A review of elastic properties of high- T_c superconductors and some related C_c results

by K. Fossheim T. Lægreid

First a brief survey is given of what can be learned about important superconducting and normal-state properties by ultrasonic and other elastic measurements. Some of the characteristic elastic properties of the $\rm La_{2-x}(Ba, Sr)_x CuO_4$ and $\rm YBa_2Cu_3O_7$ systems are reviewed. In the La-based family it is shown how the elastic observations are closely related to structural and soft-mode properties. The physics of $\rm YBa_2Cu_3O_7$ is shown to be more complex. Finally, our recent results on the fluctuation contribution to the specific heat near T_c in $\rm YBa_2Cu_3O_7$ are discussed.

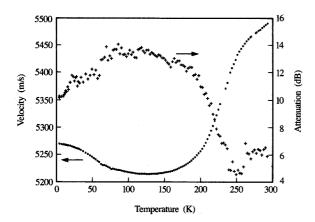
1. Introduction

We first outline some of the possibilities offered by measurements of the elastic properties of superconductors and normal metals. We then go on to discuss briefly how ultrasound couples to the structural order parameter. The thermodynamic relation between elastic constant and

[®]Copyright 1989 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without alteration and (2) the *Journal* reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to *republish* any other portion of this paper must be obtained from the Editor.

specific heat is mentioned. Following this review, we discuss the experimental situation in the high- $T_{\rm c}$ superconducting La- and Y-based families with respect to elastic properties. Recent work on fluctuation effects in $C_{\rm p}$ is included at the end

2. A review of possibilities offered by ultrasound in superconduction research


• Superconducting state measurements

Ultrasonic methods have a long and important history in the study of superconductors and normal metals. In the hope that they may be applied also to the study of high-temperature superconducting properties, we first review some of these applications. Of particular interest are dynamic measurements, by observation of the attenuation α of sound interacting with the carriers of a metal in the normal (n) or superconducting (s) state. In the original BCS paper [1], confirmation of the theory was announced as far as the temperature-dependent energy gap $\Delta(T)$ was concerned, by use of the simple BCS expression for the ratio of superconducting to normal-state attenuation of longitudinal waves:

$$\frac{\alpha_s'}{\alpha_n} = \frac{1}{e^{\Delta(T)/kT} + 1}.$$
 (1)

The quantitative confirmation of the characteristic decrease

365

Flaure

The ultrasonic sound velocity (•) and attenuation (+) measured at 24 MHz in $La_{1.85}Ba_{0.15}CuO_4$ (from [12]).

of attenuation below T_c implied by Equation (1) was therefore one of the first successes of the BCS theory.*

Later work showed [2, 3] that the attenuation of shear waves is governed by the coherence factors very close to T_c (in a 1–2-mK range) and the dynamic screening a little further away. The shear-wave attenuation due to electromagnetic coupling between elastic strain and the charge carriers disappears over only some 10 mK below T_c in a typical conventional superconductor. There are characteristic differences between low-frequency behavior, $q\delta \ll 1$, and high-frequency behavior, $q\delta \gg 1$, where q is the wave vector of sound and δ is the normal-state skin depth. The result given by Fossheim [2] for the ratio of attenuation of shear waves, α_n^s , in the superconducting state to that, α_n^s , in the normal state is

$$\frac{\alpha_{\rm s}^{\rm s}}{\alpha_{\rm n}^{\rm s}} = \frac{\sigma_{\rm 1s}/\sigma_{\rm 1n}[q^2\delta^2 + 1]}{[q^2\delta^2 + \sigma_{\rm 2s}/\sigma_{\rm 1n}]^2 + (\sigma_{\rm 1s}/\sigma_{\rm 1n})^2},\tag{2}$$

where the normal-state and superconducting-state conductivities are symbolized by $\sigma_{\rm n}=\sigma_{\rm ln}+i\sigma_{\rm 2n}$ and $\sigma_{\rm s}=\sigma_{\rm ls}+i\sigma_{\rm 2s}$, respectively. Here $\sigma_{\rm 2n}$ was neglected due to the low frequencies used in the corresponding experiments [2]. However, $\sigma_{\rm 2n}$ may easily be included if it becomes important at very high frequency. The temperature and frequency dependence of Equation (2) can be evaluated numerically using BCS theory.

