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Large-area
fault clusters
and fault
tolerance

in VLSI circuits:
A review

by C. H. Stapper

Fault-tolerance techniques and redundant
circuits have been used extensively to increase
the manufacturing yield and productivity of
integrated-circuit chips. Presented here is a
review of relevant statistical models which have
been used to account for the effects on
manufacturing yield of the large-area defect and
fault clusters commonly encountered during chip
fabrication. A statistical criterion is described for
determining whether such large-area clusters
are present.

Introduction

The designation fault-tolerant is often used in connection
with integrated circuits that have some degree of tolerance to
flaws caused by their manufacture. Although such circuits
are capable of functioning correctly if they contain certain
types of manufacturing faults, their fault tolerance does not
pertain to all types of such faults. As a result, their
fabrication yield is usually not 100%.
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The prediction of the yields of such circuits is generally
difficult, as is illustrated in at least three doctoral
dissertations dealing with this subject, namely those of
Mangir [1], Hedlund [2], and Harden [3]. Mangir
subsequently improved her formulations in a later paper [4].
It was shown by Harden [5] that Mangir’s approach can lead
to yet different results when they incorporate a “lumped-sum
approximation” that was originally described in Hedlund’s
thesis. In his doctoral dissertation [3], however, Harden used
an extension of a method for yield modeling of integrated-
circuit memory chips with redundant word and bit lines
described by Stapper et al. [6]. The latter method has
generally been accepted in the literature and forms the
groundwork of this paper.

The difficulty in modeling the yield of fault-tolerant
integrated-circuit chips is caused by the clustering of
manufacturing defects during chip fabrication. The clusters
can be categorized into three classes. The first pertains to
clusters that are much larger than the chip size. Yield models
which take such clustering into account have been adopted
by most authors in this field [7-15). These models also apply
to wafer-to-wafer variations of defect densities that,
according to [16], can be expected to dominate over other
forms of defect and fault clustering.

Another class of clusters deals with fault clusters that are
smaller than the chip area. It is sometimes believed that the
faults in such small clusters should distribute themselves
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according to a Poisson distribution. This statistical
distribution, however, is too constrained, because it has a
variance that is equal to the mean. By their very nature,
clusters contain a large number of defects. They therefore
tend to increase the variability in the number of defects and
faults per chip. As a result, clustering leads to distributions
with variances that are larger than the mean. Some of the
statistics applicable to this type of clustering are described
elsewhere by this author [17]. It has been shown previously
that, under the proper assumptions, a negative binomial
fault distribution is applicable when clusters smaller than the
chip area are encountered [18].

The third class of fault clusters deals with fault clusters
that vary in dimension. This area has been investigated by
Warner [19, 20], Hu [21], Stapper [22], and in an
approximate point-defect model for wafer-scale integration
by Ketchen [23]. A simulation technique for its modeling
has, furthermore, been described by Foard Flack [24]. These
efforts, however, have not been definitive.

Negative binomial distributions in general have provided
good yield models for integrated-circuit defects and faults
[13-16, 25-28]. They are used here for modeling fault
distributions resulting from fault clusters that are larger than
the chip area. However, a number of other statistical
distributions, some of which have been described previously
[16], can be used for this type of modeling if supported by
relevant data.

Although cluster statistics have been used successfully for
estimating the yields of chips with redundancy, they have
not always been used in the literature. A number of analyses
of the yield of wafer-scale integrated circuits with
redundancy have been carried out with the random-defect
yield formula [29-31]

Y=¢, )

where Y is the chip yield and X is the average number of
faults expected per chip or circuit. The average number of
faults per chip is often expressed as A = AD, the chip area 4
times a defect density D. In some cases it is expressed in
terms of a critical area, susceptible area, or defect-sensitive
area, and a relevant defect density. Any of these designations
is, however, a simplification. The relationship between the
average number of faults per chip and the chip area is more
complicated; it depends on the circuit complexity, the
density of photolithographic patterns, the number of
photolithographic masks used in the process, etc.

The above formula does not take clustering into account
and usually leads to predicted chip yields that are too low
when extrapolated from the yield of smaller chips or single
circuits. Equation (1) results from the use of a Poisson
distribution for modeling the distribution of the number of
faults per chip. When such a distribution is used to estimate
the yield of fault-tolerant chips, the results tend to be too
optimistic. The gain in manufacturing yield for such chips
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on actual manufactured wafers is usually less. These yields
are lower than predicted because of defect clusters. This can
best be demonstrated with a simple example.

Suppose that there is sufficient redundancy on a chip for it
to be fault-tolerant to a maximum of four faults. Consider a
wafer with such chips, each chip containing an average of
five faults. Assume that the frequency distribution of the
number of faults per chip is given by a Poisson distribution.
It can then be determined from tables of cumulative Poisson
distributions that 44% of those chips could be expected to
have four or fewer faults [32]. Because of such fault
tolerance, all these chips should be usable. As a result, the
expected chip yield is 44%. In estimating this yield, we have
assumed applicability of a Poisson distribution to the entire
surface of the wafer.

