology of the intersections  involving the  quadric.  The signs 
of the polynomials give a ready means  to test for this. 
Alternatively, we could  try to search in the region for  a new 
set of parameter values for an  approximation. Finally, we  see 
that within any subset of the partition the intersection 
problem  becomes stable in contrast to  the general situation. 

The  paper closes by summarizing  the results and 
identifying certain  simple  generalizations. 

1. Intersection of natural  quadrics 
Two  main  theoretical  tools are applicable to  the problem of 
computing  the intersection of two natural quadrics. Each 
addresses a natural generalization: computing  the 
intersection of two  arbitrary quadric surfaces. The first is 
based on  the work of Levin [ 2 ]  in  rendering the intersection 
of two quadric surfaces, and  the second on  that of Ocken, 
Schwartz, and Sharir [ 3 ] .  The Levin method proceeds by 
finding a ruled quadric surface in  the pencil  of the two 
quadric surfaces which is used to calculate the intersection as 
a one-parameter family of  intersections  of  a  line and a 
quadric surface. The auxiliary  ruled quadric surface is 
identified by computing  the  roots of a determinantal 
equation, which yields a third-degree polynomial equation, 
and evaluating the  determinants of several matrices of 
second through fourth order  dependent  on  the roots and  the 
original surfaces. The  method of Ocken, Schwartz, and 
Sharir begins by obtaining  the eigenvalues and generalized 
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eigenvectors of a four-by-four (generally) nonsymmetric 
matrix. dependent  on  the  parameters of the problem. and 
then uses them  to  obtain a  decomposition of the four- 
dimensional space on which the matrix acts. The 
decomposition allows the intersection to be represented as 
one of a small number of intersection  problems. 

Although both  of  these general methods  are 
mathematically elegant solutions,  they suffer from  similar 
limitations  for use in  a geometrical modeler. First, there is 
the problem of complexity. The intersection  of surfaces is a 
highly unstable  problem, so that  any  error in  calculation can 
cause profound  changes and logical inconsistencies. As 
should be expected, both methods  mirror  this instability, so 
that  any  approximation scheme would be problematical  for 
either  method. On  the  other  hand, using the exact 
calculations  needed in either case as the core routines of a 
geometrical modeler  seems to be beyond the power of the 
current generation of symbolic manipulators.  Second, to be 
useful in a  modeler the intersection  should be segmented 
into a  small number of disjoint  curves and  points whose 
topological, geometric, and relational structures  are  known 
or can be easily ascertained. While each method is in a sense 
complete,  neither yields the intersection  in  a  form that is 
complete  enough for a  modeler. The  one-parameter family 
of intersections between lines and a quadric  that is the result 
of Levin’s method has the  domain of the base curve of the 
auxiliary ruled quadric as its parameter  domain.  The 
intersection of a  line and a quadric surface can be zero, one, 
or two points or the line itself, so that each parameter value 
may correspond to zero, one, or two  points or a  line of 
intersection. The partition of the  parameter  domain  into 
maximal  connected  subsets with each subset corresponding 
to  one of these four intersection  types can be used to 
segment the intersection into useful parts, but this can 
generally require the solution of high-degree polynomial 
equations. Because the second method uses projective 
transformations in three-space, it treats  the intersection 
problem by solving a projectively equivalent  problem, 
yielding the final result as a collection of points  and curves 
which is a  subset of a  sphere,  a one-sheeted hyperboloid of 
revolution, or a  cylinder, and which is projectively 
equivalent to  the original intersection set. A projective 
equivalence  may map disjoint  curves to intersecting curves, 
planar curves to infinity, or bounded curves to  unbounded 
ones. Obtaining a  complete  description of the  true affine 
intersection  could  require  calculations  involving the 
projectively equivalent curves, the projective 
transformations, and  the surfaces themselves. Thus each 
method would  require  a different type of nontrivial 
postprocessing, possibly by careful approximation methods, 
but  most likely by further symbolic  calculation. 

In sum, their  complexity and need for further nontrivial 
processing make the general methods unattractive to 
implementers of  geometrical  modelers. 

Even in the special case of natural  quadrics  one finds little 
simplification in the second method; however, Levin’s 
method is greatly simplified in this case. Since the 
intersection of two natural  quadrics is either the intersection 
of two  spheres (which can easily be solved) or the 
intersection must already  involve  a ruled surface, there is no 
need to search for an auxiliary  ruled  quadric. Thus  one may 
avoid the  computation of roots  and evaluations of 
determinants usually associated with this  method,  and 
Levin’s method reduces to a technique for  intersecting  a 
ruled natural  quadric with an arbitrary natural  quadric. 
Because of  this simplicity for natural quadrics,  either 
explicitly [4] or implicitly, some variant of Levin’s method is 
most commonly used in practice, and yet a  serious  problem 
still exists. To follow Levin’s technique  further  and  to 
explain this problem, we need more explicit information 
about representing  cones and cylinders  as  ruled surfaces. 

base curve on it, b: t E domain@) -+ b(t) E R 3 ,  and 
describing the surface as the  union of the parameterized 
lines, L(s; t ) ,  through  the base curve. If T is a  cylinder or 
cone, then b is generally and most simply chosen to be some 
parameterized circle on T. To be more concrete, b is 
parameterized  in terms of the transcendentals,  sin(t) and 
cos(t), or in terms of the equivalent  rationals, (1 - t 2 ) / (  1 + t 2 )  
and 2t/( 1 + t 2 ) ,  so that b is parameterized as 
b:t E [0, 27~) -+ p + r[cos(t)u + sin(t)u’] or b:t E W + 

p + r ( l  + t2)-’[2tu + ( 1  - t2)u’], where p is a point  on  the 
axis of T (not equal to  the vertex of T, if it is a cone), and u 
and  u‘  are unit vectors such that  u,  u’,  and  the axis  of  T are 
mutually  orthogonal [ 5 ] .  Thus, if T is a  cylinder and v is a 
vector parallel to its axis, then each  line in T is represented 
as L(s; t )  = {b(t) + sv:s E w), for some t E domain@), 
while if T is a  cone with vertex q,  then each line  in T is 
represented  as L(s; t )  = {q + sb(t):s E W), and in  either case 
T itself is represented [6] as  T = {L(s; t ) : t  E domain@), 

A ruled surface is represented by choosing  a  parameterized 

s E  w1. 
Now let S and T be natural quadrics. S n T is easily 

obtained if both S and T are a  plane or a  sphere, and so we 
ignore these simple cases by assuming T to be a  cylinder or 
cone. Since S is a quadric surface, S can be represented  as 
the solution set of a second-degree polynomial  in three 
variables, f :  x E JR -+ ‘XQX + ‘yx + c, where Q is a 
symmetric matrix, y is a  vector, and c is  a  scalar, which all 
depend  on S. Now  for any t in domain@), L(s; t )  n S is 
found by solving for s inf(L(s; t ) )  = A ( t ) s 2  + B(t )s  + C ( t )  
= 0, where A ( t )  = ‘vQv, B ( t )  = 2‘vQb(t) + ‘yv, and 
C( t )  = ‘(b(t))Qb(t) + ‘yb(t) + c, if T is a  cylinder, while 
A ( [ )  = ‘(b(t))Qb(t), B ( t )  = 2‘qQb(t) + ‘yb(t), and 
C( t )  = ‘qQq + ‘yq + c,  if T is a  cone. Iff(L(s; t ) )  
degenerates to  the zero function,  then every s solves it, so 
that L(s; t )  n S = I‘,(t) = L(s; t ) .  If only A ( t )  and B ( t )  
degenerate to zero, then  no s solves the  equation,  and  the 
intersection is empty.  IfA(t) = 0, but B ( t )  # 0, then 419 
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s = -C(t)/B(t)  is the sole solution, and r,(t) = 

L(-C(t)/B(t); t )  is the sole point of intersection. Finally, if 
A(t ) # 0, and we denote  the  discriminant, 
(B(t))’ - 4A(t)C(t) ,  by 6 ( t ) ,  then, of course, there  are  no 
points of intersection, if 6 ( t )  < 0; r,(t) = L(-B(t)/(2A(t)); t )  
is the sole point of intersection, if 6 ( t )  = 0; and F : ( t )  = 

L((-B(t)  f (6(t))”’)/(2A(t)); t )  are  the two points of 
intersection, if 6 ( t )  > 0. If L(s; t )  n S is empty,  then we will 
say that t has  parameter value  type of zero. Similarly, if 
L(s; t )  f l  S = r,(t) for  i = 1, 2 ,  or 3, then we  will say that 
t has parameter value type  of  i, and we define t to have 
parameter value type  four, if L(s; t )  n S = r:(t). Thus, for a 
fixed t E domain(b), by testing  whether A ( t ) ,  B( t ) ,  and C( t )  
are zero, and possibly computing  the sign (-, 0, or +) of 
a([), we can find its parameter value type and so have an 
explicit formula for L(s; t )  n S. 

Since the sign of the  functions A( t ) ,  B( t ) ,  and C(t) can 
change  over  domain(b), the  parameter value type or even the 
topological type of L(s; t )  n S may  change  over  domain(b), 
so that we cannot expect to find a general formula expressing 
L(s; t ) n S as a function o f t  valid over all of domain(b). 
However, if g is a  connected subset of domain(b)  on which 
the  parameter value type does  not change, then  much  more 
follows. First assume  that T is not a  cone with its vertex on 
S, so that  no two  lines  in the ruling  of T share  a common 
point of intersection with S. If the  parameter value type of 
all t in g is zero, then  the lines through g are disjoint from S. 
If the  parameter value type of all t  in  g is one  and g  has  a 
nonempty interior, then S and T coincide  over  a  two- 
dimensional subset, and hence S = T. If the  parameter value 
type of all t in g is two  (or  three), then t E g + r,(t) [or 
r,(t)] defines a  curve  in S n T that is smooth  on  the interior 
of g, since A( t ) ,  B( t ) ,  and C(t )  are  smooth  functions  oft. 
Finally, if the  parameter value type of all t in g is four, then 
t E g + r:(t) define two disjoint  curves in S r l  T that  are 
smooth  on  the interior of g. Now let T be a  cone with its 
vertex, q,  on S. Since q is always in L(s; t )  n S, the 
parameter value type o f t  in g cannot be zero. If the 
parameter value type o f t  in g is one, then  the  interpretation 
is the  same as  above. If the  parameter value type o f t  in  g is 
two or three, then, since q belongs to  the intersection of each 
line with S, the associated parameterized  curves, r2 and r3, 
must degenerate to  the  constant  map, t E g + q. Since q 
belongs to S, q must satisfy the defining equation of S, so 
that C ( t )  must be identically zero, which implies that 
(-B(t)  k (6 ( t ) )1 ’2 ) / (2A( t ) )  reduces to zero and -B(t)/A(t) .  
Since by the choice of parameterization  zero  corresponds to 
q, we find that if all t E g have parameter value type  four, 
then  the  contribution  to S n T of the lines  through  g is q 
and  the curve, t E g + I’,(t) = L(-B(t)/A(t); f ) ,  which is 
smooth  on  the interior of g and disjoint from  q.  Thus in any 
case if g is a connected subset of domain(b)  on which the 
parameter value type  does not change, then we can 
immediately  find the part of S r l  T corresponding to g. This 420 
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result in its simplicity, generality, and conciseness is very 
appealing, and so leads naturally to a search for  a  partition 
of domain(b)  into finitely many connected  subsets  such that 
on each of these subsets the  parameter value type is 
constant. We refer to such  a  partition  as  a domain 
segmentation. If  we can find an exact and explicit domain 
segmentation, then  the above  implies that we can find an 
exact and explicit representation of S n T. Thus, if  we can 
produce an exact and explicit domain segmentation  in  a 
computationally  tractable manner,  then we can say that we 
have exactly and explicitly solved the problem of intersecting 
two natural quadrics. 

