High- T_c superconductivity in bismuthates—How many roads lead to high T_c ?

by B. Batlogg

R. J. Cava

L. F. Schneemeyer

G. P. Espinosa

The superconducting transition temperature in ${\rm BaBiO_3}$ -based superconductors exceeds 30 K. Magnetic measurements are analyzed to give their density of states at $E_{\rm F}$, $N^*(0) \propto \gamma$. The uniqueness of Bi–O and Cu–O superconductors is revealed in an updated $T_{\rm c}$ - γ plot. The two classes of compounds share basic electronic properties, particularly a partially unoccupied band with significant O 2p character, which might favor a common pairing mechanism.

Introduction

Superconducting transition temperatures around ~30 K [1-3] in ${\rm BaBiO_3}$ -based compounds are remarkable, as they exceed the $T_{\rm c}$'s of all conventional superconductors. The cuprate-based superconductors [4], however, have $T_{\rm c}$'s well in excess of 100 K, and the obvious question arises whether the same microscopic mechanism leads to pairing. Thus we may ask, "How many roads lead to high $T_{\rm c}$?" No firm

[®]Copyright 1989 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without alteration and (2) the *Journal* reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to *republish* any other portion of this paper must be obtained from the Editor.

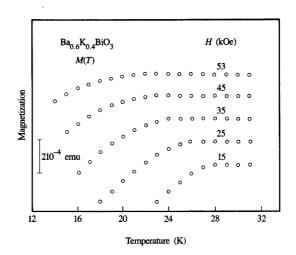
answer can be given yet. Here we review measurements on $Ba(Pb,Bi)O_3$ and $(Ba,K)BiO_3$ from which we deduce the density of states, $N^*(0)$, and conclude that the Bi-O superconductors are "high- T_c superconductors" when T_c is compared to $N^*(0)$. The basic electronic structure of the bismuthates and cuprates is very similar and distinctly different from other oxides. This might suggest a common mechanism for superconducting pairing.

Bismuthate superconductors

In a somewhat simplified view of conventional pairing, a high transition temperature is favored by a high energy of the mediating excitations (phonons, etc.), by a high density of electronic states at the Fermi level, and finally by a strong coupling between those excitations and the electrons. In the following we present measurements on $(Ba,K)BiO_3$ and $Ba(Pb,Bi)O_3$ which provide information on some of the above aspects. In particular, the density of states $N^*(0)$ at E_F is estimated and compared to band structure calculations, which in turn gives estimates for the dimensionless coupling parameter λ .

Density of states at E_{E}

The most convenient and reliable procedure for estimating $N^*(0)$ in superconductors with high T_c 's and small $N^*(0)$ relies on a thermodynamic relationship which connects the slope of the thermodynamic critical field H'_c with the specific


heat anomaly ΔC at T_c , which in turn is proportional to $N^*(0)$. This is merely a consequence of the thermodynamics of a second-order phase transition, and thus is independent of microscopic details. For the compounds under discussion, using Rutgers' formula is particularly appealing because ΔC at T_c , which is an extensive quantity, is deduced from two intensive quantities, the lower and upper critical fields. Thus, one does not rely on a fully superconducting volume as long as the unit cell volume of the superconductor is known. Furthermore, when the electronic contribution to the specific heat is small compared to the phononic part, specific heat measurements need to resolve anomalies on the 1% level, which is somewhat challenging and requires homogeneous samples with a sharp transition. Measurements of the upper and lower critical fields, in contrast, are less demanding on the sample quality.

Lower critical field H_{c1}

By definition, the magnetic field starts penetrating the sample at $H_{\rm cl}$. Thus, magnetization measurements as a function of field at constant temperature are the usual way to determine $H_{\rm cl}(T)$. Operationally, $H_{\rm cl}$ is taken where M(H) starts deviating from the linear M-H relationship. Two points must be taken into account.