Next let us examine a wafer for which one half is
completely defect-free, so that the chip yield on that half is
100%. Let the other wafer half be very defective, with an
average of ten faults per chip. The average number of faults
per chip for the wafer is therefore equal to five, the same as
in the prior example. If the chips on the defective half are
adjacent to one another, the faults in those chips can be
considered to form a contiguous defect cluster. Let the faults
within this cluster also be randomly distributed in agreement
with Poisson’s distribution. This distribution therefore has a
parameter A = 10. The yield for this half is therefore 0%, and
the combined yield for the two halves is equal to 50%. This
is more than the fault-tolerant yield in the prior example.

Next, let us determine what fault tolerance does for this
wafer. According to the tables of cumulative Poisson
distributions, only 2.9% of chips with an average of ten
faults per chip can be expected to have four or fewer faults.
The predicted fault-tolerant yield for the chips in this half is
therefore 2.9%. Combining this result with the 100% yield
for the fault-free half produces an estimated combined chip
yield of 51.5% for this wafer. This is only slightly more than
the 50% yield which would have resulted if no fault-tolerant
circuits had been used. The fault tolerance is therefore only
of limited benefit. Contiguous defect clusters of this type
could therefore severely impact yield of chips with fault-
tolerance schemes, and benefit the ones without such
schemes.

It has been known since the beginning of integrated-circuit
manufacture that Equation (1) had to be modified to
account for defect and fault clustering. Such modifications
have been the subject of many papers in this field. The most
commonly used method of modification is described in the
next section. A method for determining the parameters of
the resulting model is discussed in subsequent sections of
this paper. The model is then used to calculate the yield of
chips that are partially good. A comparison of actual and
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extended to the calculation of the yield of chips containing
redundant circuits.

The effect of large-area fault clustering on yield
Determination of the size of integrated-circuit fault clusters
is a subject that has found only cursory treatment in the
yield-modeling literature, as for example in [33]. In most
papers on integrated-circuit chip yield, this subject is simply
ignored, even fhough in many cases it is unknowingly
assumed that the clusters are larger than the chip size. The
success of many yield models can be attributed to the fact
that this is not a bad assumption. According to [16], most of
the clustering is expected to be caused by wafer-to-wafer
variations of defect densities. In that case, the cluster area is
equal to the wafer size, which is indeed larger than the area
of individual chips. Another source of clustering is the radial
variation in the average number of faults per chip. This
effect was originally described by Yanagawa [34, 35],
confirmed by others {27, 36] and studied more recently by
Ferris-Prabhu et al. [37], Walker {38, 39], and Gandemer
[40]. It leads to a lower chip yield along the periphery of
integrated-circuit wafers. This peripheral region can therefore
in effect be considered a large fault cluster.

The radial variation of chip yield has led to the use of
concentric wafer zones for yield analysis [16, 27, 36, 41]. In
such analyses, it is usually assumed that the faults per chip
within each zone are distributed according to a Poisson
distribution. Each zone has its own average number of faults
per chip A. The yield inside a zone can therefore be
estimated by using Equation (1). The yield of chips in all
zones from many wafers can be combined, resulting in a
compound or mixed Poisson yield model.

It is not necessary to constrain the fault clusters to zones.
In a more general approach to fault clustering, use of a
Poisson distribution is assumed to be valid for characterizing
the frequency of occurrence of faults per chip within each
cluster. Such clusters can be located anywhere. For an
infinite number of them, according to [16, 22, 41], the yield
formula becomes*

Y= fo e dF(\), )

where F()\) is a cumulative distribution function of the
average number of faults per chip in each cluster. A more
detailed description of this procedure can be found in the
aforementioned references. In this paper the fault clusters for
which this procedure is valid are referred to as large-area
fault clusters. A test for this type of clustering is described in
a subsequent section.

Associated with the cumulative distribution function F()\)
is a probability distribution function given by

*This type of integral is sometimes referred to as a Stieltjes-Lebesgue integral. In the
example here, it is the result of a limiting process in which the number of clusters
approaches infinity.
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_dF(\)
P()\) = T 3)
This represents a distribution of averages, where each
value of A pertains to the average number of faults per chip
in a cluster. Combining Equations (2) and (3) results in the
yield expression first used by Murphy [7]:

Y= f € P(\) dA. @)

The function P()) in this expression is known as a
compounder or mixing function. This function can often be
approximated by a gamma distribution [12, 13, 15, 16, 25—
28). This therefore makes it possible to evaluate the integral
in Equation (4) and results in a well-known integrated-
circuit yield formula,

Y=(1+Na)", 3

where « is a cluster parameter and X is the average number
of faults per chip. It can be shown that X is in effect the
average of the probability distribution function P(\). This
average is therefore the grand average (average of averages)
of the number of faults per chip. More sophisticated
methods for deriving Equation (5) are described in [41].

The cluster parameter « also has physical significance. In
the limit when o — «, the yield in Equation (5) becomes
equal to that of Equation (1). This represents the case of
random defects and complete absence of clustering. Smaller
values of « usually indicate increased clustering. When o =
0, the defects are clustered in infinitely small regions and
none are found elsewhere. This is maximum or perfect
clustering. Actual values for « typically range between 0.3
and 5. Methods for determining this parameter are described
in the next section.

