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Using  the  mean-field  approximation, we study  a 
model  for  quasi-two-dimensional 
superconductors. The interlayer  coupling, 
assumed to be mediated  by a small  electron- 
hopping  term, is found to leave T, practically 
unaffected.  Thus,  a  three-dimensional  pairing 
mechanism is required to explain  the  observed 
rise in T, with  decreasing  average  layer  spacing 
in the  Bi  and  TI  compounds.  Taking  the 
inhomogeneities of intrinsic or extrinsic nature 
into  account,  we  find, in the dirty limit, 
corrections to the  conventional  anisotropic 
Ginzburg-Landau  behavior-an  upward 
curvature of the  upper critical fields which 
appears  to be a universal  feature of layered 
superconductors. 
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1. Introduction 
Since the discovery of  high-temperature superconductivity in 
the La-Ba-Cu-0 system [ I ] ,  a  rapidly  growing number  of 
superconducting oxides  have been synthesized, with critical 
temperatures T, ranging from 5 to 125 K. Particular 
attention has been attracted by the layered compounds with 
chemical formula X,,,Ca,-, Ba2CunOz(,,=,,+,,,. where X = Bi or 
TI, m = I or 2, and n = I ,  2, 3, 4, or 5 [2-IO]. These are  the 
striking facts: T, increases  markedly with the  number n of 
CuO sheets per formula unit:  properties parallel and 
perpendicular  to  the layers are highly anisotropic: layers 
within  a unit  are  not necessarily equivalent;  the transition to 
the  superconducting state is not very sharp,  pointing  to  the 
importance of  inhomogeneities.  These  properties clearly 
reveal the layered nature of these compounds. Viewing them 
as anisotropic superconductors is not sufficient. Such  a 
treatment is valid only when the  order  parameter  vanes 
slowly on  the scale of the layer separation, which effectively 
limits the applicability to  an ever-decreasing  range of 
temperatures near T, as the interlayer coupling is decreased. 

We recently presented  a  microscopic  model  treating  these 
materials as layered superconductors, allowing inequivalent 
layers and couplings  within  a unit cell [ I  I ] .  Using the  mean- 35 1 
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Table 1 Critical  temperature T, and  mean  spacing  between 
layers s = c/q. XmCan-,Ba2Cun02,n+,)+m. q denotes the  number of 
layers  per  unit cell. 

X m n  S T, Reference 
(K) (A) 

Bi 2 I 12.3  22 2 
Bi 2  2 7.8 85 6 
Bi 2  3 6.2 I10 7 
TI 2 1 11.6 20 9 
TI 2  2 7.4 108 9 
TI 2  3  6.05 125 9 
TI I I 9.7 20 
TI 

9, I O  
1 2  6.4 85 9, 10 

TI 1 3  5.3 1 I O  
TI 4  4 

9, 10 
4.8 I22 10 

field approximation,  the interlayer  coupling,  mediated by a 
small  electron-hopping term, was found  to leave T, 
practically unaffected. Thus, a  three-dimensional  pairing 
mechanism is required to explain the observed dependence 
of T, on  the average layer spacing. 

upper critical field, using the  dirty limit of the Ginzburg- 
Landau (GL) version of our model. Taking  the 
inhomogeneities of intrinsic or extrinsic nature  into  account, 
we find corrections to  the familiar  anisotropic G L  behavior, 
a positive curvature of the  upper critical fields, which 
appears to be a universal feature  of layered [ 12-  151 or 
synthetically layered superconductors. 

pairing  mechanism of three-dimensional nature,  and  the 
crucial importance of  anisotropy and inhomogeneities  of 
intrinsic or extrinsic  origin. 