- 1. Corrections for the shape-dependent demagnetizing field must be included. When working with single crystals or very dense polycrystalline samples, this introduces only minor uncertainties of the order of \sim 5%. A convenient self-consistency check is to compare the calculated and measured slopes of M(H). In loosely compacted powder samples, the determination of the demagnetizing corrections is less straightforward because the true demagnetization factor cannot necessarily be calculated from the sample shape. We found it useful to measure M(H) for differently shaped samples, usually thin plates and bars with the field applied along the main geometrical axis.
- 2. Above $H_{\rm cl}$, a time dependence of M is often observed which is associated with the dynamics of flux flow. Observation of this effect at a set field clearly means that $H_{\rm cl}$ has been exceeded, thus giving an upper limit of $H_{\rm cl}$. Since flux flow (or creep) is always faster at higher temperatures, $dH_{\rm cl}/dT$ is reliably measured close to $T_{\rm c}$, but slow penetration of flux might lead us to overestimate $H_{\rm cl}$ at low temperatures.

We measured $H_{\rm c1}$ on several samples of BaPb_{0.75}Bi_{0.25}O₃ (BPBO) which were grown at different times over the last six years and consistently found a slope $H_{\rm c}'$ near $T_{\rm c}$ of 1.8–2.5 Oe/K. Samples vary slightly in their $H_{\rm c2}$ slope (see next paragraph), which in turn reflects itself also in the $H_{\rm c1}$ slope. Two different magnetometers were used (S.H.E. 905, Quantum Design) and good agreement of the most recent

S TANK

Magnetization of $\mathrm{Ba}_{0.6}\mathrm{K}_{0.4}\mathrm{BiO}_3$ crystals to determine the upper critical field $H_{c2}(T)$. The curves are displaced for clarity. For a given field, the transition temperature is given by the deviation of M(H) from the constant value at higher temperature.

data with our older values [5] was found. For $Ba_{0.6}K_{0.4}BiO_3$ (BKBO), H'_{c1} is somewhat larger (4.5 \pm 0.5 Oe/K) [6].

Upper critical field H_{c2}

Traditionally, the upper critical fields are extracted from resistance measurements in a magnetic field. This procedure, however, is not applicable to cuprate-high- $T_{\rm c}$ superconductors because of the intrinsic "broadening" of the resistive transition due to flux-motion-induced dissipation [7]. In the Bi-O-based superconductors, these effects are not obviously present. Alternatively, $H_{\rm c2}$ is measured magnetically. In a temperature sweep at constant field, $H_{\rm c2}$ is taken as the point where the magnetization starts deviating from the normal state value. In **Figure 1**, a typical result is shown with each curve shifted for clarity by an arbitrary amount.

For BPBO single crystals we have used both the resistive and magnetic methods to measure $H_{\rm c2}(T)$; examples for two crystals are shown in Figure 2. The slope close to $T_{\rm c}$ varies slightly from sample to sample, ranging from ~5.5 to ~8.5 kOe/K, most likely reflecting different resistivities. Previously reported values for $H_{\rm c2}$ fall within this range [5, 8, 9].

In the case of BKBO, we measured $H_{\rm c2}$ magnetically on both polycrystalline samples and single crystals. Several aspects are worth pointing out. First, the slopes for polycrystalline and single-crystal samples are the same

60

 $\mathrm{BaPb}_{0.75}\mathrm{Bi}_{0.25}\mathrm{O}_{3}$

M(T) s.c

10

Upper critical field $H_{c2}(T)$ of $BaPb_{0.75}Bi_{0.25}O_3$ and $Ba_{0.6}K_{0.4}BiO_3$. Various techniques were used: magnetization M(T), resistance $\rho(H)$, or specific heat, C(T) [11]. (s.c. = single crystal.)

C(T) s.c.

M(T) s.c. M(T) poly.

20

Temperature (K)

Ba_{0.6}K_{0.4}BiO₃

30

Table 1 Sommerfeld parameter γ , measured density of states $N^{*}(0)$ and band structure density of states (from [16]). The range of the BaPb_{0.75}Bi_{0.25}O₃ values reflects both scatter among various crystals and experimental uncertainties.