An example of the effects of large-area
clustering
The effects of large-area defect clustering are well known [7-
16]. They can be illustrated by examining chips containing
varying numbers of identical circuits. Let us start with a
single circuit that has a hypothetical yield of 0.999 and an
average of 0.001 faults per circuit. If we use Equation (1), the
yield of a chip with 600 of these circuits is equal to
& %% which is approximately equal to 55%. For a chip
with 40 000 logic circuits, we expect a yield of g 0000000t
4.248 % 107%, or, for all practical purposes, 0%.

If large-area clustering is taken into account, the yield
formula for a chip with » identical circuits is given by

Ye=(+nXXa)™, (6)

where the average number of faults in a single circuit is
denoted by X, .. Assuming again that this number is equal to
0.001, it is possible to estimate the yield for chips with any
number of circuits. Calculated yields for chips with single
circuits, chips with 600 circuits, and chips with 40 000
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circuits are tabulated in Table 1 for values of « = 0.5, 1, 2,
and c. These results show that even if X, is high, the
presence of a high degree of clustering leads to surprisingly
high yields, This effect has been observed in many
manufacturing lines.

Usually a gross yield factor Y, must be included in the
yield model. Gross yield losses are usually the result of
systematic processing problems that affect whole wafers or
parts of wafers, Such losses may, for example, be caused by
misalignment, over- or under-etching, or out-of-spec
semiconductor parameters such as beta, transconductance,
or threshold voltage. Paz and Lawson have shown that defect
clusters with very high fault densities can also be modeled by
Y, [27].

Introduction of the gross yield into the yield formula
leads to

Y=Y, + Xa)" 0]

This three-parameter model has been used successfully for
yield modeling since 1975. Its parameters have physical
significance and can be determined by a straightforward
technique described in the next section. It must be pointed
out, however, that the simplicity of this model can be
deceptive. Some of the hidden complexities are discussed in
subsequent sections,

Determination of parameters
The values of Y, \, and « in Equation (7) can be
determined by the “window” method. This method was first
described by Seeds [8, 9] and subsequently by Okabe et al.
[11], Warner {19, 20], Paz and Lawson [27}, and Hemmert
[15]. The objective is to determine the yield as a function of
chip multiples. This is done with wafer maps that show the
location of functioning and failing chips at final test. The
maps are analyzed using overlays with grids, or windows.
These windows contain blocks of chips. Each block usually
contains two, four, six, or nine chips. For each chip multiple,
the number of windows containing only fault-free chips can
be counted. Dividing this number by the total number of
windows in the sample gives us the yield for that multiple.
The results of the window analysis must next be matched
to a yield formula. For the negative binomial model this has
the form

Yy = Y(1 + NN/a) ™", ®

where N is the chip multiple. Values for the parameters Y,
X, and « are usually determined by means of a nonlinear
regression analysis.

Note that high values of « obtained by this method do not
necessarily mean that there is less clustering. This
phenomenon only implies that there is less large-area
clustering. Small-area clusters can still exist, but this method
is impervious to them. The smaller clusters are essentially
counted as single faults. These observations were described
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Wafer map showing the locations of fault-free (light) and defective
(dark) chips. Test site locations are marked with crosses.

Table 1 Yield as a function of the nurl'lber of circuits per chip
and the cluster parameter o, assuming that X, = 0.001.

Cluster Number of circuits per chip
parameter
o n=1 n= 600 n = 40000
0.5 99.9 67.4 11.1
1 99.9 62.5 24
2 99.9 59.2 0.2
o 99.9 55.0 0

Table 2 Tiustrative use of the window r_r_lethod to determine
model parameters. For this example Y, = 1, A = 1.2934, and a =
3.8274.

Chip Sample  Number Data Model
multiples size perfect yield yield
(%) (%)
1 2136 701 32.82 32.82
2 1008 140 13.89 13.86
4 480 18 3.75 3.79

in [42], but continue to be misunderstood, suggesting that
future elaboration in the literature is warranted.

It is not difficult to use the window method. An example
of a window-method analysis is tabulated in Table 2. The
data in that table came from 24 wafers, each one containing
89 memory chips. For each wafer a map was obtained to
show the location of fault-free and faulty chips. One of these
maps is shown in Figure 1. Also shown on the map are
locations taken up by test sites used to measure processing
parameters.
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The first step in evaluating the wafer-map data was the
determination of the chip yield. In this case 701 out of a
total of 2136 chips were fault-free. The yield was therefore
32.8%. Next, a transparent overlay was made with a grid
containing pairs of chips. It was found that only 42 pairs
could be placed on each wafer map. This resulted in a
sample of 1008 pairs. Only 140 of these were found to be
free of faulty chips. The yield for these windows with blocks
of two chips was therefore 13.9%.

The third step consisted of making an overlay grid that
contained four chips in a 2 X 2 arrangement. Seventeen such
windows could be fitted unambiguously on a wafer. To
increase the sample size, and to include as much of the
circumferential area as possible, three additional odd-shaped
windows containing four chips were formed along the wafer
edge. The total sample therefore contained 480 windows.
For 18 of these windows it was found that all four chips were
free of faults, thus resulting in a yield of 3.75%.

