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Small-area fault
clusters and
fault tolerance
in VLSI circuits

by C. H. Stapper

in previous treatments of the manufacturing
yield of fault-tolerant integrated-circuit chips,
fault clusters were either assumed to be absent
or relatively large in area. Presented here is a
treatment in which the occurrence of small-area
fault clusters is assumed. Four different types of
statistical distributions are considered, and a
criterion is described for determining whether
small-area fault clusters are present.

Introduction

Statistical models which have been used for predicting
integrated-circuit chip yield in the presence of large-area
fault clusters have been reviewed in [1]. It was shown in [2]
that clusters of this type intrinsically result in a correlation
between the numbers of faults per chip in adjacent chips.
Here we examine the case in which such a correlation is
absent, and for which the clusters are designated as small-
area clusters. It has been believed that small-area clusters
should lead to fault distributions which follow a Poisson
distribution. However, this has been found to be incorrect,
because such clustering leads to an increase in the variability
of the frequency distribution of the number of faults per
chip. A Poisson distribution has a variance that is equal to
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the mean. Fault clustering results in frequency distributions
of the number of faults per chip with variances that are
larger than the mean.

In the yield calculations of fault-tolerant chips with large-
area fault clustering, chips were subdivided into circuit
blocks [1]. Usable chips were obtained by disconnecting
faulty circuit blocks and by utilizing only the fault-free
blocks. This same approach is assumed here, and yield
formulae are derived for single circuit blocks and groups of
blocks. Negative binomial, Neymann Type A, Poisson
binomial, and Poisson negative binomial distributions are
examined.

A negative binomial model

The number of faults in a circuit block can be denoted by a
random variable X, where the values of the subscript i are
used to indicate the different circuit blocks. The negative
binomial distribution for the random variable X, can then be
written as

- T(a” + k) (ACB/a’)k

PX, =k —,
( ) KIT(a’) (1 + Aggla’ )+

i (1)
where k is equal to an integer 0, 1, 2, etc.; A is equal to the
average number of faults per circuit block; and a’ is the
cluster parameter. The prime is used here to distinguish the
cluster parameter in this distribution for small clusters from
the one without a prime used in the case of the large-area
clusters in [1]. Note also in Equation (1) the absence of a bar
over the symbols A, because this fault distribution is not
the result of a Poisson compounding process. The average
number of faults is therefore no longer a grand average, as it
was for large-area clusters.
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The yield for an individual circuit block is equivalent to
the probability of finding no faults in such a block. Using
k = 0 in (1) therefore results in

Yies = (1 + Aggla’) ™, )

where Y, denotes the yield of an individual circuit block.
We next determine an expression for the yield associated
with a group of n circuit blocks.

The number of faults in a group of » identical circuit
blocks is equal to the sum of the number of faults in each
individual circuit block. It therefore is a random variable
given by

X=7% X,. €)
i=1

We now must find the probability distribution function of

the random variable X.

The probability distribution function of a random variable
can be determined from the associated probability
distribution generating function. It was shown in [3] that the
distribution generating function for (1) is given by

G(s) = {1 + (1 = Hgla' 1™, 4)

where s is a parameter. Each circuit block has such a
function associated with it, and for identical blocks these
functions are equal to one another. It is generally known
that the probability distribution generating function
associated with the sum of independent random variables is
equal to the product of the probability distribution
generating functions associated with these random variables.
For the # identical circuit blocks, this function therefore
becomes

G(5)=G,(s) = {1 + (1 — s)rg/a’}™". (5)

In this function the ratio Az/a’ has the same value as
nhcp/na’. Equation (5) is therefore the probability
generating function of a negative binomial distribution with
an average number of faults equal to n\, and a cluster
parameter equal to na’. This probability distribution
generating function therefore leads to

T(na’ + (MAcp/na’ )’

PX =)= (na’ +1) CB . ©)
I'T(na’) (1 + nhgg/na’)

When / = 0, this becomes the yield expression

Y, = (1 + mAgg/na’) ™. )

This yield formula differs significantly from the ones used for
large-area clustering, where the cluster parameter « was a
constant. We can write

a) = na’, (8)

thus indicating that for small-area clustering the cluster
parameter is directly proportional to the number of circuit
blocks. The yield formula (7) can be used in formulae (15),
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(28), and (29) of [1] for calculating the yield of partially good
chips and chips with redundancy.

Alternative models

Although negative binomial distributions have generally
resulted in good agreement with integrated-circuit fault data,
they are not the only type that can be applied to such data.
For example, as has been shown, other distributions are
suitable [3, 4]; one is the Neymann Type A distribution,
which for a single circuit block can be expressed in the form
e_al(xcn/a ’ ) - ik

3 g lane e ©)

PX = k) = —, z

Associated with this is the yield expression

Yep = exp[—a’(1 — e7™)] (10)
and the probability distribution generating function

G(s) = expf—a’[l — e "™, (11)

In all of these equations A, represents the average number
of faults per circuit block, and a’ is a cluster parameter.

