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Large-area 
fault  clusters 
and  fault 
tolerance 
in VLSl  circuits: 
A review 

by C. H. Stapper 

Fault-tolerance  techniques  and  redundant 
circuits  have  been  used  extensively  to  increase 
the  manufacturing  yield  and  productivity  of 
integrated-circuit  chips.  Presented  here  is  a 
review  of relevant  statistical  models which have 
been  used to  account  for  the  effects  on 
manufacturing  yield  of  the large-area  defect and 
fault  clusters  commonly  encountered  during  chip 
fabrication. A statistical  criterion is described for 
determining  whether  such large-area clusters 
are present. 

Introduction 
The designation fault-tolerant is  often  used in connection 
with  integrated  circuits that have  some  degree  of  tolerance to 
flaws  caused  by their manufacture. Although  such  circuits 
are capable  of functioning correctly if they contain certain 
types of manufacturing faults, their fault tolerance does not 
pertain to all  types  of  such  faults. As a  result, their 
fabrication yield  is  usually not 100%. 
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The prediction of the yields  of such  circuits  is  generally 
difficult, as is  illustrated in at least three doctoral 
dissertations  dealing  with this subject,  namely  those of 
Mangir [I], Hedlund [2], and Harden [3]. Mangir 
subsequently  improved  her formulations in a later paper [4]. 
It was  shown  by Harden [SI that Mangir’s approach can lead 
to yet  different  results  when  they incorporate a “lumped-sum 
approximation” that was originally  described in Hedlund‘s 
thesis. In his doctoral dissertation [3], however, Harden used 
an extension of a method for yield modeling  of  integrated- 
circuit  memory  chips  with redundant word and bit  lines 
described by Stapper et al. [6] .  The latter method has 
generally  been  accepted  in the literature and forms the 
groundwork of this paper. 

The difficulty in modeling the yield  of fault-tolerant 
integrated-circuit  chips  is  caused by the clustering  of 
manufacturing defects during chip fabrication. The clusters 
can be categorized into three classes. The first pertains to 
clusters that are much larger than the chip size.  Yield  models 
which take such  clustering into account have  been adopted 
by most authors in this field [7-151. These  models  also  apply 
to wafer-to-wafer variations of  defect  densities that, 
according to [ 161, can be expected to dominate over other 
forms  of  defect and fault  clustering. 

Another class  of clusters  deals  with fault clusters that are 
smaller than the chip area. It is sometimes believed that the 
faults  in  such  small  clusters  should distribute themselves 
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according to a Poisson distribution. This statistical 
distribution, however,  is too constrained, because  it has a 
variance that is equal to the mean. By their very nature, 
clusters contain a large number of  defects.  They therefore 
tend to increase the variability in the number of defects and 
faults  per chip. As a result, clustering leads to distributions 
with  variances that are larger than the mean. Some of the 
statistics  applicable to this type of clustering are described 
elsewhere  by this author [ 171. It has been  shown  previously 
that, under the proper assumptions, a negative binomial 
fault distribution is  applicable  when  clusters  smaller than the 
chip area are encountered [ 181. 

The third class  of fault clusters  deals  with fault clusters 
that vary in dimension. This area has been  investigated by 
Warner [19,20], Hu [21], Stapper [22], and in an 
approximate point-defect model for wafer-scale integration 
by Ketchen [23]. A simulation technique for its modeling 
has, furthermore, been  described by Foard Flack  [24].  These 
efforts,  however,  have  not  been  definitive. 

Negative binomial distributions in general  have  provided 
good  yield models for integrated-circuit  defects and faults 
[ 13-16,25-28].  They are used  here  for  modeling fault 
distributions resulting  from fault clusters that are larger than 
the chip area. However, a number of other statistical 
distributions, some of  which  have  been  described  previously 
[ 161, can be  used  for this type of modeling if supported by 
relevant data. 

Although  cluster  statistics  have  been  used  successfully  for 
estimating the yields  of chips with redundancy, they  have 
not always  been  used in the literature. A number of analyses 
of the yield  of  wafer-scale integrated circuits with 
redundancy have  been  carried out with the random-defect 
yield formula [29-311 

Y = e-’, (1) 

where Y is the chip yield and X is the average number of 
faults expected  per chip or circuit. The average number of 
faults per chip is often expressed as X = AD, the chip area A 
times a defect  density D. In some cases it is  expressed in 
terms of a critical area, susceptible area, or defect-sensitive 
area, and a relevant  defect  density.  Any  of  these  designations 
is,  however, a simplification. The relationship between the 
average number of faults  per chip and the chip area is more 
complicated it depends on the circuit complexity, the 
density of photolithographic patterns, the number of 
photolithographic masks  used in the process,  etc. 

The above formula does not take clustering into account 
and usually  leads to predicted chip yields that are too low 
when extrapolated from the yield  of  smaller chips or single 
circuits. Equation (1) results  from the use of a Poisson 
distribution for  modeling the distribution of the number of 
faults per chip. When  such a distribution is  used to estimate 
the yield  of fault-tolerant chips, the results tend to be too 
optimistic. The gain in manufacturing yield  for such chips 
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on actual manufactured wafers  is  usually  less. These yields 
are lower than predicted  because of defect  clusters. This can 
best  be demonstrated with a simple example. 

Suppose that there is  sufficient redundancy on a chip for it 
to be fault-tolerant to a maximum of four faults. Consider a 
wafer  with such chips,  each chip containing an average of 
five faults.  Assume that the frequency distribution of the 
number of faults per chip is  given  by a Poisson distribution. 
It can then be determined from tables of cumulative Poisson 
distributions that 44% of those chips could be  expected to 
have four or fewer faults [32].  Because  of such fault 
tolerance,  all  these chips should be  usable.  As a result, the 
expected chip yield  is 44%. In estimating this yield,  we have 
assumed  applicability of a Poisson distribution to the entire 
surface  of the wafer. 