It is possible to obtain an additional data point by
analyzing blocks of three chips. Such blocks, however, have
odd-shaped windows, which makes them awkward to use.
The three data points in Table 2 supply sufficient data for
determining the parameters of the yield model. The values
for X, «, and Y, were obtained by fitting Equation (8) to
these data points with a computer program that minimized
the sum of the squares of the differences between model and
data. With three data points and three parameters in
Equation (8), this was equivalent to solving three nonlinear
equations with three unknowns. For these data, furthermore,
it was possible to set Y, = 1. This led to the values X =
1.2934 and « = 3.8274 for the other two parameters. Putting
these values into Equation (8) led to the numbers shown in
the column labeled Mode! yield in Table 2. The
experimental yields are also tabulated and are in good
agreement. Because of the nonlinearity, even with three data
points, such agreement is not always guaranteed for this
three-parameter model. The author has seen single-wafer
data for which this was indeed the case. Results obtained
from single-wafer analysis, as in [13, 19-22, 43], must
therefore be regarded as fortuitous. The use of larger
samples, as is done here and, originally, by Hemmert [15], is
thus more appropriate.

The window-method analysis is used regularly in the
industry. A variation of such an analysis was described by
R. S. Hemmert [15]. His data were obtained from wafer
maps of logic chips and read-only memories (ROMs). He
used a least-square fitting technique to determine X and « in
Equation (8) while keeping Y, at 100% yield. His results on
seven manufacturing lots of wafers had an average cluster
parameter of 2.2 with a standard deviation of 0.22. The
values of a were therefore tightly grouped, indicating that
they were stable during the fabrication of those lots.

By combining all the data from his lots, Hemmert
obtained a value of 2.1 for « and surmised that an integer

C. H. STAPPER

number of 2 was acceptable for a yield model in his factory.
He also showed that, if data were grouped by ranges of yield,
the value of o was observed to vary from 1.6 to 3.65. The
lowest value, and therefore maximum clustering, was
observed in the group with the highest yield.

An alternative use of Equation (8) has been described in
[28] and [44]. The yield of different read-only memory chips
was analyzed as a function of the number of bits in those
chips. This number was represented by N in Equation (8).
The values of Y, %, and « in that case were also determined
with a nonlinear least-square minimization technique. This
analysis was performed on data from three different
manufacturing lines and resulted in values for « of 1.27,
0.86, and 0.75. As in Hemmert’s results, the lowest value,
and therefore the highest degree of clustering, occurred on
wafers fabricated in the manufacturing line with the highest
chip yields. The highest value of «, suggesting less clustering,
resulted from the wafers fabricated in the line with the
lowest chip yields.

The yield analysis of these read-only memory chips also
showed that the gross yield Y, varied between 70.8 and
90.4%. Although these numbers include the yield of the
support circuits on these chips, this range of gross yields is
typical for most integrated circuits. The lowest value of ¥,
occurred in the low-yield line and the highest value of ¥, in
the high-yield line.

It must be noted here that the values of X obtained by this
method tend to be lower than the actual average number of
faults observed on chips. This difference can be caused by
the effect of clusters that are smaller than the chip. As
mentioned before, such clusters are counted as single faults
by this technique. This counting also affects the cluster
parameter «, which tends to be higher than the actual fault
distributions might suggest. Nevertheless, the window
method produces usable results, as is shown in the next
sections.

Partially good chips

In many integrated-circuit chips, identical blocks of circuits
are often replicated. This is especially the case in chips used
for digital computers. Sometimes these basic circuit blocks
are referred to as processing elements, or PEs. In other
digital computer applications they are referred to as macros.
In memory chips, blocks of memory cells are known as
subarrays. The terminology depends not only on the type of
circuitry that is used, but also on the individual using it. The
designation circuit blocks is used in this paper. It is meant to
be general and to include all these designations.

Chips containing a number of identical circuit blocks can
often be used even if some of the blocks do not function
correctly. Consider, for example, chips consisting of four
identical circuit blocks. These chips are known as perfect if
all four blocks are fault-free. The fraction of chips falling in
this category represents the perfect chip yield. The chips with
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three operating circuit blocks and one defective one are
referred to as being three-quarter-good. The yield of these
chips is known as the three-quarter-good yield. Similar
designations apply to the yields of chips that are half-good
and quarter-good. In general fractionally usable chips are
known as partially good chips [6].

Next, let us examine the case of a chip having N identical
circuit blocks. Suppose that M of these blocks function
properly and that (N — M) circuit blocks are defective.
Furthermore, let the probability of finding a fault-free circuit
block be denoted by the yield Y. In the case of random
defects that do not cluster, the probability of finding A/
faultless circuit blocks on a chip can then be expressed as
Y'C”B. It also follows that the probability of finding a faulty
circuit block is given by 1 — Y. The probability of finding
(N — M) flawed circuit blocks is therefore equal to
(1- Y™

The number of different ways in which (N — M) faulty
circuits can occur on a chip with N circuits is given by the
binomial coefficient

N!

CN, M) = 3N =)

&)
The probability Y,,, of finding precisely M flawless circuit
blocks on a chip with a total of N circuit blocks is therefore
given by the binomial distribution
1

Viow = s =3y Yoo (1 = Yo' ™ (10)
As it stands, this formula can be used only when the faults
do not cluster, or when the fault clusters are smaller than the
individual circuit blocks. For fault clusters larger than the
chip, Equation (10) must be modified. A means for doing so
was originally mentioned in [6] and subsequently in [41]. A
detailed discussion of this modification follows.