	$BaPb_{0.75}Bi_{0.25}O_3$	$Ba_{0.6}K_{0.4}BiO_3$
γ (mJ/mole f.u. K ²) N''(0) (states/eV f.u.)	0.8 ± 0.2	~1.5
$N^*(0)$ (states/eV f.u.)	0.34 ± 0.09	~0.64
N(0) (states/eV f.u.)	0.24	0.42
λ	≤0.8	~0.5

f.u. = formula unit.

despite the slightly different $T_{\rm c}$. The upper critical field increases linearly with temperature near T_c , with a slope of ~5 kOe/K. This is in contrast to an upward curvature reported in [10], where H_{c2} was extracted from resistance measurements on what appears to be nonhomogeneous material with nonmetallic R(T) characteristics. Thus, we conclude that magnetic measurements are better suited if phase inhomogeneity adversely affects resistive measurements. Finally, we mention the recent specific heat measurements on BKBO single crystals by Graebner et al. [11], where the anomaly at $T_{\rm c}$ has been followed in magnetic fields and, thus, $H_{c2}(T)$ determined independently (see Figure 2). The agreement between the specific heat and the magnetic results on single crystals from the same preparation is excellent. While H_{c2} increases linearly near T_c , the singlecrystal data suggest an upturn of H_{c2} below ~25 K.

Basic parameters

The main purpose of the critical field measurements is to calculate a few characteristic physical quantities. All derivations are based on standard expressions (see for example [12]). We note that these are extreme type-II superconductors with magnetic penetration lengths much larger than the coherence length. ($\kappa \approx 100$ in BPBO, ≈ 45 in BKBO.) The large penetration length is due to the low carrier concentration measured to be n-type in BPBO (to $2.5-4.5 \cdot 10^{21} \text{ cm}^{-3}$, e.g., [8, 13]). For BKBO, p-type conduction was reported for polycrystalline material [14], and from the K concentration we would calculate 4-5 10²² electrons per cubic centimeter. The effective mass m^*/m_a for both superconductors is less than 1: 0.3-0.5 estimated for BPBO from experiments (see [9]), and ~0.5 calculated [15]. In BKBO m* was estimated from thermopower results to be about 0.15 [14]. The effective mass is so small because the Fermi level lies in a broad (~16 eV) band, derived from O 2p and the (Pb,Bi) 6s levels [16].

Density of states and coupling strength

From the slope of the thermodynamic critical field H'_c , the specific heat anomaly ΔC at $T_{\rm c}$ can be obtained from the well-known equation, $\Delta C = VT_c H'_c^2/4\pi$. This ΔC is related to the Sommerfeld constant γ [and in turn to the electronic density of states $N^*(0)$] through

$$\Delta C = f(\lambda) 1.43 \gamma T_c$$
.

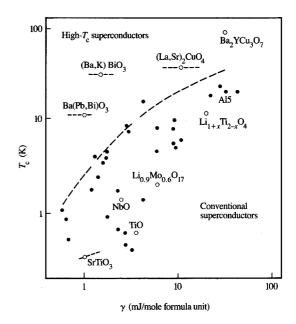
In the weak coupling limit ($\lambda < 1$), the factor $f(\lambda)$ is only slightly larger than 1 (~1.05 for λ ~ 0.8), but is greater than 1 for intermediate to moderately strong coupling, and becomes less than 1 for very strong coupling. A recent extensive calculation of $f(\lambda)$ for a class of coupling functions $\alpha^2 F(\omega)$ can be found in [17].

For a first estimate of γ we use $f(\gamma) = 1$, which yields an upper bound for γ of 0.8 \pm 0.2 mJ/moleK² for BPBO and ~1.5 mJ/moleK² for BKBO. In **Table 1** the resulting density of states $N^*(0)$ is shown with band structure calculation [16] values of N(0). In the conversion of γ into $N^*(0)$, care must be exercised whether the density of states is defined per spin orientation. (The numerical values printed in [6] do not have this factor of 2 included, but the conclusions on λ are based on comparisons of the proper quantities and thus remain unchanged.) By comparing the experimental $N^*(0) =$ $(1 + \lambda)N(0)$ with the band structure values of N(0), the coupling strength λ is found not to exceed 1. Somewhat larger values for λ were estimated previously for BPBO [5, 18]. The Bi-O superconductors are not in the strong coupling limit as measured by λ .

