
Communication 

Small-area  fault by C. H. Stapper 

clusters  and 
fault  tolerance 
in VLSl circuits 

In previous  treatments  of  the  manufacturing 
yield  of  fault-tolerant  integrated-circuit  chips, 
fault  clusters  were  either  assumed  to be absent 
or relatively  large  in  area.  Presented  here is a 
treatment  in  which  the  occurrence  of  small-area 
fault  clusters  is  assumed.  Four  different  types  of 
statistical  distributions  are  considered,  and  a 
criterion  is  described  for  determining  whether 
small-area  fault  clusters  are  present. 

Introduction 
Statistical  models  which  have  been  used for predicting 
integrated-circuit chip yield in  the presence of  large-area 
fault clusters  have  been  reviewed in [ 11. It was shown in [2] 
that clusters of this type intrinsically result in a correlation 
between the numbers of faults per chip in adjacent chips. 
Here we examine the case in which  such a correlation is 
absent, and for which the clusters are designated as smull- 
urea clusters. It has been  believed that small-area  clusters 
should lead to fault distributions which  follow  a  Poisson 
distribution. However, this has been found to be incorrect, 
because  such clustering leads to an increase in the variability 
of the frequency distribution of the number of faults per 
chip. A Poisson distribution has a variance that is equal to 
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the mean. Fault clustering results in frequency distributions 
of the number of faults per chip with  variances that are 
larger than  the mean. 

area fault clustering, chips were subdivided into circuit 
blocks [ 11. Usable chips were obtained by disconnecting 
faulty circuit blocks and by utilizing  only the fault-free 
blocks. This same approach is assumed here, and yield 
formulae are derived for single circuit blocks and groups of 
blocks.  Negative binomial, Neymann Type A, Poisson 
binomial, and Poisson  negative binomial distributions are 
examined. 

In the yield calculations of fault-tolerant chips with  large- 

A negative  binomial model 
The number of faults in a circuit block can be denoted by a 
random variable Xi ,  where the values of the subscript i are 
used to indicate the different circuit blocks. The negative 
binomial distribution for the random variable Xi can then be 
written as 

where k is equal to  an integer 0, 1,2, etc.; X, is equal to the 
average number of faults per circuit block; and (Y ’ is the 
cluster parameter. The prime is used here to distinguish the 
cluster parameter in this distribution for small clusters from 
the one without a prime used in the case  of the large-area 
clusters in [ 11. Note also in Equation (1) the absence of  a bar 
over the symbols kB, because this fault distribution is not 
the result of a  Poisson compounding process. The average 
number of faults is therefore no longer a grand average, as it 
was for large-area  clusters. 
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The yield for an individual circuit block  is equivalent to 
the probability of finding no faults in such  a  block.  Using 
k = 0 in  (1)  therefore  results in 

YICB = (1 + XCB/a , )-’, (2) 

where YICB denotes the yield  of an individual circuit block. 
We next determine an expression  for the yield  associated 
with  a group of n circuit blocks. 

The number of faults  in  a group of n identical circuit 
blocks is equal to the sum of the number of faults in each 
individual circuit block.  It  therefore  is a random variable 
given  by 

n 

x= xi .  (3) 
i= I 

We  now must  find the probability distribution function of 
the random variable X .  

The probability distribution function of a random variable 
can be determined from the associated  probability 
distribution generating function. It was  shown in [3] that the 
distribution generating function for (1) is  given  by 

G,(s) = (1  + (1 - s)XC,/a‘ ]-a’, (4) 

where s is  a parameter. Each circuit block  has  such  a 
function associated  with it, and for identical blocks  these 
functions are equal to one another. It is  generally  known 
that the probability distribution generating function 
associated  with the sum of independent random variables  is 
equal to the product of the probability distribution 
generating functions associated  with  these random variables. 
For the n identical circuit  blocks, this function therefore 
becomes 

In this function the ratio k B / a ’  has the same value as 
nX,,/na’. Equation (5) is  therefore the probability 
generating function of a  negative binomial distribution with 
an average number of faults equal to nX, and a  cluster 
parameter  equal to na ’. This probability distribution 
generating function therefore  leads to 

When 1 = 0, this becomes the yield  expression 

Y,,, = (1 + nXc,/na (7 ) 

This yield formula differs  significantly  from the ones  used  for 
large-area  clustering,  where the cluster parameter a was a 
constant. We can write 

thus indicating that for  small-area  clustering the cluster 
parameter is directly proportional to the number of circuit 
blocks. The yield formula (7) can be used in formulae (1 5) ,  

(28), and (29) of [ 1 1  for  calculating the yield  of partially  good 
chips and chips  with  redundancy. 

Alternative models 
Although  negative binomial distributions have  generally 
resulted  in  good  agreement  with  integrated-circuit  fault data, 
they  are not the only  type that can be applied to such data. 
For  example, as has  been  shown, other distributions are 
suitable [3,4]; one is the Neymann Type A distribution, 
which for a  single circuit block can be expressed in the form 

Associated  with this is the yield  expression 

and the probability distribution generating function 

In all  of  these. equations kB represents the average number 
of faults  per  circuit  block, and a’ is  a  cluster parameter. 