The key to the modification of the binomial distribution
in Equation (10) is the quantity (1 — YCB)N_M. This can be
expanded in a binomial series of the form

(N - M)

N-M .
(a- YCB)N_M =3 (‘1)1
j=0
It is possible to define another running index # in such a way
that n = j + M. Introducing this into Equation (11) and
substituting the result in Equation (10) results in

Y., = __L g (_I)N"M
MN T MYN - M) 5,

(N - M) n
——— Y.

(n— MMN—n! ~® 12
The yield of partially good chips therefore depends
completely on a sum of powers of Y.

As early as 1975, Dreckmann and Stapper replaced the
yields Y ¢ in Equation (12) ipso facto by yields calculated
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with the negative binomial yield model. McLaren
subsequently showed mathematically that their heuristic
approach was indeed a correct procedure. His approach has
been described in [6]. It appears, however, to be poorly
understood. A more precise description of this method is
therefore presented here.

When large-area fault clustering is present, Equation (12)
is valid only within a cluster. The partially good chip yield
Y,,~ therefore varies from cluster to cluster. Let the
frequency distribution of the number of faults per circuit
block within each cluster be characterized by a Poisson
distribution. It then follows that in such an area

Yig=e " (13)

What remains to be done is to average these yields for the
different clusters. This can be done by applying the Poisson
compounding procedure directly to Equation (12) for the
yield of the partially good chips. This compounding is
independent of the summation in that expression. The
integral can therefore be brought inside the summation sign,
thus leading to the expression

N y

- . _ n—M
Yiw = MYN - M) EM b

(N - M)

" (n = AN — ) fo PO D (1)

Denoting the integral in this expression by Y, makes it
possible to write the partially good yield as

_ N . M
Yow = 300N = 2 EM =D

(N - M)

“(n— MN — n)t “"® (as)

This is the most important formula in this paper. It is crucial
to the development of yield models for partially good chips,
as well as for chips with redundancy. This equation depends
completely on the yields Y, ., associated with having n
fault-free circuit blocks. If the compounder P()\) in Equation
(14) is equal to a gamma distribution, we again obtain a
negative binomial yield formula

Y, = (1 + nig/a) ™, (16)

where Xy is the average number of faults per circuit block
and a the cluster parameter. A number of other yield
models, which can also be used for this application, are
described in [16] and [41].

In many practical yield calculations it is often necessary to
put more detail into the formula for ¥, 5. This can be done
without any loss of generality in the approach described
here. Examples of this are discussed in a subsequent section
of this paper.
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Table 3 niustrative calculations of the yields of partially good

chips.

Partials Sample Number Data Model
size of chips yield yield

(%) (%)

All-good 480 18 3.8 38

3/4 480 63 13.1 12.3

2/4 480 120 25.0 23.6

1/4 480 140 29.2 321

Experimental verification

It is not difficult to verify the results from the preceding
section. This can be done with the same window method
that was described earlier. To do so, we perform a more
detailed analysis of the overlay grid that contained the
window arrangements for four chips. In the earlier example,
twenty of such blocks or windows were fitted on a wafer,
resulting in a total sample of 480 windows. It was found that
in 18 of these windows all four chips were functioning
correctly; this therefore produced a yield of 3.75%. It was
also possible to count the windows containing three
functioning chips and one faulty one. There were 63 of
these, or 13.1% of the sample. Furthermore, 120 windows
contained two good and two failing chips, which accounted
for 25% of the windows. Another 140 windows, or 29.2%,
contained only one functioning chip. In the remaining
windows all four chips were defective.

These are all the data necessary to check the applicability
of the theory described in the preceding sections. This is
done by treating the individual chips as circuit blocks. Thus,
windows with four good chips are considered to be perfect,
those with three good chips as being three-quarter-good,
those with two good chips as half-good, and those with only
a single nonfailing chip as quarter-good. Their yields are
tabulated in Table 3.

It is also possible to calculate these yields theoretically.
Use of Equation (15) results in

Yp = Yicp, (17a)
Yy =43 — Yacp), (17b)
Yae = 6(Yyey = 2Yscp + Yocp), (17¢)
Y= 4(Y, 5= 3Vocp + 3Ysep = Yocp): (17d)

where the perfect yield is denoted by Y}, rather than Y,
Furthermore, Y is equal to the yield of the single chips,
Y,cp to the yield of blocks with two chips, Y, to the yield
of blocks with three chips, and Y, to the yield of blocks
with four chips. These yields can be calculated with either
Equation (8) or Equation (16), using the values of X, «, and
Y, that were previously determined with the window
method. The results of the calculations are given in Table 3
along with the observed yields. The agreement between the
two sets is completely acceptable for practical purposes.
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1t is useful at this point to demonstrate the inadequacy of
yield calculations made without taking clustering into
account. This is done by using Equation (10) without the
modifications for clustering. With the yield Y, of a single
circuit block equal to 32.8%, the yields obtained with this
formula are Y, = 1.2%, Y;, = 9.5%, Y,, = 29.2%,and Y,, =
39.8%. These yields differ significantly from the data shown
in the fourth column of Table 3.