Although this main result may appear surprising in light of the high transition temperature, it is fully consistent with other measurements. Early tunneling results on high-quality junctions with negligible leakage current and only thermal broadening of the spectra gave a gap value $2\Delta \simeq 3.5 \pm 0.1$

[13]. A more recent study also found the same Δ/T_c ratio when the measured T_c is used [19]. And finally, far-infrared spectroscopy also gave a gap of $2\Delta \simeq 3.2~kT_c$ [20]. All of these results are consistent with weak-to-intermediate coupling.

T_c compared to $N^*(0)$: The $T_c-\gamma$ plot

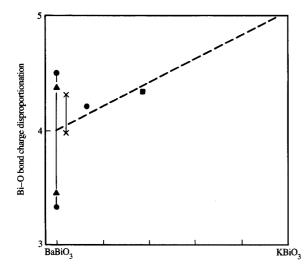

The uniqueness of BiO superconductors becomes evident when they are compared to other superconductors with similar density of states $N^*(0)$. For simplicity, $T_{\rm c}$ is plotted vs. the Sommerfeld constant γ , which is proportional to $N^*(0)$ (see **Figure 3**). The basic reasoning behind such a plot is that higher density of states at $E_{\rm F}$ favors higher $T_{\rm c}$, if the coupling strength and the boson frequency are kept constant. Among all superconductors, the bismuthates have the highest $T_{\rm c}/\gamma$ ratio and are properly called "high- $T_{\rm c}$ superconductors."

It appears instructive to refer to the relative $T_{\rm c}/\gamma$ scale, in addition to the absolute value of $T_{\rm c}$, when discussing high- $T_{\rm c}$ superconductors. As we had pointed out after the discovery of ${\rm La_2CuO_4}$ -based superconductors, the cuprates also have an extraordinarily large $T_{\rm c}/\gamma$ ratio, and their high $T_{\rm c}$ is not due to a large density of states at $E_{\rm F}$, unlike the A15 compounds [21]. We note in passing that the value of γ in the cuprates is less well known than in the bismuthates, mainly due to major conceptual and practical limitations in extracting γ from ΔC at $T_{\rm c}$ (even when neglecting the experimental uncertainties). Thus, the γ 's shown for the cuprates might be subject to future modification.

A generalized phase diagram

In the starting compound BaBiO₃, the valence charge disproportionates and creates inequivalent sites with unequal Bi–O bond lengths. This charge density wave might be seen as a consequence of the tendency of Bi^{IV} to disproportionate into Bi^{III} and Bi^V, which in turn can be traced back to the relative instability of s^{-1} in the atom as it is measured in the ionization potentials. Optical spectroscopy revealed a CDW gap in BaBiO₃ of ~1 eV [22]. This gap is slightly reduced when Pb is substituted for Bi, and a pseudogap structure is still observed in the metallic region (Pb_{0.75}Bi_{0.25}). First optical spectra were presented recently for (Ba,K)BiO_x films which indicate a reduction of the CDW gap with increasing K content [23].

The relative amplitudes of the CDW, at least of their commensurate component, can be deduced from crystallographically determined Bi-O bond lengths. Empirical relations exist between bond length and strength, and we shall use them first to calculate the differences between the inequivalent Bi sites. (We are aware of the different numerical parameters for Bi-O bond strength calculations, but this does not affect the conclusions below. We also refer to a recent review article [24] elaborating on the concepts of oxidation state, valent state, real change, and


Floure 6

 $T_{\rm c}$ and Sommerfeld parameter γ for various superconductors. Among the oxides (open symbols), only the bismuthates and cuprates are high- $T_{\rm c}$ superconductors.

chemical bond, particularly in the context of high- $T_{\rm c}$ superconductors.)