Next  let us examine a wafer for which one half  is 
completely  defect-free, so that the chip yield on that half  is 
100%. Let the other wafer  half  be  very  defective,  with an 
average  of ten faults per  chip. The average number of faults 
per chip for the wafer  is therefore equal to five, the same as 
in the prior example. If the chips on the defective  half are 
adjacent to one another, the faults in those chips can  be 
considered to form a contiguous defect  cluster.  Let the faults 
within this cluster  also  be randomly distributed in agreement 
with  Poisson’s distribution. This distribution therefore has a 
parameter X = 10. The yield for this half  is  therefore 0%, and 
the combined yield  for the two  halves  is equal to 50%. This 
is more than the fault-tolerant yield in the prior example. 

Next,  let us determine what fault tolerance does  for this 
wafer.  According to the tables of cumulative Poisson 
distributions, only  2.9%  of chips with an average of ten 
faults per chip can be  expected to have four or fewer  faults. 
The predicted fault-tolerant yield for the chips in this half  is 
therefore 2.9%. Combining this result  with the 100%  yield 
for the fault-free  half produces an estimated combined chip 
yield  of 5 1.5% for this wafer. This is  only  slightly more than 
the 50% yield  which  would  have  resulted  if no fault-tolerant 
circuits had  been  used. The fault tolerance is therefore only 
of limited benefit. Contiguous defect clusters of this type 
could therefore severely impact yield  of chips with fault- 
tolerance schemes, and benefit the ones without such 
schemes. 

It has  been known since the beginning  of integrated-circuit 
manufacture that Equation ( I )  had to be  modified to 
account for  defect and fault clustering. Such modifications 
have  been the subject of many papers in this field. The most 
commonly used method of modification  is  described in  the 
next  section. A method for determining the parameters of 
the resulting model is  discussed in subsequent sections of 
this paper. The model  is then used to calculate the yield  of 
chips that are partially  good. A comparison of actual and 
calculated  results  is  given. The resulting formulas are also 
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extended to the calculation of the yield  of chips containing 
redundant circuits. 

The  effect of large-area  fault clustering  on  yield 
Determination of the size  of integrated-circuit fault clusters 
is  a  subject that has found only cursory treatment in the 
yield-modeling literature, as for example in [33]. In most 
papers on integrated-circuit chip yield, this subject is  simply 
ignored, even though in many cases it is  unknowingly 
assumed that the clusters are larger than the chip size. The 
success  of many yield  models can be attributed to the fact 
that this is not a  bad assumption. According to [ 161, most of 
the clustering  is  expected to be  caused  by  wafer-to-wafer 
variations of defect  densities.  In that case, the cluster area is 
equal to the wafer  size,  which  is indeed larger than  the area 
of individual chips. Another source of clustering is the radial 
variation in the average number of faults per chip. This 
effect  was originally  described by Yanagawa [34,35], 
confirmed by others [27,36] and studied more recently  by 
Fems-Prabhu et al. [37], Walker [38,39], and Gandemer 
[40]. It leads to a  lower chip yield along the periphery of 
integrated-circuit wafers. This peripheral region can therefore 
in effect  be considered  a  large fault cluster. 

The radial variation of chip yield has led to the use  of 
concentric wafer zones for  yield  analysis [ 16,27, 36,411. In 
such analyses, it is  usually  assumed that the faults per chip 
within each  zone are distributed according to a  Poisson 
distribution. Each  zone  has its own  average number of faults 
per chip X. The yield  inside  a  zone can therefore be 
estimated by using Equation (1). The yield  of chips in all 
zones from many wafers can be combined, resulting in a 
compound or mixed Poisson yield  model. 

It is not necessary to constrain the fault clusters to zones. 
In a more general approach to fault clustering, use of a 
Poisson distribution is assumed to be  valid  for characterizing 
the frequency of occurrence of faults per chip within each 
cluster. Such  clusters can be located anywhere. For an 
infinite number of them, according to [ 16,22,41], the yield 
formula becomes* 

Y = lm e-’dF(X), 

where F(X) is a cumulative distribution function of the 
average number of faults per chip in each  cluster.  A more 
detailed description of this procedure can be found in the 
aforementioned references. In this paper the fault clusters for 
which this procedure is  valid are referred to as large-area 
fault clusters.  A test for this type of clustering is described in 
a subsequent section. 

Associated  with the cumulative distribution function F( X) 
is  a  probability distribution function given  by 

This type of integral is sometimes referred to as a  Stieltjes-Lebesgue  integral.  In  the 
example  here,  it is the  result of a limiting process in which the number of clusterr 
approaches  infinity. 

This represents a distribution of  averages,  where  each 
value of X pertains to the average number of faults per chip 
in a  cluster. Combining Equations (2) and (3) results in the 
yield  expression  first  used  by Murphy [7]: 

Y = 1- e-’PP(h) dX. (4) 

The function P ( X )  in this expression  is known as a 
compounder or mixing function. This function can often be 
approximated by a gamma distribution [ 12, 13, 15, 16,25- 
281. This therefore makes it possible to evaluate the integral 
in Equation (4) and results in a  well-known integrated- 
circuit  yield formula, 

Y = (1 + X/CY)-, (5) 

where CY is  a cluster parameter and x is the average number 
of faults per chip. It can be shown that x is in effect the 
average  of the probability distribution function ex). This 
average  is therefore the grand average  (average of averages) 
of the number of faults per chip. More sophisticated 
methods for deriving Equation (5) are described in [41]. 

the limit when CY + a, the yield in Equation ( 5 )  becomes 
equal to that of Equation (1). This represents the case  of 
random defects and complete absence of clustering. Smaller 
values  of CY usually indicate increased  clustering.  When CY = 
0, the defects are clustered in infinitely small regions and 
none are found elsewhere. This is maximum or perfect 
clustering.  Actual  values for CY typically  range  between 0.3 
and 5 .  Methods for determining this parameter are described 
in the next section. 