The use of partially good chips can be very efficient. By
using perfect, three-quarter-good, half-good, and quarter-
good chips, all the functional circuits on a wafer are utilized.
This can be demonstrated by determining the so-called
equivalent yield. This is done by weighting the yield for each
type of partially good chip by the fraction of good circuit
blocks. These modified yields are then added to give the
equivalent yield. For the preceding example, this results in

Yoo = Yp + 3/8Yy, + 1/2Y,, + 1/4Y,,. (18)

When the yield formulas (17a~d) are substituted into this
expression, it reduces to Yy, = Y5 The equivalent yield is
therefore equal to the yield of the individual circuit blocks.
This implies that the use of partially good chips results in
utilization of all the fault-free circuit blocks; none have been
wasted.

Equation (18) can be evaluated by using the yield of four-
chip multiples in Table 2, and the actual yields from the
yield columm in Table 3. This produces an equivalent yield
of 33.4%, which is higher than the original single-chip yield
of 32.8% in Table 2. This difference is caused by the
difference in sample size. There were 2136 chips used in
determining the yield of the single chips in Table 2. For
windows with four chips, however, only 1920 chips were
used. Some of the single chips simply did not fit into exact
blocks of four chips, and therefore could not be used.

Some practical modifications

The example in the preceding section is an idealization,
because actual chips rarely consist entirely of identical circuit
blocks. In all chips there are support circuits in addition to
such blocks. These support circuits are shared by the
replicated circuit blocks. The chips, however, become
unusable if such support circuits are damaged beyond use. In
principle, this effect can be included in Equation (16) by
multiplication with the yield of the support circuits. Doing
so, however, would assume that the clustering of the
support-circuit faults is completely independent of the
clustering of the circuit block faults X In most practical
cases there is a correlation between the average number of
faults in different circuits. This effect can be taken into
account by including in Equation (16) the average number
of faults that cause these support circuits to be defective.
This results in

Y, = [1 + O\ + mAp)/a] ™", 19)
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where A is the average number of “fatal” or “chip-kill”
faults in the support circuits. Chips with these faults cannot
be used as partially good chips. Use of (19) in Equation (15)
makes it possible to take these types of faults into account
when calculating the yields of partially good chips with
support circuitry.

Another effect that must be included in yield estimates is
the gross yield. Unless the chips are very large, this yield is
independent of chip area. It is used as a yield multiplier,
denoted by Y, in the preceding sections. Introducing it into
the yield formula (19) results in

Y,cp = Yoll + (A + MAcp)/a] ™.

n

(20$)

Introduction of this expression into Equation (15) results in
a formula that can be used to estimate yields of partially
good chips with support circuits and gross yield losses.

This author has had the fortune to work in an integrated-
circuit-chip manufacturing plant where a great deal of
information about fault-producing defects is available. Such
defects include missing and extra pattern defects for all the
photolithographic masking steps, pinhole voids that cause
short circuits in the interlevel insulators, and crystalline
defects that affect the semiconductor device operation. It is
possible to use an individual yield model for each of these
defect types. The method for doing so has been described in
[14, 41, 45] and is reviewed here.

It is possible to apply the Poisson compounding technique
to the faults caused by each type of defect. To do so, let each
of m different types be indicated by an integer value i = 1, 2,
3, - -+, m. The average number of faults per chip associated
with each type within a fault cluster can then be designated
by A, Assume that the defects are randomly distributed
within a cluster and that the number of faults per chip can
be characterized by a Poisson distribution. The yield
associated with each type within a cluster is then given by

Y,=¢en. 1)

Assume further that the average number of faults per chip A,
varies from cluster to cluster. It is then possible to apply the
compounding technique to each defect type individually.
Data have suggested that the compounders in this case can
often also be approximated by gamma distributions, albeit
with a different distribution for each defect type. As a result,
the yield formulas take on the form

Y, =1+ XN/a)™, 22

where the average number of faults X, and the cluster
parameter o are different for each type of defect.

Yields associated with different types of defects are known
as limited yields. They can be combined by multiplication,
so that the random-defect yield for a chip is given by

Y=T1I (1 - N/a)™. (23)
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This formula, according to [41], is valid even if there is
interdependence or correlation between different types of
defects.

Although Equation (23) is more complex than Equations
(5), (7), and (8), it is possible to use it in yield calculations
for partially good chips. When the gross yield and the
chip-kill faults are included, we obtain the formula

Vs = Yo IT [1 + (A + MAGg) /e ] ™

=1

@4

for the yield of n circuit blocks. Here Xy, represents the
average number of chip-kill faults per chip resulting from the
different defect types. Similarly, X, denotes the average
number of faults per circuit block caused by defects of type i.
These different types of defects are designated by the values
of the running index i. Partially good chip yields, in this
case, can also be calculated by introducing Equation (24)
into Equation (15).

Values for the parameters in Equations (22) and (23) are
usually determined by applying the window method to
wafers with test sites. Such sites contain defect monitors that
are sensitive to the different types of defects. Yield predictions
have been routinely made in this way at the IBM facilities
in Essex Junction, Vermont, and Manassas, Virginia.