The crystal structure of (Ba,K)BiO, has been described in [25]. Single crystals of the superconducting composition Ba_{0.6}K_{0.4}BiO₃ were found to be simple cubic with only one Bi site, confirming the original power diffraction results [1]. Thus, no bond charge disproportionation is present. A nonsuperconducting composition with ~4% K crystallized in an orthorhombic structure with CuO6 octahedra having four short and two long Bi-O bonds alternating with octahedra having four long and two short bonds. The difference between the long and short bonds within an octahedron (~0.11 Å) is very pronounced and almost as large as it is between the "expanded" and "contracted" octahedra of BaBiO₃ (~0.13 Å). Using the parameters from [26], we calculate the bond strength for the inequivalent Bi sites and find a difference of ~0.9 for BaBiO₃ and ~0.20 for Ba_{0.96}K_{0.04}BiO₃. This is a crude measure of the commensurate CDW amplitude.

The distortions of the octahedra in $BaBiO_3$ and $Ba_{0.96}K_{0.04}BiO_3$ are notably different. Although we used the sum of the six bonds connecting Bi with O to calculate the bond strength, it might be equally interesting and probably more relevant to describe the structure in terms of short (s)

Average bismuth bond strength calculated from Bi–O bond lengths. In $BaBiO_3$ and in $(Ba,K)BiO_3$ with small K concentrations, two inequivalent Bi sites result from bond charge disproportionation. All Bi sites are equivalent in the $K_{0.13}$ and $K_{0.4}$ crystals. The expected bond strength is indicated by the broken line (see text for discussion).

and long (l) Bi-O bonds. This notation emphasizes bond charges, in contrast to charge localized on the Bi atoms. The BaBiO₃ structure then gives rise to the following sequences, when starting at a Bi atom and proceeding in the x, y, and z directions: lssl, lssl, lssl. In the $K_{0.04}$ compound, the sequence is lssl, lssl, slls. The two structures are thus mainly different through the z-direction modulation sequence: The bond charge density wave along z is shifted by one octahedron.

Returning to the total bond strength, we have plotted it for the various K concentrations in Figure 4. Starting at BaBiO₃, the average bond strength is close to 4, with a site difference of \sim 0.9. With progressively higher K content, the average bond strength increases, roughly following the broken line, which is what one expects from simple valence considerations (KBiO₃ is not a perovskite). The Bi–O bond lengths become equal for all Bi sites at \sim 10% K substitution, and a crystal with \sim 13% K was found to be simple cubic but not superconducting [27].

A generalized phase diagram for (Ba,K)BiO₃ and Ba(Pb,Bi)O₃ is shown in **Figure 5**. Starting from the charge-disproportionated end member BaBiO₃, the CDW state persists until about 20-40% of Ba is replaced by K. The precise location of the boundary is not clear, because of

problems with material preparation and chemical analysis. The broken line is thus not established in all details [1, 28]. When substituting on the electronically active B sublattice, the CDW state persists over a wider range to a composition of $\mathrm{Bi}_{0.3}\mathrm{Pb}_{0.7}$. In both cases a CDW is formed when the antibonding s-p band is half and slightly less than half filled. The highest $T_{\rm c}$ is observed in the metallic range close to the CDW border. One might expect $T_{\rm c}$'s well in excess of 30–35 K if the metallic state could be stabilized more closely to half filling, i.e., with less substitution. One reason is simply that the band density of states increases toward half filling [16].

The main features of this phase diagram have been discussed theoretically by several authors [29–31]. Emphasis is put on the electron-lattice interaction, the tendency to real-space pairing of electrons, and the intrinsic instability of Bi^{IV} toward disproportionation. A theoretical phase diagram based on the latter approach [31] has the generic features of Figure 5.

