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Using the mean-field approximation, we study a
model for quasi-two-dimensional
superconductors. The interlayer coupling,
assumed to be mediated by a small electron-
hopping term, is found to leave T_ practically
unaffected. Thus, a three-dimensional pairing
mechanism is required to explain the observed
rise in T_ with decreasing average layer spacing
in the Bi and Tl compounds. Taking the
inhomogeneities of intrinsic or extrinsic nature
into account, we find, in the dirty limit,
corrections to the conventional anisotropic
Ginzburg-Landau behavior—an upward
curvature of the upper critical fields which
appears to be a universal feature of layered
superconductors.
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1. Introduction
Since the discovery of high-temperature superconductivity in
the La-Ba—Cu-0O system [1], a rapidly growing number of
superconducting oxides have been synthesized, with critical
temperatures 7, ranging from 5 to 125 K. Particular
attention has been attracted by the layered compounds with
chemical formula X,,Ca,_,Ba,Cu,O,.,,,,,. where X = Bi or
TL,m=1or2,andn=1,2,3,4,or5[2-10]. These are the
striking facts: 7., increases markedly with the number » of
CuO sheets per formula unit; properties parallel and
perpendicular to the layers are highly anisotropic; layers
within a unit are not necessarily equivalent; the transition to
the superconducting state is not very sharp, pointing to the
importance of inhomogeneities. These properties clearly
reveal the layered nature of these compounds. Viewing them
as anisotropic superconductors is not sufficient. Such a
treatment is valid only when the order parameter varies
slowly on the scale of the layer separation, which effectively
limits the applicability to an ever-decreasing range of
temperatures near 7, as the interlayer coupling is decreased.
We recently presented a microscopic model treating these
materials as layered superconductors, allowing inequivalent

layers and couplings within a unit cell [11]. Using the mean- 351
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Table 1 (Critical temperature 7, and mean spacing between
layers s = ¢/q. X,,Ca,_Ba,Cu, Oy, ¢ denotes the number of
layers per unit cell.

X m n s T, Reference
(A) (K)

Bi 2 1 12.3 22 2
Bi 2 2 7.8 85 6
Bi 2 3 6.2 110 7
Tl 2 1 116 20 9
Tl 2 2 7.4 108 9
Tl 2 3 6.05 125 9
Tl 1 I 9.7 20 9,10
Tl 1 2 6.4 85 9,10
Tl 1 3 5.3 110 9,10
Tl 4 4 4.8 122 10

field approximation, the interlayer coupling, mediated by a
small electron-hopping term, was found to leave T,
practically unaffected. Thus, a three-dimensional pairing
mechanism is required to explain the observed dependence
of T, on the average layer spacing.

In this paper we outline our main results and calculate the
upper critical field, using the dirty limit of the Ginzburg-
Landau (GL) version of our model. Taking the
inhomogeneities of intrinsic or extrinsic nature into account,
we find corrections to the familiar anisotropic GL behavior,
a positive curvature of the upper critical fields, which
appears to be a universal feature of layered [12-15] or
synthetically layered superconductors.

Our mean-field analysis strongly suggests a weak-coupling
pairing mechanism of three-dimensional nature, and the
crucial importance of anisotropy and inhomogeneities of
intrinsic or extrinsic origin.

2. Model
We consider the Hamiltonian [11-17]

HM=H+ KA, )

where

+

dy= 3 [£. C- Ca
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the local and attractive pairing interaction, C* and C denote

Fermion creation and annihilation operators, ¢labels the
layers, and we assume a periodic sequence of sheets with ¢
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layers per period of length ¢. The two-dimensional band
structure of the sheets é}l, the coupling between the layers ¢
due to single-particle tunneling, and the coupling constants
g, are allowed to vary within a period. The spectrum of ¥ is
labeled by the wavevectors 7%; = (k,, k,) within a layer,
—(n/a) < k, < (n/a), « = X, y, and k is the wavenumber
perpendicular to the planes (z-direction).

Band structure calculations [18-21], resistivity [22], and
upper critical field measurements [14-16] revealed that
W.L

u £+(0) py L
W" 1, £10) < 1, o <1, £0) <y, 4)

where W denotes the bandwidth, £(0) the zero-temperature
correlation length, and s = ¢/g the mean spacing between the
layers. L stands for the z-direction and || labels a direction
within or parallel to the sheets. In Table 1 we also
summarize current experimental data for 7, and the
corresponding mean spacing s for the Bi and Tl families,
revealing the experimental fact that T, rises with decreasing
mean spacing. Noting that W, ~ rand £+(0) < s, it is clear
that the hopping integrals between the layers are small.

Thus, modeling these systems as weakly coupled sheets, or in
other words, as layered superconductors, is very appropriate.
In this view it is not surprising that the hopping integrals
enter 7, as an exponentially small correction only. The
observed rise in T, with decreasing mean spacing s must
then be attributed to a three-dimensional pairing mechanism
of strength g, which obviously depends on s. Relating the
electron density between the layers to the average spacing s
through the relation p ~ s~', and assuming strong screening,
one finds [11]

gls) ~ s, (5)

3. Calculation of the transition temperature

To calculate the transition temperature within the
framework of the mean-field approximation, it is sufficient
to consider the linearized gap equations [23, 24]

A=3% CpA,, (6)
y

where

Cr==8() kT T Gy.(k

0 0,)G (=K, ). (7)

Ky,

Green’s function G satisfies the equation of motion

(ihe, = & )Gy (&, ©,)
=0 + Gy (&), ) + 1, Gy (K, 0,). (8)