At the IBM facility in Hopewell Junction, New York, a
somewhat more comprehensive approach is often followed.
Using a technique originally described by Paz and Lawson
[27], a gross yield factor Yy, is introduced into Equation (22).
However, data analysis has shown that small variations in
the values of Y, can result in large fluctuations of the values
of e,. It is possible to use an alternative technique for
determining the parameters of this model, as was done by
this author [36]. Nevertheless, use of Equation (22) as it
stands, without a gross yield factor Y, has proven to be
adequate in a number of integrated-circuit manufacturing
lines.

The expression resulting from the use of Equation (24) in
Equation (15) was described earlier, in [45]. This formula
and variants of it have been used successfully at the IBM
facility in Essex Junction since 1981 for estimating and
planning the yields of partially good memory chips. Most of
the chips contained word- and bit-line redundancy in
addition to the schemes for partially good chips. In that case,
the added redundancy increased the yields Y, g of the
individual circuit blocks. This increase in yield was
estimated with a yield model for memory chips with
redundant word and bit lines. A version of this model has
been described in {6]. The yields obtained in this way were
used directly in Equation (15) to calculate the yield of the
partially good chips.

Redundancy
The object of redundancy is the replacement of defective

circuit blocks with good ones. For instance, consider chips 169
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Table 4 Yicld enhancement with different amounts of
redundancy R for varying degrees of large-area fault clustering.

Cluster Redundancy
parameter
a R=0 R=1 R=2 R=3 R=4 R=5
0.5 10 14.6 178 203 224 24.1
1 10 183 252 311 36.1 40.6
2 10 224 343 448 537  6l.1
] 10 30.6 53.8 73.0 85.8 93.1

on which M identical circuit blocks have to function
properly if the chips are to be usable. Let these chips be
manufactured with N of those circuit blocks, where N > M.
The number of redundant circuits R is then given by

R=N-M. (26)

The likelihood of finding a number of good circuit blocks on
such chips equal to M, M + 1, M + 2, etc. is a probabilistic
event. The events associated with these numbers are
mutually exclusive, because only a single number of good
circuit blocks can exist on any given chip. The probabilities
associated with the occurrences of M, M + 1, M + 2, etc.
correctly functioning circuit blocks on a chip must therefore
be added to one another to obtain the probability of finding
M or more good circuit blocks on a chip. This results in

Yeep = Yuw + YM+1,N + YM+2,N + ...+ YM+R,N’ 27

where Y,,,, v denotes the probability of finding A + i good
blocks on a chip having N circuits. Equation (27) can
therefore be expressed as

R

Yeep = _20 Yawins (28)

or, because of (26), as

R

Yeep = L Yaoin- 29)
i=0

Equations (28) and (29) are general expressions for
calculating the expected yield of chips containing R
redundant circuit blocks.

The probabilities Y, v and Y,_, » in Equations (28) and
(29) are the same as those for the partially good chip yields
that were discussed in the preceding sections of this paper.
They can therefore be calculated with Equation (15), using
the appropriate yield expressions for Y, .. This results in
a complex mathematical expression that contains two series
summations, a multiple product, and two sets of binomial
coefficients. Fortunately, there is no need to formulate this
explicitly, because all of the formulas can be treated simply
as nested subroutines in computer programs used to make
such yield estimates.

Fault clustering has a pronounced effect on redundancy
yield. This can be iltustrated with a contrived example that
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deals with a chip on which ten identical circuit blocks must
be functioning correctly if the chips are to be used. Let the
yield of the ten circuit blocks be equal to 10%. We can then
investigate how the chip yield is affected if it contains one to
five redundant circuits. This is done in Table 4, where yields
that correspond to different values of the cluster parameter o
are shown.

The pure random-defect model corresponds to a = . In
this case, according to Table 4, the use of five redundant
circuits increases the yield from 10% to 93.1%. If, however,
the cluster parameter « = 0.5, the yield is expected to
improve from 10% to 24.1%. This indicates that the yield
prediction for purely random defects is 4X higher than the
prediction for clustered defects. Miscalculations by a factor
of four in the productivity of semiconductor manufacturing
plants can be very costly. The inclusion of clustering in
redundancy yield calculation is therefore of considerable
importance.

A criterion for large-area clustering

Use of the negative binomial yield model has found wide
acceptance. It has been used for modeling fault-tolerant
VLSI mutltiprocessors by Koren et al. [46-48], for memory
chips containing redundancy by Stewart [49], and for wafer-
scale cellular tree architectures by Harden [3]. The negative
binomial distribution has also led to formulations of yield
variations by Foard Flack [43], and interval estimates of
yield by Winter and Cook [50]. It is therefore also used here
in developing a criterion for ascertaining whether large-area
clustering is present. The approach that follows, however,
applies equally well to the Neymann Type A distribution
discussed in [16].

The negative binomial distribution that deals with large-
area clustering results from compounding of a Poisson
distribution with a gamma distribution. This process has
been described in detail in a large number of papers and
need not be elaborated on here (see for example [11,

16, 41]). The result of the compounding procedure produces
the discrete probability distribution function represented by

Ta+k (Na)
KT (1 + Ma)™’

PX=k)= (30)

where X represents a random variable denoting the number
of faults per chip, and k is an integer equal to 0, 1, 2, etc. As
previously, X denotes the average number of faults per chip.
It is also equal to the mean of the compounding gamma
distribution. Similarly, « denotes the cluster parameter. It is
equal to (X/ax)z, where o, is the standard deviation of the
gamma distribution [13].