• Fermi surface measurements

At the Workshop on High-Temperature Superconductivity, we have been reminded of the need to map out the Fermi

surfaces of the new superconductors. Again, ultrasound provides a well-established and accurate method for this, by means of the so-called magnetoacoustic effect [4]: The attenuation of sound as a function of magnetic field B shows oscillations which are periodic in 1/B. The period $P(1/B_n)$ of these oscillations is directly related to the Fermi surface momentum k_\perp at right angles to \vec{B} and \vec{q} , as follows:

$$k_{\perp} = \frac{2\pi e \lambda}{h} \cdot \frac{1}{P(1/B_n)}.$$
 (3)

Here λ is the acoustic wavelength, h is Planck's constant, and e is the magnitude of electronic charge. By making successive measurements at different angles of the magnetic field, the so-called effective zones [5] of the Fermi surface may be mapped out, eventually supplying enough information to describe the entire Fermi surface topology provided one has some reasonable idea to start with.

• The qt problem

The required condition for observing the attenuation of sound due to electronic interaction is $q\ell > 1$, where ℓ is the electronic mean free path.

In the new high- T_c oxide superconductors [6], one would like to perform ultrasonic measurements at about 100 K, where ℓ is necessarily rather small. However, assuming, perhaps optimistically, that ℓ may be of the order of 100 Å, the required $q\ell$ condition will be met at ultrasonic frequencies approaching 100 GHz. This is a formidable frequency, but it is attainable by present-day technology [7]. Ultrasonic studies of the electronic properties hence may have a future in determining the energy gap $\Delta(T)$, the Fermi surface, the mean free path, and even the coupling in these substances. To date, however, no $q\ell$ -dependent measurements have been carried out in the oxide superconductors.

- Structural phase transitions: Statics and dynamics As has been well established over many years [8, 9], ultrasound is very sensitive to dynamic as well as static [10] properties of a structural nature. Perovskites have indeed been model systems for such research during the last 20 years. In perovskites the symmetry-allowed coupling between elastic strain ε and the soft-mode order parameter Q, typically representing some rotational motion of oxygen octahedra, is of the type εQ^2 . This leads to a characteristic minimum in the static elastic constant (or sound velocity) at the structural transition temperature T_c , and concurrently to a peak in the attenuation [11]. The critical properties of these quantities have shed considerable light on the dynamics and statics of such phase transitions.
- Thermodynamics at the superconducting transition temperature T_c

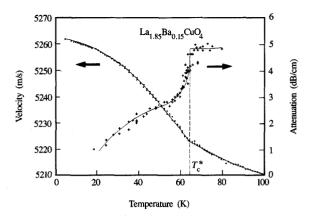
From thermodynamics, one can derive simple relations connecting quantities such as the jump, ΔC_p , in the specific

[•] In general $\Delta(T)$ is anisotropic, and particularly so in the high- T_c oxide superconductors. Its measured value will therefore depend on the direction of the sound wave

heat, the pressure dependence of $T_{\rm c}$, $dT_{\rm c}/dp$, and the shift of elastic constant ΔC at $T_{\rm c}$. The fact that $\Delta C_{\rm p}$ is positive on lowering the temperature through $T_{\rm c}$ requires the elastic constant to show a negative step at $T_{\rm c}$. A useful relation is

$$\frac{dT_{\rm c}}{dp} = \left[\left(-\frac{\Delta C}{C} \right) \frac{T_{\rm c}}{C \cdot \Delta C_{\rm p}} \right]^{1/2},\tag{4}$$

where C is the bulk elastic constant. Attempts to test such relations are currently being carried out on a variety of new superconductors.

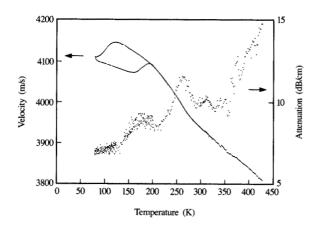

3. Experimental results, elastic properties

• The $La_{2-x}(Ba, Sr)_x CuO_4$ family

Early measurements [12] of the sound velocity and attenuation of compressional waves in polycrystalline La_{1.85}Ba_{0.15}CuO₄ showed unusual behavior. It was found that the lattice softened in a pronounced manner when the temperature was lowered from room temperature to about 190 K (see Figure 1). Concurrently, the attenuation increased in the same temperature range. Below this temperature the lattice remained soft (low velocity of sound) all the way down to 63 K, where a return to a stiffer lattice set in. Three temperature regions were thus identified, each carrying a different signature of the dynamics and statics of the lattice. It was concluded [12] that the upper region signified the approach to a structural phase transition, and that the middle region was one in which the lattice remained near instability, i.e., without fully recovering after the tetragonal-to-orthorhombic phase transition near 190 K. The third region, below 63 K, seemed to signal the onset of yet another structural behavior.