The above expressions pertain to single circuit blocks.
When the clusters are smaller than a circuit block, we find,
for groups of n blocks,

Y, = exp[-na’(l — e "), (12)

G,(s) = exp{—na’[l — eI, (13)

The yield equation and the probability distribution
generating function for the individual circuit blocks are
obtained by using n = 1 in Equations (12) and (13). Since
n\’ /na’ = N’ [a’, it follows that G,(s) = G,(s)".
Furthermore, Equation (13) is the probability distribution
generating function of a Neymann Type A distribution with
a mean equal to #\" and a cluster parameter given by
a) = na’. We therefore also find here that this parameter
is proportional to the number of circuit blocks.

The Poisson binomial distribution has also been used for
integrated-circuit yield modeling. It can be expressed in the
form

o

PX=k=e“3 (ﬁl

- 1

) <&>k<1 - &)m—k, (14)
i — 0 \are/ \' ~ wa

where 0 < Ap/a’p < 1 and g > 0. Here also, A is the
mean of the distribution and «’ a cluster parameter. The
quantity u is an additional parameter that has an integer
value (usually 1 or 2). The yield and probability distribution
generating function for this probability distribution function
are given by

Yo = expl=a’[1 = (1 = Acu/a’w)l}, (13)
G(s) = exp[—a’{l — [1 — (1 — $)Acp/a’u]"]]. (16)
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Range of small-

area clustering

Range of large-
area clustering

a (logarithmic scale)

Relative window or quadrat area

Dependence of the cluster parameter « on relative window or quadrat
area. The range of large-area clustering is characterized by a constant
value of a. For small-area clustering it is proportional to the area.
Note the logarithmic scale on the horizontal axis.

For clusters smaller than a circuit block, the yield and
probability distribution generating function for chips with n
identical circuit blocks are given by

Y,ca = exp{~na’[l — (1 ~ nhgy/ne’uw)" 1, (17)
G (s)=exp[—na’{l —[1 = (1 = s)nAsy/ne’ u]"}]. (18)

It is not difficult to show that here too G, (s) = G,(s)" and
that Equation (18) is the probability distribution generating
function of a Poisson binomial distribution with a mean
N\ and a cluster parameter o, = na’. As previously, this
parameter is proportional to the number of circuit blocks.

The Poisson negative binomial distribution is also
potentially usable for integrated-circuit yield modeling. It
can be expressed as

o

@) itk—1) Ol
P(X_ k) ¢ i§0 it k'([tl— k)' (l + )\CB/a;u)qu >

(19)

where 0 < A\g/a’p < 1 and g > 0. Again, A represents the
mean of the distribution, «’ is a cluster parameter, and y is
an additional parameter. The yield and probability
distribution generating function formulas associated with
this distribution are given by

Yep = exp{~a’[l = (1 + Acg/a'n) "1}, (20)
G(s) = exp[-a’{l = [I + (1 = sMgp/a’ul ™}l (21)
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When the clusters are smaller than the individual circuit
blocks, the formulas for the yield and probability
distribution generating function take on the form

Y, = expi—na’[1 — (1 + mAg/na’n) 1}, (22)
G (s)=expl-na’{l — [1 + (1 = S)nrgg/na’u] “}l.  (23)

Here we also find G,(s) = G,(s)". Equation (23) represents
the probability distribution generating function of a Poisson
negative binomial distribution with an average equal to n\
and a cluster parameter o] = ne’. Again, this parameter is
proportional to the number of circuit blocks.

In all of the above formulae, cluster parameters are
denoted by a’, na’, or . They have values in the range
0 < a’ < «, In each formula «’ = 0 corresponds to the
limiting case of maximum clustering. When this occurs, all
the faults are concentrated in infinitely small clusters, while
the areas surrounding them are fault-free. When o’ = o, all
of the expressions reduce to the corresponding expressions
associated with a Poisson distribution. This represents pure
randomness, and the distinction between small and large
clusters then becomes meaningless.

Cluster parameter dependencies

The proportionality between the cluster parameter and the
number of circuit blocks can be used as a criterion for the
presence of small-area clustering. It can be applied by
performing a window analysis or a quadrat analysis to
determine the frequency distribution of the number of faults
per window or quadrat [1, 4]. The object is to find the
appropriate models for those distributions and determine the
associated values of «. If these values are directly
proportional to the window or quadrat area, it is inferred
that small-area clustering is present.

In general, the dependence of the cluster parameter a on
window or quadrat area is related to the cluster size
distribution. For windows or quadrat areas larger than the
largest fault clusters, the values of a should increase
proportionally with area. For windows or quadrat areas
smaller than the smallest fault clusters, the value of « should
be independent of area. Therefore, if the sizes of the fault
clusters are limited to a certain range, the dependence of «
on area should follow the curve depicted in Figure 1. The
scales are logarithmic on both axes, so that « is constant for
small areas and increases in a straight line for large ones.
The length of the curve connecting these two end conditions
depends on the extent of the cluster sizes; its curvature
depends on the distribution of cluster sizes.

Integrated-circuit fault data are often collected from wafers
fabricated in different lots at different times. Such data are
usually affected by strong wafer-to-wafer variations of fault
densities [5]. These variations have the same effect as large-
area clustering. The conditions for small-area clustering are
therefore rarely observed in actual fabrication data. This can
also be seen in Figure 2 of [1]. Although the two figures are
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similar, the data on which the latter was based do not satisfy
the direct proportionality criterion because of the wafer-to-
wafer variation in the original data [4].
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