We next investigate how Equation (30) is affected by the
window method. Consider a general arrangement of
windows, where each window contains a multiple of » chips.
Let the clusters be larger than these windows, and let the
number of faults per window within a cluster be a random
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variable that satisfies a Poisson distribution with an average
numbser of faults per window equal to #x. When this
distribution is compounded with the gamma distribution, it
also results in a negative binomial distribution. That result
differs from Equation (30) by having X replaced by nX. The
quantity « remains the same because the compounder has
not changed. It is this property that provides a convenient
test for large-area clusters.

It is possible, albeit sometimes with great difficulty, to
determine the actual frequency distributions of the number
of faults occurring on chips. Similarly, it should be possible
to obtain the frequency distributions of the number of faults
occurring in windows containing different chip multiples.
When these distributions are in agreement with negative
binomial distributions, the results can be used to test for the
validity of the large-area clustering assumption. This
assumption is valid when all the values of « are the same.
This is the criterion for large-area clustering.

Obtaining actual frequency distributions for the number of
faults per chip is difficult. To solve this problem, particle
distributions on actual wafers have occasionally been used to
study the effect of increased area. This was done, for
example, in [42], where wafer surfaces were subdivided into
squares called guadrats. Negative binomial distributions
were found to be in good agreement with the frequency
distributions of the number of particles in each quadrat for a
wide range of quadrat sizes. The values of the cluster
parameter «, however, differed for quadrats with different
areas.

The data obtained with quadrat analysis described in [42]
can be analyzed by using a maximum-likelihood estimation
technique described by Foard Flack [43]. This approach
makes it possible to determine the variability in the
estimated values of . The results of such an analysis are
shown in Figure 2. The bars around the data points indicate
the range of +o_, where o is the standard deviation of each
estimate. Note that the horizontal scale is logarithmic and
represents a range of two orders of magnitude in area.

Of interest in Figure 2 are the results for the three smallest
quadrat areas. The ranges of standard deviations overlap,
thus suggesting that these points represent a nearly constant
value of «, and hence the condition for large-area clustering.
The increase in values of « for the other points on the curve
indicates that the associated quadrat areas exceed the range
for which the large-area clustering approach is valid.

Cluster parameter dependencies

It was reported in [6, 42, 51] that negative binomial
distributions provided good models for the frequency
distributions of the number of faults per chip observed in a
numbser of integrated-circuit manufacturing facilities. Studies
by this author have indicated that the values for « in such
distributions varied between 0.30 and 2.38. These results
were obtained during different years of manufacture. The
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Dependence of the cluster parameter « on relative quadrat area.
These data resulted from an analysis of wafer maps showing the
location of particles. Note the logarithmic scale on the horizontal
axis.

higher value of « resulted from low-yield chips made during
earlier years of fabrication. The lower value of a was
observed later, when the yields were higher.

The observed decrease in the clustering parameter « with
increasing yield was first reported in [6, 51]. The fault
clusters occurred in both high- and low-yield processes. In
the low-yield process, however, the clustering effect appeared
to be masked by the high average fault levels present in low-
yield chips. During a period of high-yield manufacturing,
some of these same clusters remained, leading to an
increased variability of the number of faults per chip. This
effect could have been negated if the sources of the clusters
had been found and subsequently eliminated.

These effects and the dependence of the cluster parameter
on area can be incorporated in an approximate yield model
of the form

Y,cs = [1 + mA(D)/n, D). 31

Both Az and « depend on a set of defect densities
represented by D,. In addition, « is also a function of the
number of circuit blocks. Such dependencies have been used
successfully by this author since 1981 for estimating the
yields of chips with redundancy and partially good chips.
However, further refinements of this model are needed to
more accurately take into account the effects of varying
cluster areas. A preliminary account of an effort to do so
may be found in [17], which, however, is not broadly
available; a subsequent effort, in which consideration is given
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to the effects of clusters which are smaller than circuit areas,
is described elsewhere in this issue [52].

Concluding remarks

In this paper the methods used for estimating and predicting
yields of integrated-circuit chips that have some degree of
fault tolerance have been reviewed. Some of the yield models
described have been used for more than a decade in
productivity optimization of dynamic random access
memory (DRAM) chips containing redundancy. They have
also been used to project learning plans for manufacturing
yields of such chips as the IBM 64K, 256K, 288K, and 1Mb
DRAMS. Because of their usefulness, the models have found
acceptance elsewhere, e.g., by Stewart [49], Koren et al.
[46-48], Harden [3], and Wey [53].

With the continuing trend toward placing more transistors
on chips, two effects can be expected. First, because of the
quantities involved, the number of faults occurring on a chip
can be expected to increase. This will require the use of
more effective fault-tolerance schemes. Second, the
variability of the number of faults per chip should also
increase, thus causing the effects of fault clustering to
become increasingly important. Further refinements in the
models will be needed to take this effectively into account.
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