Clearly, the obvious method of  producing  a domain 
segmentation is to  compute  the roots ofA(t), B(t ) ,  C( t ) ,  and 
6 ( t ) ,  and use them appropriately to define  a  partition of 
domain(b), but herein lies the problem. If the rational 
parameterization is employed, then  in general B ( t )  is  a 
rational quadric  in t ,  and either A ( t )  or C ( t )  is a  rational 
quartic in t ,  with the  other being constant in t ,  so that 6 ( t )  is 
also a  rational quartic; thus,  finding the  roots  ofA(t)  or C(t )  
and 6 ( t )  is equivalent to solving fourth-degree  polynomial 
equations. Using the transcendental  parameterization is no 
better. This leads to  quadratic  equations  in  sin(t)  and cos([), 
whose solutions again lead to fourth-degree  polynomial 
equations, but  this  time  in  sin(t) [or cos(t)], which adds  the 
burden of the evaluation  of an inverse trigonometric 
function. Closed-form solutions of fourth-degree equations 
exist, but  the complexity is daunting,  and  in practice the 
roots  can be and  are only approximated [4], which can cause 
large errors  in singular situations. Thus, employing  this 
straightforward approach  to solve the key problem of finding 
an explicit domain segmentation  seems to yield a  problem 
which is not computationally  tractable in  the general setting. 

Others have recognized the problems in  the application of 
the theoretical methods of quadric  and  natural  quadric 
intersection and have  attacked them  and related  problems by 
many methods.  Morgan [7] has suggested exploiting more 
general techniques for approximating solutions to systems of 
polynomial equations  that  are based on  homotopy 
continuation methods. Farouki et al. [8] have  mixed classical 
algebraic geometry with modern polynomial  factorization to 
explore  recognition of simpler  singular  intersections and 
their  parameterization.  Sarraga [4], using a formulation 
equivalent to  the  one presented here, has applied  analytic 
and algebraic geometric techniques  to simplify the  equations 
in special cases and  then  to solve them explicitly or by 
standard  approximation packages. Miller [9] has  written an 
exhaustive case-by-case analysis based on geometric 
invariants for nonplanar intersection curves. 

alternative based on partitioning the base  curve itself, rather 
than its domain, by using  projections, which completely and 
explicitly solves the  domain segmentation  problem using 
only  trivial  geometric  calculations. As before, let S and T be 

We offer a  conceptually and  computationally simple 
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natural quadrics, with T being a  cylinder or a  cone, and let b 
be a  parameterization of a circle on  T. Let 6 be the circle, 
itself, that is the image of b. Let p be a point of 6. If the line 
in the ruling of T through  p is disjoint  from S, define  p to be 
of type 0; if the line belongs to S, define  p to be of  type I ; 
if it  intersects  once, define p to be of type 2-3; and if it 
intersects twice, define p to  be of type 4. Define a base curve 
segmentation to be a  partition  of 6 into finitely many 
connected  subsets  each of which is either  a point  or  an open 
arc of constant  type  points. Clearly, a domain segmentation 
immediately yields a base curve  segmentation, but as we will 
see, it is much easier to reverse the process. 

perpendicular  projection of an  arbitrary  natural  quadric  onto 
an arbitrary  plane, and moreover note  the cardinality of the 
pre-image of each point in the projection. In every case the 
projection can be described by a set of at  most  three circles, 
lines, or points  in the plane, and this same set suffices to 
partition  the  projection into regions in which all the points 
have pre-images with the  same cardinality, which we refer to 
as  a  partitioned  projection. If T is a  cylinder, let P be the 
plane  containing 6, and let II#) be a  partitioned  projection 
of S onto P. Since a line in T intersects S in  n  points, if and 
only if the  line  intersects II#) in  a point whose pre-image 
has  cardinality k, a base curve  segmentation can now be 
produced by intersecting 6 with the circles, lines, and points 
that define n#) and using the  points of intersection to 
partition 6. These  intersections can be performed  in terms of 
some parameterization of 6 or directly by simple  geometric 
arguments. 

In Section 4 we present explicit formulas  for the spherical 
projection  of an arbitrary natural  quadric  onto  an arbitrary 
sphere, and again note  the cardinality of the pre-image of 
each point  in  the projection. In each case the projection can 
be described by a set of at most five circles or points  on  the 
sphere, and  this  same set suffices to  determine a  partitioned 
projection. If T is a  cone, let S’ be the sphere  centered at  q, 
the vertex of T,  and  containing 6, and let n&(S) be a 
partitioned  projection of S onto S ’ .  Let 6- be  the circle 
antipodal  to 6, that is, 6- = (2q - x:  x E 61. A base curve 
segmentation can now be produced by intersecting 6 and 6- 
with the circles and  points  that define n&(S) and observing 
whether  q E S. In particular,  let p be the  union of the 
isolated points of intersection that 6 has with the points and 
circles that define nA,(S). Let p- be the  union of the isolated 
points  of  intersection that 6- has with the  points  and circles 
that define II&,(S), and let p- be the set of points antipodal 
to  points of p-; that is, x E p-, if 2q - x E p-. Now use 
p U p- to partition 6 into  points  and open arcs. If y is one 
of the  open arcs of this  partition, then y is a  subset of one 
region in n&,(S), and  the cardinality of the pre-images of 
points  in  this region is k, if and  only if each open half-line of 
T emanating from  q and passing through y intersects S in k 
points.  Moreover, if y- = (2q - x: x E y }, 

In Section 3 we present explicit formulas for the 
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then y- is a  subset of one region in ni,(S), and  the 
cardinality of the pre-images of points  in  this region is k-, if 
and only if each open half-line of T emanating  from q and 
passing through y- intersects S in k- points. Thus, each line 
in T passing through y intersects S in k + k- + 1 points, if 
q E S, and  in k + k- points, otherwise. The required 
intersections can be performed in  terms of parameterizations 
of 6 and 6- or directly by simple  geometric  arguments. For 
example, if C is one of the circles that define nk.(S), then let 
P, be the plane containing it, and let Pi, be the plane 
containing 6. Now C n 6 = P, n P6 n S ’ ,  which is nothing 
more  than a line-sphere intersection. 

At this point we have shown that by using projections we 
can always produce  a base curve  segmentation by 
performing  a  small number of trivial intersection  problems, 
never more complex than a circle-circle intersection. Now 
we show that a base curve  segmentation  leads directly to a 
domain segmentation. For  this purpose assume  that a 
parameterization, b, has  been  chosen  for 6, and  that we have 
computed a base curve  segmentation of 6. If  we have used 
the parameterization to find the base curve  segmentation, 
then we also have  a  partition of domain(b); if not,  then 
either  applications of the arccos and arcsin  for the 
transcendental  parameterization or solutions  of the 
associated second-degree polynomial equations for the 
rational  parameterization yield a partition of domain(b). In 
fact, this  partition is a domain segmentation, as we now 
show. Let y be one of the  connected  components  in  the base 
curve  segmentation, and let g be the associated connected 
subset of the partition of domain(b). If T is a cone with  its 
vertex on S, then  the  point type of points of y determines a 
unique  parameter value type for  the values in g, so that  the 
partition is a  segmentation. Thus,  assume  that T is not a 
cone with its vertex on S. It is obvious that  the  points  in y 
are of  type 0, 1, or 4, if and only if the  parameter values of  g 
have parameter value type 0, 1, or 4, respectively, so assume 
that  the  points  in y are of  type 2-3. Clearly, each  point of y 
must correspond to a parameter value of type 2 or 3. If y is 
a single point,  then g is a single value, and y = b(g), SO that 
g is of parameter value type  2, if A ( g )  = 0, and is of type 3, 
otherwise. Now assume  that y is an open  arc, and  that to has 
parameter value type 3, for some b(t,) = p E y, so that 
A ( & )  # 0 and 6( to )  = 0. Since A is continuous,  it  must be 
nonzero  in  some neighborhood  of to. If 6 ( t )  is not identically 
zero  in  this  neighborhood, then  any subneighborhood of 
to must  contain  parameter values of type 0 or 4, 
contradicting the  assumption  that y contains  only  points of 
type 2-3. Thus 6 must  be identically  zero  in  a  neighborhood, 
and hence everywhere, and  in particular, in g.  If there exists 
t ’ E g such that A ( t  ’) = 0, then since 6( t  ’) = 0, B(t ’) = 0, 
but this  implies that t ‘ has parameter value type 0 or 1, 
again  contradicting the  assumptions  on y. Thus, for all t E g 
we have that A ( t )  # 0 and 6 ( t )  = 0, so that each t E g  has 
parameter value type 3. Since we can distinguish 
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between parameter value types 2 and 3 by testing A ,  we find 
that if y is a  type 2-3 open  arc, then all elements  of g have 
parameter value type 2, ifA(t,) = 0 for any b(t,) E g; 
otherwise, they have parameter value type 3. In conclusion, 
we see that  the partition of domain(b)  determined by a base 
curve  segmentation is indeed  a domain segmentation,  as 
claimed. 

To summarize, we began this section with a  cursory look 
at  the two major theoretical methods for quadric surface 
intersection. One of these, Levin's method, was seen to 
simplify in the special case of natural quadrics,  reducing to a 
technique for intersecting  a ruled natural  quadric with an 
arbitrary  one. We examined  this  method  in  detail, and 
showed that  an intersection can be described explicitly in 
terms of finitely many  disjoint smooth parameterized  curves 
and points, if a domain segmentation is found. We then 
showed that a related concept,  a base curve  segmentation, 
can always be found by exploiting an  appropriate partitioned 
projection to segment  a base curve. Since these  projections 
are describable by small numbers of circles, lines, and points, 
it followed that this base curve  segmentation  could be 
produced by calculations  as  simple  as  those  required in 
circle-circle intersection. Finally, we showed that a base 
curve  segmentation  leads directly to a domain segmentation; 
hence. by utilizing these  techniques we always can explicitly 
and exactly find the intersection  of  two natural  quadrics by 
means of tractable  geometric  calculations. In fact, if  we 
assume  the existence of modeling utilities in  a system that 
supports objects  in  planes and spheres bounded by circles, 
lines, and points that can  intersect  such objects with circles, 
and assume the ability to evaluate  polynomial  functions, 
then we can use these to  determine completely the exact and 
explicit intersection of two natural quadrics. 

2. Notation 

General notation 
All vectors are written  as lowercase roman characters, and all 
scalars are  written  as lowercase italic characters;  for  example, 
p is a vector and r is a scalar. 

If A is a point set, 2 denotes its topological closure. 
Let f be a  function with domain X and range Y. If Z is a 

subset of Y, then f is referred to  as  an n-fold map  onto Z, if 
n is the  cardinality of the pre-image of each z E Z. 

Linear notation 
If w is a nonzero vector, let L(w, p) denote  the affine line, 
( p  + tw:t  E W), L'(w, p) the open half-line, ( p  + tw:t > 0), 
and L-(w, p)  the open half-line, (p  + tw:t < 0 ) .  Let P(w, p) 
denote  the affine plane, (x E R3:'w(x - p) = 0), and 
P'(w, p) and P-(w, p) denote  the related half-spaces 
P'(w, p) = ( x  E W3:'w(x - p) > 01, and 
P-(w, p) = ( x  E m3:tw(x - p) < 01. 422 
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Let P = P(w, p) be a  plane. For r > 0, if p '  E P, let 
C(p', r ;  P) denote  the circle in  P of radius r about p'. 

If C is a circle and  pI , p2,  and p3  are three  points  on C, let 
y(p, , pz; p,) denote  the open arc of C that  connects pI  and 
pz and  contains p,, and let yc(p,,  pz; p,) denote  the open arc 
of C that  connects pI  and p2 and does not  contain p,. 

If L L P is a  line, let S(L, r ;  P) be the strip  in  P of width 
2r about L; that is, S(L, r ;  P) = (x E P:d(x,  L) 5 r ) ,  where d 
denotes Euclidean distance. 

For  v X w # 0, let V(v, w, p) denote  the  planar  cone 
(p  + N V  + /3w:a, f i  E a,  a@ 2 0 ) .  If V = V(v, w, p), then  the 
complementary  cone, V', is the cone V(-v,  w, p). V and v' 
partition the plane that  contains  them  into two regions that 
intersect only at their  boundaries. If  'wv 2 0, then we say 
that V is acute.  Either  V or Vc (or possibly both) must be 
acute. 