T, then follows from the eigenvalue of

|C—-VE| =0, ®
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yielding, in terms of
ik, T)y=1, A=1,-,4, (10)

the largest 7..: g denotes the number of layers per period. In
view of the experimental facts [Equation (4)], the solution
becomes simplified in terms of

W_L
— 1. (tn
"

kyT. > W,

Moreover, we assume that the density of states is not
singular at the Fermi level, and we adopt a weak-coupling
treatment, so that

T, <90, (12)

where 6 is the cutoff temperature. To leading order in the
hopping integrals ¢, we then obtain {11, 17]

1
T.~ 1.130exp— —————. (13)
(5N, (0)
where g(s)V,(0) refers to the layer within the unit cell
yielding the maximum value. N (0) is the density of states of
that layer. The exponentially small correction term due to
interlayer hopping for ¢ = 1 is given [25] by

t2

T.()=T.(t=0)exp— m‘o)—u/". (14)
Thus, the critical temperature depends on the mean spacing
only in terms of the pairing coupling constant g, but is
practically independent [Equation (5)] of the hopping
integrals. Nevertheless, the 7, must be finite to allow for long-
range order.

To compare (13) with the measured 7, and the associated
spacing s, we rewrite it in the form

1n—7:5=ln1'130— 1 (15)
T, T, 8N, (0)
Guided by the band structure calculations, we assume Nu(O)
to be constant within one family. Figure 1 shows the
experimental results for In T_/T, versus s, They exhibit a
clear s-dependence, consistent with s, expected for strong
screening {Equation (5)]. Thus, we are led to the conclusion
that the pairing mechanism is of three-dimensional nature.
The linear fit through the experimental points, depicted in
Figure 1, yields the cutoff temperatures and parameters
g(s)N“ (O)s2/ ? listed in Table 2. These parameter values point
to a weak-coupling mechanism (7T, < 8) with an
intermediate boson of rather high energy (k,8). Moreover,
they justify our weak-coupling assumption (Equation (12)]
in solving the gap equation.

4. The upper critical field
In the dirty limit the Ginzburg-Landau free-energy
functional of our model reads [26]
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i Critical temperature T, versus s2° for XmCanfl:S‘ngu,‘OZ(n Dt

s is the mean layer spacing, 7, = 1K, and L, =

Table 2 Estimates of the cutoff temperature § and coupling
constant g(x)N (0)s*” as obtained from the linear fits shown in
Figure 1.

9 gN0)s™

(K)
Bi,Ca,,Ba,Cu, 0y s e 1860 1.18
T1,Ca,_,Ba,Cu,0, 11112 4530 0.93
T, Ca \Ba Cu, 001101 2660 0.93

e [ s 2 15,27 ]

+ m’ ,H(r)expzz—Hs,xsm()
51 B,
2 |
— V(D) e VAR (16)

Here s, is the separation of layers /and /+ |1, (4. 4.) =

(0. xcos 8, ~sin6); D = 1/2 Vir is the two-dimensional
diffusion constant; m and M are the effective masses parallel
and perpendicular to the layers, respectively. The ratio m/M
determines the strength of the interlayer coupling. Finally,
a,~ 5"_2 (T) in Equation (16) can be derived from the
microscopic model [Equations (1)~(3)] in the limit [26]

T2 MISI ( 7

: T 17)
mVF/
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that is, when the scattering time for an electron in a layer is 41rH;L2 | [1 1 < s >1F1 o
short compared to the time required for an electron to b0 £2(0) ( ! )1 + ( 1) £4(0) I

tunnel to the adjacent layer. The functional (16) is an i

extension of the Lawrence-Doniach expression [27] allowing  and

the properties of the layers and their coupling to vary within

a period. If we consider the limit H"z(t) = £'0) , (24)
Hy(t)  £(0)

D,— D, M,— M, 5, S, a,— a, (18) where

and s — 0, the functional reduces to the familiar form for a k)| 2

dirty and anisotropic superconductor. The upper critical — f - (25)

field is then given [16] by (k ) D

354

Hi() = b, (1 -0, Thus, H jz and H/, will exhibit, up to the scaling factor of
e 27 ¢! (0)2 £1(0)/£+ (0), an upward curvature arising from a diffusion
constant, varying along the z-direction, with an amplitude
depending on the ratio squared between the mean spacing
HL(0) = 2 m — (19) " and the perpendicular correlation length L,. This ratio is
particularly large in the superconductors considered here
where [Equation (4)], yielding a pronounced positive curvature
even for small inhomogeneities (F < 1), as observed
£1(0) m experimentally [13-15].
g0 VM
1 2 T Acknowledgments
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The functional (16) is more general, however, taking into
account the discrete nature of the interlayer coupling and the
variations in the layer properties within a period. In fact, the
anisotropic Ginzburg-Landau results apply to layered
systems only when the order parameter varies slowly on the
scale of the layer separation, which limits their validity to an
ever-decreasing range of temperatures near 7 as the
interlayer coupling is decreased.

To explore the variation of layer properties, we next allow
small variations in the diffusion coefficient D, namely

D,=D+ AD,, Q1)

while all other parameters are kept constant. This variation
might be of intrinsic nature, due to inequivalent layers
within a period or due to inhomogeneities signaled by a
broad transition to the superconducting state. Using
Equation (16), the evaluation of the upper critical field leads
to the eigenvalue problem

. 2e -
(’Vu"'h_ > V() - S< ,+.(r)expl;0—Hstm0
2T .
+ ¥, exp~i = HSxsinf - 2\I/,>
4}
2a
+-—¥,=0.
#p, ¥ =0 22

Assuming small variations in D, only, second-order
perturbation theory yields
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