During the Workshop on High-Temperature Superconductivity, we have learned about the recent results of the Brookhaven group, as reported here by John Axe [13]. Those results confirm our original interpretation [12]: Corresponding to the three regions identified by ultrasonics, there are indeed three structures (for x = 0.15): the tetragonal one, existing from high temperatures down to somewhat below 200 K, a subsequent orthorhombic phase found down to near 60 K, and finally a new tetragonal phase below 60 K. The lower transition is first order, as seen from the symmetry [13].

Soft-mode behavior was also studied [13, 14]: The doubly degenerate mode softening toward approximately 190 K causes lattice instability as well as elastic softening and increased attenuation. This again is fully consistent with the early interpretation of the ultrasonic data [12]. Neutron measurements in La₂CuO₄ [13] show that after the degeneracy is lifted below the tetragonal-to-orthorhombic transition, one of the optical soft modes *remains quite low* over the entire region as far down as measured. This corresponds clearly to the wide temperature range of lattice


Figure 2

Close-up of the lattice stiffening behavior at 63 K as observed by ultrasound velocity in La_{1.85}Ba_{0.15}CuO₄, and the attenuation drop found at the same temperature. Two independent measurements of the sound velocity, one at 11 MHz and the other at 24 MHz, are included in the plot. The attenuation was measured at 37 MHz (from [15]).

instability in this region [12]: A low-lying optical mode corresponds to a system close to structural instability. This explains both the soft elastic constant and the high attenuation in the range from 190 K to 63 K.

Finally, we expect the return to a stiffer lattice at 63 K to correspond to the low-lying optic mode frequency jumping to a higher value. This prediction is made on the basis of careful measurements [15] of the acoustic attenuation near $T_c^* \simeq 63$ K (Figure 2). No peak in the attenuation is revealed at this transition, just a drop, as would be expected if the interacting soft-mode frequency jumps to a higher value at a first-order transition.

The physics of La_{1.85}Sr_{0.14}CuO₄ appears similar [16], but not identical. From the ultrasonic velocity data again three regions may be seen; hence we expect that even here there must be a third phase at low temperatures, just as in the Badoped case. This has not yet been confirmed by neutron or other experiments. Still, two features are at least quantitatively different: (1) The attenuation in the middle region is lower than in the Ba-doped case, and (2) there is a peak in attenuation at T_c^* instead of the drop seen in the Badoped case. We predict the following: (1) There is a third phase at low temperature in $La_{2-x}Sr_xCuO_4$, with $T_c^* \simeq 90 \text{ K}$ at x = 0.14. (2) The low-lying soft mode in the orthorhombic phase of La_{2-x}Sr_xCuO₄ is higher than in the Ba-doped case. (3) The lowest phase transition is either second order, or much closer to second order than the 63 K transition in the Ba-doped case (x = 0.15). (4) T_a^* is higher in the Sr-doped case than in the Ba-doped one (for the same value of x).

FIGURES

Ultrasonic sound velocity and attenuation in polycrystalline YBCO measured at 11 MHz. Several independent cooling and heating sequences are displayed (from [18]).

Finally, let us point out why the lattice softening occurring at the tetragonal-to-orthorhombic transition can be studied by compressional waves in a polycrystalline, fine-grained ceramic. As mentioned above, the coupling between strain and order parameter is of the general type εQ^2 . Analysis of the symmetry properties shows that the coupling to the elastic degrees of freedom will affect the elastic constants $C_{11} + C_{12}$, C_{33} , and C_{66} . All of these quantities will therefore show dynamic and static anomalies at the tetragonal-to-orthorhombic transition. In the polycrystalline material used in [12], all of these elastic constants were probed. Even the C_{66} softening would contribute to the observed softening because compression of the individual grains is off-center, producing a shear in addition to the compression and dilatation.