Let II denote perpendicular  projection onto P; that is, 
HP:x E R3 -+ x - 'w(x - p)(w/II w 11') E P. Note  that I I p  is 
linear if and only if 0 E P, so that 
I I , , ( ~ , ~ )  = n p  - ('wp)(w/~~ w 11 '1 is linear. 

Spheres 
For r > 0 let S(p, r )  be the sphere about p  of  radius r. 

G(w, q; S )  = S n P(w,  q), and H'(w, q;  S )  = S n P'(w, 9). 
Note that if p E P, then H -  and Hf are hemispheres 
bounded by the great circle G. 

n,:x E m3\p  + p + r ( x  - p)/l~ x - p 11 E S. 

For the sphere S = S(p, r )  let H-(w,  q; S )  = S n P-(w, q), 

Let n,y denote spherical projection onto S ;  that is, 

Cvlinders 
For r > 0, let C(w, p, r )  be the right circular  cylinder with 
axis L(w, p)  and radius r. 

Cones 
For r > 0, let V(w, p, r )  be the right circular  cone with vertex 
p, axis L(w, p), and such that if 0 is the angle between any 
line  in Vand L(w, p), then I tan 0 I = r. 

For  the cone V =  V(w, p, r ) ,  let V- = V-(w, p, r )  = 

V n P-(w, p) and V' = V'(w, p, r) = V n P'(w, p). 
Let V, = V,(w, p, r )  be the  union of the two regions inside 

V ;  that is, 

where 0 is the  angle  between w and x - p, 

and let V, = Vx(w, p, r )  be the region outside V; that is, 
v,(w, p, r )  = R,\(VU v,). 

Vr = VL(w, p, r )  = 5 n F ( w ,  p). 
Let V,+ = V:(w, p, r )  = Vi f l  P'(w, p) and 
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V: is the region inside  the upper half-cone V+ U p, and 
V ,  is the region inside  the lower half-cone I/- f l  p. Note 
that V =  V - U  V + U p a n d t h a t w 3 =  V,U VU  Vx,bothas 
disjoint  unions. 

3. Planar  projections 
In this  section, we first examine the projections onto a plane, 
which are simpler than those onto a sphere, as would be 
expected. We proceed here and in the next  section  in 
increasing order of complexity: that is,  first with the 
projection of a  plane,  then  a  sphere, then a cylinder, and 
finally a cone. 

Projection of a plane onto a plane 

Proposition I 
Let P = P(v, p) and P’ = P(v’,  p’). 

nP. (P) 

- - JP’ if v is not  perpendicular  to v’, 
\L(v X v’, p j  if v is perpendicular to v’, 

where p = p + ‘ ~ ’ ( p ’  - p)II v’ II-2v’. 

Proof Since ‘vi, = ‘vp and ‘v’i, = ‘v’p’, when  v is 
perpendicular to v’, it follows that p E P n P’,  and  the 
claims  are now easily verified. 0 

Projection of a sphere onto a plane 

Proposition 2 
Let P = P(w, p) and let S = S(q, r). II,(S) is the closed disc 
A C P about II,(q) = q - ‘w(q - p)(w/II w 11 ’) of radius r. If 
II, is restricted to S, then it is twofold on  the interior of A 
and onefold on dA. (Interior and  boundary  are defined with 
respect to  the  natural topology of P.) See Figure 1. 

Proof Obvious. 0 

e Projection of a cylinder onto a plane 

Proposition 3 
Let P = P(w, p) and let C = C(v, q, r). 

I 

/Iw P 1 

If I I p  is restricted to C, then  in  the first case each point of 
the circle is the image of a regula of C, and  in  the second 
case II, is onefold on  the  boundary of the image and twofold 
on  the interior of the image.  (Boundary and  interior  are 
defined with respect to the  natural topology of P.) See Figure 2. 

Proof If  w and v are parallel, then C = (c + t w : c  E 
C(II,(q), r ;  P) and t E W}, and  the result follows. 

If w and v  are not parallel, then 

+ q + tv :0  E [0, 27r) and t E R I I’ 
If Q = P(w, 0), then, since v X w I w and II, is linear, it 

follows that 

- [(cos On,( II 11) + sin OnQ( v x w  x L)) + tn,(v):O E [0, 27r) and t E R 1 - 1  II v x w II II v II I 
v x w  

= {r  cos 0 + nQ( 11 v I12w - (‘vw)v) + tIIQ(v):O E [0, 2a) and t E R r sin 0 
II v x w II  II v x w II II v II 

= ( I  cos 0 
v X w r sin ~ ( ‘ v w )  

II v x w II II v x w II II v II 
IIQ(v) + tIIQ(v):O E [0, 27r) and t E R 1 - I 

= ( r  cos 0 + tnQ(v):O E [0, 27r) and t E R 1 v x w  
II v x w II I’ 

1 I 

423 
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w = xv w # Xv 

Projection of a cylinder  onto a plane. 

P’ 
I P 

From this the result follows immediately,  since 
II,(v) = v - (‘wv)(w/II w 11 *), so that v X w I II,(v). 0 

9 A technical lemma 
The following lemma  and its  two corollaries will be useful in 
the final planar projection we consider, and also in  the 

424 section on spherical  projections. The  lemma would possibly 

seem simpler if expressed in  terms of sin and cos, but would 
be more  troublesome  in  symbolic manipulations later, so 
these are avoided here. 

Lemma 1 
Let P = P(v, 9). Let C = C(p, r ;  P) and let p’ E P be outside 
C. Let 

v x (P’ - P) 

II v x (P’ - P)II 
W =  

Let 
2 

p t = p +  
r 

I1 P‘ - P II 2 (P‘ - P) 

rL 

II P’ - P II 2 w. 

The lines L(p- - p’, p’) and L(p+ - p’, p’)  are  tangent  to C 
at p- and  p+, respectively. They are  the only  lines tangent  to 
Cand  containing  p’. See Figure 3. 

Proof One checks easily that 11 p- - p 11 = r and  that 
(p- - p) I (p- - p’), which imply the claims for the first 
line. The  same calculations work for the second line. That 
no more than  two lines can share  these  properties is 
obvious. 0 

Corollary 1 
Let S = S(p, r )  and  p’ be outside S. Let 
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r 

JIIP - P’ ( I 2  - r2 

V circumscribes S. No other lines through  p’  are  tangent 
to s. 

Proof  If one applies the  lemma  to each plane  containing  p 
and  p’,  and calculates the  tangent of the angle between 
L(p - p’,  p’)  and L(p+ - p’, p’), then  the corollary 
follows. 0 

Corollary 2 
Let P = P(v, 9’). Let C = (p  + r  cos Ox + r’ sin Oy:O E 
[O, 2 ~ ) )  with x and y orthonormal be an ellipse in P, and let 
p’ E P be outside C. Let 

The final claim follows immediately, since if p’ - p I x, 
then 

and ‘y(p’ - p) = f 11 p’ - p 1 1 .  0 

Projection ofa cone onto a plane 
The final planar projection  considered is that of a  cone. The 
most  obvious  situation yielding a planar  cone  turns  out  to be 
the most difficult to describe precisely, while the  other two 
cases are trivial to describe but easy to overlook. 

P ” P  + II S(P’ - - 1 - ‘Y(P’ - P)r x + 

‘ 
p * = p +  

I1 S(P’ - p H 2  
- 

II S(P‘ - P)1I4 ( r f  
r y) ’ x(p‘ - p)r’ 

where S:q E W 3  4 (‘xq/r)x + (‘yq/r‘)y. The lines 
L(p- - p’,  p’)  and  L(p+ - p’, p’)  are  tangent  to C at p- and 
p+, respectively. They are the only  lines tangent  to C and 
containing  p’. If p’ - p I x, then 

p + = p + r  1 2  P ‘ -  P 

IIP‘ - P1I2 

Proof Since p’ is outside C, then 

so that  S(p’ - p) is outside C(0, 1; P(0, v)) = C. Applying the 
lemma  to S(p’ - p)  and C yields points of  tangency at 

I 
Proposition 4 
Let P = P(v, q)  and V =  V(w, p, r). 

if  v + p is  inside V, 

if  v + p is outside V, 
i f v  + p E V, 

where Lx = L+(w x v, II,(p)) U L-(w x v, II,(p)), and V is 
the  planar cone, 

with u+ = [ 11 w 11 2(  11 w X v 11’ - r2(‘wv)’)]”’v X (w X v) k 

r II w II ’ II v II 2w x v. 
If II, is restricted to V, then in the first case it is onefold 

on  Hp(p)  and twofold elsewhere; in the second case a full 
line is mapped  to  IIp(p)  and it is onefold elsewhere; and in 
the final case it is twofold on  the interior of its  image and 
I 

We now define the affine transformation T :  q E W 4 

‘xqrx + ‘yqr’y + p. It is easy to see that  T( C )  = &and that 
T(S(p’ - p)) = p’. Since tangency is an affine invariant,  it 
follows that  T(&)  must be the  points of tangency  for the Proof  If w is parallel or orthogonal to v, then  the claims 
lines  through p’  and tangent to C are obvious, so assume  that 11 v X w 11 # 0 # ‘WV. This 

I 
onefold on  the  boundary of its image. (Interior  and 
boundary  are defined with respect to  the  natural topology of P.) 
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implies that vq 
nP(d = nP,",& + - 

I1 v I1 v7 

the general result follows. 

+ sin 0 
(v x w) x w 

II (v x w) x w II 
4. Spherical  projections 
Now we turn  to  the spherical  projections. The first two are 

is an ellipse, C. 
Since 

straightforward, but those  for  cylinders and cones are  more 
interesting. 

v =  p + t -  -I (ll:ll + I I V  x WII 

v x w  
- 

Projection of a plane onto a sphere 

+ sin 0 II (v ~ v x w ~ x w ) ) : t E * . 8 € [ 0 . 2 a )  x w) x w II 1 , Proposition 5 
Let P = P(v, p) and S' = S(p', r ' ) .  

the image of Vis  the  union of the lines passing through 
II,(p) and a point of C. The  three cases above  correspond to n,, (p) = 

np(p) inside, on, or outside C, respectively. This observation G(v, p ' ;  S ' )  if p' is in P, 
and simple arguments lead immediately to  the claims for the where = sgn('v(p - pt)). 
first two cases. For  the  third case, more detailed information 
about C is needed. Proof Obvious. 

i H"(v,  p' ; S ' )  if p' is not in P, 

First, let us  assume that q = 0, so that I I p  is linear, and I 

r2('wv?  v X w 
1) v x w ! I 2  I1 v x w I1 

are  tangent  to C at p*. This establishes the result  for q = 0, and since 
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S‘ 

S 

S‘ 

S 

S’ 

p‘ inside S p‘ onS p’ outside S 

Projection of  a sphere onto a sphere 

Proposition 6 
Let S = S(p, r )  and S’ = S(p’, r’). 

c if p’ is inside S, 

if p’ is on S, 
rI,,(S) = 

If II,. is restricted to  S\p’,  then in the first two cases it is 
onefold everywhere, while in  the  third case it is twofold on 
the interior of its  image and onefold on  the  boundary of its 
image. (Interior and  boundary  are defined with respect to  the 
natural topology of S’.) See Figure 4. 

Proof If p’ is inside S, the claim is obvious. When p’ is on 
S, by considering the hyperplane of support for S at p’ ,  the 
claim is easily verified. The last case follows from Corollary 
1 and simple  trigonometry. 0 

Projection of a cylinder onto a sphere 
The proposition describing the projection of a  cylinder onto 
a  sphere depends  on two technical  lemmas. 

Lemma 2 
The  point i, = ‘ ~ ( p ’  - p)(w/II w 11 *) + p minimizes the 
distance  from  a point on L(w, p) to  the  point  p’. 