Comparison with Cu-O superconductors

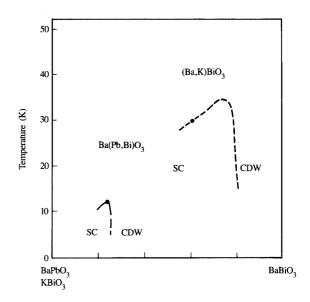
It appears worthwhile to point out several basic similarities between the Bi-O and Cu-O superconductors. First, their bonding and electronic structure are quite unique among all oxide superconductors. The oxygen 2p orbitals are strongly hybridized with the central metal atom (Bi 6s, Cu 3d) states. This is essentially element- and structure-specific in that the atomic 6s/3d levels, after renormalization by the Madelung potential, end up energetically close to the oxygen 2p states. This, together with a large mixing matrix element, leads to a broad band of bonding character in the lower part and antibonding in the upper. Nonbonding O 2p states form a rather narrow band manifold.

Characteristic for both the Cu–O and Bi–O compounds is the location of the Fermi level in the upper part of this broad band. In the end members, LaCu₂O₄ and BaBiO₃, the "antibonding" band is half filled, and thus metallic behavior might be expected in the absence of instabilities. The unoccupied uppermost part of this band has significant O 2p character. The presence of these p holes is characteristic for the Bi–O and Cu–O superconductors and sets them apart from all the other oxide superconductors, where the O 2p states are all filled and located well below the Fermi level, which lies in d-derived conduction bands, e.g., in SrTiO₃, in M_x WO₃, or in LiTi₂O₄. (See, e.g., [32] and references therein.) The T_c - γ plot reflects this distinct difference between the "high- T_c " and "low- T_c " oxides.

While the pairing mechanism in the Bi-O and Cu-O superconductors is not yet identified, it appears to us that they have so much in common, both phenomenologically and crystal-chemically, that the same mechanism might lead to high- T_c superconductivity. If such a unified picture were appropriate, it would not be a magnetic mechanism, as the bismuthates are not magnetic. Besides the phonon mechanism, the charge excitation models might apply to

both cuprates and bismuthates. Finally, we note the observation of sizable oxygen isotope effects in the bismuthates and also in the $(La, X)_2CuO_4$ [6, 33–35]. These results might be interpreted as evidence for an exclusively phononic mechanism, but a combination of phononic and, e.g., another "higher-frequency" mechanism would still produce an isotope effect [36, 37]. We speculated that even a pure charge-transfer excitation mechanism could lead to a "parasitic" isotope effect [6].

Summary


We have reviewed the measurements on the $(Ba,K)BiO_3$ and $Ba(Pb,Bi)O_3$ superconductors from which the density of states and E_F can be derived. Comparing these values with band structure calculations, we find that Bi-O superconductors are not in the strong coupling regime. These compounds are clearly high- T_c superconductors in that the $T_c/N^*(0)$ ratio is high. Cuprates and bismuthates share common basic features of the electronic structure and are distinctly different from other oxide superconductors.

Acknowledgments

We thank many of our colleagues for interesting discussions and collaborations on various parts of this research. In particular, we acknowledge fruitful discussions with R. C. Dynes, J. E. Graebner, P. Littlewood, C. M. Varma, and W. Weber. We also thank L. F. Mattheiss for clarifying discussions concerning density-of-states values.