We conclude that a qualitative understanding of the lattice-related elastic properties of the $\rm La_2CuO_4$ family has been achieved. What remains is a more quantitative description by means of measurements on single crystals, studying one acoustic mode at a time. Such work is in preparation in a joint project between the authors and Brookhaven.

A number of measurements have been made to show the elastic step near the superconducting transition $T_{\rm c}$. At this point we leave this problem for further clarification, i.e., until more precise measurements make possible an accurate examination of the thermodynamic consistency of various types of measurements and of results from different groups.

•• Elastic properties of YBa₂Cu₃O₇ (YBCO)
In contrast to the situation in the La-based compounds, the

elastic properties of YBCO appear much more complex. The problems are primarily the following:

- Lack of a clear correspondence between structural and soft-mode observations on one hand and elastic behavior on the other
- 2. Observation of a wide temperature range of elastic instability in ceramic material, probably related to the microstructure [17]. The instability has been found to persist [18] even down to LHe temperature.
- 3. Difficulty in observing the purely electronically driven shift of elastic constant near the superconducting transition. This is due to a very low value of dT_c/dp (the pressure dependence of T_c), as well as to additional effects discussed below.

In the following we outline the situation, beginning with the highest temperatures.

• The tetragonal-to-orthorhombic transition The only simple case, as far as elastic proper

The only simple case, as far as elastic properties in $YBa_2Cu_3O_7$ are concerned, seems to be the well-known tetragonal-to-orthorhombic transition. Depending on the oxygen concentration, the transition temperature may vary over several hundred degrees [19]. Tallon et al. [20] have carried out mechanical resonance experiments demonstrating that the phase transition can be sensitively recorded. Sharp minima, about 20% deep, were reported in the elastic moduli G and E. The results are typical for the εQ^2 coupling. The mechanical loss factor Q^{-1} showed a broad and strong maximum below the transition temperature which was ascribed to oxygen hopping [20].

◆ The lattice instability in the 0-300 K range

A number of elastic measurements have been carried out in this range. An example is shown in **Figure 3**. Many experiments reveal pronounced hysteresis of varying strength in the elastic properties.

Because of the lack of microscopic clarification of the detailed mechanism underlying the elastic hysteresis, various proposals have been made as to its origin. We have noticed the fact [18, 21] that the peak of attenuation, as well as the midpoint of the elastic stiffening on cooling from room temperature, appears to move with frequency. When the frequency is changed from the kHz range to the 10-MHz range, these features appear to shift from about 225 K to about 260 K. A similar situation is encountered in structural glasses. The possibility therefore seems to exist that a broad range of relaxation times are present, as in glasses. In our experiments, the shortest probing time is 10^{-7} s at 10 MHz, and the longest is a "settling time" several hours long, observed in the elastic hysteresis region of Figure 3. These observations, then, span dynamics of about 10 orders of magnitude in probing time, or frequency. It was suggested

that the observations could be connected with some kind of ordering of the oxygen system. Further discussion of these points is found in [22].

A somewhat different view [21] takes the elastic behavior to signify a structural phase transformation at about 240 K. We do not feel that these issues can be resolved by data available at this time.

It is interesting to note that theoretical studies do in fact point to an intrinsic mechanism for a lattice instability. Oxygen ordering is the key issue here [23, 24]. In one case [23], two different orthorhombic phases are predicted, while in the other [24], a spinoidal decomposition of the tetragonal phase into orthorhombic and tetragonal regions is found.

• Specific heat anomalies in the 200-240 K range of ceramic YBCO

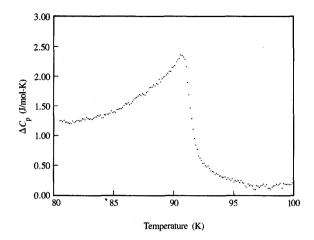
Closely related to the lattice instabilities revealed by elastic and microstructure work are observations of a specific heat peak [25] in ceramic YBCO. This anomaly is observed [26] only on heating, and only after the sample has been cooled into the hysteretic region shown in Figure 3. We have interpreted this [18] as a distributed latent heat of the metastable structure, appearing typically below 180 K in our samples. The size of the peak, the connection with the elastic hysteresis, and the absence of the peak on cooling lead to an important conclusion: The specific heat peak is expected to be of structural, microscopic (or microstructural) origin. In addition, we have tested for possible effects from the "addenda," GE varnish and Kapton foil, attached to the specimen. No effects were found. The content of CuO in samples where these effects are invariably found is often less than 1%. Although the absence of the peak during cooling and its connection with the lattice instability constitute proof that impurities or magnetic effects are not responsible, the additional test of CuO content is further confirmation of this.