The cluster parameter CY also has physical  significance. In 

An example of  the effects of large-area 
clustering 
The effects  of  large-area  defect clustering are well known [7- 
161. They can be illustrated by examining chips containing 
varying numbers of identical circuits.  Let us start with  a 
single circuit that has a hypothetical yield  of 0.999 and an 
average of 0.001 faults per circuit. If  we  use Equation ( l ) ,  the 
yield  of  a chip with 600 of these circuits is equal to 
e-600xo~w1, which  is approximately equal to 55%. For a chip 
with 40 000 logic circuits, we expect  a  yield  of e- 
4.248 X or, for all practical purposes, 0%. 

formula for  a chip with n identical circuits is  given  by 

Y,,, = ( 1  + n X X , ~ C Y ) - ~ ,  (6) 

where the average number of faults in a  single circuit is 
denoted by TIC. Assuming  again that this number is equal to 
0.00 1,  it is  possible to estimate the yield for chips with any 
number of circuits. Calculated yields for chips with  single 
circuits, chips with 600 circuits, and chips with 40 000 

40mx0.001 - - 

If large-area clustering is taken into account, the yield 
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circuits are tabulated in Table 1 for values of (Y = 0.5, 1, 2, 
and m. These  results  show that even if x,, is  high, the 
presence of a high  degree  of  clustering  leads to surprisingly 
high  yields. This effect  has  been  observed in many 
manufacturing lines. 

Usually a gross  yield  factor Yo must be included in the 
yield  model. Gross yield  losses are usually the result of 
systematic  processing problems that affect  whole  wafers or 
parts of  wafers. Such losses  may, for example,  be  caused  by 
misalignment, over- or under-etching, or out-of-spec 
semiconductor parameters such as beta, transconductance, 
or threshold voltage.  Paz and Lawson  have  shown that defect 
clusters  with  very  high fault densities can also  be  modeled  by 
yo ~ 7 1 .  

Introduction of the gross  yield into the yield formula 
leads to 

Y = Yo( 1 + X/$". (7) 

This three-parameter model has been  used  successfully  for 
yield modeling  since  1975.  Its parameters have  physical 
significance and can be determined by a straightforward 
technique described in the next  section. It must be pointed 
out, however, that the simplicity of this model can  be 
deceptive. Some of the hidden complexities are discussed in 
subsequent sections. 

Determination of parameters 
The values of Yo, x, and (Y in Equation (7) can be 
determined by the "window" method. This method was  first 
described by  Seeds [8,9] and subsequently by Okabe et al. 
[ 1 I], Warner [ 19,201,  Paz and Lawson  [27], and Hemmert 
[ 151. The objective  is to determine the yield as a function of 
chip multiples. This is done with  wafer maps that show the 
location of functioning and failing chips at final  test. The 
maps are analyzed  using  overlays  with  grids, or windows. 
These windows contain blocks of chips.  Each  block  usually 
contains two, four, six,  or nine chips. For each chip multiple, 
the number of windows containing only  fault-free chips can 
be counted. Dividing this number by the total number of 
windows in the sample gives us the yield  for that multiple. 

The results of the window  analysis must next be matched 
to a yield formula. For the negative binomial model this has 
the form 

YN = Yo( 1 + Nh/a)-", (8) 

where N is the chip multiple. Values  for the parameters Yo, 
X, and CY are usually determined by means of a nonlinear 
regression  analysis. 

necessarily mean that there is  less  clustering. This 
phenomenon only  implies that there is  less  large-area 
clustering.  Small-area  clusters can still  exist, but this method 
is impervious to them. The smaller  clusters are essentially 
counted as single  faults.  These observations were described 

- 

Note that high values of a obtained by this method do not 

Wafer  map  showing  the  locations of fault-free (light) and defective 
(dark) chips. Test site locations  are  marked  with crosses. 

Table 1 Yield as a function of the number of circuits per chip 
and the cluster parameter a, assuming that x,, = 0.001. 

Cluster Number of circuits per chip 
parameter 

LY n =  1 n=600 n=40000 

0.5 99.9 67.4 11.1 
1 99.9 62.5 2.4 
2 99.9 59.2  0.2 
m 99.9 55.0 0 

Table 2 Illustrative use of the window Iflethod to determine 
model parameters. For this example Yo = 1, X = 1.2934, and a = 
3.8274. 

Chip Sample Number Data Model 
multiples size perfect yield yield 

(%I (%) 

I 2136 70 1 32.82 32.82 
2 1008 140 13.89 13.86 
4 480 18 3.75 3.79 

~~ ~ 

in [42], but continue to be misunderstood, suggesting that 
future elaboration in the literature is warranted. 

It is not difficult to use the window method. An example 
of a window-method  analysis  is tabulated in Table 2. The 
data in that table came from  24  wafers,  each one containing 
89 memory chips. For each  wafer a map was obtained to 
show the location of fault-free and faulty chips. One of these 
maps is  shown in Figure 1. Also shown on the map are 
locations taken up by test sites  used to measure  processing 
parameters. 165 
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The first  step  in  evaluating the wafer-map data was the 
determination of the chip yield.  In this case  701 out of a 
total of 2 136 chips were fault-free. The yield  was therefore 
32.8%.  Next,  a transparent overlay  was made  with  a  grid 
containing pairs of chips.  It was found that only 42 pairs 
could be  placed on each wafer map. This resulted in a 
sample of  1008  pairs.  Only  140  of  these  were found to be 
free  of faulty  chips. The yield for these  windows  with  blocks 
of  two  chips  was  therefore  13.9%. 

