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The  low-field  microwave  absorption  line 
spectrum  of a single  crystal  of  superconducting 
YBa,Cu30,,  has been studied as a function  of 
the  external  magnetic  field.  The  threshold 
microwave  power  necessary  to  nucleate  fluxons 
is found  to  vary  with  field  in  such a way  that  only 
about  one  thousandth  of  the  junction  length is 
active in  interacting  with  the  microwaves  to 
create fluxons. 

Introduction 
Since the discovery of the high-T, cuprate superconductors, 
there have been many reports [ 1 - 131 of their  microwave 
absorption  in very low magnetic fields. The  experiments  are 
usually performed  in a conventional ESR spectrometer, 
where the absorption is detected by a derivative technique 
involving the application of a small modulation field. The 
broad absorption found in  ceramic  samples  has  been 
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attributed  to  damped fluxon motion driven by the 
microwave field [ 141. In these granular materials a 
superconducting critical state is formed  at very low applied 
fields, and  the effect of an even  smaller modulation field is to 
cause some of the fluxons which are kept  nearly depinned by 
the critical currents  to become less mobile. The resulting 
modulated signals change sign upon field reversal for  small 
modulations, leading to a hysteresis [ 151 that is very similar 
to  the hysteresis of the magnetization. As the  modulation 
field is increased, the effect of the lower mobility is reduced 
and  the hysteresis becomes less apparent [ 151. 

Experiment  and  discussion 
An apparently different, more intense,  line absorption has 
been found in single crystals of YBa,Cu,O,-, [ I61 and small 
particles of PbMo,S, and  Nb [ 171. The regular series of 
which Figure 1 represents just a small part is attributed 
to fluxon nucleation and  annihilation within a single 
low-fluxon-viscosity Josephson junction [ 181 at  one of the 
numerous  domain boundaries.  Additional  fluxons are 
created by the microwave-induced currents where the 
energies of neighboring  fluxon  states  cross as a function of 
the applied field, H [ 171. The  junction critical current is also 
smaller at these values of the field. Experimentally the 
absorption peaks are  found  to  be  anisotropic  and vary with 
field according to  the simple  relation [ 161 
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H cos O = (p +
2)

AH,

where 0 is the angle between the applied field and a (110)
direction and AH the period of the spectrum which is 80
mG in Figure 1 . Although the line spectrum of Figure 1 is
from the same crystal as that used in [ 16], it was produced
by another junction than that studied there . In all cases the
observed sequence is more regular than the characteristic
Fraunhofer interference pattern for the critical current of a
point-like Josephson junction, where the minima near H = 0

have twice the separation of all other minima [ 19] . In fact,
the spectrum is more reminiscent of the behavior of a
double-junction quantum interferometer with all lines
equally spaced. A single long junction in a microwave field
which penetrates and creates fluxons only over a strictly
limited distance at each end of the junction is expected to
behave similarly to a quantum interferometer . Moreover, the
surfaces of YBa 2Cu3O,_, single crystals are known to be of
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Magnetic field (G)

A segment I (Ihe 9.44 GHz microwave absorption line spectrum of a YBa 2Cu 3O, s single crystal between 29 and 31 gauss at 4 .3 K . The applied
magne(i, w id i~ I .~) and 11(110), and the microwave field 11(c) .

poorer quality than the interior . This may further contribute
to an effective nonuniform critical current profile [ 19] at the
edges of the active Josephson junction causing the periodic
spectrum .

The line series of Figure I appears above a certain
threshold microwave power beyond which each line
broadens linearly with the square root of the microwave
power. New series are induced in other junctions at
successively increasing thresholds of microwave power and
also with increasing temperature, which effectively lowers the
required thresholds . An example of the microwave power
broadening of the line spectrum is shown in Figure 2 . This
line broadening is proportional to the microwave magnetic
field and is described [ 17 ] by

H (P) (P)I ,0

	

0

where SH is the linewidth, AH the field interval of the
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spectrum, P,(T) the threshold power, and P0 the
temperature-independent rate at which 6H/OH increases
above threshold . The threshold microwave power P,(T)
necessary for fluxon nucleation may be obtained by plotting
the variation of linewidth of a particular line in Figure 2
against the square root of the incident microwave power and
extrapolating to zero linewidth . Of particular interest in
Figure 2 is the appearance of additional structure throughout
the bands in the higher-power absorption spectrum . This
secondary fluxon excitation bandwidth extrapolates back to
the same threshold as the primary absorption process, but
the rate of power broadening differs markedly. Whereas all
the strong bands of the primary process broaden at
approximately the same rate, -2 .6 mG/µW' Z , with
increasing microwave power the secondary bands widen at
about 0.6 mG/,.W I/2 in a 5-G field, decreasing to about 0 .25
mG/µW 1i2 in fields greater than 50 G . This secondary fluxon
excitation was not observed in Josephson junctions in
irregular Nb particles [ 17 ] .
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The variation with magnetic field of the threshold
microwave power for primary fluxon nucleation is shown for
successive lines of the single crystal of YBa,Cu,O,_ h in
Figure 3 . This apparent oscillatory field dependence is
another consequence of the limited spatial penetration of the
microwaves in the junction . The active depth of the junction
may be shown to be given [17] by

S =L H ,
a

where Ha is the field interval between minima in the
microwave threshold power as a function of the applied field
in Figure 3 and L the total length of the junction, assumed
uniform . From Figures 1 and 3 AH = 0.08 G and Ha - 80
G, which gives an active length of about one thousandth of
the total length of the junction . The latter quantity is
difficult to estimate, because the crystal contains many
domain boundaries and there is no way of knowing which of
them causes the spectrum of Figure I .
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The majority  of  the  theory  of  Josephson  junctions  has 
been concerned with  the I- V characteristics  with  and 
without  an  applied  magnetic field. T h e  effect of  a microwave 
field on I- V characteristics  has  also been investigated [20], 
but  very  little  has been done  on  the  microwave  response 
itself. In this  respect,  it   is  hoped  that  the  experiments 
reported  here  may  stimulate  additional  rigorous  theoretical 
work. 
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