Proof ( 5 - p ’ ) L w .  0 

r 
Lemma 3 
Let S‘ = S(p’, r’) and L = L(w, p) be a  line  such that 
p’ 4 L. II,, (L) is the  “open” half of the great circle of S’ 
determined by the plane containing L and  p’  that  runs 
between p’ - r’(w/II w 1 1 )  and  p’ + r’(w/ll w 1 1 )  and is 
“closest” to L. More precisely, if i, minimizes the distance 
from  L to  p’,  then  n,,(L) = G((p - p’)  X w, p ’ ;  S’)  f l  
H+(i ,  - p’,  p’ ; S’). n,, restricted to L is onefold. See 
Figure 5. 

Proof Let P = P((i, - p’) X w, p’). Since clearly L G P and 
p’ L P, it follows directly from  the definition of II,, that 
II,.(L) C P n S’. The claims now follow from  the 
analogous, but obvious, planar result concerning the 
projection of a  line onto a circle whose center is not  on  the 
line. 0 

If C is  a  cylinder and  Vis a cone, we could use 
Proposition 4 to  obtain II p( V), for P orthogonal to  the axis 
of C, and  then segment the  parameter  domain of the ruled 427 
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Projection of a line onto a sphere. 

surface, C, by intersecting circle C = C n P with n,( V ) .  
Alternatively, we could use the following proposition to 
project C onto a  sphere, S, whose center coincides with the 
vertex of V, and segment the  parameter  domain of V by 
intersecting circle C ‘ = V n S with this projection. Thus, as 
the  means  to  aid  in cone-cylinder intersection  problems, 
either  Proposition 4 or  the following alone would suffice. 

Proposition 7 
Let C = C(w, p, r)  and S‘ = S(p‘, r‘). 

[S’ \ P if p’ is inside C, 

rl R t ( n + ,  p’;  S’)\P if p’ is outside C, 

where 

n r = P - p ’ I + _  w x ( e  - p’). 

If n,, is restricted to C \ p ’ ,  then  in  the first case it is onefold 
everywhere; in the second case it is onefold on H+(p - P’, 
p’; S’), while it maps  the half-line [p’ + t w:t > 0 )  onto 
p’ + r’(w/ll w 11) and  the half-line (p’ + t w:t 01 onto 
p’ - r’(w/II w 11) ;  and in the  third case it is twofold on  the 
interior of n,,(C) and onefold on d n,, (C)\ P. (Interior and 
boundary  are defined  with respect to  the  natural topology of 
S’.) See Figure 6 .  

Proof Let p’ be inside C, L = L(v, p’), and P be any plane 
containing L and  p‘ + w. P fl C will be two lines L,  and L,, 
neither  of which will coincide with L. L n C = L n (L, U L2) 
will be  two  points if L is not parallel to C, and  empty if it is. 
This implies the result in the first case. 

Let p’  be on C. Let P be the  tangent plane to C a t  p’. It is 
easily seen that p - p’ I P. Since P is a  hyperplane of 
support of C at  p’, it follows that if ‘v(p - p’) < 0, then 

since P is the tangent  plane to C a t  p’,  then L*(v, p’) must 
begin inside C, so that by the first part of this proof the 
closure of L+(v, p’) intersects C twice, once  at  p’  and  once 
at  another point. Since distinct rays share the initial point 
p’, these points of intersection cannot coincide. 

Now let p’ be outside C. Let P = P(w, p’).  P n C is a 
circle C of radius  r about p .  Lemma 1 implies that II,, ( C) is 
the arc  of G(w, p’  ; S’) between r’(p- - p’)/ll  p- - p’ 11 and 
r‘(p+ - p’)/]l p+ - p’ )I containing Us,(p), and  that Us, is 
onefold on  the two endpoints  and twofold on the  interior of 
the arc.  Each  line of C passes through  one  point of circle C 
and is parallel to w. Lemma 3 implies that each  line is 
mapped onto  an open half-circle emanating  from 
p’ - r’w/l[  w 11 and  terminating  at  p’ + r’w/[l  w (1. 
Since two circles coincide if and only if they  coincide at 
three points, the half-circles agree on n,,( C) if and  only if 
they coincide everywhere. 

L+(v, p’) n c = 0. P n c = L(W, p’). If‘v(i, - p’) > 0, 

Since by Lemma 1 

p* - p’ = 
r 

II P‘ - P It 

then 

‘ ( P ~  - p’)n? = II P’ - 5 11 - r 2 2  

- IIP’ - Ijl? - r2 I lWlJ2 l lP ’  - I j I I Z  
11 p’ - i, 11 1) w 1) II w II II P’ - P I1 = 0. 

It is also clear that ‘n,(w) = 0. Thus n+ is perpendicular to 
the plane containing  p’,  ns,(p+),  and  p’ - r’(w/ll w 11). 
Since 

‘(P - P’)& = ‘(P - P’ xi, - P’)  
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S’ 

p‘ inside C 

L 

,.__.... .. 

S’ 

c 

S’ 

1 

p’ on C p’ outside C 

Projection of a cylinder onto a sphere. 

the Cauchy-Schwartz inequality  implies that II,,(p) E Lemma 4 
E+(n-,  p’ ; S’)  rl R+(n+,  p’ ; S’). This implies the claim for Let S = S(p, r ) .  Let C+ = G(v, p + v; S )  and let C- = 
the final case. G(v, p - v; S) with 0 < 1) v 1) < r. Let q E H-(v, p + v; S )  n 

Two technical lemmas H-(-v, p - v; S);  that is, q belongs to  the region of S 

The final projection, that of a cone  onto a  sphere,  is by far between the two antipodal spherical  caps bounded by C+ 
I and C-. Finally, define 

the most  complicated. Four cases need to be distinguished 
which differ only by the location of the  center of the sphere 
relative to  the  cone.  The  four  occur when the  center 
coincides with the vertex of the cone,  when the center is on 
the cone, when the center is inside the cone, and when the 
center is outside the cone.  Only  in the last case is the image 
difficult to describe precisely (see Figure 9, shown later). The 
two lemmas which precede the proposition make  the 
description  of the final case easier. Each pertains  to circles 
having special properties with respect to  two  antipodal 
circles and  an exterior point  on a  sphere. 

I 

The only two great circles of S passing through q and 
tangent to C+ or C- are G’ = G(n+, q; S )  and G- = 
G(n-, q; S). G+ intersects C+ only  at p: and intersects C- 
only at PI, and G- intersects C+ only at p: and intersects C- 
only at p;.  p: E H*(n-, q; S) ,  and  p” E H+(n+, q; S). 
See Figure 7. 

Proof If a great circle G is tangent  to C+ at 6, then 
p - (6 - p) must lie in the plane which determines G, so 
that it also is on G. The  symmetry of the sphere and 429 
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antipodal circles then implies that G must also be tangent  to C- at  the  point  antipodal  to 6. Any  two circles which are 
tangent at  one  point  and which share  a different point  must coincide, so that  no great circle tangent  to C+ can intersect  it 
again, since by definition C+ is not a great circle. That only  two great circles may pass through q and be tangent  to C+ 
is clear. 

If  ‘v(q - p) = 0, since  most terms vanish or simplify greatly, the claims are readily verified. Thus we assume  that 

Let 
‘v(q - P) + 0. 

then by Lemma 1 p: is the  point of C+ at which the  line L+ through p: and  p‘ is tangent to C+, and p’ is the  point of C+ at 
which the  line L- through pr  and  p’ is tangent  to C+. If P+ is the plane containing p and L+, and P- is the  plane  containing p 
and L-, then by construction q E P+  and P’ is tangent  to C+ at p:, and q E P- and P- is tangent  to C+ at  pz.  The geodesics 
determined by these  planes thus satisfy the claims  of the  lemma. 

We simplify the expressions of p: by recognizing that (1 q - p (1 = r, since q E S, and by using the following 
formulas for cross products of arbitrary vectors a and b: 

430 
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Collecting terms and applying simple algebra  yield the desired formulas for p: and p’ of the lemma. 
If  we  let 

I 

= v  (r2 - I1 v I1 ’ )r2(  I1 v I1 - (‘v(q - PI)’) 
I1 v I1 

> 

then CY = p > 0. In terms of these  values  it  follows that ‘n+(p; - p) = -a + = 0, ‘n-(pT - p) = -CY + p = 0, 
‘n+(p+ - p) = (Y + p > 0, and ‘n-(p: - p) = CY + 0 > 0. The final claims now  follow, since it is obviously  also true  that 
‘n+(q - p) = 0, and ‘n-(q - p) = 0. 0 

Lemma 5 
Let k = - ‘v(q - p)r2v + 11 v 1I4(q - p). Let S, p, q, v, r, pl ,  and p i  be as in Lemma 4. p:,  p’, p i ,  and pI  belong to the great 
circle, B = G(k, p; S). q E H’(k, p; S). 

See Figure 8. 
t 1  1 

Proof Since ‘k(p1 - p) = (- v(q - p)r2v + )I v I14(S - P)) I1 v I1 2(r2  I1 v I1 - (‘v(q - P)f )  

[V i (  II 11 - (%q - p)?)v + II v II ’Iv(q - p)(r2 - II v II ’)(q - P)I 
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then k is perpendicular to  (PI - p). Since (p: - p) differs 
from (p: - p) only by a term  that is perpendicular to k, then 
k is also perpendicular to (p’ - p). This implies that p: and 
p: belong to &. Since p; and  pI are  antipodal  to p: and p’, 
they also must belong to 8. 

If 0 is the angle between q - p and v, then  the constraints 
on  the choice of q  imply that 

I r cos(8) I < II v 11, so that (1 v (1 * ‘v(q - p) 

= )I v 11 (It v 11 f r cos(@) > 0. 

Thus, 

‘(-‘v(q - PP2V + I1 v I1 4(9 - P))(q - P) 

= -(‘v(q - p)yr2 + r2 11 v 11 

= r2( II v 11’ - ‘v(q - P))( II v II + ‘v(q - PI) > 0, 
“t so that by definition  q E N+(k, p; S). 0 

Projection o f a  cone onto a sphere 
We are now ready for the final projection. The four 

The two tangential great circles containing q.  previously mentioned  cases-center  and vertex coincide, 
center on cone, center inside  cone, and  center outside 
cone-are shown to have as images two antipodal circles, a 
hemisphere minus a  spherical cap plus the  antipodal cap, the 
sphere minus a  spherical  cap, and  an hourglass-like region. 
In stating  these results, care is required to avoid  a notational 
nightmare, but each  of the  component parts  in  this version is 
nearly rational,  involving at most one root. 

Proposition 8 
Let V =  V(w, p, r )  and S‘ = S(p’, r’). 

If we define 

rJ = sgn(‘w(p - P’)), 

q- = p‘ - r’ P - P‘ 

I1 P - P’ II ’ 

w+ = p’ + ____ - 
JZ II w II’ 

&q-j II w II ’ 

r‘ w 

w- = p’ - ~ - 

wx = (w x (P - P’)) x (P - P’) 

r’ w 

= ‘W(P - P’XP - P’) - II P - P’ I12w, 

I k = -‘w(p - p’)(r2 + l)w + 11 w I( ’(p - p’), 
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and U’ = [R’(n+, 9’; S ’ )  n R’(n-, q+; S ’ )  n H+(k,  p’;  S ’ ) ]  U H*(w, w’; S’) ,  

G(w,  w+; S’) U G(w, w-; S’) if p’ = p, 

H“(w”. D‘: S’) n H“(w. w-~: S’) u He(w, w“; S’) U q* if p’ is on V, but  p’ # p, 
then ns,( V )  = 

. I _  I , 

H“(w, w-“; S ’ )  

( v+ u v- 

Let II,, be restricted to  V\p’. 
In the first case, if y belongs to  the image of V,  then 

n,.(L’(y - p’, p’)) = y. In the second case II,,(L+(+.(p - p’), 
p’)) = q*, and is onefold elsewhere. In  the  third case it is 
twofold on  H“(w, w“; S’)\q+  and onefold elsewhere. In the 
final case II,, is onefold on H+(w,  w+; S’) U H-(w, w-; S’) 
and  on  the  boundary of II,,( V)\[H+(w,  w+; S’ )  U 
H-(w, w-; S’)] and is twofold elsewhere. (Interior  and 
boundary  are defined with respect to  the  natural topology of 
S’.) See Figure 9. 

