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All of the high-T, perovskite  superconductors 
appear  to  show  disorder of certain  oxygen 
atoms. In (La,Sr),CuO, and  perhaps  also in 
YBa,Cu,O, this is associated  with  a  structural 
transition. The  Bi  and  TI  superconductors,  for 
which  we  now  have  neutron  structural  data  on 
four  different  phases,  also  show  oxygen 
“disorder”  which may be  associated  with 
valence  fluctuations. In TI,Ba,CuO,, electron 
holes  are  created  by  the  absence  of 1/8 of the 
atoms in the TI0 plane, producing  a  marked 
superstructure.  However, this material is not 
superconducting if the  superstructure is well 
ordered,  with  an  orthorhombic (strictly 
monoclinic)  structure.  The T, appears to depend 
on  the  disorder  of  the  superstructure to produce 
a pseudotetragonal  metric in which  the  oxygen 
atoms  within  the TI0 plane  are distributed over 
four  equivalent sites about  the  center  of  the  TI 
square. 
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This  paper is not  concerned with the gross disorder 
observed in poorly prepared or partly  reduced  samples, 
especially at high temperature,  but  rather with microscopic 
disorder where oxygen appears  distributed over several 
neighboring  potential minima. 

(La,Sr),CuO, undergoes  a typical SrTiO,  perovskite-type 
structural  transition involving  tilting of the CuO, octahedra 
[Figure l(a)] below a temperature which decreases with Sr 
doping or increasing  pressure  (with  a  corresponding  increase 
in T,. Above this temperature,  the CuO,  apex oxygens are 
disordered  over  two  potential minima,  one of which will be 
occupied below the transition temperature  [I].  This order- 
disorder  transition  produces  a  change of symmetry  from 
orthorhombic  to tetragonal. Axe et al. [ l(d), (e)] have  shown 
that tilting about a  second  axis can  produce  another 
structural  transition for certain compositions of 
(La,Ba),CuO,. 

“octahedra” parallel to  channels which in  normal perovskite 
would  he  occupied by additional oxygen [Figure l(b)]. Even 
at low temperature,  the basal oxygen in  these chains is 
strongly disordered  in  directions perpendicular  to  the chain 
axes, as evidenced by large thermal B-factors [2]. Using high- 
resolution neutron powder diffraction at  many  temperatures 
[3(a)], we have suggested the possibility of a  disorder-order 
transition below some transition temperature, when  these 

YBa,Cu,O, contains  CuO  chains of incomplete 
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Orthorhombic  distortion ( b  - a ) / ( b  + a )  in two  samples of 
YBa$h,O,, as determined by neutron powder diffraction, showing 

i ana  arentanomal  n a r ~ ’  

“incomplete octahedra” would be tilted against  each other, 
producing zigzag CuO chains. A plot of the oxygen 
displacement from  the  chain axis  shows  a decrease with 
temperature, consistent  with thermal vibration, but below T, 
the displacement  is constant  at  about 0.1 A, implying  static 
disorder. The coherence  length  would, however, be only 
about 50 A, since every Ilxth  chain oxygen is missing for 
YBa,Cu,O,-,, where typically x - 0.1. We are therefore 
unable  to observe the superlattice reflections expected  for 
this  doubling of the b-axis, nor  any lowering of the  apparent 
symmetry  from  orthorhombic  Pmmm. 

Fossheim et al. [3(b)] review anomalies  in  the elastic 
properties and specific heat of YBa,Cu,O,-, which may be 
due  to such  subtle structural transitions.  A  plot  of the 
orthorhombic distortion (b  - a)/(b + a) also shows an 
apparent  anomaly near T, (Figure 2) in  agreement with the 222 
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observation of Horn et  al. [3(c)]. We find a  smaller cusp for 
material with x = 0.08, and  the  anomaly is no longer 
apparent in a  second  sample with x = 0.14 except  for  a 
change in gradient  near T,. The  orthorhombic  distortion is 
very sensitive to oxygen deficiency or nonlinearity of the 
chains,  since  it is of course  zero for tetragonal  YBa,Cu30, 
(x= 1). 

The  structural  anomaly for the basal chain oxygen is 
accompanied by smaller effects on  the oxygen bridging the 
CuO  chain  to  the  CuO plane, and on the distance of this 
bridging oxygen from copper in the plane. Batlogg [3(d)] has 
pointed to  the  apparent  importance of this bridging oxygen, 
with the  Cu-0 distance  increasing with decreasing T, due  to 
reduction  of the chain oxygen or to  substitution of Cu. In 
the original structural work  of Capponi  et al. [2], the 
observed Cu-0 distances were interpreted  as evidence  for 
the electron holes being distributed  equally on  both  chain 
and  plane  copper sites. An alternative explanation, 
producing  similar bond lengths,  would put  the holes mainly 
on  the bridging oxygen. 

Bi,Ca,Sr,Cu,O, is more complex. Neutron diffraction 
[4(a)-(c)] has been used to  decide between different models 
for the BiO layers [4(d)-(f)]. Instead  of oxygen between the 
Bi layers, as  in  the usual  Aurivillius structure [4(f)],  it is 
within the Bi layers. The  two BiO layers are weakly bound 
together, being  separated by the Bi lone-pair  electrons, and 
the  structure is seen to cleave readily between layers [4(g)]. 
(See Figure 3.) Not only is a marked  superstructure  evident 
within  these layers, but  the BiO oxygen appears disordered 
about  the  center of the Bi square [Figure 4(a)]. This is 
perhaps because the Bi-Bi distance  is determined by the 
need to  match  the  copper oxide  perovskite  layer,  leaving too 
much space  for oxygen within the BiO layer. The powder 
diffraction pattern shows that  to a  good approximation  the 
cell metric  is  tetragonal, but if the space group is taken  to  be 
F4/mmm,  this BiO oxygen appears  distributed over four 
sites, closer to  one of four pairs of Bi. However, the 
microscopic symmetry,  as  determined  from convergent 
beam  electron  diffraction  [4(h)] is orthorhombic, with space 
group  Amaa or A2aa,  subgroups of F4lmmm. 