References

- R. J. Cava, B. Batlogg, J. J. Krajewski, R. C. Farrow, L. W. Rupp, Jr., A. E. White, K. T. Short, W. F. Peck, Jr., and T. Y. Kometani, *Nature (Lond.)* 332, 814 (1988).
- L. F. Mattheiss, E. M. Gyorgy, and D. W. Johnson, Jr., *Phys. Rev. B* 37, 3745 (1988).
- A. W. Sleight, J. L. Gillson, and P. E. Bierstedt, Solid State Commun. 17, 27 (1975).
- 4. J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986).
- 5. B. Batlogg, Physica B 126, 275 (1974).
- B. Batlogg, R. J. Cava, L. W. Rupp, Jr., A. M. Mujsce, J. J. Krajewski, J. P. Remeika, W. F. Peck, Jr., A. S. Cooper, and G. P. Espinosa, *Phys. Rev. Lett.* 61, 1670 (1988).
- 7. T. T. M. Palstra, B. Batlogg, L. F. Schneemeyer, and J. V. Waszczak, *Phys. Rev. Lett.* **61**, 1662 (1988).
- T. D. Thanh, A. Koma, and S. Tanaka, Appl. Phys. 22, 205 (1980).
- K. Kitazawa, S. Uchida, and S. Tanaka, *Physica B* 135, 505 (1985).
- U. Welp, W. H. Kwok, G. W. Crabtree, H. Claus, K. G. Vandervoort, B. Dabrowski, A. W. Mitchell, D. R. Richards, D. T. Marx, and D. G. Hinks, *Physica C* 153–155 (1988).
- J. E. Graebner, L. F. Schneemeyer, and J. K. Thomas, *Phys. Rev. B* (May 1989).
- T. P. Orlando, E. J. McNiff, S. Foner, and M. R. Beasley, *Phys. Rev. B* 19, 4545 (1979).
- B. Batlogg, J. P. Remeika, R. C. Dynes, H. Barz, A. S. Cooper, and J. P. Garno, in Superconductivity in d- and f-Band Metals 1982, W. Buckel and W. Weber, Eds., Kernforschungszentrum Karlsruhe, 1982, p. 401.
- M. Dera, S. Kondoh, and M. Sato, Solid State Commun., in press.
- 15. L. F. Mattheiss, *Phys. Rev. B* 28, 6629 (1983).

. Figure 3

A generalized phase diagram for $(Ba,K)BiO_3$ and $Ba(Pb,Bi)O_3$. In each system, the highest T_c is observed close to the border with the semiconducting CDW state. The precise location of the SC-CDW boundary is not known for BKBO, and the details of the broken lines remain to be explored in detail. It is also questionable whether the Pb-Bi and Ba-K ratios can be changed continuously.

- L. F. Mattheiss and D. Hamann, *Phys. Rev. Lett.* **60**, 2681 (1988).
- F. Marsiglio, R. Akis, and J. P. Carbotte, *Phys. Rev. B* 36, 5245 (1987).
- K. Kitazawa, M. Naito, and S. Tanaka, J. Phys. Soc. Jpn. 54, 2682 (1985).
- J. Akinutsu, T. Ekino, and K. Kobayashi, *Proc. LT 18, Jpn. J. Appl. Phys.* 26, 995 (1987).
- A. Schlesinger, R. T. Collins, A. A. Scott, and J. A. Calise, *Phys. Rev. B* 38, 9284 (1988).
- B. Batlogg, A. P. Ramirez, R. J. Cava, R. B. van Dover, and E. A. Rietman, *Phys. Rev. B* 35, 5340 (1987).
- S. Tajima, S. Uchida, A. Masaki, H. Takagi, K. Kitazawa, S. Tanaka, and A. Katsui, *Phys. Rev. B* 32, 6302 (1985).
- S. Uchida, S. Tajima, H. Takagi, and Y. Tokura, Proceedings of the 2nd NEC Symposium on the Mechanisms of High Temperature Superconductivity, Springer-Verlag, New York, 1989
- 24. A. W. Sleight, Proceedings of the Robert A. Welch Foundation Conferences on Chemical Research, XXXII, preprint.
- L. F. Schneemeyer, J. K. Thomas, T. Siegrist, B. Batlogg, L. W. Rupp, Jr., R. L. Opila, R. J. Cava, and D. W. Murphy, *Nature* (*Lond.*) 335, 421 (1988).
- C. Chaillout, A. Santoro, J. P. Remeika, A. S. Cooper, G. P. Espinosa, and M. Marezio, *Solid State Commun.* 65, 1363 (1988).
- 27. J. P. Wignacourt, J. S. Swimmer, H. Steinfink, and J. B. Goodenough, *Appl. Phys. Lett.* **53**, 1753 (1988).
- D. G. Hinks, B. Dabrowski, J. D. Jorgensen, A. W. Mitchell,
 D. R. Richards, Shiyou Pei, and Donghu Shi, *Nature (Lond.)* 333, 836 (1988).