In  this paper we outline  our  main results and calculate the 

Our mean-field analysis strongly suggests a weak-coupling 

2. Model 
We consider the  Hamiltonian [ 1 1- 171 

Jd = so + Ji", , (1 )  

where 

describes the  band  structure  and 

the local and attractive  pairing  interaction, C+ and C denote 
Fermion creation and  annihilation operators,  (labels the 
layers, and we assume a  periodic  sequence  of sheets with q 

layers per period of length c. The two-dimensional band 
structure of the sheets L , the coupling between the layers t 
due  to single-particle tunneling, and  the coupling constants 
gI are allowed to vary within  a  period. The  spectrum of JJ is 
labeled by the wavevectors 5 = (kA,  /cy) within  a layer, 
-(*/a) I kn I (T/u) ,  (Y = x, y,  and k, is the  wavenumber 
perpendicular to  the planes  (z-direction). 

Band structure calculations [ 18-2  11, resistivity [22], and 
upper critical field measurements [ 14-  161 revealed that 

5 

where W denotes  the  bandwidth, [(0) the  zero-temperature 
correlation  length, and s = c/q the  mean spac i~~g between the 
layers. I stands for the z-direction and 11 labels a  direction 
within or parallel to  the sheets. In Table 1 we also 
summarize  current experimental data for T, and  the 
corresponding mean spacing s for the Bi and T1 families, 
revealing the experimental fact that T, rises with  decreasing 
mean spacing. Noting that WL - t and [ I (0 )  < s, it is clear 
that  the hopping  integrals between the layers are small. 
Thus, modeling  these  systems  as weakly coupled sheets, or  in 
other words, as layered superconductors, is very appropriate. 
In this view it is not surprising that  the  hopping integrals 
enter T, as an exponentially  small  correction  only. The 
observed rise in T, with decreasing mean spacing s must 
then be attributed  to a  three-dimensional  pairing mechanism 
of strength g, which obviously depends on s. Relating the 
electron density between the layers to  the average spacing s 
through the relation p - s-I, and  assuming  strong screening, 
one finds [ 1 11 

g(s) - Y 2 I 3 .  ( 5 )  

3. Calculation of the  transition  temperature 
To calculate the transition temperature within the 
framework  of the mean-field approximation,  it is sufficient 
to consider the linearized gap  equations  [23,24] 

AI = x C,. AI , ,  
I' 

where 

C,, = -g,(S) k,T G i , ( K ,  wu)GZ,(-q,  -w,). 
2 

k l ' %  

Green's  function Go satisfies the  equation of motion 

W w "  - &+)Gi,(q, w,) 

2 A 

= 6,* + trG,,+,(kll? w.) + t/*-IG,,-1(kl, 9 mu) .  

T, then follows from the eigenvalue of 

I C -  VEI = o ,  
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yielding, in terms  of 

V,(k,, T,) = I ,  X = 1,. . . , q, (10) 

the largest T,; q denotes the number of layers Per period. In 
view of  the experimental facts [Equation (4)], the solution 
becomes simplified in terms of 

Moreover, we assume  that  the density of states is not 
singular at  the  Fermi level, and we adopt a  weak-coupling 
treatment, so that 

T, << 0, (12) 

where 0 is the cutoff temperature. To leading order in the 
hopping integrals t ,  we then  obtain [ 1 1. 17 1 

where g(s)N,,(O) refers to  the layer  within the  unit cell 
yielding the  maximum value. N,,(O) is the density of states of 
that layer. The exponentially  small  correction term  due  to 
interlayer  hopping for q = 1 is given [25] by 

T,(t) = T,(t = 0) exp - 

Thus,  the critical temperature  depends  on  the  mean spacing 
only  in terms of the pairing coupling  constant g, but is 
practically independent  [Equation (S)] of the  hopping 
integrals. Nevertheless, the t, must be finite to allow for long- 
range order. 