The above  expressions pertain to single circuit blocks. 
When the clusters are smaller than a circuit block, we  find, 
for  groups  of n blocks, 

The yield equation and the probability distribution 
generating function for the individual circuit blocks are 
obtained by using n = 1 in Equations (12) and ( 1  3). Since 
nX ‘/na ’ = h ‘/a ‘, it follows that G,,(s) = G, (s)’. 
Furthermore, Equation ( 13) is the probability distribution 
generating function of a Neymann Type  A distribution with 
a  mean equal to nX ’ and a  cluster parameter given  by 
a; = nu’. We therefore  also  find  here that this parameter 
is proportional to the number of circuit  blocks. 

The Poisson binomial distribution has also  been  used  for 
integrated-circuit  yield  modeling.  It can be expressed in the 
form 

where 0 5 XcB/m ’ p  5 1 and p >.O. Here also, &, is the 
mean of the distribution and a ‘ a  cluster parameter. The 
quantity p is an additional parameter that has an integer 
value  (usually 1 or 2). The yield and probability distribution 
generating function for this probability distribution function 
are given  by 

Y,, = exp(-a’[l - (1 - A,, / (Y’~)~]) ,  (15) 

G(s) = exp[-a’(l - [l  - (1 - s)XC,/a’pJ’’]l. (16) 175 
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Range of small- 
area clustering . 

i 10 

Relative window or quadrat  area 

Dependence of the cluster parameter a on relative window or quadrat 
area. The range of large-area clustering is characterized by a constant 
value of a. For small-area clustering it  is proportional to the area. 
Note the logarithmic scale on the horizontal axis. 

When the clusters are smaller than the individual circuit 
blocks, the formulas for the yield and probability 
distribution generating function take on the form 

YnCB = exp(-na‘[l - (1 + nk,,/na’p)”‘]), (22) 

G,,(s) = exp[-na ’ (1 - [ 1 + (1 - s)nX,,/na ’p]”‘]] .  (23) 

For clusters  smaller than a circuit block, the yield and 
probability distribution generating function for chips with n 
identical circuit blocks are given  by 

Y,,, = exp(-na’[l - (1 - nXCB/na‘p)’’]J,  (17) 

G,(s) = exp[-na’( 1 - [ 1 - (1 - s)nX,/na’p]’’)]. (18) 

It is not difficult to show that here too C,(s) = G,(s)” and 
that Equation (1 8) is the probability distribution generating 
function of a  Poisson binomial distribution with  a mean 
nk,, and a cluster parameter a: = na ’ . As previously, this 
parameter is proportional to the number of circuit blocks. 

potentially usable for integrated-circuit yield  modeling. It 
can be  expressed as 

The Poisson  negative binomial distribution is  also 

where 0 5 Xc,/a ‘p  5 1 and p > 0. Again,  represents the 
mean of the distribution, a ’ is  a  cluster parameter, and p is 
an additional parameter. The yield and probability 
distribution generating function formulas associated  with 
this distribution are given  by 

Y,, = exp { -a ’ [ 1 - (1 + ’p)-*]) ,  (20) 

G(s) = exp[-a’(1 - [ l  + (1 - s ) ~ ~ ~ / ~ ’ p ] ” ‘ ) ] .  (21) 
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Here we also  find GJs)  = G,(s)”. Equation (23) represents 
the probability distribution generating function of  a  Poisson 
negative binomial distribution with an average equal to nX,, 
and a  cluster parameter a: = na ’. Again, this parameter is 
proportional to the number of circuit blocks. 

In  all  of the above formulae, cluster parameters are 
#denoted by a ’, na’, or a i .  They  have  values in the range 
0 5 (Y ’ 5 00. In each formula 01 ’ = 0 corresponds to the 
limiting case  of maximum clustering.  When this occurs,  all 
the faults are concentrated in infinitely small clusters,  while 
the areas surrounding them are fault-free.  When a ’ = 00, all 
of the expressions  reduce to the corresponding expressions 
associated  with  a  Poisson distribution. This represents pure 
randomness, and the distinction between small and large 
clusters then becomes  meaningless. 

Cluster  parameter  dependencies 
The proportionality between the cluster parameter and the 
number of circuit blocks can be used as a criterion for the 
presence of small-area  clustering. It can be applied by 
performing  a  window  analysis or a quadrat analysis to 
determine the frequency distribution of the number of faults 
per  window or quadrat [ 1,4]. The object  is to find the 
appropriate models for those distributions and determine the 
associated  values of a. If  these  values are directly 
proportional to the window or quadrat area, it is inferred 
that small-area  clustering  is  present. 

In general, the dependence of the cluster parameter a on 
window or quadrat area is  related to the cluster size 
distribution. For windows or quadrat areas larger than  the 
largest fault clusters, the values of a should increase 
proportionally with  area. For windows or quadrat areas 
smaller than the smallest fault clusters, the value of (Y should 
be independent of area. Therefore, if the sizes of the fault 
clusters are limited to a certain range, the dependence of (Y 

on area should follow the curve depicted in Figure 1. The 
scales are logarithmic on both axes, so that a is constant for 
small areas and increases in a straight line for large  ones. 
The length  of the curve connecting these  two end conditions 
depends on the extent of the cluster  sizes; its curvature 
depends on the distribution of cluster sizes. 

fabricated in different lots at different  times. Such data are 
usually  affected  by strong wafer-to-wafer variations of fault 
densities [ 5 ] .  These variations have the same effect as large- 
area clustering. The conditions for small-area clustering are 
therefore  rarely  observed in actual fabrication data. This can 
also be seen in Figure 2 of [I]. Although the two  figures are 

Integrated-circuit fault data are often collected from wafers 
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