The third step consisted of making an overlay  grid that 
contained four chips  in  a  2 X 2 arrangement. Seventeen  such 
windows  could  be  fitted  unambiguously on a wafer. To 
increase the sample  size, and to include as much of the 
circumferential area as possible, three additional odd-shaped 
windows containing four chips were formed  along the wafer 
edge. The total sample  therefore contained 480  windows. 
For 18  of these  windows it was found that all four chips were 
free  of faults, thus resulting in a  yield  of 3.75%. 

analyzing  blocks  of three chips.  Such  blocks,  however,  have 
odd-shaped  windows,  which  makes them awkward to use. 
The three data points in Table  2  supply  sufficient data for 
determining the parameters of the yield model. The values 
for x, a, and .Yo were obtained by fitting Equation (8) to 
these data points with  a computer program that minimized 
the sum of the squares of the differences  between  model and 
data. With three data points and three parameters in 
Equation (8), this was equivalent to solving three nonlinear 
equations with three unknowns.  For  these data, furthermore, 
it  was  possible to set Yo = 1. This led to the values x = 
1.2934 and a = 3.8274  for the other two  parameters. Putting 
these  values into Equation (8)  led to the numbers shown  in 
the column labeled Model yield in Table 2. The 
experimental  yields are also tabulated and are in good 
agreement.  Because  of the nonlinearity, even  with three data 
points, such  agreement  is not always guaranteed for this 
three-parameter model. The author has  seen  single-wafer 
data for  which this was indeed the case.  Results obtained 
from single-wafer  analysis, as in [13,  19-22,431,  must 
therefore be  regarded as fortuitous. The use of  larger 
samples, as is done here and, originally, by Hemmert [ 151,  is 
thus more appropriate. 

The window-method  analysis  is  used  regularly  in the 
industry. A variation of  such an analysis was described by 
R. S. Hemmert [ 151. His data were obtained from wafer 
maps  of  logic chips and read-only  memories  (ROMs). He 
used  a  least-square  fitting technique to determine 1 and a in 
Equation (8) while  keeping Yo at 100%  yield.  His  results on 
seven manufacturing lots of  wafers had an average  cluster 
parameter of  2.2  with a standard deviation of  0.22. The 
values  of a were therefore  tightly  grouped,  indicating that 
they were stable during the fabrication of those  lots. 

By combining all the data from  his  lots, Hemmert 
obtained a  value  of  2.1  for a and surmised that an integer 

It  is  possible to obtain an additional data point by 
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number of 2 was acceptable  for  a  yield  model in his  factory. 
He  also  showed that, if data were grouped by  ranges  of  yield, 
the value  of a was  observed to vary  from  1.6 to 3.65. The 
lowest  value, and therefore maximum clustering, was 
observed in the group with the highest  yield. 

An alternative use of Equation (8)  has  been  described  in 
[28] and [44]. The yield  of different  read-only  memory chips 
was analyzed as a function of the number of bits in those 
chips. This number was represented by N in Equation (8). 
The values  of Yo, x, and a in that case  were  also determined 
with  a nonlinear least-square minimization technique. This 
analysis was performed on data from three different 
manufacturing  lines and resulted  in  values  for a of  1.27, 
0.86, and 0.75. As in  Hemmert’s  results, the lowest  value, 
and therefore the highest  degree  of  clustering,  occurred on 
wafers fabricated in the manufacturing line with the highest 
chip yields. The highest  value  of a, suggesting  less  clustering, 
resulted  from the wafers  fabricated  in the line with the 
lowest chip yields. 

showed that the gross  yield Yo varied  between  70.8 and 
90.4%. Although  these numbers include the yield  of the 
support  circuits on these  chips, this range  of  gross  yields  is 
typical  for  most  integrated  circuits. The lowest  value  of Yo 
occurred in the low-yield line and the highest  value  of Yo in 
the high-yield  line. 

The yield  analysis  of  these  read-only  memory  chips  also 

It must be noted  here that the values  of x obtained by this 
method tend to be  lower than the actual average number of 
faults  observed on chips. This difference can be caused by 
the effect  of clusters that are smaller than the chip. As 
mentioned before,  such  clusters are counted as single  faults 
by this technique. This counting also  affects the cluster 
parameter a, which tends to be higher than the actual fault 
distributions might suggest.  Nevertheless, the window 
method  produces  usable  results, as is  shown  in the next 
sections. 

Partially good chips 
In  many  integrated-circuit  chips,  identical  blocks of circuits 
are  often  replicated. This is  especially the case in chips  used 
for  digital computers. Sometimes these  basic circuit blocks 
are  referred to as processing elements, or PES. In other 
digital computer applications they are referred to as macros. 
In  memory  chips,  blocks  of  memory  cells are known as 
subarrays. The terminology depends not only on the type  of 
circuitry that is used, but also on the individual using it. The 
designation circuit  blocks is  used in this paper. It is meant to 
be general and to include  all  these  designations. 

often be used  even  if some of the blocks do not function 
correctly.  Consider,  for  example,  chips  consisting  of four 
identical circuit blocks.  These  chips are known as perfect if 
all four blocks are fault-free. The fraction of chips falling  in 
this category  represents the perfect chip yield. The chips  with 

Chips containing a number of identical circuit blocks can 
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three operating circuit blocks and one defective one are 
referred to as being three-quarter-good. The yield  of  these 
chips is  known as the three-quarter-good yield. Similar 
designations apply to the yields of chips that are half-good 
and quarter-good. In general  fractionally  usable chips are 
known as partially good chips [6]. 

circuit blocks.  Suppose that M of these  blocks function 
properly and that ( N  - M )  circuit blocks are defective. 
Furthermore, let the probability of finding  a  fault-free circuit 
block  be denoted by the yield Ycw In the case  of random 
defects that do not cluster, the probability of finding M 
faultless circuit blocks on a chip can then be  expressed as 
Y?,. It also  follows that the probability of finding  a  faulty 
circuit block  is  given  by 1 - Y,,. The probability of finding 
( N  - M )  flawed circuit blocks  is therefore equal to 

Next, let us examine the case  of  a chip having N identical 

(1 - Y,,)"". 
The number of different ways in which ( N  - M )  faulty 

circuits can occur on a chip with N circuits is  given  by the 
binomial coefficient 

C(N, M )  = 
N !  