- T. M. Rice and L. Sneddon, *Phys. Rev. Lett.* 47, 689 (1981);
 E. Jurczek and T. M. Rice, *Europhys. Lett.* 1, 225 (1986).
- W. Weber, Proc. LT 18, Jpn. J. Appl. Phys. 26, Suppl. 26-3, 981 (1987)
- 31. C. M. Varma, Phys. Rev. Lett. 61, 2713 (1988).
- S. Massida, Jaejun Yu, and A. J. Freeman, *Phys. Rev. B* 38, 11352 (1988).
- B. Batlogg, G. Kourouklis, W. Weber, R. J. Cava, A. Jayaraman, A. E. White, K. T. Short, L. W. Rupp, Jr., and E. A. Rietman, *Phys. Rev. Lett.* 59, 912 (1987).
- K. J. Leary, H. C. zur Loye, S. W. Keller, T. A. Faltens, W. K. Ham, J. N. Michaels, and A. M. Stacy, *Phys. Rev. Lett.* 59, 1236 (1987).
- D. G. Hinks, D. R. Richards, B. Dabrowski, D. T. Marx, and A. W. Mitchell, *Nature (Lond.)* 335, 419 (1988).
- 36. T. Marsiglio, R. Akis, and J. P. Carbotte, *Solid State Commun.* **64,** 905 (1987).
- 37. M. Tachiki and S. Takahashi, to be published.

Received January 19, 1989; accepted for publication February 16, 1989

Bertram Batlogg AT&T Bell Laboratories, 800 Mountain Avenue, Murray Hill, New Jersey 07974. Dr. Batlogg joined the staff of the AT&T Bell Laboratories in 1979 and is currently Head of the Solid State and Physics of Materials Research Department at AT&T Bell Laboratories. He holds a Diploma in physics and also a Doctorate in natural sciences (1979) from the Eidgenossiches Technische Hochschule, Zürich, Switzerland. His research interests have been in materials-related solid-state physics, with emphasis on many-body problems. In particular he studied mixed-valence rarearth compounds and heavy-fermion superconductors and magnets. In addition, he has explored in detail the unusual superconducting properties of Ba(Pb,Bi)O₃, and more recently the physics of Cu–O-based high-temperature superconductors.

Robert J. Cava AT&T Bell Laboratories, 800 Mountain Avenue, Murray Hill, New Jersey 07974. Dr. Cava received his Ph.D. in materials science from the Massachusetts Institute of Technology in 1978. He was a National Research Council Postdoctoral Fellow for one year at the National Bureau of Standards. He joined the staff at Bell Laboratories in 1979 in the Department of Solid State Chemistry and Ceramics Research, and became a Distinguished Member of the Technical Staff in 1985. Dr. Cava has been pursuing research on superconductivity since 1986.

Lynn F. Schneemeyer AT&T Bell Laboratories, 800 Mountain Avenue, Murray Hill, New Jersey 07974. Dr. Schneemeyer received her Ph.D. in solid-state inorganic chemistry from Cornell University in 1978. She spent two years as a Postdoctoral Research Associate at the Massachusetts Institute of Technology studying semiconductor-liquid photo-electrochemical cells. In 1989 she joined the staff of Bell Laboratories and became a Distinguished Member of the Technical Staff in 1987. Dr. Schneemeyer's research interests include synthesis, crystal growth, and characterization of inorganic materials with interesting structures and properties, such as high- $T_{\rm c}$ superconductors.

Gerald P. Espinosa AT&T Bell Laboratories, 800 Mountain Avenue, Murray Hill, New Jersey 07974. Mr. Espinosa received his B.S. degree in 1961 from the University of Connecticut. He has been with Bell Laboratories since 1976 and is a member of the Solid State and Physics of Materials Research Department at Bell Laboratories. His research interests have included the synthesis and crystal growth of inorganic materials, particularly ferromagnetic garnets, superconducting stannides, and currently the high- $T_{\rm c}$ superconducting oxides.