Proof Since for any y E G(w, w+; S’) U G(w, w-; S ’ ) ,  

so that y E V, and  the first case follows. 
Note that  the first case implies that II,. ( V ,  - p + p’) = 

H+(w,  w+; S‘) U H-(w,  w-; S‘). 
In the second or third case u cannot equal zero. We begin 

by assuming that u > 0. 
In the second case p’  E I.“. Since p’ E V-, then  L+(u,  p’) 

intersects V+,  if and only if either u = X(p - p’) for some X 
> 0, in which case L+(u,  p’) n V =  L+(u, p’), or u E V,+- p, 
in which case there is a  one-point  intersection.  Since the 
circle contained in V which contains  p’ has  a  tangent 
direction at  p’ which is orthogonal to  the plane  generated by 
w and p - p’,  and since wx is in this plane, and ‘wX(p - p’) 
= 0, then P = P(wx,  p’) is the  tangent plane to  Vat  p’. If  we 
note  that ‘wx(-w) = 11 w 11 11 p - p’  ( 1  - (‘w(p - p’))’ > 0, 
then it follows that if ‘wx(u) < 0, L’(u, p’) n V-  = 0, while 
if ‘wX(u) > 0, then there exists an E > 0 such that 
{p’ + tu : t  E (0, E ) )  _C V,:, so that L+(u, p’) intersects V -  
once, unless u E p: - p, in which case there is no 
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if p’ is  inside V, 

if p’ is outside V. 

I 

intersection. In P itselfclearly  only L+(+(P - p’), p’) 
contribute  to the  projection.  If we note  that P separates V-  
from V+, this  completes the proof for the second case with 
u > 0. 

In the third case, because p’ E Vi-, L+(u, p’) intersects P- 
once, unless u E p; - p, in which case there is no 
intersection, and  L+(u, p’)  intersects p’ only if u E V,+ - p, 
in which case there is a  one-point intersection. This implies 
the result for the third case with u > 0. 

If u < 0, then applying the already  proven  sections to -w 
and rewriting the results in terms of  w yields the proof for 
the second and  third cases when u < 0. 

Now we turn  to  the fourth case. For each line L = L(v, p) 
in V with ‘vw > 0, let P be the plane containing L and  p’. It 
is  easy to see that II,. (L) is an open great half circle which 
contains q+  and starts at  p’ + r’v/ll v 11 and  ends  at 
p’ - r’v/)I  v 1 1 .  Thus, each  line  in Vis  mapped  to  an 
open half great circle containing  q+  and starting at a point 
y+ on (V+ - p + p’) n S’ = C+ and  ending  at  the  antipodal 
point y- = p’ - (y+ - p’) E (v- - p + p’) n S’ = e-. 
Conversely, each open half great circle containing  q+  and 
starting at a point y+ E C+ and  ending  at  the  antipodal 
point y- E C- is the image of a unique line L(y+ - p’, p) 
in K Lemma 4 implies that  only two great circles through 
q+ are tangent  to C+, one which we denote as G’ = 
G(n+,  q+; S’) with point of tangency p+,  and  the  other 
which we denote as G- = G(n-, q+;  S’) with point of 
tangency p:, It also implies that G’ and G- are  the only  two 
great circles tangent  to C- with G+ tangent  at p I  and G- 
tangent at pi,  and  that p: E H+(n-, q+; S’), and 
p’ E H+(n+,  q+; S’). 

Let M +  be the region bounded by G+ and G- whose 
closure contains C+, and M- be the region bounded by G+ 
and  G- whose closure contains C-; that is, M +  = H+(n+, q+; 
S ’ )  n H+(n-, q+; S’), and k“ = H-(n+, q+; S’) n H-(n-, 
q+; S‘). Each great circle through  q+  contained in M +  U k” 
U q’ intersects both C+ and C- twice, and hence 
transversely, and  no  other great circles through q+ except G+ 
and G- can intersect  either C+ or C-. Each  of  these  great 
circles determines two  open half great circles through q+ that 
begin at a point of C+. The  two agree between C+ and C-, 
with one intersecting C+ but  not intersecting C-, while the 
other intersects C- but  not C+. This implies that II,. 
restricted to  Vis twofold only on  that  part of its image 
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Case 1 
P = P’ 

Planar projections 
u > o  

“Top” view “Bottom” view 
u < o  

Planar projections  “Top”  view “Bottom” view 
u > o  u < o  

Case 4 

outside 
V 

P’ 

“Front”  view “Back” view 
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obtained  as the  union of the  open arcs between C+ and C- of  these open half circles, and is onefold elsewhere. 
Let G be a great circle contained  in E +  U E - .  Let B = G(k, p’ ; S’)  be the circle through p:, p:, p;, and  PI, with 

q+ E H+(k ,  p’ ; S’). B intersects C+ twice transversely at p: and py , and B intersects C- twice transversely at p’ and PI. 
Hence 

G n n,,(V) = (G n H+(k, p’; S f ) )  U (G n H+(w, w f ;  SI ) )  U (G n H-(w, w-; Sf)). 

Taking  the  union over all great circles G C U E -  yields 

Hs,( V )  = ( E +  n H+(k, p’; S ’ ) )  U H+(w, w+; S ’ )  U ( E -  n H’(k, p’; S’) U H-(w, w-; S’), 

as  claimed. 
All that  remains  to  be  done is to apply the  formulas of Lemmas 4 and 5 to  obtain explicit values for n, and k. 
In  the  terms of Lemma 4, q, p, v, and r here are q+, p’, ( r ’ / f i ) w / l l  w 11, and r ’ .  Substituting  these values for the 

formula for n, yields 

I 

r’ 

r + 1  r + 1  

II P - P’ II ) x w +  
p - p f  

f 2  
- - r 

+(p - p’) x w - II w II II P - P’ II 

which verifies the  formula for n,. 
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By Lemma 5 .  

which verifies the  formula for k and completes the proof. 

5. Intersections of cylinders  and  cones 
In this section we consider the problem of obtaining  the 
intersection of an arbitrary  cylinder and  an arbitrary  cone. 
By the results of Section 1 for any fixed cylinder and fixed 
cone, it is sufficient to produce  a base curve  segmentation  of 
a circle serving as the base curve of the cylinder or as the 
base curve of the cone. We have  shown,  moreover, that by 
using the partitioned  projections of Sections 3 and 4 we can 
completely solve the problem, if  we assume the existence of 
a  two-dimensional  modeling system capable  of  representing 
objects on a  plane or a  sphere that  are  bounded by circles, 
lines, and points and capable of intersecting  such objects 
with a circle. The  data describing the partitioned  projections 
are  not of great complexity, but  do generally involve 
radicals. The  internal intersections may involve more 
radicals. Thus, our assumption concerning the two- 
dimensional  modeler  implies the ability to  manipulate 
radical expressions and also to evaluate their signs. In this 
section we show that  at least in this case we need not make 
the  assumption pertaining to  the modeler or  the implicit 
assumption regarding the ability to handle  irrational 
quantities.  Instead, we make a more  common  and less 
expansive assumption: the ability to perform  arbitrary- 
precision rational  calculation. 

Let V = V(w, p, r )  and C = C(v,  q, r ‘ ) ,  and let 
P = P(v, p), the plane  orthogonal to C containing the vertex 
of V. We now sketch how we will proceed in the  remainder 
of  this  section. First, we obtain II;( V ) ,  a  partitioned 
projection of V onto P. Next we note  that C n P is a circle 
C = C(c, r ‘ ;  P), where c = L(v, q) n P, so that we may use C 
as the base curve of C that will be partitioned into a base 
curve  segmentation by IIL( V ) .  In each  of the  three cases of 
Proposition 4, II;( V )  partitions P into special points, 
segments of lines, and regions determined by the segments 
and points. C n II,( V )  can be decomposed into finitely 
many, maximal,  connected subsets, each one of which is 
contained in one of the subsets  in Hi( V) .  We denote  the 
partitioning by C n II;( V) .  Determining C n IIL( V )  reduces 
to considering the ways that  an arbitrary circle can interact 
with the partitioning. In fact, once we have determined  the 

436 topological type of the intersection of C and II ;( V ) ,  we are 
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able to give explicit formulas for the base curve 
segmentation. To  determine  the specific topological 
configuration of C n II ;( V ) ,  we find all the possible 
configurations, and by a careful analysis of them  can define 
polynomials  in the parameters of C and V whose signs 
determine  the topological type of C n II ;( V ) .  We define 
cases in terms of these signs. Thus, by testing the signs of 
polynomials we perform  a case analysis, and  then use the 
formulas appropriate  to  that case to define  a base curve 
segmentation. If  we provide  a  parameterization of each arc 
of the base curve, then by determining  the  parameter value 
type of the  domain of the arc and appealing to  formulas 
r, through r4 of Section I ,  we obtain C n V. As with any 
case-by-case analysis, the difficulty is in determining  and 
organizing the large number of subcases. In this regard we 
are aided by the fact that we are defining the cases in terms 
of signs of polynomials. Thus, there is a natural  notation, 
and if  we ensure that all possible sign combinations  are 
considered, we can be sure  that  no  situations  can escape 
scrutiny. 

To begin, if  we define 

then by Section 2, v + p is inside, on, or outside V 
depending upon whether f, (w, v, r) is less than,  equal  to, or 
greater than zero. Thus, by Proposition 4, II ,( V )  doubly 
covers P\p  and singly covers p, if f,(w, v, r) < 0; II ,( V )  
singly covers P\L(w X v, p) and  maps  the line L(v, p) onto 
p, if f, (w, v, r) = 0; and II p(  V )  doubly covers the interior  of 

v = ( p  + all, + pu-: a, p E R, ap 2 O), 

where 

uk = ( 1 1  w X v 11 * - r’(‘vwf)I’’v X (w X v) 

f rIIvI1211wIIw x v 

and singly covers L(u*, p),  if f,(w, v, r) > 0. We refer to 
these cases as  the (-) case, the (0) case, and  the (+) case, 
respectively. 
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Since P is perpendicular to C. P n C is a circle in P of 
radius r' whose center, c, is on  the axis of C. L(v,  4). A 
trivial calculation yields 

Thus P n C = C = C(c, r ' :  P). 

The simple cases 
The (-) case is particularly simple. Here II;( V )  partitions P 
into  the point. p, and the rest of P. The circle, C, in P has the 
point inside it, on it, or outside it, which is equivalent to 
11 c - p 11 * - r' ' being negative, zero, or positive. Since 

I1 c - P II = I1 q + 'V(P - 9) II v II -2v - P II 

= ( I1 9 - P I1 I1 v II - ('v(q - P)I2) I1 v I1 -? 

= II (9 - P) x v II  II v II -?, 

if we define 

f2 : (x1, X?, x3, s) E w3 x w 3  x w 3  x w 
+ II (x, - x*) x x3 II - s II x3 II 23 

2 2  

it follows that f,(q,  p, v, r )  negative, zero, or positive implies 
that p is respectively inside, on, or outside C. We refer to 
these subcases as the (- -) case, the (-0) case, and  the (- +) 
case. In the (-0) case, IIi( V )  decomposes C into p and 
y(p, p; p), while in the  other two cases II;( V )  n C = C. The 
arcs are doubly  covered and p is simply covered. 