M!(N - M ) !  ' 

The probability YMN of finding  precisely M flawless circuit 
blocks on a chip with  a total of N circuit blocks is therefore 
given  by the binomial distribution 

N! 
y"N = M!(N - M)!  YE, (1 - Y,B)N". 

As it stands, this formula can be  used  only  when the faults 
do not cluster, or when the fault clusters are smaller than  the 
individual circuit blocks. For fault clusters  larger than the 
chip, Equation (1 0) must be modified. A means for doing so 
was originally mentioned in [6] and subsequently in [41]. A 
detailed  discussion of this modification  follows. 

The key to the modification of the binomial distribution 
in Equation (10)  is the quantity (1 - YCJN". This can be 
expanded in a binomial series of the form 

It is  possible to define another running index n in such  a way 
that n = j + M. Introducing this into Equation (1 1) and 
substituting the result in Equation (10)  results in 

N! N 
( - 1 y  

y"N = M!(N - M)!  ,,-,,, 

( N  - M ) !  
(n - M)!(N - n)! y:, . 

The yield  of  partially  good chips therefore depends 
completely on a sum of  powers  of  YCw 

As early as 1975, Dreckmann and Stapper replaced the 
yields Y:, in Equation ( 12) ipso facto by  yields calculated 

with the negative binomial yield  model. McLaren 
subsequently  showed mathematically that their heuristic 
approach was indeed a correct procedure. His approach has 
been  described in [6]. It appears, however, to be  poorly 
understood. A more precise description of this method is 
therefore presented  here. 

is  valid  only within a  cluster. The partially  good chip yield 
Y,,therefore varies from cluster to cluster. Let the 
frequency distribution of the number of faults per circuit 
block within each  cluster  be characterized by  a  Poisson 
distribution. It then follows that in such an area 

When  large-area fault clustering is present, Equation ( 12) 

What remains to be done is to average  these  yields  for the 
different  clusters. This can be done by applying the Poisson 
compounding procedure directly to Equation ( 1  2) for the 
yield  of the partially  good  chips. This compounding is 
independent of the summation in that expression. The 
integral can therefore be brought inside the summation sign, 
thus leading to the expression 

N !  N 

y"N = M ! ( N  - M ) !  n-M 
(-1)"" 

( N  - Im e-nxcnP(hcB) dh,, . ( 14) (n - M)!(N - n)! 

Denoting the integral in this expression by Y,, makes it 
possible to write the partially  good  yield as 

N! N 

(-1)"" 
y"N = M ! ( N  - M ) !  ,=" 

( N  - M ) !  
* (n - M ) ! ( N  - n)! yncB* 

This is the most important formula in this paper. It is  crucial 
to the development of  yield models for partially  good  chips, 
as  well as for chips with redundancy. This equation depends 
completely on the yields Y,,, associated  with  having n 
fault-free circuit blocks. If the compounder p(h) in Equation 
( 14) is equal to a gamma distribution, we again obtain a 
negative binomial yield formula 

Y,,, = (1 + nX,&Y-", (16) 

where xcB is the average number of faults per circuit block 
and (Y the cluster parameter. A number of other yield 
models,  which can also be used for this application, are 
described in [ 161 and [41]. 

In many practical yield calculations it is often necessary to 
put more detail into the formula for Yncw This can  be done 
without any loss of generality in the approach described 
here.  Examples of this are discussed in a subsequent section 
of this paper. 167 
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Table 3 Illustrative  calculations of the  yields of partially good 
chips. 

Partials Sample Number Data Model 
size of chips yield yield 

(%) (%) 

All-good 480 18 
314 480 

3.8 
63 

3.8 
13.1 12.3 

120 
114 480 

25.0  23.6 
140 29.2  32.1 

214 480 

Experimental  verification 
It is not difficult to verify the results from the preceding 
section. This can be done with the same window method 
that was described  earlier. To do so, we perform a more 
detailed  analysis of the overlay  grid that contained the 
window arrangements for four chips. In the earlier example, 
twenty of such blocks or windows  were  fitted on a wafer, 
resulting in a total sample of 480 windows. It was found that 
in 18 of these  windows  all four chips were functioning 
correctly; this therefore produced a yield  of 3.75%. It was 
also  possible to count the windows containing three 
functioning chips and one faulty  one. There were 63 of 
these, or 13.1 % of the sample. Furthermore, 120  windows 
contained two  good and two  failing  chips,  which accounted 
for 25% of the windows. Another 140 windows, or 29.2%, 
contained only one functioning chip. In the remaining 
windows  all four chips  were  defective. 

These are all the data necessary to check the applicability 
of the theory described in the preceding  sections. This is 
done by treating the individual chips as circuit blocks. Thus, 
windows  with four good chips are considered to be perfect, 
those  with three good  chips as being  three-quarter-good, 
those with  two  good chips as half-good, and those with  only 
a single  nonfailing chip as quarter-good. Their yields are 
tabulated in Table 3. 

It is  also  possible to calculate  these  yields  theoretically. 
Use  of Equation ( 15) results in 

‘P = ‘4CB 3 ( 174 

‘34 = 4( ‘3CB - ‘4CB)S ( 17b) 

‘24 = 6( ‘2CB - ‘3CB + ‘4CB)? ( 17c) 

‘I4 = 4( ‘ICB - ‘2CB + ‘3CB - ‘4CB)? ( 174  

where the perfect  yield  is denoted by Yp rather than Y44. 
Furthermore, YlcB is equal to the yield  of the single  chips, 
Y2,, to the yield  of  blocks  with  two  chips, Y3CB to the yield 
of blocks  with three chips, and Y,,, to the yield  of  blocks 
with four chips.  These  yields can be  calculated  with either 
Equation (8) or Equation (16), using the values of x, a, and 
Yo that were previously determined with the window 
method. The results of the calculations are given in Table 3 
along  with the observed  yields. The agreement between the 
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It is  useful at this point to demonstrate the inadequacy of 
yield calculations made without taking clustering into 
account. This is done by using Equation (10) without the 
modifications  for  clustering. With the yield Y,,, of a single 
circuit block equal to 32.8%, the yields obtained with this 
formula are Yp = 1.2%, Y,, = 9.5%, Y2, = 29.2%, and Y,, = 
39.8%. These yields  differ  significantly from the data shown 
in the fourth column of Table 3. 