• Elastic anomalies near the superconducting transition A great number of papers describe a variety of anomalies in the temperature range close to $T_{\rm c}$. Although claims [27] have even been made of gap measurements according to Equation (1), this does not seem to be a realistic possibility in view of the required $q\ell$ condition and the MHz frequencies applied.

On the other hand, one cannot in principle rule out the possibility of finding effects similar to those observed in heavy fermion systems where strong electron-phonon interaction is observable even at ordinary ultrasonic frequencies [28]. In a number of studies [18, 27, 29], a drop in the attenuation has been observed below $T_{\rm c}$ in YBCO. What complicates matters considerably is the following: Several studies find a strong increase in the temperature slope of the elastic modulus just below $T_{\rm c}$ (see for instance [30]). Furthermore, connected with this behavior is an

attenuation peak below T_c [29, 30]. It has been suggested [30] that these effects are due to yet another structural instability. This possibility cannot be ruled out, especially in view of the weak anomaly in orthorhombic distortion observed both by means of X-rays [31] and neutrons [32]. Some very surprising observations of large steps, both up [33] and down [34], of the elastic constant on passing through T_c need further clarification. Until more work confirms these unusual features, we refrain from further comment.

Estimates of the expected downward step in the elastic constant at T_c related to dT_c/dp and ΔC_p [Equation (4)] give relative changes of only 10–20 ppm, well below the experimental resolution so far. Our observations, finding no step at all, with a resolution of about 1 m/s in sound velocity, are fully consistent with this.


In conclusion, several puzzles remain with regard to the elastic properties in the range from LHe to about room temperature in YBCO-type materials. Further refined work on the possible structural instabilities in this range is much needed. Hopefully, neutron work or other advanced structural tools can resolve these "mysteries."

- Elastic measurements on single-crystal YBCO
 Recent measurements on single-crystal YBCO [35] have indicated that the elastic properties of such material may be simpler than those of polycrystals. However, the limited resolution obtained does not permit firm conclusions to be drawn. High-resolution elastic measurements on single crystals are needed.
- Observations of fluctuation contribution to C_p near T_c . Of major interest from a basic point of view is the possibility of observing a λ -type anomaly in the specific heat at the superconducting transition. We have recently attempted to observe such phenomena in YBCO [36]. Results of such measurements on a 3-mg monocrystalline sample are shown in **Figure 4**. It is apparent from Figure 4 that these data do not merely show a simple step in C_p . Rather, a λ -like behavior is found, as expected in the presence of fluctuations.

A thorough analysis of the data has been performed using the same background and the same exponent α above and below $T_{\rm c}$, and the relation

$$\Delta C_{p} = A^{\pm} |t|^{-\alpha} + B, \tag{5}$$

where A^{\pm} are the amplitudes above (+) and below (-) the transition, t is the reduced temperature, α is the specific heat exponent, and B is a constant. Equation (5) and more refined versions of critical behavior have been used to analyze for possible critical effects or Gaussian fluctuations [37, 38], similar to the analysis of data near the superfluid transition in liquid He. No BCS step should be included in the analysis.

Figure 4

The anomalous specific heat, $\Delta C_{\rm p}$, at the superconducting transition. A background, $C_{\rm b}=aT+bT^2$, was subtracted (a=1.184,b=0.00195) from the measured specific heat (from [36]).

Although it turns out to be possible to obtain an effective exponent of $\alpha \approx 0.7$ above $T_{\rm c}$, the data do not allow a similar value below $T_{\rm c}$, using the same parameters.

Our conclusion is the following: In spite of a much improved signal-to-noise ratio compared to that of Inderhees et al. [39], we find it impossible at this stage to draw conclusions either about the effective spatial dimension d or the number of order-parameter components n.

This is not to say that (critical) fluctuations cannot eventually be quantitatively described. So far the available crystal quality has, however, not allowed it. Again, we emphasize that fluctuation contributions to C_p are observed, but the quantitative aspects are not yet far enough advanced.