The (0) case is almost as simple. II;( V )  partitions P into 
the  point, p, the two half-lines of L" = L(w X v, p)  separated 
by p, and  the two half-planes with boundary L". We 
partition C by its intersections with L". Thus each arc is 
singly covered, while if p E C n II p( V ) ,  it is covered by a 
line of C. If  L" intersects C in two  points, they can be found 
explicitly by solving for s in 11 sw X v + p - c 11 ' = r' *, and 
we denote  them as px+ = p + '(w X v)(c - p) f 
( r '  * 11 w x v 1 1 '  - 11 (w X v) X (c - p) 11 2)1'2 11 w X v 11 -'w X v. 
If p E C, then  the root  in  this expression reduces to 

= p + 2'(w X v)(c - p) (1 w X v (1 -*w X v. When Lx is tangent 
to C, the root vanishes, and we find that  pxT,  the  point of 
tangency, satisfies pxT = 
p + '(w x v)(c - p) 11 w X v II-'w X v. Finally, let p' = 

c + r ' v  X (w X v)/ll v X (w X V)II .  I ~ L "  is tangent to 
C, then p' = pxT,  but otherwise p' does  not belong to L". 

We may use  f2 again to  determine three subcases (0-), 
(00), and (O+) depending upon whether  p is inside, on, or 
outside C. For  the (0-) case, L" must  partition Cinto two 

pL).  For  the (00) case, either C is tangent to L", or L" 
partitions C into two arcs. This tangency is equivalent to c 
being r' distant from L", and since v X (w X v) lies in P and 
is orthogonal to L", it is equivalent to 1 '( 11 v X (w X v) 11 -Iv 

* *(w x v)(c - P), so that  Ipx-, p,+l = IP, pX,  1,  where pX,  

arcs, so that C n  n;(V) = Y(P,+,  pX-; P') u yC(px+,  pX-; 
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x (w X v))(c - p) I equaling r ' .  which in turn is equivalent to 
I *( 1 1  v x (w x v) 11 -Iv x (w X v))(q - p) I equaling r ' .  since 
v X (w x v) is also orthogonal to v. Thus. if  we define 

f3 : (x1, x*, x3, x,, s) E w 3  x w 3  x w 3  x w 3  x w 
+ ('(x, x (x2 x Xl))(X3 - x4)Y 

- s211x1 x (x* x xl)I123 

C is tangent to L" only if f,(v, w, q, p, r' ) = 0. Because 
p E C, f3(v. w, q. p, r ' )  5 0,  so it is reasonable to  denote 
the cases of tangency and nontangency  as (000) and 
(00-). Now, in  the (00-) case 
C n II;( V )  = p u y(p, p, * : p') U yc(p,  px * ; p'), while in 
the (000) case C n II;( V )  = p U yc(p, p; p). 

II;( V )  n Cis  the  union of the two  arcs y(p,+, px-; p') and 
yc(px+,  px-;   pl):  or Cis tangent to L" at  pxT, so that 
II;( V )  n C = yc(pxT,  pxT;  pxT); or Cis disjoint  from L", so 
that C n II ;( V )  = e, depending upon whether the distance 
from  c to L" is less than,  equal  to, or greater than r ' .  As in 
the (00) case, this is equivalent to the sign of f,(v, w, q, p, r ' )  
being negative, zero, or positive, and we designate the cases 
as (0 + -), (0 + 0), and (0 + +). 

Figure 10 depicts  examples of the  nine cases considered 
thus far. 

In the (O+) case either C intersects L" in  two  points, so that 

Cases where II p( V )  is a planar cone 
The (+) case is more complex, or at least more complicated. 
Here IIp( V )  is the  planar cone, V, and so we denote II;( V )  
as  V ', Let us denote L(u,, p) by L,. We partition C by its 
intersections with L,. Thus, each  arc  in C n V ' is doubly 
covered, and its boundary  points  are singly covered,  since 
V is doubly  covered on its interior  and singly covered on its 
boundary. As above,  when L, intersects twice, let p*= = p + 
('u+(c - PI rl: ( r  II ut II * - II u* x (c - P) II 2 ) " 2 ) ~ ~  u+ II-~u+, 
and when p E C, let p* * = p + 2'u+(c - p) ( 1  u* 11 -'u+. 
If L, is tangent to e, let p*T = p + 'u,(c - p) 11 ut 11 ut. 

As in the (-) and (0) cases, we begin by considering the 
relationship of p and C. As before, p is inside, on, or outside 
C depending on  the sign of f,(q, p, v, r' ), and we designate 
the corresponding  subcases as (+ -), (+ O), and (+ +). 

intersect C in  two  points, p+*  and p-,, respectively. Thus, 
V ' n C is the  union of p++,  p-+  and  the  arc connecting 
them, 3 '(P++, P-+: p+J,  and  P+-, P" and  the  arc 
connecting them,  yC(p+-, P"; p++). 

In the (+ 0) case, p E C and so L+  intersects C at  the 
second point,  p+ *, unless it is tangent to C at p, and L- 
intersects C at  the second point,  p-*, unless it is tangent  to C 
at p. Since V = V(u+, u-, p), z E w3 belongs to V if and 
only if 

1 2  

- 2  

In the (+ -) case p is inside C, and so L+ and L- must each 
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f4

Examples of the nine subcases of the ( -) and (0) cases .

for a = rhI w II (II
w x v

11 2 - r 2 (1vw)2)-L/2 .
We need to classify

the tangent to C at p, which equals (p - c) x v = (p - q) X v,
and so we define

:(x.,x 2 ,x3 ,S)EIR3 3 X2 3 xR 3 x

((XI X x2)x3)2(II x1 X
x2 112

- s 2 ( txlx2)2 )

5
2

11 X1 11 2 ( t (x2 X (XI X x2))x3) 2 .

Now, the tangent to C at p is in the interior of V, or is in
the boundary of V (and hence L + or L_ is tangent to C at p),
or is exterior to V, depending upon whether f4(w, v, (p - q)
x v, r) is negative, zero, or positive, and we designate these
cases as (+ 0 -), (+ 0 0), and (+ 0 +) .

Since the tangent to C at p is in the interior of V in the
(+ 0 -) case, it follows that C fl v ' is composed of p, p+.,
p_ * , y`(p, p +„ p_*),the arc connecting p and p+* ,
and y `(p, p- * ; p +* ), the arc connecting p and p_ . .

In the (+00) case, p - q is perpendicular to either L + or
L_. Assume that p - q is perpendicular to L+ . One sees
easily that c fl V must be an arc of C connecting p and p_ . .

MICHAEL A. O'CONNOR

(0-) (00-)

(0+0)

(000)

Since L(v x (w X v), p) C V, L(v X (w X v), p) fl cc C fl v.
Obviously, p is one point of the intersection, and since L+ is
tangent to Cat p, there is a second point, p er ,, * =
p+2`(vx(wxv))(c-p)IIvx(wxv)II 2vx(wxv),in
L(vX(wXv),p)f1CThus, CflV'=pUp_ * Uy(p,p_ * ;
p_,* ) . Similarly, if p - q is perpendicular to L_, then
CflV'=pUp+sU '(p,p+s ;P-,*) .

When we consider the (+0+) case, the tangent to C at p is
exterior to V, so p is isolated in c fl V. Thus c fl V' is
composed of p, p+* , p_ *, and the arc of C,
'y ` (p+s+ P-s ; P) .

Figure 11 depicts examples of the (+ -) and (+0)
subcases .

Intersections of C Kith L._

In the remaining subcases of the (+) case, p is outside C . If c
is at a distance greater than r' from L + and L_, then C fl V
is either empty or C itself . If c is exactly r' from L+ (or L),
then L+ (or L_) is tangential to C . If the distance to L + from
c is less than r', then L + divides C into two arcs, only one of
which can be contained in c fl V . Let
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( +  -1 

= (r’ 11 v 11 II w 11 + ( 11 w x v II ’ - r2(‘vw)’)) II v II II w X v II ’ 
= ( II w x v II + r2( II v II II w II * - tvw)2)) II v II II w X v II ’ 
=(1+r’)1lwxv11~11v11’. 

‘ L  u+(c - p)/ 11 ~ $ 1 1  is the signed distance  from  c to L,, so that 
(‘u$(c - P) - r‘ II u: II - P) + r’ II u; II 1 = 

(‘u$(c - p))’ - r ”  11 u t  11 is negative, zero, or positive 
when C intersects L, twice, L, is tangent to C, or  Cis 
disjoint  from L,, respectively. Similarly, (‘uf(c - p))’ 
- r“  I( u i  I( ’ is negative, zero, or positive when C 

we see that  tu$ - r’ 11 u i  11 is not a  polynomial  in  its 
parameters. If  we define 01 = r 11 w 11 ‘(v X (w X v))(c - p), 
0 = ( 11 w X v 11’ - r2(tvw)2)’/21(w X v)(c - p), and y = 

r‘ 11 w X v 11 ’( I + r’)”’, then ‘u$(c - p) - r‘ 11 u t  1) = 

‘u’(c - p) - r’ 11 u’ )I = 11 v 11 (a  + P - y), and ‘ub(c - p) 
+ r‘ 11 u’ 11 = 11 v 11 ( a  + 0 + y). Thus,  none of these 
expressions are  polynomials  in  their  parameters. 
Moreover, since ( a  - p - ?)(a - p + y )  = 
a 2  - 2 4  + p2  - y2, and aP is not polynomial, the 
products  above are  not polynomials.  However, since 

II v II ( a  - P - 71, - P) + r’ II u: II = II v I1 ( a  - P + 71, 
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E R 3 X W 3 X W 3 X W 3 X W X R  

* (s: 11 11 '('('2 x ('1 x '2))('3- '4)? 

- ( 1 1  x x2 11 - S:('x~x2?)('(x~ x '2)('3 - 

- II X x2 II'U + s:)?- 4( II x1 X x2 II 

- S:('X~X~?)('(XI x x2)(x3 - X4)?s;II x1 x x2 11 4(1 + 

and distinguish three subcases (+ + -), (+ + 0), and (+ + +), 
where f,(w,  v, q, p, r, r ' )  is negative, zero, or positive. 

In the (+ + -) case, one  and only one of ('u$(c - P ) ) ~  - 
r 11 u$ 11 and ('u?(c - p))' - r' 11 u' 11 is negative and 
corresponds to  the  one  and only one of L, and L- that 
intersects C in  two  points, with C being disjoint from  the 
other. Since L+ and L- are  symmetric  about L(w X v, p) and 
L(v X (w X v), p), the  quadrant defined by L(w X v, p) and 
L(v x (w X v), p) which contains c determines which of  L+ 
and L- is closer to c. Thus, if (f(w X v)(c - p))('(v X 

(w X v))(c - p)) > 0, c is closer to  L+,  and so L, intersects C 
at  p+-  and  p++,  and C n V is an  arc between them.  One 
easily sees that c + ur'u$/ 11 u t  11 E C n V, where u is the sign 
of'(v x (w x v))(c - p), so that e n  V' = p+- u p + +  
u y(p+-,  p++; c + ur'u-) 11 u t  11 ). Similarly, if 
('(w x v) (c - p))('(v x (w x v))(c - p)) c 0, then C n V '  = 
p" u p-+ u y(p--,  p-+; c + ur'ul/ll  u? 11). We note  that 
the expression cannot  equal zero, because this implies that c 
is on  L(w X v, p) or L(v X (w X v), p), and  symmetry would 
imply that C intersects both L, and L-, or neither of them. 
See Figure 1 1 for an example of the (+ + -) case. 

1 2  

The dual cone and the relative sizes of cones 
Let the  dual cone of V, denoted V*, be defined as V* = 
V(u$, u?, p). V* is  of  interest, because it is composed of 
those  points z E P  such that z is closer to  L+(u+, p) 
(hereafter denoted Lz) than  to L-(u,, p) (hereafter Li), if 
and only if z is closer to L+(u-,  p)  (hereafter L') than  to 
L-(u-, p) (hereafter  LI). This implies that  any circle whose 
center is in V* can  interact  only with L: and L;, or with L; 
and LI, and  that  any circle whose center is in V*' interacts 
only with L: and LI, or with L i  and L;. Any circle with p 
exterior to it whose center  is on the  boundary of V* can 
interact with at most one of L+ and L-. In a manner similar 
to  the (+ -) case, we find that z E W 3  belongs to V* if and 
only if 

cff 

for 01 = ( 1 1  w X v 11 - r2(tvw)2)1'2(rll w 11 11 v ( 1  ')-I, and so we 
440 define 

and distinguish three subcases of the (+ + 0) case which we 
denote as (+ + 0 -), (+ + 0 0), and (+ + 0 +) depending upon 
the sign of f,(w, v, q, p, r), which in  turn  depends  upon 
whether  c belongs to  the interior of V*, to  the  boundary of 
V*, or  to  the interior of V*'. 