The use  of partially good chips can be  very  efficient. By 
using  perfect, three-quarter-good, half-good, and quarter- 
good  chips,  all the functional circuits on a wafer are utilized. 
This can  be demonstrated by determining the so-called 
equivalent yield. This is done by  weighting the yield  for  each 
type of partially  good chip by the fraction of  good circuit 
blocks.  These  modified  yields are then added to give the 
equivalent yield. For the preceding  example, this results in 

YEQ = Yp + 3/4Y3, + 1/2Y2, + 1/4Y,, . (18) 

When the yield formulas (1  7a-d) are substituted into this 
expression, it reduces to YEQ = Ylc,. The equivalent yield  is 
therefore equal to the yield  of the individual circuit blocks. 
This implies that the use  of  partially  good chips results in 
utilization of all the fault-free circuit blocks; none have  been 
wasted. 

Equation ( 18) can be evaluated by using the yield  of four- 
chip multiples in Table 2, and the actual yields from the 
yield columm in Table 3. This produces an equivalent yield 
of 33.4%, which  is  higher than the original  single-chip  yield 
of 32.8% in Table 2. This difference  is  caused by the 
difference in sample size. There were 2  136 chips used in 
determining the yield  of the single chips in Table 2. For 
windows  with four chips,  however,  only 1920 chips were 
used. Some of the single chips simply did not fit into exact 
blocks  of four chips, and therefore could not be  used. 

Some  practical  modifications 
The example in the preceding  section  is an idealization, 
because actual chips rarely  consist entirely of identical circuit 
blocks. In all chips there are support circuits in addition to 
such  blocks.  These support circuits are shared by the 
replicated circuit blocks. The chips,  however,  become 
unusable if such support circuits are damaged  beyond use. In 
principle, this effect can be included in Equation ( 16) by 
multiplication with the yield  of the support circuits. Doing 
so, however,  would assume that the clustering of the 
support-circuit faults is  completely independent of the 
clustering of the circuit block faults X,-,. In most practical 
cases there is a correlation between the average number of 
faults in different  circuits. This effect can be taken into 
account by including in Equation ( 16) the average number 
of faults that cause  these support circuits to be  defective. 
This results in 
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where x,, is the average number of “fatal” or “chip-kill” 
faults in the support circuits. Chips with  these faults cannot 
be  used as partially  good  chips.  Use of ( 19) in Equation ( 15) 
makes it possible to take these  types of faults into account 
when calculating the yields  of  partially  good chips with 
support circuitry. 

the gross  yield.  Unless the chips are very  large, this yield  is 
independent of chip area. It is  used as a  yield multiplier, 
denoted by Yo in  the preceding  sections. Introducing it into 
the yield formula ( 19) results in 

Another effect that must  be included in yield estimates is 

Y”,, = Yo[l + (X,, + nXc,)/a]-“ 

Introduction of this expression into Equation (1 5)  results in 
a formula that can  be  used to estimate yields  of  partially 
good chips with support circuits and gross  yield  losses. 

This author has had the fortune to work in an integrated- 
circuit-chip manufacturing plant where  a great deal of 
information about fault-producing defects  is  available.  Such 
defects include missing and extra pattern defects  for  all the 
photolithographic masking  steps, pinhole voids that cause 
short circuits in the interlevel insulators, and crystalline 
defects that affect the semiconductor device operation. It is 
possible to use an individual yield  model  for  each  of  these 
defect  types. The method for doing so has been  described in 
[ 14,  4  1,  451 and is  reviewed  here. 

It is  possible to apply the Poisson compounding technique 
to the faults  caused by each type of  defect. To  do so, let  each 
of m different  types  be indicated by an integer  value i = 1 ,  2, 
3, . . . , m. The average number of faults per chip associated 
with  each type within a fault cluster  can then be  designated 
by Xi. Assume that the defects are randomly distributed 
within  a  cluster and that the number of faults per chip can 
be  characterized  by  a  Poisson distribution. The yield 
associated  with  each type within a  cluster  is then given  by 

Assume further that the average number of faults per chip X, 
varies from cluster to cluster. It is then possible to apply the 
compounding technique to each  defect type individually. 
Data have  suggested that the compounders in this case can 
often  also  be approximated by gamma distributions, albeit 
with  a  different distribution for  each  defect type. As a  result, 
the yield formulas take on the form 

Y, = (1 + &/ai)-i, (22) 

where the average number of faults xi and the cluster 
parameter ai are different  for  each type of defect. 

as limited  yields. They  can  be combined by multiplication, 
so that the random-defect  yield  for  a chip is  given  by 

Yields  associated  with  different  types of defects are known 

m 

Y = n (1 - &/a,)-i, 
, = I  

This formula, according to [41],  is  valid  even  if there is 
interdependence or correlation between  different  types of 
defects. 

Although Equation (23) is more complex than Equations 
(5), (7), and (8), it is  possible to use it in yield calculations 
for  partially good chips.  When the gross  yield and the 
chip-kill faults are included, we obtain the formula 

rn 

ynCB = ‘0 n + CXCKi + nXCB~)/ail-ai (24) 
i= 1 

for the yield  of n circuit blocks. Here XCKi represents the 
average number of chip-kill faults per chip resulting from the 
different  defect  types.  Similarly, xcBi denotes the average 
number of faults per circuit block  caused by defects  of type i. 
These  different  types of defects are designated  by the values 
of the running index i. Partially good chip yields, in this 
case, can also  be  calculated  by introducing Equation (24) 
into Equation ( 15). 

Values for the parameters in Equations (22) and (23) are 
usually determined by  applying the window method to 
wafers  with test sites. Such sites contain defect monitors that 
are sensitive to the different  types of defects.  Yield predictions 
have  been routinely made in this way at the IBM facilities 
in Essex Junction, Vermont, and Manassas,  Virginia. 