Acknowledgments

The authors are indebted to Professors K. A. Müller and J. G. Bednorz for collaboration on the La materials, and to the Birmingham Consortium on High- $T_{\rm c}$ Superconductors for collaboration on YBCO. K. Fossheim gratefully acknowledges stimulating discussions with Dr. J. Axe on the structure and dynamics of the La-based superconductors. We thank our secretary Ann Lisbeth Geelmuyden and our coworker Terje Bye for assistance in preparing the manuscript. This work was supported by NAVF, STATOIL A/S through the VISTA program, and Norsk Hydro A/S.

References

 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, "Theory of Superconductivity," *Phys. Rev.* 108, 1175 (1957).

- K. Fossheim, "Electromagnetic Shear-Wave Interaction in a Superconductor," *Phys. Rev. Lett.* 19, No. 2, 81 (1967); N. T. Opheim and K. Fossheim, "Electromagnetic Attenuation of Shear Waves near T_c in Aluminium," *Proceedings of the International Conference on Phonon Scattering in Solids*, Paris, 1972, pp. 193–198.
- 3. K. Fossheim and B. Torvatn, "Electromagnetic Attenuation of Shear Waves in Superconductors," *J. Low Temp. Phys.* 1, No. 4, 341 (1969).
- K. Fossheim and T. Olsen, "Magnetoacoustic Studies of the Fermi Surface of Aluminium," Phys. Stat. Sol. 6, 867 (1964).
- A. B. Pippard, "Experimental Analysis of the Electronic Structure of Metals," Rep. Proc. Phys. 23, 176 (1960).
- J. G. Bednorz and K. A. Müller, "Possible High-T_c Superconductivity in the La-Ba-Cu-O Systems," Z. Phys. B—Condensed Matter 64, 189 (1986).
- B. Hadimioglu and J. S. Foster, "Advances in Superfluid Helium Acoustic Microscopy," J. Appl. Phys. 56, 1976 (1984).
- B. Berre, K. Fossheim, and K. A. Müller, "Critical Attenuation of Sound by Soft Modes in SrTiO₃," *Phys. Rev. Lett.* 23, No. 11, 589 (1969).
- K. Fossheim, D. Martinsen, and A. Linz, "Critical Sound Velocity and Attenuation in KMnF₃," Anharmonic Lattices, Structural Transitions and Melting, T. Riste, Ed., NATO ASI, Noordhoff International Publications, Netherlands, 1974.
- J. O. Fossum and K. Fossheim, "Measurements of Ultrasonic Attenuation and Velocity in Verneuil-Grown and Flux-Grown SrTiO₃," J. Phys. C 18, 5549 (1985).
- J. O. Fossum, "A Phenomenological Analysis of Ultrasound Near Phase Transitions," J. Phys. C 18, 5531 (1985).
- K. Fossheim, T. Lægreid, E. Sandvold, F. Vassenden, K. A. Müller, and J. G. Bednorz, "Wide-Temperature Instability in High-T_c Superconductors, La_{1.85}Ba_{0.15}CuO₄," Solid State Commun. 63, No. 6, 531 (1987).
- J. D. Axe, D. E. Cox, K. Mohanty, H. Moudden, A. R. Moodenbaugh, Youwen Xu, and T. R. Thurston, "A New Structural Modification of Superconducting La_{2-x}M_xCuO₄," *IBM J. Res. Develop.* 33, 382 (1989, this issue).
- R. J. Birgeneau, C. Y. Chen, D. R. Gabbe, H. P. Jenssen, M. A. Kastner, C. J. Peters, P. J. Picone, T. Thio, T. R. Thurston, H. L. Tuller, J. D. Axe, P. Boni, and G. Shirane, "Soft-Phonon Behaviour and Transport in Single-Crystal La₂CuO₄," *Phys. Rev. Lett.* 59, 1329 (1987).
- K. Fossheim, T. L. Lægreid, E. Sandvold, T. Bye, F. Vassenden, O. Trætteberg, S. Sathish, K. A. Müller, J. G. Bednorz, S. Julsrud, T. Helgesen, and O. J. Siljan, "Elastic Properties of La_{1.85}Ba_{0.15}CuO₄ and Specific Heat of YBa₂Cu₃O_{7-x} Superconductors," *Proceedings, European Workshop on High-T_c* Superconductors and Potential Applications, Geneva, 1987, pp. 101-102.
- Y. Horie, T. Fukami, and S. Mase, "Ultrasonic Studies of the High-T_c Superconductor (La_{1-x}Sr_x)₂CuO_{4-δ}," Solid State Commun. 63, No. 7, 653 (1987).
- D. Wohlleben, J. F. Smith, F. M. Mueller, and S. P. Chen, "Microtwinning and Minibands in the Re(1)Ba(2)Cu(3)O(7-δ) Superconductors," *Physica C* 153-155, 586 (1988).
- 18. T. Lægreid, K. Fossheim, and F. Vassenden, "Elastic and Thermal Behaviour of Ceramic High- T_c Superconductors Studied by Ultrasound, Vibrating Reed, and Specific Heat Measurements," *Physica C* **153–155**, 1096 (1988).
- J. D. Jorgensen, M. A. Beno, D. G. Hinks, L. Soderholm, K. J. Volin, R. L. Hitterman, J. D. Grace, I. K. Schuller, C. U. Segre, K. Zang, and M. S. Kleefish, "Oxygen Ordering and the Orthorhombic-to-Tetragonal Phase Transition in YBa₂Cu₃O_{7-x}," *Phys. Rev. B* 36, 3608 (1987).
- J. L. Tallon, A. H. Schuitema, and N. E. Tapp, "Soft Mode Behavior in the Orthorhombic to Tetragonal Transition in the High-T_c Superconductor YBa₂Cu₃O_{7-b}," Appl. Phys. Lett 52, No. 6, 507 (1988).
- 21. G. Cannelli, R. Cantelli, F. Cordero, G. A. Costa, M. Ferretti, and G. L. Olcese, "Phase Transformation at 240 K in YBa₂Cu₂O₇₋, by Measurements of Elastic Energy Dissipation