To  compare ( 13) with the measured I", and  the associated 
spacing s, we rewrite it in the  form 

t 2  
2akB Tc(o)  w [ I  ' 

(14) 

Guided by the  band  structure calculations, we assume N,,(O) 
to be constant within one family. Figure 1 shows the 
experimental results for In TJTO versus s2/'. They exhibit  a 
clear s-dependence,  consistent with s2l3, expected  for  strong 
screening [Equation (S)]. Thus, we are led to  the conclusion 
that  the pairing mechanism is of three-dimensional nature. 
The linear fit through  the experimental  points,  depicted in 
Figure I ,  yields the cutoff temperatures  and  parameters 
g ( s ) N , ,  ( 0 ) ~ ~ ' ~  listed in Table 2. These  parameter values point 
to a  weak-coupling mechanism (T,  << 0)  with an 
intermediate boson of rather high energy (kBO). Moreover, 
they justify our weak-coupling assumption  [Equation (12)] 
in solving the  gap  equation. 

4. The  upper  critical  field 
In the dirty  limit the  Ginzburg-Landau free-energy 
functional of our model  reads [26] 
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m X = B i  m = 2  

a X = T I  m = 2  

0 X = T l  m = l  6 -  - F=& 
3 4 -  

0 2 -  I I \ I I I 1 

0 1 2 3 4 5 6  

($ 

Table 2 Estimates of the cutoff temperature % and coupling 
constant g(s)Nll(0)s2" as obtained from  the  linear fits shown in 
Figure I .  

\kf+,( i )expi-Hs,xsin8 
2* 
00 

Here s, is the  separation of layers 1 and 1 + I ,  ( A  , A ; )  = 

(0. x cos 0, -sin 0); D = 1/2 V ~ T  is the two-dimensional 
diffusion constant; m and M are  the effective masses parallel 
and perpendicular to  the layers, respectively. The  ratio mlM 
determines  the strength  of the interlayer  coupling.  Finally, 
at - [ ( T )  in Equation ( 16) can be derived  from the 
microscopic  model [Equations (1)-(3)] in the limit (261 

L 
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that is, when the scattering time for an electron  in  a layer is 
short  compared  to  the  time required for an electron to 
tunnel  to  the adjacent layer. The functional (16) is an 
extension  of the Lawrence-Doniach expression [27] allowing 
the properties of the layers and their  coupling to vary within 
a  period. If  we consider the limit 

D,+D, M,-*M, s , + s ,  (Y,+Q, (18) 

and s + 0, the functional  reduces to  the familiar  form  for  a 
dirty  and anisotropic superconductor.  The  upper critical 
field is then given [ 161  by 

I where 

I 

The functional (16) is more general, however, taking into 
account  the discrete nature of the interlayer  coupling and  the 
variations in the layer properties  within  a  period. In fact, the 
anisotropic  Ginzburg-Landau results apply to layered 
systems only when the  order  parameter varies slowly on  the 
scale of the layer separation, which limits their validity to  an 
ever-decreasing range of temperatures near T as the 
interlayer  coupling is decreased. 

small  variations  in the diffusion coefficient D, namely 

D, = D + AD,, (21)  

while all other parameters are kept constant.  This variation 
might be of intrinsic nature,  due to inequivalent layers 
within a period or  due  to inhomogeneities signaled by a 
broad  transition to  the superconducting  state. Using 
Equation ( 1  6), the evaluation  of the  upper critical field leads 
to  the eigenvalue problem 

To explore the variation  of layer properties, we next allow 

21r 

Assuming  small  variations  in D, only,  second-order 
354 perturbation  theory yields 
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and 

where 

Thus, H A  and H!2 will exhibit, up  to  the scaling factor of 
It (O)/[ (O), an upward curvature arising from a diffusion 

constant, varying along the z-direction, with an  amplitude 
depending on  the ratio  squared between the  mean spacing 
and  the perpendicular  correlation  length Lo. This ratio is 
particularly large in  the  superconductors considered  here 
[Equation (4)] ,  yielding a pronounced positive curvature 
even for  small  inhomogeneities (F<< I ) ,  as observed 
experimentally [ 13- 151. 
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