At the IBM facility in Hopewell Junction, New York,  a 
somewhat more comprehensive approach is often followed. 
Using  a technique originally  described by Paz and Lawson 
[27], a  gross  yield factor Yoi is introduced into Equation (22). 
However, data analysis has shown that small variations in 
the values of Yoi can result in large fluctuations of the values 
of ai. It is  possible to use an alternative technique for 
determining the parameters of this model, as was done by 
this author [36]. Nevertheless, use of Equation (22) as it 
stands, without a  gross  yield factor Yoi, has proven to be 
adequate in a number of integrated-circuit manufacturing 
lines. 

The expression  resulting from the use of Equation (24) in 
Equation (1 5)  was  described earlier, in [45]. This formula 
and variants of it have  been used successfully at  the IBM 
facility in Essex Junction since  198 1 for estimating and 
planning the yields  of  partially  good memory chips.  Most  of 
the chips contained word- and bit-line redundancy in 
addition to the schemes for partially  good  chips. In that case, 
the added redundancy increased the yields Y,,, of the 
individual circuit blocks. This increase in yield  was 
estimated with  a  yield model for memory chips with 
redundant word and bit lines.  A  version of this model has 
been  described in [6]. The yields obtained in this way  were 
used  directly in Equation ( 15) to calculate the yield  of the 
partially  good  chips. 

Redundancy 
The object of redundancy is the replacement of defective 
circuit blocks  with good ones. For instance, consider chips 169 
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Table 4 Yield  enhancement  with  different amounts of 
redundancy R for varying degrees of large-area  fault  clustering. 

Cluster Redundancy 
parameter 

01 R = O   R = I   R = 2   R = 3   R = 4  R = 5  

0.5 
1 

10 14.6 17.8 20.3 22.4 24.1 
10 18.3 25.2 31.1 36.1 40.6 

2 10 22.4 34.3 44.8 53.7 61.1 
ca 10 30.6 53.8 73.0 85.8 93.1 

on which M identical circuit blocks  have to function 
properly if the chips are to be  usable.  Let  these chips be 
manufactured with N of those circuit blocks,  where N > M. 
The number of redundant circuits R is then given  by 

R = N - M .  (26) 

The likelihood of finding  a number of good circuit blocks on 
such chips equal to M, M + 1, M + 2, etc.  is  a  probabilistic 
event. The events associated  with  these numbers are 
mutually exclusive,  because only a  single number of  good 
circuit blocks can exist on any given chip. The probabilities 
associated  with the occurrences of M, M + 1, M + 2, etc. 
correctly functioning circuit blocks on a chip must therefore 
be added to one another to obtain the probability of finding 
M o r  more good circuit blocks on a chip. This results in 

YRED = YMN + YM+,,N + G + , N  + . . . + YM+R,N, (27) 

where YM+,,, denotes the probability of finding M + i good 
blocks on a chip having N circuits. Equation (27) can 
therefore be expressed as 

R 

‘RED = ‘M+i,N? 
i=O 

or, because of (26), as 
R 

‘RED c ‘N-i,N. 
i - 0  

Equations (28) and (29) are general  expressions for 
calculating the expected  yield of chips containing R 
redundant circuit blocks. 

The probabilities YM+i,N and YN-i,N in Equations (28) and 
(29) are the same as those for the partially good chip yields 
that were  discussed in the preceding sections of this paper. 
They can therefore be  calculated  with Equation (1 5), using 
the appropriate yield  expressions for YnCW This results in 
a  complex mathematical expression that contains two  series 
summations, a multiple product, and two  sets of binomial 
coefficients. Fortunately, there is no need to formulate this 
explicitly,  because  all of the formulas can be treated simply 
as nested subroutines in computer programs used to make 
such yield estimates. 

Fault clustering has a pronounced effect on redundancy 
yield. This can be illustrated with  a contrived example that 170 
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deals  with  a chip on which ten identical circuit blocks must 
be functioning correctly if the chips are to be  used. Let the 
yield  of the ten circuit blocks  be equal to 10%. We can then 
investigate how the chip yield  is  affected  if it contains one to 
five redundant circuits. This is done in Table 4, where  yields 
that correspond to different  values of the cluster parameter (Y 

are shown. 
The pure random-defect model corresponds to QI = a. In 

this case, according to Table 4, the use of five redundant 
circuits increases the yield  from 10% to 93.1 %. If, however, 
the cluster parameter a = 0.5, the yield  is  expected to 
improve from 10% to 24.1%. This indicates that the yield 
prediction for purely random defects is 4X higher than  the 
prediction for clustered  defects. Miscalculations by a factor 
of four in the productivity of semiconductor manufacturing 
plants can be very  costly. The inclusion of clustering in 
redundancy yield calculation is therefore of considerable 
importance. 

A criterion for large-area  clustering 
Use of the negative binomial yield model has found wide 
acceptance. It has been  used for modeling fault-tolerant 
VLSI multiprocessors by Koren et al. [46-481, for memory 
chips containing redundancy by Stewart [49], and for wafer- 
scale  cellular  tree architectures by Harden [3]. The negative 
binomial distribution has also  led to formulations of  yield 
variations by Foard Hack [43], and interval estimates of 
yield  by Winter and Cook [50]. It is therefore also used here 
in developing  a criterion for ascertaining whether  large-area 
clustering  is  present. The approach that follows,  however, 
applies  equally well to the Neymann Type A distribution 
discussed in [ 161. 

area clustering  results from compounding of  a  Poisson 
distribution with  a gamma distribution. This process has 
been  described in detail in a  large number of papers and 
need not be elaborated on here (see for example [ 1 1, 
16,4 11). The result of the compounding procedure produces 
the discrete probability distribution function represented by 

The negative binomial distribution that deals with  large- 

where X represents a random variable denoting the number 
of faults per chip, and k is an integer equal to 0, 1,  2, etc. As 
previously, X denotes the average number of faults per chip. 
It is  also equal to the mean of the compounding gamma 
distribution. Similarly, (Y denotes the cluster parameter. It is 
equal to (X/uJ2, where uX is the standard deviation of the 
gamma distribution [ 131. 