In the (+ + 0 -) case, if c E V and C is sufficiently "small" 
relative to V, C must be contained  in V and have a single 
tangency to 13 V. As C grows "larger," it  may acquire  a  second 
tangency, or even cease to be contained  in V. In order  to 
quantify  these vague ideas of smaller and larger, we recall 
that by Lemma 1 there is a unique  planar cone, V(z, z', p), 
that circumscribes C, and we denote  this  cone as V( C). The 
Pythagorean theorem implies that  the square of the  tangent 
of the half angle between L(z, p) and  L(z',  p) equals 
r '  2 (  11 p - c 11 - r '  ' ) - I ,  where 

II P - c II = II 9 + 'V(P - q)v/ II v II - P II 

= II  II v II 2(9 - P) - 'v(q - P)V II II v II -4 

= (Ilvl1211q -P1I2 - ( ' M I  - P)?)llvII-2 

= IIvII-211v x (9 - p H 2 .  

If C intersects both Lz and L+ or intersects  both L; and  LI, 
the half angle of V(C) must  be greater than  or equal to  that 
of V, which is equivalent to  r2 11 w I( 11 v 11 2(  11 w X v 11 - 
r2(vw)2)-' I r '  11 v 11 2(  11 q - p) X v 11 - r' 11 v 11 ')-I, since 
the tangent function is  increasing. Thus, if  we define 

f7 : (XI, x29 X3' x49 $ 1 ,  $2) 

E W 3 X R 3 X W 3 X ~ 3 X W X W  

'S:IIx1112(IIx2X(x3-x4)112-s:IlX2112) 

- 4 1 1  XI x x2 II - S:('xlx2?), 

f7  (w,  v, q, p, r, r ' )  is negative, zero, or positive when V has 
an angle smaller than, equal to, or greater than V( C). 
Similarly, if 

f, : (XI, x29 x3, x,, SI, $2) 

€ R 3 x ~ 3 x w 3 x R 3 x w x R  

'(11x2 x (x3 - x4)l12 - s:IIx21I2)(llxl x X21l2 

- s:('x1x2?) - 4s:  II x1 II  II x2 11 4, 

f,(w, v, q, p, r, r ' )  is negative, zero, or positive when v' has 
an angle smaller than, equal to, or greater than V( C). 

In the (+ + 0 -) case we define three subcases (+ + 0 - -), 
(+ + 0 - 0), and (+ + 0 - +), when  p is inside V, on  aV, or 
exterior to V, which is implied by the sign of f4(w, v, q - p, 
r). We partition the (+ + 0 - -) case into  three cases 
(++O-- - ) ,  ( + + O - - O ) ,  and(++O--+) by usingthe 

MICHAEL A. OCONNOR IBM I. RES.  DEVELOP. VOL. 33 NO. 4 JULY 1989 



sign of f,(w, v, q, p, r, r ' ) ,  that is, depending on  the relative 
sizes of V and V( C). 

In the (+ + 0 - - -) case, since Cis tangential to dV, 
c E V*, c E V, and V is smaller than V( C), it follows that 
C intersects d V  at  one point  tangentially and  at two points 
transversely. The  three points  either belong to Lz and L_f or 
belong to L, and LI with the  two  points of transverse 
intersection on  one half-line and  the  point of tangential 
intersection on  the  other.  Thus C rl V is  composed of the  arc 
that  connects  the two  points of transverse  intersection and 
contains  the  point of  tangential  intersection. As before, if 
('(w x v)(c - p))('(v X (w X v))(c - p) > 0, then c is closer to 
L, than  L-,  and so L+  intersects C in the two points  p+-  and 

U yc(p++, P - ~ ;  p+J. If, on the  other  hand, ('(w X v)(c - 
p))('(v x (w x v))(c - p)) < 0, then en V' = p" u p-+ u 

again shows that  the expression cannot  take  the value zero. 
In the (+ + 0 - - 0) case, since Cis tangent to dV, V( C) 

and V share  a common  boundary. In fact, since c E V and 
the two  cones are of equal size, they must coincide. Thus, C 
is contained in V and meets d V  tangentially at two  points, 
one  on L+ and  the  other  on L-. It follows from symmetry 
that c E L(v X (w X v), p) so that c,,,+ = c -t r'v X (w X v)/ 
I Ivx(wxv)I I  E C n V . T h u s w e m a y w r i t e C n V ' =  

P++, so that en V '  = P+- u P++ u P - ~  u Y'(P,-, P - ~ ;  P++) 

P+T u Y'(P", P+T; P-+I u YC(P-+, P+T; P"). Symmetry 

P-T  P+T  Y(P-T> P+T; cvwv-)  Y(P-T> P+T; cwv+). 
In the (+ + 0 - - +) case, C is tangential to dV, c E V, and 

V( C) is smaller than V, so that V contains C and d V  
intersects C in only the  one tangential  point. Once again, if 
('(w X v)(c - p))('(v X (w X v))(c - p)) > 0, then c is closer 
to L+, so that en V' = p+T U ~ ' ( p + ~ ,   P + ~ ;   P + ~ ) ,  while if 
('(w x V)(C - P))('(V x (W x v))(c - p)) < 0, c n v' = 

P-T Yc(P-T> P-T;  P-T). 
c E d V  in the (++O-0) case; that is, c E L, or L-, and 

so C intersects  this line transversely in  two  points. C must 
also intersect d V  tangentially, and because c E V*, all three 
of these  points must lie either  in Lz and L+ or in LJ and  LI. 
This implies that  the (+ + 0 - 0) case is equivalent to  the 
(+ + 0 - - -) case, which we have  already  considered. 

intersects only L: and L', or it intersects  only  LJ and LI. 
Thus,  either C is exterior to V, except at  the  point of 
tangential  intersection, or C intersects one of L+ and L- twice 
transversely and is tangential to  the  other.  In  the latter case 
Cis forced to intersect  L(v X (w X v), p). C intersects this  line 
if and only if the distance from c to it is less than or equal to 
r ' ,  or ('(w X v/ I( w x v 11 )(c - P ) ) ~  - r '  5 0. Accordingly, 
we define 

c is exterior to V in the (+ + 0 - +) case. Since  c E V*, C 

f9 : (x,,  x2, x3, x,, s) E w3 x w3 x w3 x w3 x w 

"* ('(x1 x X 2 b 3  - x.+)? - s2 I1 XI x x2 I1 2 ,  

and define subcases (+ + 0 - + -) and (+ + 0 - + +) based on 
whether f9(w, v, q, p, r )  is negative or positive. Case 
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(+ + 0 - + -) is equivalent to case (+ + 0 - - -). In  the 
(+ + 0 - + +) case, C n V is a single point which equals if 
('(w X v)(c - p))('(v X (w X v))(c - p)) is positive, and equals 
p-T  if it is negative. If  f9 were to  take  the value zero, C would 
be tangential to L(v X (w X v), p), a  bisector of L+ and L-, 
and  thus could be tangential to neither. 

The analysis of the (+ + 0 -) subcases is now  completed. 
Next, we consider the (+ + O O )  case. Since c is on  the 
boundary of V*, C can intersect  only one of L+ and L-. 
Since C is tangential to dV, C must intersect d V  at a single 
point. If c is interior  to V, then C C V, and so C f l  V ' is as  in 
the (+ + 0 - - +) case, while if c is exterior to V, then 
CcV' ,andCnV' i sas in the(++O-++)case .Thes ign  
of f,(w, v, q - p, r )  distinguishes  these cases: the (+ + 00 -) 
case for the interior circle, where f, < 0, and  the (+ + 0 0 +) 
case for the exterior circle, where f, > 0. Iff, were to have 
the value of zero, then c E dV, and  thus would imply that C 
intersects d V  in at least two  points,  contradicting  c E dV*, 
and C intersects d V  tangentially. 

The analysis of the (+ + 0 +) subcases is very similar to 
that of the (+ + 0 -) subcases. In fact, if  we replace V with v' 
and  make  the  concomitant changes, the partitioning into 
subcases is identical. First, we define three subcases 
(+ + 0 + -), (+ + 0 + 0), and (+ + 0 + +), depending  upon 
whether  c is interior to Vc, in dV', or exterior to Vc, which is 
equivalent to -f,(w, v, q - p, r )  being negative, zero, or 
positive. In  the (+ + 0 + -) case, we further partition  into 
(++O+- - ) ,  (++O+-0), and(++O+-+) when the size 
of V' is less than,  equal to, or greater than  the size of V( C), 
that is,  by the sign of f,(w, v, q, p, r ,   r ' ) .  In  the ( + + O + + )  
case we partition by the sign of fJv, w x v, p, q, r ) ,  which 
implies that  the distance from c to L(w X v, p) is less than, 
equal  to, or greater than r' ,  which  in turn implies  whether C 
intersects L(w X v, p) transversely,  tangentially, or disjointly. 

We could  now  analyze  these subcases in  the  manner  of  the 
(+ + 0 -) case, but  rather we omit  the details and  summarize 
the results. The (+ + 0 + - -) case is analogous to  the 
(+ + 0 - - -) case. Here we find that c E V*', c E V', and 
v' smaller than V( C) imply that C n a V has  one  point of 
tangential  intersection and two points of  transverse 
intersection and  that C n V'  = peT U yc(p+-,   p++;  P-~),  if 
('(w x V)(C - p))('(v x (w x v))(c - p)) > 0, while C n V' = 

p+T U yc(p--,  p-+; P + ~ ) ,  otherwise. The (++O+-0) case is 
analogous to  the (+ + 0 - - 0) case. In this case, we again 
find two points of tangential  intersection, so that C n V = 

p+T U P - ~ .  The  remaining subcases are equivalent to 
previously considered cases. In particular, the (+ + 0 + 0) 
case and  the (+ + 0 + + -) case are equivalent to  the 
(+ + 0 + - -) case, the (+ + 0 + - +) case is  equivalent to  the 
(+ + 0 - + +) case, and  the (+ + 0 + + +) case is equivalent to 
the (+ + 0 - - +) case. 

partitioning  scheme of the (+ + 0) cases and examples of the 
six distinguishable  types of base curve  partitioning. 

Figure 12 contains a  pictorial  representation of the 
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( + + + I )  (+ + +2) ( + + + 3 )  

(+ + +4) 

E 
- ( + + + I )  

- SiW ( v )  - size (V(G)) 0 impossible 

+ ( + + + 2 )  

- c inV 

E 
- ( + + + I )  

+ distance c to L(v X (w X v), p) - r‘ 0 impossible 
f9 + ( + + + 3 )  

E 
- ( + + + 2 )  

c inV* - 0 c inV 0 imposslble 

+ ( + + + 3 )  
f6 f4 

E 
- ( + + + 4 )  

- size (Vc) - size (V(G)) 0 impossible 
fs + ( + + + 3 )  

- f4 

E 
- ( + + + 4 )  

+ distance c to L(w X V,  p) - r’ 0 impossible 
f9 + ( + + + 2 )  

Thejinal cases developed for the (+ + 0) case. First, we define three subcases 
Only the (+ + +) case remains  to be analyzed. In  this case dependent  on  the sign of f,(w,  v, q, p, r ) ,  which is equivalent 
f,(w,  v, q, p, r, r ‘ )  is positive, so that  both (‘u:(c - p)? - to c being interior to VI, in dV*, or  interior  to V*‘. We 
r I1 u: 11 and (‘u?(c - P ) ) ~  - r ’  (1 u’ 11’ are negative or partition  each  of  these subcases by the sign off,(w, v, q - p, 
both are positive; that is, either C transversely intersects  each r )  to distinguish  when c is interior  to V, in dV, or exterior to 
of L, and L- or C is disjoint from each of them. To discover V. In the (+ + + - -) case we use the sign of f,(w, v, q, p, r, 

r 2  

442 the ways in which this  may happen, we follow the scheme r ‘ )  to partition further  into subcases that correspond to V 
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being  smaller than, equal to,  or greater than V( C). Similarly, 
the (+ + + - +) case is partitioned by the sign of fJw, v, q, p, 
r, r ' )  into subcases depending on  the relative sizes of V' and 
V( C). In the (+ + + - +) case we define three subcases 
depending  upon  whether  L(v X (w X v), p) transversely 
intersects C, tangentially intersects C, or is disjoint  from C, 
and distinguish the  three by the sign of fy(w, v, q, p, r). 
Finally, the sign of fy(v, w X v, q, p, r )  partitions the 
(+ + + + +) case into subcases where L(w X v, p)  intersects C 
transversely, tangentially, or disjointly. 