- and Modulus and Its Possible Relation with the Enhancement of T_c Above 100 K," Europhys. Lett. 6, No. 3, 371 (1988).
- T. Lægreid and K. Fossheim, "Evidence for Glasslike Behaviour in YBa₂Cu₃O_{7-x} (YBCO) Superconductor?" Europhys. Lett. 6, No. 1, 81 (1988).
- A. Berera, L. T. Wille, and D. de Fontaine, "Thermodynamics of Oxygen-Vacancy Ordering in YBa₂Cu₃O₂," *Physica C* 153–155, 598 (1988).
- A. G. Khatchataryan and J. W. Morris, "Ordering and Decomposition in the High-Temperature Superconducting Compound YBa₂Cu₃O_x," Phys. Rev. Lett. 59, 2766 (1987).
- T. Lægreid, K. Fossheim, E. Sandvold, and S. Julsrud, "Specific Heat Anomaly at 220 K Connected with Superconductivity at 90 K in Ceramic YBa₂Cu₃O_{7-δ}," Nature 330, No. 6149, 637 (1987).
- T. Lægreid, K. Fossheim, O. Trætteberg, E. Sandvold, and S. Julsrud, "High Resolution Specific Heat Measurements in the Ceramic Superconductor YBa₂Cu₃O_{7-x}: Anomalies near 90 K and 220 K," *Physica C* 153-155, 1026 (1988).
- G. Cannelli, R. Cantelli, F. Cordero, G. A. Costa, M. Ferretti, and G. L. Olcese, "Anelastic Relaxation in the High-T_c Superconductor YBa₂Cu₃O_{7-x}," Phys. Rev. B 36, 8907 (1987).
- B. Batlogg, D. J. Bishop, B. Golding, E. Bucher, J. Hufnagel, Z. Fisk, J. L. Smith, and H. R. Ott, "Unrenormalized Ultrasound Attenuation in the Heavy-Fermion State," *Phys. Rev. B* 33, No. 8, 5906 (1986).
- S. Bhattacharya, M. J. Higgins, D. C. Johnston, A. J. Jacobsen, J. P. Stokes, J. T. Lewandowski, and D. P. Goshorn, "Anomalous Ultrasound Propagation in High-T_c Superconductors: La_{1.8}Sr_{0.2}CuO_{4-y} and YBa₂Cu₃O_{7-δ}," Phys. Rev. B 37, No. 10, 5901 (1988).
- C. Durán, P. Esquinazi, C. Fainstein, and M. Núñez, "Anomalies in the Internal Friction and Sound Velocity in YBa₂Cu₃O_{7-x} and EuBa₂Cu₃O_{7-x} Superconductors," Solid State Commun. 65, No. 9, 957 (1988).
- P. Horn, D. T. Keane, G. A. Held, J. L. Jordan-Sweet, D. L. Kaiser, F. Holtzberg, and T. M. Rice, "Orthorhombic Distortion at the Superconducting Transition in YBa₂Cu₃O₇," *Phys. Rev. Lett.* 59, 2772 (1987).
- 32. M. François, A. Junod, K. Yvon, A. W. Hewat, and P. Fisher, "A Study of the Cu-O Chains in the High-T_c Superconductor YBa₂Cu₃O₇ by High Resolution Neutron Powder Diffraction," Solid State Commun. 66, No. 10, 1117 (1988).
- A. Migliori, Ting Chen, B. Alavi, and G. Grüner, "Ultrasound Anomaly at T_c in YBa₂Cu₃O_y," Solid State Commun. 63, No. 9, 827–829 (1987).
- H. Mathias, W. Moulton, H. K. Ng, S. J. Pan, K. K. Pan, L. H. Peirce, L. R. Testardi, and R. J. Kennedy, "Large Forbidden Change in Elastic Modulus at the Superconducting Transition of Y₁Ba₂Cu₃O_{9-x}," *Phys. Rev. B* 36, No. 4, 2408 (1987).
- M. Saint-Paul, J. L. Tholence, P. Monceau, H. Noel, J. C. Levet, M. Potel, P. Gougeon, and J. J. Capponi, "Ultrasound Study of YBa₂Cu₃O₇₋₃ Single Crystals," Solid State Commun. 66, No. 6, 641 (1988).
- 36. K. Fossheim, O. M. Nes, and T. Lægreid, "Specific Heat in Mono-Crystal YBaCO: λ-Like Anomalies at 90 K and 229 K," Int. J. Mod. Phys. B (Proceedings of the Adriatico Research Conference: "Towards a Theoretical Understanding of High-T_c Superconductors," Trieste, Italy, 1988, pp. 635-647.
- L. N. Bulaevskii, V. L. Ginzburg, and A. A. Sobyanin, "Macroscopic Theory of Superconductors with Small Coherence Length," *Physica C* 152, 378 (1988).
- 38. S.-K. Ma, Modern Theory of Critical Phenomena, The Benjamin/Cummings Publishing Co., Reading, MA, 1976.
- S. E. Inderhees, M. B. Salamon, N. Goldenfeld, J. P. Rice, B. G. Pazol, D. M. Ginzberg, J. Z. Liu, and G. W. Crabtree, "Specific Heat of Single Crystals of YBa₂Cu₃O₇₋₈: Fluctuation Effects in Bulk Superconductor," *Phys. Rev. Lett.* 60, 1178 (1988).