We next  investigate  how Equation (30) is  affected  by the 
window method. Consider a general arrangement of 
windows,  where  each  window contains a multiple of n chips. 
Let the clusters be larger than these  windows, and let the 
number of faults per  window within a cluster be  a random 
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variable that satisfies  a  Poisson distribution with an average 
number of faults per window equal to nx. When this 
distribution is compounded with the gamma distribution, it 
also  results in a  negative binomial distribution. That result 
differs from Equation (30) by having x replaced by nx. The 
quantity a remains the same because the compounder has 
not changed. It is this property that provides  a convenient 
test for large-area  clusters. 

It is  possible, albeit sometimes with  great  difficulty, to 
determine the actual frequency distributions of the number 
of faults occurring on chips.  Similarly, it should be  possible 
to obtain the frequency distributions of the number of faults 
occumng  in windows containing different chip multiples. 
When  these distributions are in agreement with  negative 
binomial distributions, the results can be  used to test for the 
validity of the large-area clustering assumption. This 
assumption is  valid  when  all the values  of a are the same. 
This is the criterion for large-area  clustering. 

Obtaining actual frequency distributions for the number of 
faults per chip is  difficult. To solve this problem, particle 
distributions on actual wafers have occasionally  been  used to 
study the effect  of  increased area. This was done, for 
example, in [42], where  wafer  surfaces  were subdivided into 
squares called quadrats. Negative binomial distributions 
were found to be in good agreement with the frequency 
distributions of the number of  particles in each quadrat for a 
wide  range  of quadrat sizes. The values of the cluster 
parameter a, however,  differed for quadrats with  different 
areas. 

The data obtained with quadrat analysis  described in [42] 
can be  analyzed  by  using  a maximum-likelihood estimation 
technique described by Foard Flack [43]. This approach 
makes it possible to determine the variability in  the 
estimated values of a. The results of such an analysis are 
shown in Figure 2. The bars around the data points indicate 
the range of k g ,  where IJ- is the standard deviation of each 
estimate. Note that the horizontal scale is logarithmic and 
represents  a  range of two orders of magnitude in area. 

quadrat areas. The ranges of standard deviations overlap, 
thus suggesting that these points represent  a  nearly constant 
value of a, and hence the condition for large-area  clustering. 
The increase in values of a for the other points on the curve 
indicates that the associated quadrat areas exceed the range 
for  which the large-area clustering approach is  valid. 

Of interest in Figure 2 are the results for the three smallest 

Cluster parameter dependencies 
It was reported in [6,42,5 I ]  that negative binomial 
distributions provided good  models  for the frequency 
distributions of the number of faults per chip observed in a 
number of integrated-circuit manufacturing facilities. Studies 
by this author have indicated that  the values for a in such 
distributions varied  between 0.30 and 2.38. These results 
were obtained during different  years of manufacture. The 

"."" 
1 10 100 

Relative quadrat area 

Dependence of the cluster parameter (Y on relative quadrat area. 
These data resulted from an analysis of wafer maps showing the 
location of particles. Note the  logarithmic scale on the  horizontal 
axis. 

higher  value  of a resulted from low-yield chips made during 
earlier  years of fabrication. The lower  value  of LY was 
observed later, when the yields  were  higher. 

increasing  yield  was  first reported in [6, 511. The fault 
clusters occurred in both high- and low-yield  processes. In 
the low-yield  process,  however, the clustering effect appeared 
to be  masked  by the high  average fault levels present in low- 
yield  chips. During a period of  high-yield manufacturing, 
some of these same clusters remained, leading to an 
increased  variability  of the number of faults per chip. This 
effect could have  been  negated  if the sources  of the clusters 
had been found and subsequently eliminated. 

These  effects and the dependence of the cluster parameter 
on area can be incorporated in  an approximate yield  model 
of the form 

The observed  decrease in the clustering parameter CY with 

Y",, = [ 1 + nX,,(D,)/a(n, Di)]-a(n? (3 1) 

Both X,, and a depend on a set of defect densities 
represented by Di.  In addition, a is  also  a function of the 
number of circuit blocks.  Such dependencies have  been  used 
successfully  by this author since  198 1 for estimating the 
yields  of chips with redundancy and partially good chips. 
However, further refinements of this model are needed to 
more accurately take into account the effects  of  varying 
cluster  areas. A preliminary account of an effort to  do SO 

may be found in [ 171, which,  however,  is not broadly 
available;  a subsequent effort, in which consideration is  given 171 
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to the effects  of  clusters  which are smaller than circuit areas, 
is  described  elsewhere in this issue [52]. 

Concluding  remarks 
In this paper the methods used  for estimating and predicting 
yields  of integrated-circuit chips that have some degree of 
fault tolerance have  been  reviewed. Some of the yield  models 
described  have  been  used for more than a decade in 
productivity optimization of dynamic random access 
memory (DRAM) chips containing redundancy. They have 
also been  used to project learning plans for manufacturing 
yields  of  such chips as the IBM 64K, 256K, 288K, and 1Mb 
DRAMS.  Because  of their usefulness, the models have found 
acceptance elsewhere, e.g.,  by Stewart [49], Koren et al. 
[46-481, Harden [3], and Wey [53]. 

With the continuing trend toward placing more transistors 
on chips,  two  effects can be  expected.  First,  because  of the 
quantities involved, the number of faults occurring on a chip 
can be  expected to increase. This will require the use of 
more effective fault-tolerance schemes.  Second, the 
variability of the number of faults per chip should also 
increase, thus causing the effects  of fault clustering to 
become  increasingly important. Further refinements in  the 
models will be  needed to take this effectively into account. 
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