Refinement  in noncentric  A2aa implies an ordered 
structure, with oxygen occupying only  one of the  four 
equivalent sites of F4lmmm [Figure 4(b)]. Again, we might 
expect an order-disorder transition with increasing 
temperature,  but  the  superstructure  makes it difficult to 
study the details of this material. 

This superstructure  produces  superlattice reflections at 
noncommensurable d-spacings of about 4.75 times  the b- 
axis. We have shown by high-resolution electron  microscopy 
[4(g)] that  this superstructure is due  to “blocks” of typically 
5 ,  5, 5, 4 times  the 6-axis, yielding an average supercell of 
1914 = 4.75 [Figure 51. This  superstructure is probably due 
to  an imperfect match between the perovskite and BiO 
layers. 
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The superstructure is along  a different direction, and 
much less pronounced in the TI analog TI,Ca,Ba,Cu,O, [5], 
which has an even higher T, [Figure  l(d)]. A  good fit to  the 
data  can be obtained in the tetragonal  space group I4/mmm, 
but then oxygen again appears disordered  over four sites 
within the TI0 plane  [Figure 4(c)]. Again, we can  obtain  an 
ordered structure [Figure 4(d)] by lowering the microscopic 
symmetry  to  orthorhombic A2aa or even centrosymmetric 
Amaa. However, ordering, if it exists, is probably of very 
short range, since the cell metric appears tetragonal rather 
than  orthorhombic. 

We found a situation similar to  that of TI,Ca,Ba,Cu,O, in 
the T, - 125 K-phase T1,Ca2Ba2Cu,O,, [Figure l(e)], for 
which the cell metric appears strictly tetragonal, with even 
smaller oxygen disorder [5(b), (c)]. Again, electron diffraction 
reveals a subtle  superstructure [5(c), (d)]. 

The  coordination of TI is slightly different from  that of Bi. 
In the Bi compounds, oxygen is displaced from  the  center of 
the Bi square  toward  a pair of  B atoms, so that each Bi atom 
has  two oxygens at  about 2 A within the BiO plane, plus a 
third  in the SrO layer above. There  are  three  further oxygens 

at  much larger distances, including  one in the second BiO 
plane. The Bi lone-pair  electrons are presumably between 
the BiO layers, explaining the ease with which the material 
cleaves. In the TI materials, the TI0 planes are  much closer 
together, because there  are  no lone-pair  electrons.  Each TI 
then already  has  two close oxygens, one  from  the perovskite 
plane and  one  from  the second TI0 layer. Oxygen within the 
TI0 layer then moves  toward  a single TI atom, so that again 
each TI has three close oxygens plus  three  at greater 
distances. 

This difference explains why it is relatively easy to  produce 
single T10-layer compounds (S. Parkin, [5(e)]), but probably 
impossible to  produce single BiO-layer materials. The 
absence of lone-pair  electrons permits TI to  form  bonds  to 
perovskite oxygen on  both sides of a single TI0 plane. 

TI,CqBa,Cu,O, [Figure l(c)], which also  has the lowest T, 
( 4 0  K), are  perhaps  the most  interesting  [5(f)]. We 
examined five samples  after different heat treatment.  Some 
were almost tetragonal and superconducting, while others 
were clearly orthorhombic  and nonconducting! The  former 

Our results for the first member of the series, 
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were produced by heat-treating the latter. This is reminiscent 
of orthorhombic  superconducting YBa&O, and tetragonal 
semiconducting YBa,Cu,O,, but  the  explanation for 
T12Ca,,BazCu,0, is not so simple. Neutron diffraction shows 
that  about 1/8 of the TI0 atoms  are missing, producing  a 
superstructure which can be seen with the electron 
microscope [Figure 6(a)], with corresponding  sharp 
superlattice spots [Figure 6(b)]. A model for this 
superstructure  can  be  obtained by removing 1/8 of the TI0 
atoms along  lines  along [310] (Figure 7). It appears  that  the 
orthorhombic form  of TlzCa,Ba,Cu,O, is produced when 
these TI vacancies are ordered  over large distances. 

has essentially the  same chemical composition  as  the 
nonconducting  form, again with 1/8 of the TI0 atoms 

Neutron diffraction shows that  the  superconducting form 
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missing. The difference is that these  vacancies are now 
apparently  disordered. or ordered  over  only short distances. 
producing  a  pseudotetragonal  metric.  Electron  diffraction 
shows that  the superlattice spots. which were very sharp in 
the well-ordered orthorhombic phase [Figure 6(c)]. are very 
diffuse in the tetragonal  phase [Figure 6(d)]. In the 
nonsuperconducting  orthorhombic phase. oxygen within the 
TI0 planes will be ordered on  one of the  four positions 
[Figure 4(d)], while in the  superconducting tetragonal  phase 
it  will be distributed over  these four positions, which are 
then equivalent.  Only  this  pseudotetragonal  form is seen for 
the higher members of the series, where the perovskite 
metric dominates. 

In conclusion,  the  structures of all of the perovskite high- 
Tc superconductors may permit  structural  transitions 
involving  order-disorder of oxygen atoms. Since the oxygen- 
atom  coordination  determines  the  apparent valence on  the 
metal  ions,  subtle  changes in oxygen order imply  changes in 
valence. and may be related to  superconductivity in these 
materials. 
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