Received October 13, 1988; accepted for publication November 11, 1988 Kristian Fossheim Division of Physics, Norwegian Institute of Technology, N-7034 Trondheim, Norway. Since 1980, Dr. Fossheim has been a Professor of Applied Physics at the Norwegian Institute of Technology, Trondheim. He held various research positions at the University of Oslo (1964-67) and the University of Maryland (1965-67) before taking a position in Trondheim in 1970. He earned his Ph.D. degree at the University of Oslo in 1972. Dr. Fossheim's work has been centered on the application of ultrasound methods in the study of basic properties of metals, superconductors, structural phase transitions, acoustic phase conjugation, surface waves, and acoustic microscopy. His stays abroad have included a year at the IBM T. J. Watson Research Center in Yorktown Heights, New York, and two summers at the IBM Research Laboratory in Zurich. Dr. Fossheim is a member of the European, American, and Norwegian physical societies.

Trygve Lægreid Division of Physics, Norwegian Institute of Technology, N-7034 Trondheim, Norway. Dr. Lægreid is currently a Research Scientist supported by the Norwegian Council of Natural Sciences (NAVF/RNF) at the Norwegian Institute of Technology. He received his Ph.D. from the Norwegian Institute of Technology in 1988. The subject of the thesis was studies of new high-temperature oxide superconductors and ferroelectric phase transitions. His main field of experimental work has been ultrasonic and specific heat measurements. Dr. Lægreid is a member of the Norwegian Physical Society.