In the (+ + + - 0) case, c E a V, so that C must intersect 
one of, and hence  both of, L+ and L-. Since c E V*, it 
follows that e n  V '  = P-+ u P++ u yC(p-+,  P++;  PL) 
u P" u P+- u YC(P", P+-;  P++). 

In the (+ + + O )  case, c E aV*, and so can intersect  only 

I n t h e ( + + + O - ) c a s e , c E V , s o C n V ' = C , w h i l e i n t h e  

In the (+ + + + 0) case, c E a V, so that C must intersect 

one of, and hence neither of, L+ and L-. 

(+++O+)casecEV' , so tha tCnVisempty .  

one of, and hence  both of, L+ and L-. Since c E V*', it 
follows that c n  V '  = p" U p-+ U yc(p--, p-, ; p++) 
u P+- u P++ u YC(P+-,  p++; P"). 

Similar analysis reveals the following equivalences. The 
(+ + + - - -) case and  the (+ + + - + -) case are equivalent 
to  the (+ + + - 0) case. The (+ + + - - +) case and  the 
(+ + + + + +) case are equivalent to  the (+ + + 0 -) case. The 
(+ + + - + +) case and  the (+ + + + - +) case are  equivalent 
to  the (+ + + 0 +) case. Finally, the (+ + + + - -) case and 
the (+ + + + + -) case are  equivalent to  the (+ + + + 0) case. 
Since the  remaining cases that we have defined can easily be 
shown to lead to contradictory  assumptions, we have 
completed the analysis of the (+ + +) case, and hence of 24 
possible topological configurations of C n II ;( V ) .  

Figure 13 contains a pictorial representation of the 
partitioning  scheme of the (+ + +) cases and examples of the 
six distinguishable  types of base curve  segmentation. 

Determination of parameter value type 
In the previous  section we obtained  a base curve 
segmentation for each of the possible configurations of C n 
IIL( V ) .  It is now easy to choose a  parameterization  of each 
point and  arc of the base curve  segmentation to  obtain a 
domain segmentation, and we will assume this has been 
done. By the results of Section 1, once we have determined 
the  parameter value type of each subset of the  domain 
segmentation, we can apply the  one of the  four maps, r l  to 
r4, which is appropriate  to each subset, and so explicitly 
obtain C n V. As noted  in  Section 1, only  in  type 2-3 
subsets of the base curve  segmentation, that is, only  in 
subsets singly covered by II p( V ) ,  can there  be ambiguity, 
with it being possible for  such  a  subset to correspond to a 
subset of the  domain segmentation of parameter value type 
2 or 3, and hence to lead to r2 or r3. We showed that if for 
any to in  the subset A(&,) = 0, the  parameter value type of 

IBM J. RES. DEVELOP, VOL. 33 NO. 4 JULY 1989 

the subset is 2 at all values, and hence we apply r2, while if 
A(t,) # 0, the  parameter value type of the subset is 3 at all 
values, and hence we must  apply F3. In fact, this test is 
unnecessary, because this information is already  implicitly 
contained  in  the decomposition into cases, as we now show. 

As we have seen, by Section 2 for any x E R3, x E V, if 
and only if f(x) = 1) x - p 1) ' 11 w 11 - (r2 + l)('w(x - p))' = 

0, and since f is a quadratic polynomial  in the coordinates  of 
x, it serves to define Vas a quadric surface. If we define 
matrix Q as  Q = (1 w )I '1 - (r2 + 1)w'w for the  identity I, 
then it is easy to see that 'xQx is the  pure  quadratic  part  off, 
and so for  this  choice of defining equation for V we find by 
Section 1 that A ( t )  = 'VQV = 11 v 1 1 2 1 1  w 11' - ( r 2  + l)('wv)', 
which we recognize to be f,(w, v, r). By [2], any  other 
defining equation, 7, leads to  an A(t)  such that k(t) = sA(t)  
for some  nonzero scalar s. Thus, if y is a  type 2-3 subset  in 
the base curve  segmentation and g its corresponding  subset 
in the  domain segmentation, t E g + r , ( t )  is the pre-image 
of y in C f l  V, if e n  I I b (  V )  is in  one of the (0) subcases, 
while t E g + I',(t) is the pre-image of y in C n V, 
if C n II;( V )  is in one of the (-) or (+) subcases. 

A comment on stability 
Case-by-case analysis tends  to be laborious. Ours is no 
exception. However, the partitioning we have defined in  our 
analysis provides an unexpected benefit of stability. Let W: 
be W 3  minus  the origin, and W+ be the positive real 
numbers. p = W: x w3 X R., can serve as a parameter 
space of cylinders or cones, so that  in a natural way we can 
identify the topological product, /3, = P X p, with the 
parameter space of intersection  problems of cylinders and 
cones.  Formally, we have used the polynomials f, through f, 
to partition I?, into subsets where an intersection  problem 
can easily be solved by fixed formulas. Let S b e  one of these 
subsets and z = (v, q, r ' ,  w, p, r )  be an  element of S. If  we 
follow the  methods discussed above, then z determines 
f(x; z), the defining equation of the cone;  a  projection,  II(z); 
and a base curve circle, C(z), and hence  a base curve 
segmentation,  y(z). Each of these  objects  changes  smoothly 
as  z  moves through S, as  can easily be seen from the 
formulas we have developed  for them.  In particular,  since 
C(z) changes smoothly,  it is possible to choose  a 
parameterization of each C(z), so that z  smoothly determines 
a domain segmentation, g(z) = {g(z)J,  and even  a smooth 
set-valued map  from z to  the intersection, r:z + 

{ r(&; z, i)), where I?(&; z, i) denotes  the image of gi under 
the  one of the  maps r , (z )  through  r,(z) which is appropriate 
for the i-th  subset of g(z) and is invariant over S 
by construction.  Thus, in  a sense, rather  than solving the 
specific problem of C n V, we have  simultaneously solved all 
such  problems  in  a manner such that when we restrict 
considerations to  any subset of the partition of p,, the 
inherent instability of the intersection  problems,  as 
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(+ +01) 

(+ +04) 

" 

cinV* - 0  
f6 

- +  

c inV 
f4 

c in V 
f4 

c in V 
- f4 

(+ +02) 

(+ +05) 

(+ +03) 

(+ +06) 

I E 
- ( + + O l )  

- size(V) - size(V((;)) 0 (+ + 02) 

+ ( + + 0 3 )  
f7 

0 (++OI) 

E 
- ( + + O l )  

+ distance c to L(v x (w X v), p) - r' 0 impossible 

+ (++06) 

E 
f, 

- ( + + 0 3 )  

0 impossible 

+ ( + + 0 6 )  

E 
- (++04) 

- size@) - size(V(6')) 0 (+ + 05) 

+ ( + + 0 6 )  
f8 

0 (++04)  

E 
- (++04) 

+ distance c to L(w X v, p) - r' 0 impossible 
f Y  + ( + + 0 6 )  

8 Partitioning  scheme for the (+  + +) cases  and  examples of the  six  distinguishable cases. 

exemplified by the two-cylinder intersection  considered  in began by considering in detail  a  restriction of Levin's 
the  Introduction, is replaced by the  smooth  map r whose method of intersecting  two quadric surfaces to  the case 
values are all topologically equivalent. where both surfaces are  natural  quadrics  and  one is a  ruled 

quadric, that is, either  a cone  or a  cylinder. We saw that a 
6. Concuding remarks solution for the purposes of geometrical  modeling  would be 
In this  paper we have  treated the problem  of computing  the obtained by this method, if we could also produce  a domain 
intersection of two natural  quadric surfaces. In Section 1 we segmentation, but  that  the  normal  means of  producing a 444 
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domain segmentation led to the necessity to solve fourth- 
degree polynomials. However. by using explicit knowledge of 
the partitioned  projections  of natural quadrics. we found 
that a related object.  a base curve  segmentation. was 
computable using only the intersection between lines and 
circles. and evaluations of polynomials.  Section 1 closed with 
a proof that a base curve  segmentation led directly to a 
domain segmentation. so that we could  conclude that the 
exact intersection of two natural  quadrics could be produced 
by a  two-dimensional modeling system supporting objects 
bounded by circles. lines. and  points  on a  sphere or plane. In 
Sections 3 and 4 we presented the projections of natural 
quadrics  onto planes and spheres. and  thus offered a 
complete  description  of  the  objects necessary for 
implementation of the  method of Section 1. In Section 5 we 
observed that  the two-dimensional modeler  assumed  in 
Section 1 implied  the ability to handle data  invohing 
irrationalities exactly. Since this is in fact a  strong 
assumption. we chose to weaken it by assuming  only the 
ability to perform exact rational arithmetic.  The techniques 
of Section I motivated  the search for a  partition of the 
parameter space of intersections between cylinders and cones 
into subsets where a base curve  segmentation  could easily be 
explicitly obtained. In this setting. the partition was defined 
by the signs of polynomials  in the parameters of the 
problem. The section closed by noting that when 
consideration is restricted to  one of the subsets of this 
partition. the instability usually associated with intersection 
problems is replaced by a smooth  map from the parameters 
of the  intersection  problem to the  intersection itself. 

At its most fundamental level. this  paper yields a 
reduction  in  the difficulty of finding a domain segmentation 
for use in intersecting two natural  quadrics  from the 
computation of roots of a fourthdegree  equation  to second- 
degree geometric  calculations. It is reasonable to ask if such 
a simplification can be extended to  the  natural  domain of 
Levin's method: the  quadric surfaces. If  we consider the 
intersection of two parallel elliptic cylinders. then projecting 
and intersecting to obtain  a base curve yields a final problem 
of intersecting  two ellipses. which in general leads to a 
fourthdegree polynomial equation. Although we have only 
shown that  domain segmentation by the usual means leads 
to  fourthdegree polynomial equations for natural quadrics. 
it is also possible to show that this is true for all quadrics. 
Thus.  in  this case, the general technique  and using 
projections can lead to  the  same degree of difficulty. so that 
we must recognize that projections  are  not  a  panacea for the 
algebraic complexity  of domain segmentation  in all quadric 
surface intersection  problems. However, the  technique has a 
wider range of applicability than  just the natural quadrics: 
similar  reductions can be obtained for other types of quadric 
surface intersections using little more  than  the tools that 
have been developed here. For example,  consider the 
problem of intersecting C, a general cylinder (elliptic. 

parabolic. or hyperbolic) nith 1.. a general cone. If P is the 
plane  containing the vertex of [ -and orthogonal to  the axis 
of C. then by a  nonisotropic  change of scale we can 
transform I *  to a right circular  cone. f7, We can  then find  the 
partitioned  projection of r onto P using Proposition 4. 
and by inverting the scaling obtain the  partitioned  projection 
of i- onto P. which can again be described by points and 
lines in P. The intersection of C with P is an ellipse. a 
parabola. or a hyperbola. which serves as  a base c u n e  for C. 
Thus. we can  produce  a base c u n e  segmentation by 
intersecting lines and points with ellipses. parabolas. and 
h>perbolas. Each of these problems reduces to a  simple 
second-degree polynomial  calculation. and. as before. we can 
proceed to find a domain segmentation. 
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